JP2002068843A - Silicon nitride sintered body and method for producing the same - Google Patents
Silicon nitride sintered body and method for producing the sameInfo
- Publication number
- JP2002068843A JP2002068843A JP2000258568A JP2000258568A JP2002068843A JP 2002068843 A JP2002068843 A JP 2002068843A JP 2000258568 A JP2000258568 A JP 2000258568A JP 2000258568 A JP2000258568 A JP 2000258568A JP 2002068843 A JP2002068843 A JP 2002068843A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- mol
- weight
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 108
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000203 mixture Substances 0.000 claims abstract description 62
- 229910052760 oxygen Inorganic materials 0.000 claims description 49
- 239000001301 oxygen Substances 0.000 claims description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 44
- 239000000843 powder Substances 0.000 claims description 43
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 31
- 238000010304 firing Methods 0.000 claims description 28
- 229910052765 Lutetium Inorganic materials 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 239000011863 silicon-based powder Substances 0.000 claims description 16
- 229910003443 lutetium oxide Inorganic materials 0.000 claims description 14
- MPARYNQUYZOBJM-UHFFFAOYSA-N oxo(oxolutetiooxy)lutetium Chemical compound O=[Lu]O[Lu]=O MPARYNQUYZOBJM-UHFFFAOYSA-N 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 13
- 238000010587 phase diagram Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 abstract description 29
- 238000007254 oxidation reaction Methods 0.000 abstract description 29
- 238000010586 diagram Methods 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 74
- 238000005245 sintering Methods 0.000 description 21
- 238000013001 point bending Methods 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000000280 densification Methods 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000018199 S phase Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- -1 rare earth nitride Chemical class 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- XCCZXYQOZMNYMS-UHFFFAOYSA-N [O-2].[Y+3].[Si+2]=O Chemical compound [O-2].[Y+3].[Si+2]=O XCCZXYQOZMNYMS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910001719 melilite Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 1
- 229940075624 ytterbium oxide Drugs 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】
【課題】 高温において高い強度と優れた耐酸化性を併
せ持つ窒化ケイ素質焼結体を提供する。
【解決手段】 粒界相をLu4Si2O7N2の結晶相の実質的に
単相とし、組成が、Si3N 4-SiO2-Lu2O3三元系の状態図上
で、A点:Si3N4、B点:28mol%SiO2-72mol%Lu2O 3、及
びC点:16mol%SiO2-84mol%Lu2O3の3点を頂点をする三
角形ABCの周囲又は内部の組成とする。
(57) [Summary]
PROBLEM TO BE SOLVED: To provide both high strength at high temperature and excellent oxidation resistance.
Provided is a silicon nitride-based sintered body.
SOLUTION: The grain boundary phase is LuFourSiTwoO7NTwoOf the crystalline phase of
Single phase, composition is SiThreeN Four-SiOTwo-LuTwoOThreeOn the ternary state diagram
And point A: SiThreeNFour, Point B: 28 mol% SiOTwo-72mol% LuTwoO Three,
And C point: 16mol% SiOTwo-84mol% LuTwoOThreeA vertex with three points
The composition is that around or inside the square ABC.
Description
【0001】[0001]
【発明の属する技術分野】この出願の発明は、窒化ケイ
素質焼結体とその製造方法に関するものである。さらに
詳しくは、この出願の発明は、高温において高い強度と
優れた耐酸化性を併せ持ち、各種機械、機器の構造部品
の素材として利用可能な窒化ケイ素質焼結体とこれを製
造する製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body and a method for producing the same. More specifically, the invention of this application relates to a silicon nitride-based sintered body having both high strength and excellent oxidation resistance at a high temperature and usable as a material for structural parts of various machines and devices, and a manufacturing method for manufacturing the same. Things.
【0002】[0002]
【従来の技術】窒化ケイ素を主成分とする焼結体、すな
わち窒化ケイ素質焼結体は、常温、高温ともに化学的に
安定であり、高い機械的強度を有し、軸受などの摺動部
材、ターボチャージャロータなどのエンジン部材への利
用が期待されている。2. Description of the Related Art A sintered body containing silicon nitride as a main component, that is, a silicon nitride-based sintered body is chemically stable at normal temperature and high temperature, has high mechanical strength, and is a sliding member such as a bearing. It is expected to be used for engine members such as turbocharger rotors.
【0003】高強度な窒化ケイ素質焼結体を得るため
に、窒化ケイ素粉末に焼結助剤として酸化物を添加し、
1600℃以上で焼成して液相焼結させ、緻密化することが
行われている。焼結助剤として有効な酸化物には、酸化
マグネシウム、酸化アルミニウム、希土類元素酸化物が
知られており、中でも酸化マグネシウム、酸化アルミニ
ウム、酸化イットリウムは、単体若しくは混合物として
しばしば使用されている。これら焼結助剤は、焼成に際
し、高温での原料表面の酸化層である酸化ケイ素と反応
し、液相を生成する。焼結は、このようにして生成した
液相内を窒化ケイ素が拡散することにより進行する。焼
結後冷却すると、液相は、一部が酸化物若しくは酸窒化
物として結晶化するものの、大部分はガラス相として粒
界に生成する。このため、窒化ケイ素質焼結体は、一般
に、窒化ケイ素粒子と粒界相であるガラス相とから構成
されている。In order to obtain a high-strength silicon nitride sintered body, an oxide is added to a silicon nitride powder as a sintering aid,
Baking at 1600 ° C. or higher, liquid phase sintering, and densification are performed. Magnesium oxide, aluminum oxide, and rare earth element oxides are known as oxides effective as sintering aids. Among them, magnesium oxide, aluminum oxide, and yttrium oxide are often used alone or as a mixture. During firing, these sintering aids react with silicon oxide, which is an oxide layer on the surface of the raw material at a high temperature, to generate a liquid phase. Sintering proceeds by diffusion of silicon nitride in the liquid phase thus generated. When cooled after sintering, the liquid phase partially crystallizes as oxides or oxynitrides, but mostly forms as a glass phase at grain boundaries. Therefore, the silicon nitride sintered body is generally composed of silicon nitride particles and a glass phase which is a grain boundary phase.
【0004】[0004]
【発明が解決しようとする課題】このような窒化ケイ素
質焼結体については、1000℃以上の高温環境下で使用す
ると、粒界に存在するガラス相が軟化し、強度が急激に
低下することが指摘されている。軟化温度は粒界相中の
金属-Si-O系の溶融温度に比例するため、強度低下の程
度は、粒界相の化学組成に大きく依存している。したが
って、焼結助剤として酸化マグネシウムを添加するより
も、酸化アルミニウムと酸化イットリウムとの混合物を
添加した方が高温強度は高くなる。When such a silicon nitride sintered body is used in a high-temperature environment of 1000 ° C. or more, the glass phase existing at the grain boundary softens and the strength rapidly decreases. Has been pointed out. Since the softening temperature is proportional to the melting temperature of the metal-Si-O system in the grain boundary phase, the degree of the strength reduction largely depends on the chemical composition of the grain boundary phase. Therefore, the high-temperature strength is higher when a mixture of aluminum oxide and yttrium oxide is added than when magnesium oxide is added as a sintering aid.
【0005】最近、窒化ケイ素質焼結体の高温強度を改
善するために、焼結助剤に希土類酸化物と酸化ケイ素と
の混合物を用いることが検討されている。Recently, in order to improve the high-temperature strength of a silicon nitride sintered body, use of a mixture of a rare earth oxide and silicon oxide as a sintering aid has been studied.
【0006】たとえば、J. Am. Ceram. Soc. 75号、205
0頁(1992年)には、酸化イットリウム-酸化ケイ素系の
焼結助剤を添加し、粒界に高融点であるY2Si2O7を析出
させた窒化ケイ素質焼結体が報告されている。この窒化
ケイ素質焼結体では、図4の状態図に示した窒素含有ア
パタイト(N相、Y10Si7O22N4)若しくはK相(YSiO
2N)又はこれらに近い組成のガラス相がY2Si2O7に次ぐ
第二の粒界相となっている。N相及びK相の軟化温度は
1500℃以下であるため、これらの相又はガラス相が粒界
相として生成する窒化ケイ素質焼結体の高温強度は十分
満足できるものではなかった。さらに、Si3N4-Y2Si2O2-
Si2N2O三元系の状態図において、その各々の成分を頂点
とする三角形の周囲及び内部の組成が検討されもした
が、高温強度は十分とはならなかった。For example, J. Am. Ceram. Soc. No. 75, 205
On page 0 (1992), there was reported a silicon nitride-based sintered body in which a high melting point Y 2 Si 2 O 7 was precipitated at the grain boundaries by adding a yttrium oxide-silicon oxide sintering aid. ing. In this silicon nitride sintered body, nitrogen-containing apatite (N phase, Y 10 Si 7 O 22 N 4 ) or K phase (YSiO
2 N) or a glass phase having a composition close thereto is a second grain boundary phase, second only to the Y 2 Si 2 O 7. The softening temperatures of the N and K phases are
Since the temperature is 1500 ° C. or lower, the high-temperature strength of the silicon nitride-based sintered body in which these phases or glass phases are formed as a grain boundary phase has not been sufficiently satisfactory. Furthermore, Si 3 N 4 -Y 2 Si 2 O 2-
In the phase diagram of the Si 2 N 2 O ternary system, the composition around and inside the triangle having the respective components as vertices was examined, but the high-temperature strength was not sufficient.
【0007】この他、Si3N4-SiO2-RE2O3(RE:希土類元
素)の三元系において、特開平4-15466号公報には、図
4の状態図に示したJ相(RE4Si2O7N2)、N相、K相を
粒界に析出させることが、特開平4-243972号公報には、
J相と希土類窒化物を粒界に析出させることが、また、
特開平4-292465号公報には、S相(RE2SiO5)を粒界に
析出させることが報告されている。さらに、特開平8-48
565号公報には、粒界相として、図5に示した状態図に
おけるJ相、又はJ相及びS相の2相を析出させること
が報告されている。In addition, in a ternary system of Si 3 N 4 —SiO 2 —RE 2 O 3 (RE: rare earth element), Japanese Patent Application Laid-Open No. 4-15466 discloses a J phase shown in the phase diagram of FIG. JP-A-4-43972 discloses that (RE 4 Si 2 O 7 N 2 ), N phase and K phase are precipitated at the grain boundary.
