JP2002071327A - Surface shape measuring method and surface shape measuring instrument - Google Patents
Surface shape measuring method and surface shape measuring instrumentInfo
- Publication number
- JP2002071327A JP2002071327A JP2000264938A JP2000264938A JP2002071327A JP 2002071327 A JP2002071327 A JP 2002071327A JP 2000264938 A JP2000264938 A JP 2000264938A JP 2000264938 A JP2000264938 A JP 2000264938A JP 2002071327 A JP2002071327 A JP 2002071327A
- Authority
- JP
- Japan
- Prior art keywords
- light
- frequency light
- frequency
- dual
- beat signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
(57)【要約】
【課題】ウエハ表面、あるいは光学素子などの段差形
状、さらに表面の面荒さや面形状などの表面形状を、非
接触、かつ被測定物の段差について制約を受けないで、
ビーム径を絞った状態で焦点深度が小さくても位相ずれ
の影響がなく、高精度に計測できる表面形状測定方法及
び表面形状測定器を提供する。
【解決手段】2波長のレーザー光からなり、集光させた
レーザービームと集光させないレーザービームの2本の
ビームをウエハ19に入射させ、集光ビームは、ウエハ
19上で焦点が合うようにウエハ19をのせたウエハz
ステージ30を制御し、ウエハ19からの2つの反射光
と2波長のレーザー光からなる参照光2本L1、L2と
を光ヘテロダイン干渉させ、位相差信号によりウエハ1
9表面の表面形状を非接触で直接計測する。
(57) [Problem] To provide a non-contact surface shape such as a step shape of a wafer surface or an optical element, and a surface shape such as a surface roughness or a surface shape, without being restricted by a step of an object to be measured.
Provided is a surface shape measuring method and a surface shape measuring instrument that can measure with high accuracy without being affected by a phase shift even if the focal depth is small in a state where a beam diameter is narrowed. Kind Code: A1 Two beams of laser light having two wavelengths, a focused laser beam and a non-focused laser beam, are incident on a wafer, and the focused beam is focused on the wafer. Wafer z on which wafer 19 is placed
The stage 30 is controlled so that two reflected lights from the wafer 19 and two reference lights L1 and L2 composed of laser lights of two wavelengths cause optical heterodyne interference, and the wafer 1
The surface shape of 9 surfaces is measured directly without contact.
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、レーザー光の干渉
を利用し、波長を単位として高精度、長ストロークの測
定を行うことができる物体の表面形状測定方法及び表面
形状測定器に係り、特に、半導体ICやLSI製造プロ
セスにおけるウエハ表面の段差測定、X線露光において
マスクとウエハとの位置合わせをする場合のマスク・ウ
エハ間のギャップ測定、あるいはレンズ、ミラー、光デ
ィスクなどの光学素子の表面の面荒さや面形状の測定に
適用して好適な表面形状測定方法及び表面形状測定器に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the surface shape of an object capable of measuring a long stroke with high accuracy in units of wavelength by utilizing the interference of a laser beam. Measurement of steps on the wafer surface in the semiconductor IC or LSI manufacturing process, measurement of the gap between the mask and wafer when aligning the mask with the wafer in X-ray exposure, or measurement of the surface of optical elements such as lenses, mirrors and optical disks The present invention relates to a surface shape measuring method and a surface shape measuring instrument suitable for measuring surface roughness and surface shape.
【0002】[0002]
【従来の技術】物体の表面形状を測定する装置として
は、表面形状を原子レベルで測定する装置からμmオー
ダーの段差を測定する装置まで、用途によって種種の測
定器がある。これらの測定器の中で、半導体ICやLS
I製造プロセスにおいて、パタン加工されたウエハ面の
段差の測定や、X線露光でのマスクとウエハとの位置合
わせをする場合のマスク・ウエハ間のギャップ測定、あ
るいはレンズ、ミラー、光ディスクなどの光学素子の表
面の面荒さや面形状の測定などにはμmオーダーの比較
的長い測定可能範囲と、nmオーダーの高分解能が要求
される。2. Description of the Related Art As a device for measuring the surface shape of an object, there are various types of measuring devices depending on the application, from a device for measuring the surface shape at an atomic level to a device for measuring a step on the order of μm. Among these measuring instruments, semiconductor IC and LS
I In the manufacturing process, measurement of the step on the patterned wafer surface, measurement of the gap between the mask and the wafer when aligning the mask with the wafer by X-ray exposure, or optical measurement of lenses, mirrors, optical disks, etc. Measurement of surface roughness and surface shape of the element surface requires a relatively long measurable range on the order of μm and high resolution on the order of nm.
【0003】従来、物体の表面形状を測定する装置とし
て、図4に示すようなパタン加工されたウエハ面の段差
測定装置がある(特願平11−110475号参照)。Conventionally, as a device for measuring the surface shape of an object, there is a device for measuring a step on a patterned wafer surface as shown in FIG. 4 (see Japanese Patent Application No. 11-110475).