Precipitating the J phase and the rare earth nitride at the grain boundary,
Japanese Patent Application Laid-Open No. H4-229465 reports that an S phase (RE 2 SiO 5 ) is precipitated at grain boundaries. Further, JP-A-8-48
No. 565 reports that a J phase or two phases of a J phase and an S phase in the phase diagram shown in FIG. 5 are precipitated as a grain boundary phase.
【0008】しかしながら、いずれにおいても、組成制
御のために、希土類酸化物が多量に添加されるため、高
温強度はある程度改善される一方で、耐クリープ特性、
耐酸化性が低下するという新たな問題が生じている。ま
た、これらの文献には、希土類元素間の添加効果の格差
は全く報告されていない。However, in any case, since a large amount of rare earth oxide is added for controlling the composition, the high temperature strength is improved to some extent, while the creep resistance and
There is a new problem that the oxidation resistance is reduced. Further, these documents do not report any difference in the effect of addition between rare earth elements.
【0009】この出願の発明は、以上の通りの事情に鑑
みてなされたものであり、高温において高い強度と優れ
た耐酸化性を併せ持つ窒化ケイ素質焼結体とこれを製造
する製造方法を提供することを目的としている。The present invention has been made in view of the above circumstances, and provides a silicon nitride sintered body having both high strength and excellent oxidation resistance at a high temperature, and a production method for producing the same. It is intended to be.
【0010】[0010]
【課題を解決するための手段】この出願の発明の発明者
等は、希土類元素間の状態図及び焼結性の差に着目し、
希土類元素としてルテチウム(Lu)を選び、出発原料で
ある窒化ケイ素粉末中の酸素不純物を取り除くことによ
り、少量のLu酸化物の添加でもJ相(Lu4Si2O7N2)を粒
界に析出させることに成功し、高温強度のみでなく耐酸
化性をも併せ持つ窒化ケイ素質焼結体が得られることを
見出した。Means for Solving the Problems The inventors of the present invention pay attention to the phase diagram and sinterability difference between rare earth elements,
By selecting lutetium (Lu) as a rare earth element and removing oxygen impurities in the silicon nitride powder as a starting material, the J phase (Lu 4 Si 2 O 7 N 2 ) can be formed at the grain boundary even with the addition of a small amount of Lu oxide. The inventors succeeded in precipitation and found that a silicon nitride sintered body having not only high temperature strength but also oxidation resistance can be obtained.
【0011】Si3N4-SiO2-RE2O3三元系の状態図は、図4
及び図5に示した2つのタイプがある。図4に示したタ
イプは、K相及びN相が存在するもので、イットリウム
(Y)などのイオン半径の大きな希土類元素がこれに属
する。一方、図5に示したタイプには、特開平8-48565
号公報にイッテルビウム(Yb)をはじめ、ツリウム(T
m)、ルテチウム(Lu)が報告されている。この出願の
発明者等により希土類元素間の格差について詳細に検討
を加えたところ、Luは、やはり図5に示したタイプに属
するとともに、それらの内、Luのみがほぼ完全に粒界に
おいて結晶化することが判明した。The phase diagram of the ternary Si 3 N 4 —SiO 2 —RE 2 O 3 is shown in FIG.
And two types shown in FIG. The type shown in FIG. 4 has a K phase and an N phase, and rare earth elements having a large ionic radius such as yttrium (Y) belong to this. On the other hand, the type shown in FIG.
Publications include ytterbium (Yb), thulium (T
m), lutetium (Lu) has been reported. When the inventors of the present application examined the disparity between rare earth elements in detail, Lu also belongs to the type shown in FIG. 5, and among them, only Lu is almost completely crystallized at the grain boundary. It turned out to be.
【0012】ところで、Si3N4-SiO2-Lu2O3三元系におけ
るJ相の化学組成は、上記の通り、Lu4Si2O7N2であり、
Si3N4:SiO2:Lu2O3=1:1:4(モル比)の組成となってい
る。したがって、窒化ケイ素質焼結体の焼成に際して、
生成した液相を完全に結晶化させるためには、Lu2O3を
組成中のSiO2の4倍添加する必要がある。原料の窒化ケ
イ素粉末が1.5重量%の酸素を不純物として含有している
とすると(通常、この程度若しくはこれを上回る酸素含
有量がしばしば見られる)、これをSiO2に換算すると、
およそ3重量%(6mol%)に相当する。このことからする
と、粒界相をJ相単相とするには24mol%以上のLu2O3の
添加が必要になるが、このような多量の焼結助剤の添加
により、高温において酸化が進行しやすくなり、前述の
通りの耐酸化性の低下を招く。粒界相が単相でなく、他
の相との混合相となると、耐熱性が低下する。これまで
に報告されている窒化ケイ素質焼結体では、粒界がLu4S
i2O7N2の単相となっておらず、全て他の相との混合物と
なっている。Incidentally, the chemical composition of the J phase in the ternary system of Si 3 N 4 —SiO 2 —Lu 2 O 3 is Lu 4 Si 2 O 7 N 2 as described above.
The composition is Si 3 N 4 : SiO 2 : Lu 2 O 3 = 1: 1: 4 (molar ratio). Therefore, when firing the silicon nitride sintered body,
In order to completely crystallize the generated liquid phase, it is necessary to add Lu 2 O 3 four times as much as SiO 2 in the composition. Assuming that the raw material silicon nitride powder contains 1.5% by weight of oxygen as an impurity (an oxygen content of this level or higher is often found), when converted to SiO 2 ,
This corresponds to approximately 3% by weight (6 mol%). From this fact, it is necessary to add 24 mol% or more of Lu 2 O 3 in order to make the grain boundary phase a single phase of J phase. This facilitates the progress and causes a decrease in oxidation resistance as described above. If the grain boundary phase is not a single phase but a mixed phase with another phase, the heat resistance is reduced. In the silicon nitride based sintered body reported so far, the grain boundary is Lu 4 S
It is not a single phase of i 2 O 7 N 2 but is a mixture with all other phases.
【0013】そこで、この出願の発明の発明者等は、出
発原料の酸素含有量を低減させることにより、焼結助剤
として添加するLu2O3の添加量を低減させ、焼成時にLu4
Si2O 7N2の組成を有する液相を生成させ、Lu4Si2O7N2の
実質的に単相を粒界相とする窒化ケイ素質焼結体を実現
したのである。Therefore, the inventors of the invention of the present application disclose
By reducing the oxygen content of the raw material, sintering aid
Lu added asTwoOThreeTo reduce the amount of Lu added during firing.Four
SiTwoO 7NTwoTo form a liquid phase having the compositionFourSiTwoO7NTwoof
Realized silicon nitride sintered body with a substantially single phase grain boundary phase
It was done.
【0014】ここで、実質的に単相であるというのは、
Lu4Si2O7N2が完全若しくはほぼ完全に結晶化し、他の相
が全く存在しない若しくは微構造において他の相がわず
かに確認される程度であることを意味する。Here, being substantially single-phase means that
This means that Lu 4 Si 2 O 7 N 2 crystallizes completely or almost completely, with no other phases present or a slight identification of other phases in the microstructure.
【0015】この出願の発明は、以上の知見を踏まえ、
完成されたものである。The invention of this application is based on the above findings,
It is completed.
【0016】すなわち、この出願の発明は、前述の課題
を解決するものとして、窒化ケイ素粒子と粒界相とから
構成される窒化ケイ素質焼結体であり、粒界相が、Lu4S
i2O7N2の結晶相の実質的に単相からなり、窒化ケイ素質
焼結体の組成が、Si3N4-SiO2-Lu2O3三元系の状態図上
で、A点:Si3N4、B点:28mol%SiO2-72mol%Lu2O3、及
びC点:16mol%SiO2-84mol%Lu2O3の3点を頂点をする三
角形ABCの周囲又は内部の組成であることを特徴とす
る窒化ケイ素質焼結体(請求項1)を提供する。That is, the invention of this application is a silicon nitride-based sintered body composed of silicon nitride particles and a grain boundary phase, wherein the grain boundary phase is Lu 4 S
The crystalline phase of i 2 O 7 N 2 consists essentially of a single phase, and the composition of the silicon nitride sintered body is represented by A 3 N 4 —SiO 2 —Lu 2 O 3 point: Si 3 N 4, B point: 28mol% SiO 2 -72mol% Lu 2 O 3, and point C: around or inside the triangle ABC which vertices three points 16mol% SiO 2 -84mol% Lu 2 O 3 The present invention provides a silicon nitride-based sintered body (Claim 1) having the following composition:
【0017】この出願の発明は、上記窒化ケイ素質焼結
体に関し、窒化ケイ素質焼結体の組成が、請求項1記載
の三角形ABC上のD点:99mol%Si3N4-0.28mol%SiO2-
0.72mol%Lu2O3、E点:99mol%Si3N4-0.16mol%SiO2-0.84
mol%Lu2O3、F点:94mol%Si3N 4-1.68mol%SiO2-4.32mol%
Lu2O3、及びG点:94mol%Si3N4-0.96mol%SiO2-5.04mol%
Lu2O3の4点を頂点とする四角形DEFGの周囲又は内
部の組成であること(請求項2)、Lu4Si2O7N2を2.5〜1
0重量%含むこと(請求項3)、Lu、Si、O、N以外の元素
の含有量が1重量%以下であること(請求項4)、多粒子
粒界に存在する粒界相の内、90体積%以上がLu4Si2O7N2
の結晶相であること(請求項5)をそれぞれ好ましい態
様として提供する。The invention of this application is based on the silicon nitride sintered
2. The composition of the silicon nitride sintered body according to claim 1, wherein
Point D on triangle ABC: 99mol% SiThreeNFour-0.28mol% SiOTwo-
0.72mol% LuTwoOThree, Point E: 99mol% SiThreeNFour-0.16mol% SiOTwo-0.84
mol% LuTwoOThree, F point: 94mol% SiThreeN Four-1.68mol% SiOTwo-4.32mol%
LuTwoOThree, And G point: 94mol% SiThreeNFour-0.96mol% SiOTwo-5.04mol%
LuTwoOThreeAround or inside the square DEFG with the four points of
Part of the composition (Claim 2), LuFourSiTwoO7NTwo2.5 to 1
Containing 0% by weight (Claim 3), elements other than Lu, Si, O and N
Is less than 1% by weight (claim 4),
90% by volume or more of the grain boundary phase existing at the grain boundary is LuFourSiTwoO7NTwo
Each having a crystal phase of
Provide as
【0018】また、この出願の発明は、酸素含有量1.0
重量%以下の窒化ケイ素粉末に1〜12重量%の酸化ルテチ
ウム粉末を添加して混合し、次いで1〜100気圧の窒素雰
囲気中で1700〜2200℃において請求項1又は2記載の組
成となるまで焼成することを特徴とする窒化ケイ素質焼
結体の製造方法(請求項6)を提供する。Further, the invention of this application has an oxygen content of 1.0
1 to 12% by weight of lutetium oxide powder is added to and mixed with 1% to 12% by weight of lutetium oxide powder to silicon nitride powder of 1% by weight or less until the composition according to claim 1 or 2 is obtained at 1700 to 2200 ° C in a nitrogen atmosphere of 1 to 100 atm The present invention provides a method for producing a silicon nitride sintered body, characterized by firing.
【0019】さらにこの出願の発明は、酸素含有量1.5
重量%以下の窒化ケイ素粉末に1〜12重量%の酸化ルテチ
ウム粉末を添加して混合し、焼成に先立ち、1気圧以下
の窒素雰囲気中で1600℃以下に加熱し、酸素含有量が請
求項1又は2記載の組成の酸素含有量となるまで酸素を
揮散させ、次いで1〜100気圧の窒素雰囲気中で1700〜22
00℃において焼成することを特徴とする窒化ケイ素質焼
結体の製造方法(請求項7)を提供する。Further, the invention of this application has an oxygen content of 1.5
1 to 12% by weight of lutetium oxide powder is added to and mixed with silicon nitride powder of 1% by weight or less and heated to 1600 ° C. or less in a nitrogen atmosphere of 1 atm or less prior to firing, and the oxygen content is reduced to 1%. Or volatilization of oxygen until the oxygen content of the composition described in 2 is reached, and then 1700 to 22 in a nitrogen atmosphere of 1 to 100 atm.
A method for producing a silicon nitride-based sintered body characterized by firing at 00 ° C. is provided.
【0020】上記請求項7に係る発明の窒化ケイ素質焼
結体の製造方法に関し、この出願の発明は、ケイ素粉末
をさらに添加すること(請求項8)、ケイ素粉末の添加
量を1〜10重量%とすること(請求項9)をそれぞれ好ま
しい態様として提供する。According to the method for producing a silicon nitride sintered body of the invention according to claim 7, the invention of this application is characterized in that silicon powder is further added (claim 8) and the amount of silicon powder added is 1 to 10. % By weight (claim 9) is provided as a preferred embodiment.
【0021】さらにまた、この出願の発明は、窒化ケイ
素質焼結体の製造方法として、ケイ素粉末に1〜12重量%
の酸化ルテチウム粉末を添加して混合し、次いで窒素雰
囲気中で1500℃以下に加熱し、ケイ素を窒化ケイ素に変
化させた後、1〜100気圧の窒素中で1700〜2200℃におい
て請求項1又は2記載の組成となるまで焼成することを
特徴とする窒化ケイ素質焼結体の製造方法(請求項1
0)を提供する。Further, the invention of the present application provides a method for producing a silicon nitride-based sintered body, wherein 1 to 12% by weight of silicon powder is added to silicon powder.
Lutetium oxide powder is added and mixed, and then heated to 1500 ° C. or less in a nitrogen atmosphere to convert silicon to silicon nitride, and then at 1700 to 2200 ° C. in nitrogen at 1 to 100 atm. 2. A method for producing a silicon nitride-based sintered body, characterized by firing until the composition described in (2) is reached.
0).
【0022】以上の窒化ケイ素質焼結体の製造方法に関
し、この出願の発明は、焼成をホットプレスにより行う
(請求項11)を好ましい態様として提供する。With respect to the above-mentioned method for producing a silicon nitride sintered body, the invention of this application provides, as a preferred embodiment, that firing is performed by hot pressing (claim 11).
【0023】[0023]
【発明の実施の形態】この出願の発明の窒化ケイ素焼結
体は、上記の通り、窒化ケイ素粒子と粒界相とから構成
される窒化ケイ素質焼結体であり、粒界相が、Lu4Si2O7
N2の結晶相の実質的に単相からなり、窒化ケイ素質焼結
体の組成が、図1に示したSi3N4-SiO2-Lu2O3三元系の状
態図上で、A点:Si3N4、B点:28mol%SiO2-72mol%Lu2O
3、及びC点:16mol%SiO2-84mol%Lu2O3の3点を頂点を
する三角形ABCの周囲又は内部の組成である。辺AB
よりSiO2側の組成では、結晶相としてS相(Lu2SiO5)
が析出し、その結果、高温強度が低下する。また、辺A
CよりLu2O3側の組成では、結晶相としてメリライト(L
u2Si3O3N4)が生成し、これにより耐酸化性が低下す
る。BEST MODE FOR CARRYING OUT THE INVENTION As described above, a silicon nitride sintered body of the present invention is a silicon nitride sintered body composed of silicon nitride particles and a grain boundary phase, and the grain boundary phase is Lu. 4 Si 2 O 7
The composition of the silicon nitride sintered body substantially consists of a single phase of the N 2 crystal phase, and the composition of the silicon nitride based sintered body is represented by the Si 3 N 4 —SiO 2 —Lu 2 O 3 ternary system shown in FIG. Point A: Si 3 N 4 , Point B: 28 mol% SiO 2 -72 mol% Lu 2 O
3 and C points: The composition around or inside the triangle ABC having three vertices of 16 mol% SiO 2 -84 mol% Lu 2 O 3 . Side AB
In the composition closer to the SiO 2 side, the S phase (Lu 2 SiO 5 ) is used as the crystal phase.
Precipitates, and as a result, the high-temperature strength decreases. Also, side A
In the composition on the Lu 2 O 3 side from C, melilite (L
u 2 Si 3 O 3 N 4 ) is produced, which reduces the oxidation resistance.
【0024】なお、窒化ケイ素質焼結体の組成は化学分
析により確認することができる。具体的には、Si、Lu及
びその他の金属元素は、焼結体を粉砕した後、フッ化水
素酸と硝酸との混合溶液中で加熱分解し、高周波誘導発
光分析装置(ICP)を用いて焼結体中の含有量を定量す
る。酸素及び窒素は、ガス分析の手法を用いて定量する
ことができる。すなわち、焼結体を、スズと助燃剤とし
ての炭素とともに加熱分解し、分解ガス中の窒素及び一
酸化炭素の濃度により定量することができる。The composition of the silicon nitride sintered body can be confirmed by chemical analysis. More specifically, Si, Lu and other metal elements are pulverized by sintering and then decomposed by heating in a mixed solution of hydrofluoric acid and nitric acid, using a high frequency induction emission spectrometer (ICP). The content in the sintered body is quantified. Oxygen and nitrogen can be quantified using a gas analysis technique. That is, the sintered body is thermally decomposed together with tin and carbon as a combustion aid, and can be quantified by the concentrations of nitrogen and carbon monoxide in the decomposition gas.
【0025】この出願の発明の窒化ケイ素焼結体は、上
記組成において、三角形ABC上のD点:99mol%Si3N4-
0.28mol%SiO2-0.72mol%Lu2O3、E点:99mol%Si3N4-0.16
mol%SiO2-0.84mol%Lu2O3、F点:94mol%Si3N4-1.68mol%
SiO2-4.32mol%Lu2O3、及びG点:94mol%Si3N4-0.96mol%
SiO2-5.04mol%Lu2O3の4点を頂点とする四角形DEFG
の周囲又は内部の組成とすることにより、耐酸化性がさ
らに優れる。辺DEよりSi3N4側の組成では、液相成分
が少なくなり、緻密化に若干劣る。辺FGよりLu2O3側
の組成では、焼結助剤の量が多めとなるため、耐酸化性
に反映する。The silicon nitride sintered body according to the invention of the present application has the above composition, and has a point D on the triangle ABC of 99 mol% Si 3 N 4 −.
0.28 mol% SiO 2 -0.72 mol% Lu 2 O 3 , point E: 99 mol% Si 3 N 4 -0.16
mol% SiO 2 -0.84mol% Lu 2 O 3 , F point: 94mol% Si 3 N 4 -1.68mol%
SiO 2 -4.32 mol% Lu 2 O 3 and point G: 94 mol% Si 3 N 4 -0.96 mol%
Square DEFG with four vertices of SiO 2 -5.04mol% Lu 2 O 3
By making the composition around or inside, the oxidation resistance is further improved. In the composition on the Si 3 N 4 side from the side DE, the liquid phase component is small, and the composition is slightly inferior in densification. In the composition on the Lu 2 O 3 side from the side FG, the amount of the sintering aid is large, which is reflected in the oxidation resistance.
【0026】以上の組成範囲において焼成により、J相
(Lu4Si2O7N2)が結晶相として、しかも実質的に単相で
粒界に析出する。By sintering in the above composition range, the J phase (Lu 4 Si 2 O 7 N 2 ) precipitates as a crystal phase and substantially as a single phase at grain boundaries.
【0027】なお、窒化ケイ素質焼結体中のLu4Si2O7N2
の含有量は、2.5〜10重量%が適当である。Lu4Si2O7N2の
含有量が2.5重量%未満であると、焼結性が低下し、緻密
化が進行しにくくなる。10重量%を超えると、耐酸化性
が低下する。このJ相は、たとえば、β-Si3N4とLu4Si2
O7N2との混合粉末で検量線を作成し、X線回折法による
ピークの高さから定量することができる。Lu 4 Si 2 O 7 N 2 in the silicon nitride sintered body
Is suitably 2.5 to 10% by weight. If the content of Lu 4 Si 2 O 7 N 2 is less than 2.5% by weight, the sinterability is reduced and the densification does not easily proceed. If it exceeds 10% by weight, the oxidation resistance decreases. This J phase is composed of, for example, β-Si 3 N 4 and Lu 4 Si 2
A calibration curve is prepared from a powder mixture with O 7 N 2, and quantification can be performed from the peak height by X-ray diffraction.