【0004】図4において、1、2はレーザー光源、3
は1/2波長板、4、7、12、14はミラー、5、2
1は偏光ビームスプリッター、6、13は無偏光ビーム
スプリッター、8、9は音響光学素子、10、11は平
行プリズム、L1、L2、L3、L4はレーザービー
ム、15は投影光学系、16は縮小光学系、17、18
はウエハ面ビームスポット、19はウエハ、20はウエ
ハステージ、22、23は2分割ディテクタ、I1、I
2、I3、I4はビート信号、24はビート信号処理制
御部である。In FIG. 4, reference numerals 1 and 2 denote a laser light source and 3
Are half-wave plates, 4, 7, 12, 14 are mirrors, 5, 2,
1 is a polarization beam splitter, 6 and 13 are non-polarization beam splitters, 8 and 9 are acousto-optic elements, 10 and 11 are parallel prisms, L1, L2, L3 and L4 are laser beams, 15 is a projection optical system, and 16 is a reduction Optical system, 17, 18
Is a beam spot on a wafer surface, 19 is a wafer, 20 is a wafer stage, 22 and 23 are two-divided detectors, I1, I
2, I3 and I4 are beat signals, and 24 is a beat signal processing control unit.
【0005】レーザー光源1、2はそれぞれ波長がλ1
(周波数:f1)、λ2(周波数:f2)の水平偏光
(P波)のレーザー光を発生する。レーザー光源1から
発生したレーザー光は、1/2波長板3により垂直偏光
(S波)となり、ミラー4を介して偏光ビームスプリッ
ター5によりレーザー光源2から発生したレーザー光と
合成される。この合成光は、偏光面が互いに垂直で周波
数が異なる2波長直交偏光光である。この2波長直交偏
光光は、無偏光ビームスプリッター6により2つのレー
ザー光に分岐され、一つはミラー7を介して音響光学素
子8に入射する。音響光学素子8の駆動周波数をf11
とすると、音響光学素子8から出射するレーザー光の周
波数はそれぞれ(f1+f11)、(f2+f11)に
周波数シフトされた2波長直交偏光光となる。一方、分
岐された他の一方は、音響光学素子9に入射する。音響
光学素子9の駆動周波数をf22とすると、音響光学素
子9から出射するレーザー光の周波数はそれぞれ(f1
+f22)、(f2+f22)に周波数シフトされた2
波長直交偏光光となる。The laser light sources 1 and 2 each have a wavelength of λ1.
A laser beam of horizontal polarization (P wave) of (frequency: f1) and λ2 (frequency: f2) is generated. The laser light generated from the laser light source 1 becomes vertically polarized light (S-wave) by the half-wavelength plate 3, and is combined with the laser light generated from the laser light source 2 by the polarization beam splitter 5 via the mirror 4. This combined light is two-wavelength orthogonally polarized light whose polarization planes are perpendicular to each other and have different frequencies. The two-wavelength orthogonally polarized light is split into two laser lights by the non-polarization beam splitter 6, and one of the two lights enters the acousto-optic device 8 via the mirror 7. The driving frequency of the acousto-optic element 8 is set to f11
Then, the frequency of the laser light emitted from the acousto-optic element 8 becomes two-wavelength orthogonally polarized light whose frequency is shifted to (f1 + f11) and (f2 + f11). On the other hand, the other side is incident on the acousto-optic element 9. Assuming that the driving frequency of the acousto-optic element 9 is f22, the frequency of the laser light emitted from the acousto-optic element 9 is (f1
+ F22), 2 shifted to (f2 + f22)
The light becomes orthogonally polarized light.
【0006】これらの2波長直交偏光光は、平行プリズ
ム10、11によりそれぞれ2つの平行なレーザービー
ムL1とL2、L3とL4に分割され、L1とL2はミ
ラー12を介して無偏光ビームスプリッター13に入射
する。L3とL4は、無偏光ビームスプリッター13、
ミラー14を介して、L3は投影光学系15によりビー
ムを絞らないで、また、L4は縮小光学系16によりレ
ーザー光のビームが絞られ、それぞれウエハステージ2
0上に設置されたウエハ19にビームスポット17、1
8として入射する。このレーザー光は、ウエハ19面で
反射され、再度、投影光学系15、縮小光学系16、ミ
ラー14を介して無偏光ビームスプリッター13に入射
する。The two-wavelength orthogonally polarized light is split into two parallel laser beams L 1 and L 2, L 3 and L 4 by parallel prisms 10 and 11, and L 1 and L 2 are passed through a mirror 12 to a non-polarization beam splitter 13. Incident on. L3 and L4 are the unpolarized beam splitter 13,
Through the mirror 14, the beam L 3 is not focused by the projection optical system 15, and the beam L 4 is focused by the reduction optical system 16 via the mirror 14.
Beam spots 17 and 1
8 is incident. This laser light is reflected by the surface of the wafer 19 and again enters the non-polarizing beam splitter 13 via the projection optical system 15, the reduction optical system 16, and the mirror 14.
【0007】このとき、無偏光ビームスプリッター13
により、周波数f11で周