【0028】また、窒化ケイ素質焼結体は、Lu、Si、
O、N以外の元素の含有量が1重量%以下であると、耐熱性
に特に優れる。Lu、Si、O、N以外の元素の含有量が1重
量%を超えると、耐熱性がやや低下する。耐熱性は、窒
化ケイ素質焼結体の微構造によっても改善が可能であ
る。すなわち、図3に示したような多粒子粒界に存在す
る粒界相の内、90体積%以上をLu4Si2O7N2の結晶相とす
ることにより、特に優れた耐熱性が実現される。多粒子
粒界に存在する粒界相の残部は、通常、Si-O-N若しくは
Lu-Si-O-N組成のアモルファス相であり、このアモルフ
ァス相が10体積%を超えると、耐熱性の低下を招く。微
構造におけるLu4Si2O7N2結晶相の定量は、たとえば、焼
結体から薄片を切り出し、透過型電子顕微鏡(TEM)を
用いて多粒子粒界を観察することにより行うことができ
る。Further, silicon nitride sintered bodies include Lu, Si,
When the content of elements other than O and N is 1% by weight or less, heat resistance is particularly excellent. When the content of elements other than Lu, Si, O, and N exceeds 1% by weight, the heat resistance slightly decreases. The heat resistance can be improved also by the microstructure of the silicon nitride sintered body. That is, by setting 90% by volume or more of the grain boundary phase existing in the multi-grain boundary as shown in FIG. 3 as the crystal phase of Lu 4 Si 2 O 7 N 2 , particularly excellent heat resistance is realized. Is done. The remainder of the grain boundary phase present at the multi-grain grain boundary is usually Si-ON or
It is an amorphous phase having a Lu-Si-ON composition. If the amorphous phase exceeds 10% by volume, heat resistance is reduced. The quantification of the Lu 4 Si 2 O 7 N 2 crystal phase in the microstructure can be performed, for example, by cutting a flake from a sintered body and observing a multi-particle boundary using a transmission electron microscope (TEM). .
【0029】この出願の発明の窒化ケイ素質焼結体の製
造方法は、前記の通り、出発原料中の酸素含有量を低減
させることを主な特徴としているが、原料粉末に、窒化
ケイ素を用いる場合には、α型、β型、アモルファス又
はこれらの二種以上の混合物のいずれも用いることがで
きる。粒子の大きさやその分布、形状、純度等は特に制
限はない。一方、室温、高温両方の強度の高い焼結体と
するためには、平均粒径2μm以下の粒度分布で、金属不
純物量が100ppm以下の粉末が好ましい。出発原料として
用いる窒化ケイ素粉末の酸素含有量は、1.5重量%を上限
とし(ただし、後述する酸素揮散処理を行わずに焼成す
る場合には、上限は、1.0重量%とする)、少ないほど好
ましい。酸素含有量がこれら上限を超えると、焼結助剤
の添加量が多くなり、耐酸化性が阻害される。As described above, the method for producing a silicon nitride sintered body of the invention of this application is mainly characterized in that the oxygen content in the starting material is reduced, but silicon nitride is used as the raw material powder. In this case, any of α-type, β-type, amorphous, or a mixture of two or more of these can be used. The size, distribution, shape, purity, etc. of the particles are not particularly limited. On the other hand, in order to obtain a sintered body having high strength at both room temperature and high temperature, a powder having a particle size distribution of an average particle diameter of 2 μm or less and a metal impurity amount of 100 ppm or less is preferable. The upper limit of the oxygen content of the silicon nitride powder used as the starting material is 1.5% by weight (however, when firing without performing the oxygen volatilization treatment described below, the upper limit is 1.0% by weight). . If the oxygen content exceeds these upper limits, the added amount of the sintering aid increases, and the oxidation resistance is impaired.
【0030】焼結助剤には酸化ルテチウムLu2O3が添加
され、その添加量は、Lu4Si2O7N2の組成となる量、具体
的には1〜12重量%とする。この範囲において優れた耐酸
化性が実現される。Lu2O3の添加量が1重量%未満である
と、焼成時の液相中にSiO2成分が多くなり、Lu4Si2O7N2
結晶相の実質的な単相が得られない。12重量%を超える
と、粒界相はLu4Si2O7N2結晶相の単相となるが、粒界相
が多くなり、耐酸化性が低下する。Lu2O3の添加量を2.2
5〜9重量%とすると、窒化ケイ素質焼結体中のLu4Si2O7N
2の含有量が2.5〜10重量%となる。Lutetium oxide Lu 2 O 3 is added to the sintering aid, and the amount of the lutetium added is such that the composition becomes Lu 4 Si 2 O 7 N 2 , specifically, 1 to 12% by weight. Excellent oxidation resistance is realized in this range. If the addition amount of Lu 2 O 3 is less than 1% by weight, the SiO 2 component in the liquid phase at the time of firing increases, and Lu 4 Si 2 O 7 N 2
A substantially single crystal phase cannot be obtained. If it exceeds 12% by weight, the grain boundary phase becomes a single phase of the Lu 4 Si 2 O 7 N 2 crystal phase, but the grain boundary phase increases and the oxidation resistance decreases. Lu 2 O 3 added amount is 2.2
Assuming 5 to 9% by weight, Lu 4 Si 2 O 7 N in the silicon nitride sintered body
The content of 2 becomes 2.5 to 10% by weight.
【0031】この出願の発明の窒化ケイ素質焼結体の製
造方法では、焼成は、1〜100気圧の窒素雰囲気中で1700
〜2200℃において行われる。焼成方法は特に制限はな
く、たとえば、最も簡単な方法として、ホットプレスを
採用することができる。ホットプレスは、たとえば、原
料粉末を黒鉛の型に入れ、1〜100気圧の窒素雰囲気中で
100〜500kg/cm2の圧力をかけ、1700〜2200℃で30〜120
分程度焼成することにより行うことができる。In the method for producing a silicon nitride sintered body according to the invention of the present application, the sintering is performed in a nitrogen atmosphere at 1 to 100 atm.
Performed at ~ 2200 ° C. The firing method is not particularly limited. For example, hot pressing can be adopted as the simplest method. Hot pressing, for example, puts the raw material powder in a graphite mold, and in a nitrogen atmosphere of 1 to 100 atm.
Multiplied by the pressure of 100~500kg / cm 2, 30~120 at 1700~2200 ℃
It can be performed by firing for about a minute.
【0032】なお、雰囲気が1気圧未満では、窒化ケイ
素が分解し、窒化ケイ素質焼結体は緻密化しない。100
気圧を超えると、高圧のガスが窒化ケイ素質焼結体中に
閉じ込められ、気泡として残留することになり、95%以
上には緻密化しなくなる。また、焼成温度が1700℃未満
であると、液相が十分に生成しないため、緻密化しな
い。2200℃を超えると、粒成長が激しくなり、その結
果、室温強度の低下を招く。If the atmosphere is lower than 1 atm, silicon nitride is decomposed and the silicon nitride sintered body is not densified. 100
When the pressure exceeds the atmospheric pressure, a high-pressure gas is confined in the silicon nitride-based sintered body, remains as bubbles, and does not become dense at 95% or more. On the other hand, if the firing temperature is lower than 1700 ° C., a liquid phase is not sufficiently generated, and thus the powder is not densified. If the temperature exceeds 2200 ° C., the grain growth becomes severe, and as a result, the strength at room temperature decreases.
【0033】この出願の発明の窒化ケイ素質焼結体の製
造方法では、焼結助剤の添加量を極力抑え、耐酸化性を
確保するために、焼成に先立って、窒化ケイ素粉末中の
酸素含有量をより低減させる酸素揮散処理を行うことが
できる。酸素揮散処理は、具体的には、原料混合粉末を
1気圧以下の窒素雰囲気中で1600℃以下に加熱すること
により行うことができ、この酸素揮散処理によって、酸
素含有量を、前述した窒化ケイ素質焼結体の組成の酸素
含有量まで低減させる。加熱時間は30〜120分程度を目
安とすることができる。酸素揮散処理により、窒化ケイ
素粉末に含まれる不純物の酸素は、 Si3N4 + 3SiO2 = 6SiO + 2N2 などの反応を通じて除去される。加熱温度が1600℃を超
えると、緻密化が始まるため、酸素を効率よく除去する
ことができなくなる。また、窒素雰囲気が1気圧を超え
ると、上記等の分解反応が進みにくくなり、酸素の除去
効率が低下する。In the method for producing a silicon nitride-based sintered body of the invention of the present application, in order to minimize the amount of the sintering aid added and to secure oxidation resistance, the oxygen in the silicon nitride powder is preceded by firing. An oxygen volatilization treatment for further reducing the content can be performed. In the oxygen volatilization process, specifically, the raw material mixed powder
It can be carried out by heating to 1600 ° C. or less in a nitrogen atmosphere of 1 atm or less. By this oxygen volatilization treatment, the oxygen content is reduced to the oxygen content of the above-described composition of the silicon nitride sintered body. The heating time can be about 30 to 120 minutes. By the oxygen volatilization treatment, the impurity oxygen contained in the silicon nitride powder is removed through a reaction such as Si 3 N 4 + 3SiO 2 = 6SiO + 2N 2 . If the heating temperature exceeds 1600 ° C., densification starts, so that oxygen cannot be removed efficiently. On the other hand, when the nitrogen atmosphere exceeds 1 atm, the decomposition reaction such as the above becomes difficult to proceed, and the efficiency of removing oxygen decreases.
【0034】なお、上記等の分解反応は、減圧下で行う
と、効率よく進む。The decomposition reaction as described above proceeds efficiently under reduced pressure.
【0035】原料の窒化ケイ素粉末から不純物の酸素を
除去するには、以上の酸素揮散処理とともに、ケイ素粉
末を原料に添加混合することが有効である。添加された
ケイ素(Si)は、 Si + SiO2 = 2SiO 等に反応し、酸素の除去に寄与する。ケイ素粉末の添加
量は、窒化ケイ素粉末に含有される酸素量に左右される
が、おおむね1〜10重量%とすることができる。一般に、
1重量%未満であると、酸素の除去効果に乏しく、10重量
%を超えると、窒化ケイ素質焼結体中にSiが残留するこ
とがあり、特性に影響をきたす。In order to remove oxygen as an impurity from the silicon nitride powder as the raw material, it is effective to add and mix the silicon powder with the raw material in addition to the oxygen volatilization treatment described above. The added silicon (Si) reacts with Si + SiO 2 = 2SiO or the like and contributes to the removal of oxygen. The amount of silicon powder to be added depends on the amount of oxygen contained in the silicon nitride powder, but can be approximately 1 to 10% by weight. In general,
If it is less than 1% by weight, the effect of removing oxygen is poor, and 10% by weight
%, Si may remain in the silicon nitride sintered body, which affects the properties.
【0036】なお、酸素揮散処理により緻密化しにくく
なる場合もあるが、このような場合には、たとえば熱間
静水圧プレスにより焼成し、確実に緻密化させることが
できる。In some cases, densification becomes difficult due to the oxygen volatilization treatment. In such a case, for example, sintering can be performed by hot isostatic pressing to ensure densification.
【0037】以上の他、この出願の発明の窒化ケイ素質
焼結体の製造方法では、出発原料にケイ素粉末を用いる
こともできる。ケイ素粉末は、窒化ケイ素粉末に比べ、
酸素含有量が少なく、焼結助剤の添加量を低減させつ
つ、Lu4Si2O7N2組成の液相を生成させるのに好適とな
る。ただ、出発原料にケイ素粉末を用いる場合には、焼
成に先立ち、窒化処理を行う必要がある。具体的には、
ケイ素粉末に1〜12重量%の酸化ルテチウム粉末を添加し
て混合した後、窒素雰囲気中で1500℃以下に加熱する。
この窒化処理は、ケイ素を窒化ケイ素に変化させる処理
であり、上記した窒化ケイ素粉末を出発原料とする場合
のケイ素粉末を添加する酸素揮散処理とは本質的に異な
る。窒化処理において加熱温度が1500℃を超えると、ケ
イ素の溶融が起こり、好ましくない。また、窒化処理
は、たとえばケイ素の90%以上が窒化ケイ素に変化する
まで行うことができる。窒化ケイ素に変化しているかど
うかはX線回折により確認することができる。窒化処理
の後には、窒化ケイ素粉末を出発原料とする場合と同様
に、1〜100気圧の窒素雰囲気中で1700〜2200℃において
焼成する。この場合にも、焼成をホットプレスにより行
うことができる。In addition to the above, in the method for producing a silicon nitride sintered body of the present invention, silicon powder can be used as a starting material. Silicon powder, compared to silicon nitride powder,
This is suitable for generating a liquid phase of Lu 4 Si 2 O 7 N 2 composition while having a low oxygen content and a reduced amount of a sintering aid. However, when silicon powder is used as a starting material, it is necessary to perform a nitriding treatment before firing. In particular,
After adding and mixing 1 to 12% by weight of lutetium oxide powder to silicon powder, the mixture is heated to 1500 ° C. or lower in a nitrogen atmosphere.
This nitriding treatment is a treatment for converting silicon to silicon nitride, and is essentially different from the oxygen volatilization treatment for adding silicon powder when the above-mentioned silicon nitride powder is used as a starting material. If the heating temperature exceeds 1500 ° C. in the nitriding treatment, silicon is undesirably melted. Further, the nitriding treatment can be performed until, for example, 90% or more of silicon is changed to silicon nitride. Whether it has been changed to silicon nitride can be confirmed by X-ray diffraction. After the nitriding treatment, as in the case where silicon nitride powder is used as a starting material, firing is performed at 1700 to 2200 ° C. in a nitrogen atmosphere of 1 to 100 atm. Also in this case, firing can be performed by hot pressing.
【0038】なお、この出願の発明の窒化ケイ素質焼結
体は、通常の焼結により大部分は結晶化するが、結晶化
をより進めるには、焼結後に1300〜1700℃で1〜24時間
保持するのが有効である。The silicon nitride sintered body of the invention of the present application is mostly crystallized by ordinary sintering. However, in order to further promote crystallization, 1 to 24 hours at 1300 to 1700 ° C. after sintering. It is effective to keep time.
【0039】次にこの出願の発明の窒化ケイ素質焼結体
とその製造方法の実施例を比較例とともに示す。Next, examples of the silicon nitride sintered body of the invention of the present application and a method for producing the same will be shown together with comparative examples.
【0040】[0040]
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】[0043]
【表3】 [Table 3]
【0044】[0044]
【表4】 [Table 4]
【0045】(実施例1)平均粒径0.5μm、酸素含有量
1.0重量%、α型含有量92%の窒化ケイ素粉末(粉末P1)
に酸化ルテチウムを8.18重量%添加し、エタノールを添
加した湿式ボールミルを用いて2時間混合粉砕した。次
いで、空気中でロータリエバポレータを用いて乾燥した
後、20MPaで金型成形により80mm×45mm×10mmの成形体
とした。(Example 1) Average particle size 0.5 μm, oxygen content
1.0% by weight, 92% α-type silicon nitride powder (powder P1)
Lutetium oxide was added at 8.18% by weight and mixed and pulverized for 2 hours using a wet ball mill to which ethanol was added. Next, after drying using a rotary evaporator in the air, a molded body of 80 mm × 45 mm × 10 mm was formed by die molding at 20 MPa.
【0046】この成形体を黒鉛の型に入れ、ガス圧ホッ
トプレス炉を用いて焼成した。まず10-2Paの真空中で室
温から1300℃まで毎時500℃の割合で加熱し、1300℃に1
時間保持した後、10気圧の窒素ガスを炉内に導入し、20
MPaの圧力を負荷するとともに、毎時500℃で1800℃まで
昇温し、1800℃に1時間保持した。この焼成条件は、表
1中にパターンS1と記載している。The compact was placed in a graphite mold and fired using a gas pressure hot press furnace. First, heat from room temperature to 1300 ° C at a rate of 500 ° C / hour in a vacuum of 10 -2 Pa,
After holding for 10 hours, nitrogen gas at 10 atm was introduced into the furnace,
While applying a pressure of MPa, the temperature was raised to 1800 ° C. at 500 ° C./hour and maintained at 1800 ° C. for 1 hour. The firing conditions are described in Table 1 as pattern S1.
【0047】得られた焼結体を粉砕し、フッ化水素酸と
硝酸との混合溶液中に入れ、テフロン(登録商標)容器
中で180℃に10時間保持し、加熱溶解処理を行った後、
高周波誘導発光分析装置(ICP)を用いて溶液中のSiとL
uの濃度を定量した。次に、焼結体の粉砕物を炭素粉末
とともにスズカプセルに封入し、炭素るつぼの中で加熱
溶解させ、発生した窒素と一酸化炭素を定量し、焼結体
中の酸素量と窒素量を定量した。The obtained sintered body is pulverized, put in a mixed solution of hydrofluoric acid and nitric acid, and kept at 180 ° C. for 10 hours in a Teflon (registered trademark) container to perform a heat dissolution treatment. ,
Si and L in solution using a high frequency induction emission spectrometer (ICP)
The concentration of u was quantified. Next, the pulverized material of the sintered body is sealed in a tin capsule together with the carbon powder, and dissolved by heating in a carbon crucible.The generated nitrogen and carbon monoxide are quantified, and the amount of oxygen and the amount of nitrogen in the sintered body are determined. Quantified.
【0048】定量値は、表1に示したように、Lu:7.33
75重量%、Si:55.011重量%、O:1.1586重量%、N:36.49
3重量%であった。この結果から、焼結体の組成は、96.2
0mol%Si3N4-0.703mol%SiO2-3.097mol%Lu2O3であり、図
1、図2にそれぞれ示した三角形ABC及び四角形DE
FG内の組成であった。As shown in Table 1, the quantitative value was Lu: 7.33.
75% by weight, Si: 55.011% by weight, O: 1.1586% by weight, N: 36.49
It was 3% by weight. From this result, the composition of the sintered body was 96.2
0 mol% Si 3 N 4 -0.703 mol% SiO 2 -3.097 mol% Lu 2 O 3 , and the triangle ABC and the square DE shown in FIGS. 1 and 2 respectively.
The composition was within FG.
【0049】また、X線回折の結果から、焼結体に生成
した相は、β-Si3N4とLu4Si2O7N2であることが確認され
た。From the results of X-ray diffraction, it was confirmed that the phases formed in the sintered body were β-Si 3 N 4 and Lu 4 Si 2 O 7 N 2 .
【0050】さらに、焼結体から薄片を切り出し、アル
ゴンイオンミル処理後、透過型電子顕微鏡(TEM)を用
いて観察した。図3に示したように、β型窒化ケイ素粒
子と、二粒子粒界及び多粒子粒界とからなる微構造が観
察された。多粒子粒界には、電子線回折によりLu4Si2O7
N2の結晶化が確認された。ランダムに選んだ20個の多粒
子粒界の全てにおいてLu4Si2O7N2が結晶化していた。Further, a slice was cut out from the sintered body, and after being subjected to an argon ion mill treatment, observed using a transmission electron microscope (TEM). As shown in FIG. 3, a microstructure composed of β-type silicon nitride particles, and two-particle and multi-particle boundaries was observed. Lu 4 Si 2 O 7 by electron diffraction
Crystallization of N 2 was confirmed. Lu 4 Si 2 O 7 N 2 was crystallized in all 20 randomly selected multi-grain boundaries.
【0051】そして、焼結体を800メッシュのダイヤモ
ンドホイールを用いて平面研削し、3mm×4mm×40mmの寸
法に加工し、JIS-R1601に準じた室温及び高温4点曲げ
により曲げ強度を測定した。表2に示したように、焼結
体の気孔率は1.2%であり、室温4点曲げ強度は1050MP
a、1500℃における高温4点曲げ強度は820MPaであっ
た。また、加工後の試験片を大気雰囲気炉中で1500℃に
加熱し、100時間保持した。この酸化試験後の重量増加
は0.05mg/cm2であり、室温における4点曲げ強度は1020
MPaであった。耐酸化性は、空気中で加熱した時の重量
変化及び室温強度で評価される。酸化が進むと、酸化膜
が形成するために重量の増加と強度の低下が見られる。Then, the sintered body was subjected to surface grinding using an 800 mesh diamond wheel, processed into dimensions of 3 mm × 4 mm × 40 mm, and the bending strength was measured by room-temperature and high-temperature four-point bending according to JIS-R1601. . As shown in Table 2, the porosity of the sintered body was 1.2%, and the four-point bending strength at room temperature was 1050MP.
a, The high-temperature four-point bending strength at 1500 ° C. was 820 MPa. In addition, the processed test piece was heated to 1500 ° C. in an air atmosphere furnace and held for 100 hours. The weight increase after this oxidation test was 0.05 mg / cm 2 , and the four-point bending strength at room temperature was 1020.
MPa. Oxidation resistance is evaluated by weight change when heated in air and room temperature strength. As the oxidation proceeds, an increase in weight and a decrease in strength are observed due to the formation of an oxide film.
【0052】以上の結果から、得られた焼結体は、高温
においても強度が十分に高く、優れた耐酸化性を併せ持
つ窒化ケイ素湿焼結体であると判断される。 (比較例1)平均粒径0.3μm、酸素含有量1.8重量%、α
型含有量90%の窒化ケイ素粉末(粉末P2)に酸化イッテ
ルビウムを12重量%添加し、実施例1と同様に混合粉砕
した後、成形体とした。From the above results, it is determined that the obtained sintered body is a silicon nitride wet sintered body having sufficiently high strength even at a high temperature and having excellent oxidation resistance. (Comparative Example 1) Average particle size 0.3 μm, oxygen content 1.8% by weight, α
12% by weight of ytterbium oxide was added to a silicon nitride powder (powder P2) having a mold content of 90%, mixed and pulverized in the same manner as in Example 1 to obtain a molded body.
【0053】この成形体を黒鉛の型に入れ、ガス圧ホッ
トプレス炉を用いて焼成した。まず10-2Paの真空中で室
温から800℃まで毎時500℃の割合で加熱した後、10気圧
の窒素ガスを炉内に導入し、20MPaの圧力を負荷すると
ともに、毎時500℃で1800℃まで昇温し、1800℃に1時間
保持した。生成相は、X線回折の結果、β-Si3N4及びYb
4Si2O7N2であることが確認された。また、TEMを用いた
観察から粒界相は、全てYb4Si2O7N2であることが確認さ
れた。The compact was placed in a graphite mold and fired using a gas pressure hot press furnace. First, after heating from room temperature to 800 ° C. at a rate of 500 ° C./hour in a vacuum of 10 −2 Pa, a nitrogen gas of 10 atm is introduced into the furnace, a pressure of 20 MPa is applied, and 1800 ° C. at 500 ° C./hour The temperature was raised to 1800 ° C. for 1 hour. The formed phases were β-Si 3 N 4 and Yb
It was confirmed to be 4 Si 2 O 7 N 2 . Further, from observation using a TEM, it was confirmed that all of the grain boundary phases were Yb 4 Si 2 O 7 N 2 .
【0054】得られた焼結体について実施例1と同様
に、曲げ強度を測定した。その結果、表4に示したよう
に、気孔率は1.5%であり、室温4点曲げ強度は1220MP
a、1500℃における高温4点曲げ強度は470MPaであっ
た。実施例1に比べ、高温強度の低下が認められる。こ
れは、粒界相がLu4Si2O7N2でなく、Yb4Si2O7N2であるこ
とに起因していると、実施例1との比較から判断され
る。 (実施例2〜7)表1に示したように、窒化ケイ素粉末
として、実施例1で用いた窒化ケイ素粉末と同じ粉末P
1、若しくは平均粒径0.8μm、酸素含有量0.8重量%、α
型含有量95%の窒化ケイ素粉末(粉末P3)を用い、これ
に酸化ルテチウムを表1に示した含有量において実施例
1と同様に添加混合し、さらに成形体を作製した。The bending strength of the obtained sintered body was measured in the same manner as in Example 1. As a result, as shown in Table 4, the porosity was 1.5%, and the four-point bending strength at room temperature was 1220MPa.
a, The high-temperature four-point bending strength at 1500 ° C. was 470 MPa. A decrease in high-temperature strength is observed as compared with Example 1. This is determined from the comparison with Example 1 as being caused by the fact that the grain boundary phase is not Lu 4 Si 2 O 7 N 2 but Yb 4 Si 2 O 7 N 2 . (Examples 2 to 7) As shown in Table 1, as the silicon nitride powder, the same powder P as the silicon nitride powder used in Example 1 was used.
1, or average particle size 0.8 μm, oxygen content 0.8% by weight, α
Silicon nitride powder (powder P3) having a mold content of 95% was used, and lutetium oxide was added and mixed in the same manner as in Example 1 at the content shown in Table 1 to produce a molded body.
【0055】この成形体を黒鉛の型に入れ、ガス圧ホッ
トプレス炉を用いて焼成した。焼成条件は、実施例1と
は異なるパターンS2を採用した。すなわち、まず10-2Pa
の真空中で室温から1300℃まで毎時500℃の割合で加熱
し、1300℃において0.8気圧の窒素ガスを炉内に導入
し、次いで1500℃に1時間保持した後、10気圧の窒素ガ
スを炉内に導入し、20MPaの圧力を負荷するとともに、
毎時500℃で表1に示した各温度まで昇温し、その温度
に保持した。This compact was placed in a graphite mold and fired using a gas pressure hot press furnace. As a firing condition, a pattern S2 different from that in Example 1 was employed. That is, first 10 -2 Pa
In a vacuum, heat from room temperature to 1300 ° C at a rate of 500 ° C / hour, introduce nitrogen gas at 1300 ° C at 0.8 atm into the furnace, and then hold at 1500 ° C for 1 hour. And introduce a pressure of 20MPa,
The temperature was raised at 500 ° C. per hour to each of the temperatures shown in Table 1 and maintained at that temperature.
【0056】得られた焼結体は、実施例1と同様にして
SiとLuの定量、及び酸素量と窒素量の定量を行った。The obtained sintered body was prepared in the same manner as in Example 1.
The determination of Si and Lu, and the determination of oxygen and nitrogen were performed.
【0057】定量値及びこれに基づく焼結体の組成は、
表1に示した通りであり、いずれも、図1、図2にそれ
ぞれ示した三角形ABC及び四角形DEFG内の組成で
あった。The quantitative value and the composition of the sintered body based on the quantitative value are as follows:
As shown in Table 1, each of the compositions was within the triangle ABC and the square DEFG shown in FIGS. 1 and 2, respectively.
【0058】また、X線回折の結果から、生成相は、全
てβ-Si3N4とLu4Si2O7N2であることが確認された。さら
に、TEM観察の結果、β型窒化ケイ素粒子と、二粒子粒
界及び多粒子粒界とからなる微構造が観察され、多粒子
粒界には、電子線回折によりLu4Si2O7N2の結晶化が確認
された。ランダムに選んだ20個の多粒子粒界の全てにお
いてLu4Si2O7N2が結晶化していた。From the results of X-ray diffraction, it was confirmed that all the generated phases were β-Si 3 N 4 and Lu 4 Si 2 O 7 N 2 . Further, as a result of TEM observation, a microstructure composed of β-type silicon nitride particles, and two-particle grain boundaries and multi-particle grain boundaries was observed.In the multi-particle grain boundaries, Lu 4 Si 2 O 7 N was observed by electron diffraction. Crystallization of 2 was confirmed. Lu 4 Si 2 O 7 N 2 was crystallized in all 20 randomly selected multi-grain boundaries.
【0059】そして、曲げ試験及び酸化試験も実施例1
と同様に行った。気孔率、室温4点曲げ強度、及び1500
℃における高温4点曲げ強度は表2に示した通りであっ
た。The bending test and the oxidation test were also performed in Example 1.
The same was done. Porosity, room temperature 4-point bending strength, and 1500
The high-temperature four-point bending strength at ° C. was as shown in Table 2.
【0060】実施例2〜7においても、得られた焼結体
は、高温においても強度が十分に高く、優れた耐酸化性
を併せ持つ窒化ケイ素湿焼結体であると判断される。 (比較例2、3)表3に示したように、窒化ケイ素粉末
として、実施例1、比較例1でそれぞれ用いた粉末P1若
しくは粉末P2を用い、これに酸化ルテチウムを表3に示
した含有量において実施例1と同様に添加混合し、さら
に成形体を作製した。Also in Examples 2 to 7, the obtained sintered body is judged to be a silicon nitride wet sintered body having sufficiently high strength even at a high temperature and having excellent oxidation resistance. (Comparative Examples 2 and 3) As shown in Table 3, the powder P1 or P2 used in Example 1 and Comparative Example 1 was used as the silicon nitride powder, and contained lutetium oxide as shown in Table 3 The amount was added and mixed in the same manner as in Example 1 to further produce a molded body.
【0061】この成形体を黒鉛の型に入れ、ガス圧ホッ
トプレス炉を用いて焼成した。焼成条件は、実施例1、
実施例2〜7でそれぞれ採用したパターンS1若しくはパ
ターンS2を採用した。The compact was placed in a graphite mold and fired using a gas pressure hot press furnace. The firing conditions were the same as in Example 1,
The pattern S1 or the pattern S2 employed in Examples 2 to 7, respectively, was employed.
【0062】得られた焼結体は、実施例1と同様にして
SiとLuの定量、及び酸素量と窒素量の定量を行った。The obtained sintered body was treated in the same manner as in Example 1.
The determination of Si and Lu, and the determination of oxygen and nitrogen were performed.
【0063】定量値及びこれに基づく焼結体の組成は、
表3に示した通りであった。図1、図2にそれぞれ示し
た三角形ABC及び四角形DEFGの周囲の組成よりLu
2O3側にずれている。粒界相の組成がLu2O3過剰の組成と
なったため、X線回折の結果からは、Lu4Si2O7N2以外の
M相が生成していることが確認された。The quantitative value and the composition of the sintered body based on the quantitative value are as follows:
As shown in Table 3. From the compositions around the triangle ABC and the square DEFG shown in FIGS. 1 and 2, respectively, Lu
It is shifted to 2 O 3 side. Since the composition of the grain boundary phase was Lu 2 O 3 excess, the result of X-ray diffraction confirmed that M phases other than Lu 4 Si 2 O 7 N 2 were generated.
【0064】曲げ試験及び酸化試験を実施例1と同様に
行った。気孔率、室温4点曲げ強度、及び1500℃におけ
る高温4点曲げ強度は表4に示した通りであった。A bending test and an oxidation test were performed in the same manner as in Example 1. The porosity, the room-temperature 4-point bending strength, and the high-temperature 4-point bending strength at 1500 ° C. were as shown in Table 4.
【0065】M相が生成する組成では液相の粘性が高
く、これにより焼結性が低下し、十分に緻密化しない。
このため、気孔率が高く、したがって、室温及び高温強
度がともに低くなっている。また、高い気孔率に起因し
て耐酸化性も低下している。 (実施例8)表1に示したように、窒化ケイ素粉末とし
て、実施例1で用いた窒化ケイ素粉末と同じ粉末P1を用
い、これにケイ素粉末を4.84重量%、酸化ルテチウムを
2.435重量%添加し、実施例1と同様にして混合し、さら
に成形体を作製した。In the composition in which the M phase is generated, the viscosity of the liquid phase is high, which lowers the sinterability and does not sufficiently densify.
For this reason, the porosity is high, and the room temperature and high temperature strength are both low. Further, the oxidation resistance is also reduced due to the high porosity. (Example 8) As shown in Table 1, the same powder P1 as the silicon nitride powder used in Example 1 was used as the silicon nitride powder, and 4.84% by weight of the silicon powder and lutetium oxide were used.
2.435% by weight was added and mixed in the same manner as in Example 1 to produce a molded body.
【0066】この成形体を黒鉛の型に入れ、ガス圧ホッ
トプレス炉を用い、実施例2〜7で採用した焼成条件、
パターンS2において焼成した。The molded body was placed in a graphite mold, and the firing conditions employed in Examples 2 to 7 were determined using a gas pressure hot press furnace.
It was baked in pattern S2.
【0067】得られた焼結体は、実施例1と同様にして
SiとLuの定量、及び酸素量と窒素量の定量を行った。定
量値は、表1に示したように、Lu:2.0774重量%、Si:5
8.63重量%、O:0.3286重量%、N:38.964重量%であっ
た。この結果から、焼結体の組成は、99.00mol%Si3N4-
0.19mol%SiO2-0.81mol%Lu2O3であり、図1、図2にそれ
ぞれ示した三角形ABC及び四角形DEFG内の組成で
あると認められる。The obtained sintered body was prepared in the same manner as in Example 1.
The determination of Si and Lu, and the determination of oxygen and nitrogen were performed. As shown in Table 1, the quantitative values were as follows: Lu: 2.0774% by weight, Si: 5
8.63% by weight, O: 0.3286% by weight, N: 38.964% by weight. From this result, the composition of the sintered body, 99.00mol% Si 3 N 4 -
0.19 mol% SiO 2 -0.81 mol% Lu 2 O 3 , which is recognized as being in the composition in the triangle ABC and the quadrangle DEFG shown in FIGS. 1 and 2, respectively.
【0068】また、X線回折の結果から、焼結体に生成
した相は、β-Si3N4とLu4Si2O7N2であることが確認され
た。From the results of X-ray diffraction, it was confirmed that the phases formed in the sintered body were β-Si 3 N 4 and Lu 4 Si 2 O 7 N 2 .
【0069】さらに、TEM観察の結果、β型窒化ケイ素
粒子と、二粒子粒界及び多粒子粒界とからなる微構造が
観察され、多粒子粒界には、電子線回折によりLu4Si2O7
N2の結晶化が確認された。ランダムに選んだ20個の多粒
子粒界の全てにおいてLu4Si2O7N2が結晶化していた。[0069] Furthermore, TEM observation showed that the β-type silicon nitride particles, the fine structure is observed comprising a second grain boundaries and multiparticulates grain boundary, the multiparticulate grain boundaries, Lu 4 Si 2 by electron beam diffraction O 7
Crystallization of N 2 was confirmed. Lu 4 Si 2 O 7 N 2 was crystallized in all 20 randomly selected multi-grain boundaries.
【0070】そして、曲げ試験及び酸化試験も実施例1
と同様に行った。表2に示したように、焼結体の気孔率
は1.6%であり、室温4点曲げ強度は980MPa、1500℃にお
ける高温4点曲げ強度は820MPaであった。酸化試験後の
重量増加は0.02mg/cm2であり、室温における4点曲げ強
度は750MPaであった。The bending test and the oxidation test were also performed in Example 1.
The same was done. As shown in Table 2, the porosity of the sintered body was 1.6%, the four-point bending strength at room temperature was 980 MPa, and the four-point bending strength at 1500 ° C. was 820 MPa. The weight increase after the oxidation test was 0.02 mg / cm 2 , and the four-point bending strength at room temperature was 750 MPa.
【0071】実施例8においても、得られた焼結体は、
高温においても強度が十分に高く、優れた耐酸化性を併
せ持つ窒化ケイ素湿焼結体であると判断される。 (実施例9)平均粒径0.8μmのケイ素粉末に酸化ルテチ
ウムを5.58重量%添加し、実施例1と同様に、混合粉砕
し、次いで成形体を作製した。Also in Example 8, the obtained sintered body was
It is judged to be a silicon nitride wet sintered body having sufficiently high strength even at high temperature and having excellent oxidation resistance. (Example 9) 5.58% by weight of lutetium oxide was added to silicon powder having an average particle diameter of 0.8 µm, mixed and pulverized in the same manner as in Example 1, and then a molded article was produced.
【0072】この成形体を、室温から1200℃まで10-2Pa
の真空中で加熱した後、1400℃まで毎時10℃の割合で加
熱し、1400℃に24時間保持し、窒化処理を行った。この
後、成形体を黒鉛の型に入れ、パターンS1の焼成条件で
実施例1と同様に焼成した。The molded body is heated from room temperature to 1200 ° C. by 10 −2 Pa
After heating in a vacuum at a rate of 10 ° C./hour to 1400 ° C., the temperature was maintained at 1400 ° C. for 24 hours to perform a nitriding treatment. Thereafter, the molded body was placed in a graphite mold and fired in the same manner as in Example 1 under the firing conditions for the pattern S1.
【0073】得られた焼結体は、実施例1と同様にして
SiとLuの定量、及び酸素量と窒素量の定量を行った。定
量値は、表1に示したように、Lu:3.02重量%、Si:57.
99重量%、O:0.457重量%、N:38.538重量%であった。こ
の結果から、焼結体の組成は、98.60mol%Si3N4-0.19mol
%SiO2-1.21mol%Lu2O3であり、図1、図2にそれぞれ示
した三角形ABC及び四角形DEFG内の組成であると
認められる。The obtained sintered body was treated in the same manner as in Example 1.
The determination of Si and Lu, and the determination of oxygen and nitrogen were performed. As shown in Table 1, the quantitative values were as follows: Lu: 3.02% by weight, Si: 57.
The content was 99% by weight, O: 0.457% by weight, and N: 38.538% by weight. From these results, the composition of the sintered body was 98.60 mol% Si 3 N 4 -0.19 mol
% SiO 2 -1.21 mol% Lu 2 O 3 , which is recognized as being in the composition in the triangle ABC and the square DEFG shown in FIGS. 1 and 2, respectively.
【0074】また、X線回折の結果から、焼結体に生成
した相は、β-Si3N4とLu4Si2O7N2であることが確認され
た。From the results of X-ray diffraction, it was confirmed that the phases formed in the sintered body were β-Si 3 N 4 and Lu 4 Si 2 O 7 N 2 .
【0075】さらに、TEM観察の結果、β型窒化ケイ素
粒子と、二粒子粒界及び多粒子粒界とからなる微構造が
観察され、多粒子粒界には、電子線回折によりLu4Si2O7
N2の結晶化が確認された。ランダムに選んだ20個の多粒
子粒界の全てにおいてLu4Si2O7N2が結晶化していた。[0075] Furthermore, TEM observation showed that the β-type silicon nitride particles, the fine structure is observed comprising a second grain boundaries and multiparticulates grain boundary, the multiparticulate grain boundaries, Lu 4 Si 2 by electron beam diffraction O 7
Crystallization of N 2 was confirmed. Lu 4 Si 2 O 7 N 2 was crystallized in all 20 randomly selected multi-grain boundaries.
【0076】そして、曲げ試験及び酸化試験も実施例1
と同様に行った。表2に示したように、焼結体の気孔率
は1.2%であり、室温4点曲げ強度は970MPa、1500℃にお
ける高温4点曲げ強度は870MPaであった。酸化試験後の
重量増加は0.01mg/cm2であり、室温における4点曲げ強
度は840MPaであった。The bending test and the oxidation test were also performed in Example 1.
The same was done. As shown in Table 2, the porosity of the sintered body was 1.2%, the 4-point bending strength at room temperature was 970 MPa, and the 4-point bending strength at 1500 ° C. was 870 MPa. The weight increase after the oxidation test was 0.01 mg / cm 2 , and the four-point bending strength at room temperature was 840 MPa.
【0077】実施例9においても、得られた焼結体は、
高温においても強度が十分に高く、優れた耐酸化性を併
せ持つ窒化ケイ素湿焼結体であると判断される。Also in Example 9, the obtained sintered body was
It is judged to be a silicon nitride wet sintered body having sufficiently high strength even at high temperature and having excellent oxidation resistance.
【0078】勿論、この出願の発明は、以上の実施形態
及び実施例によって限定されるものではない。原料粉末
の粒子の大きさやその分布、形状、純度等、焼成条件等
の細部については様々な態様が可能であることは言うま
でもない。Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for details of the size, distribution, shape, purity, etc. of the particles of the raw material powder, firing conditions and the like.
【0079】[0079]
【発明の効果】以上詳しく説明した通り、この出願の発
明によって、高温において高い強度と優れた耐酸化性を
併せ持つ窒化ケイ素質焼結体が提供される。As described in detail above, the invention of the present application provides a silicon nitride sintered body having both high strength at high temperature and excellent oxidation resistance.
【図1】Si3N4-SiO2-Lu2O3三元系の状態図である。FIG. 1 is a phase diagram of a ternary system of Si 3 N 4 —SiO 2 —Lu 2 O 3 .
【図2】Si3N4-SiO2-Lu2O3三元系の状態図である。FIG. 2 is a phase diagram of a ternary system of Si 3 N 4 —SiO 2 —Lu 2 O 3 .
【図3】窒化ケイ素質焼結体の微構造を示す透過型電子
顕微鏡像の概略図である。FIG. 3 is a schematic view of a transmission electron microscope image showing a microstructure of a silicon nitride based sintered body.
【図4】Si3N4-SiO2-RE2O3三元系の状態図である。FIG. 4 is a phase diagram of a ternary system of Si 3 N 4 —SiO 2 —RE 2 O 3 .
【図5】Si3N4-SiO2-RE2O3三元系の状態図である。FIG. 5 is a phase diagram of a ternary system of Si 3 N 4 —SiO 2 —RE 2 O 3 .
フロントページの続き (72)発明者 三友 護 茨城県つくば並木1丁目1番地 科学技術 庁無機材質研究所内 Fターム(参考) 4G001 BA08 BA32 BA62 BA71 BA73 BB08 BB32 BB71 BB73 BC42 BC48 BC54 BC55 BC57 BE26Continued on the front page (72) Inventor: Mamoru Mitomo 1-1-1, Tsunami, Tsukuba, Ibaraki Pref. F-term (reference) in the Agency for Science and Technology Agency, Inorganic Materials Research Laboratory
Claims (11)
る窒化ケイ素質焼結体であり、粒界相が、Lu4Si2O7N2の
結晶相の実質的に単相からなり、窒化ケイ素質焼結体の
組成が、Si3N4-SiO2-Lu2O3三元系の状態図上で、A点:
Si3N4、B点:28mol%SiO2-72mol%Lu2O3、及びC点:16m
ol%SiO2-84mol%Lu2O3の3点を頂点をする三角形ABC
の周囲又は内部の組成であることを特徴とする窒化ケイ
素質焼結体。1. A silicon nitride sintered body comprising silicon nitride particles and a grain boundary phase, wherein the grain boundary phase is substantially a single phase of a crystal phase of Lu 4 Si 2 O 7 N 2. The composition of the silicon nitride sintered body is point A on the phase diagram of the ternary system of Si 3 N 4 —SiO 2 —Lu 2 O 3 :
Si 3 N 4 , point B: 28 mol% SiO 2 -72 mol% Lu 2 O 3 , and point C: 16 m
ol% SiO 2 -84mol% Lu 2 O 3 Triangle ABC with three vertices
A silicon nitride-based sintered body characterized by having a composition around or inside.
記載の三角形ABC上のD点:99mol%Si3N4-0.28mol%Si
O2-0.72mol%Lu2O3、E点:99mol%Si3N4-0.16mol%SiO2-
0.84mol%Lu2O3、F点:94mol%Si3N4-1.68mol%SiO2-4.32
mol%Lu2O3、及びG点:94mol%Si3N4-0.96mol%SiO2-5.04
mol%Lu2O3の4点を頂点とする四角形DEFGの周囲又
は内部の組成である請求項1記載の窒化ケイ素質焼結
体。2. The composition of a silicon nitride based sintered body according to claim 1.
Point D on the described triangle ABC: 99 mol% Si 3 N 4 -0.28 mol% Si
O 2 -0.72 mol% Lu 2 O 3 , point E: 99 mol% Si 3 N 4 -0.16 mol% SiO 2-
0.84mol% Lu 2 O 3 , F point: 94mol% Si 3 N 4 -1.68mol% SiO 2 -4.32
mol% Lu 2 O 3 , and point G: 94 mol% Si 3 N 4 -0.96 mol% SiO 2 -5.04
mol% Lu 2 O 3 of the ambient or internal composition of the square DEFG is claim 1 silicon nitride sintered body according to the vertices of four points.
又は2記載の窒化ケイ素質焼結体。3. The method according to claim 1, wherein the composition contains 2.5 to 10% by weight of Lu 4 Si 2 O 7 N 2.
Or the silicon nitride-based sintered body according to 2.
量%以下である請求項1乃至3いずれかに記載の窒化ケ
イ素質焼結体。4. The silicon nitride sintered body according to claim 1, wherein the content of elements other than Lu, Si, O, and N is 1% by weight or less.
積%以上がLu4Si2O7N 2の結晶相である請求項1乃至4い
ずれかに記載の窒化ケイ素質焼結体。5. Among the grain boundary phases existing in the multi-grain grain boundary, 90 bodies are present.
Lu is more than product%FourSiTwoO7N Two5. The crystalline phase of claim 1, wherein
A silicon nitride-based sintered body according to any of the above.
末に1〜12重量%の酸化ルテチウム粉末を添加して混合
し、次いで1〜100気圧の窒素雰囲気中で1700〜2200℃に
おいて請求項1又は2記載の組成となるまで焼成するこ
とを特徴とする窒化ケイ素質焼結体の製造方法。6. A silicon nitride powder having an oxygen content of 1.0% by weight or less, a lutetium oxide powder of 1 to 12% by weight is added and mixed, and then the mixture is charged at 1700 to 2200 ° C. in a nitrogen atmosphere of 1 to 100 atm. 3. A method for producing a silicon nitride-based sintered body, characterized by firing until the composition described in 1 or 2 is reached.
末に1〜12重量%の酸化ルテチウム粉末を添加して混合
し、焼成に先立ち、1気圧以下の窒素雰囲気中で1600℃
以下に加熱し、酸素含有量が請求項1又は2記載の組成
の酸素含有量となるまで酸素を揮散させ、次いで1〜100
気圧の窒素雰囲気中で1700〜2200℃において焼成するこ
とを特徴とする窒化ケイ素質焼結体の製造方法。7. Addition and mixing of 1 to 12% by weight of lutetium oxide powder to silicon nitride powder having an oxygen content of 1.5% by weight or less, and prior to firing, 1600 ° C. in a nitrogen atmosphere of 1 atm or less.
Heat below to evaporate oxygen until the oxygen content reaches the oxygen content of the composition of claim 1 or 2, then 1-100
A method for producing a silicon nitride-based sintered body, characterized by firing at 1700 to 2200 ° C. in a nitrogen atmosphere at atmospheric pressure.
載の窒化ケイ素質焼結体の製造方法。8. The method for producing a silicon nitride-based sintered body according to claim 7, further comprising adding silicon powder.
請求項8記載の窒化ケイ素質焼結体の製造方法。9. The method for producing a silicon nitride-based sintered body according to claim 8, wherein the addition amount of the silicon powder is 1 to 10% by weight.
ウム粉末を添加して混合し、次いで窒素雰囲気中で1500
℃以下に加熱し、ケイ素を窒化ケイ素に変化させた後、
1〜100気圧の窒素中で1700〜2200℃において請求項1又
は2記載の組成となるまで焼成することを特徴とする窒
化ケイ素質焼結体の製造方法。10. Addition and mixing of 1 to 12% by weight of lutetium oxide powder to silicon powder;
After heating to below ℃ to convert silicon to silicon nitride,
A method for producing a silicon nitride-based sintered body, characterized by firing at 1700 to 2200 ° C. in nitrogen at 1 to 100 atm until the composition according to claim 1 or 2 is obtained.
6乃至10いずれかに記載の窒化ケイ素質焼結体の製造
方法。11. The method for producing a silicon nitride sintered body according to claim 6, wherein the firing is performed by hot pressing.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000258568A JP3752526B2 (en) | 2000-08-29 | 2000-08-29 | Silicon nitride sintered body and manufacturing method thereof |
| US09/796,430 US6579819B2 (en) | 2000-08-29 | 2001-03-02 | Silicon nitride sintered products and processes for their production |
| US10/260,396 US6737378B2 (en) | 2000-08-29 | 2002-10-01 | Silicon nitride sintered products and processes for their production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000258568A JP3752526B2 (en) | 2000-08-29 | 2000-08-29 | Silicon nitride sintered body and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002068843A true JP2002068843A (en) | 2002-03-08 |
| JP3752526B2 JP3752526B2 (en) | 2006-03-08 |
Family
ID=18746864
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000258568A Expired - Lifetime JP3752526B2 (en) | 2000-08-29 | 2000-08-29 | Silicon nitride sintered body and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3752526B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012062432A (en) * | 2010-09-17 | 2012-03-29 | Toyoda Gosei Co Ltd | Phosphor and method for producing the same, and light-emitting device |
| CN102659407A (en) * | 2012-04-05 | 2012-09-12 | 中国科学院金属研究所 | Method for preparing Lu4Si2O7N2 ceramic material by in-situ reaction |
-
2000
- 2000-08-29 JP JP2000258568A patent/JP3752526B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012062432A (en) * | 2010-09-17 | 2012-03-29 | Toyoda Gosei Co Ltd | Phosphor and method for producing the same, and light-emitting device |
| CN102659407A (en) * | 2012-04-05 | 2012-09-12 | 中国科学院金属研究所 | Method for preparing Lu4Si2O7N2 ceramic material by in-situ reaction |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3752526B2 (en) | 2006-03-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6579819B2 (en) | Silicon nitride sintered products and processes for their production | |
| JP5836522B2 (en) | Method for manufacturing silicon nitride substrate | |
| JPH0930866A (en) | High thermal conductivity silicon nitride sintered body, method for producing the same, and insulating substrate made of silicon nitride sintered body | |
| JP5228293B2 (en) | Yttria sintered body, corrosion-resistant member, and manufacturing method thereof | |
| Xu et al. | Fabrication of β-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering | |
| JP4869070B2 (en) | High thermal conductivity silicon nitride sintered body and silicon nitride structural member | |
| WO2005049525A1 (en) | High thermally conductive aluminum nitride sintered product | |
| JPH11314969A (en) | High thermal conductive Si3N4 sintered body and method for producing the same | |
| CN106132908A (en) | Manufacturing method of silicon nitride substrate | |
| EP3560904B1 (en) | Oriented aln sintered body, and production method therefor | |
| JP4325824B2 (en) | Method for producing high thermal conductivity silicon nitride sintered body | |
| JP2002068843A (en) | Silicon nitride sintered body and method for producing the same | |
| JP2001181053A (en) | Silicon nitride sintered product and method for producing the same | |
| JP2022153934A (en) | Silicon nitride sintered body, circuit board, and manufacturing method of silicon nitride sintered body | |
| JP2004051459A (en) | Silicon nitride sintered body and method for producing the same | |
| JP2022080053A (en) | Silicon nitride powder and its production method, and method for producing sintered silicon nitride body | |
| JP2927919B2 (en) | Crystallizing heat treatment method for silicon nitride sintered body | |
| JP2003095747A (en) | Sintered silicon nitride compact and circuit board obtained by using the same | |
| JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
| JP2742619B2 (en) | Silicon nitride sintered body | |
| JP2694369B2 (en) | Silicon nitride sintered body | |
| JP4753195B2 (en) | Method for producing aluminum nitride sintered body | |
| JP2004091243A (en) | Method for producing silicon nitride based sintered body and silicon nitride based sintered body | |
| JP2671539B2 (en) | Method for producing silicon nitride sintered body | |
| JP2004250264A (en) | High strength boron nitride sintered body and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040921 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051115 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3752526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |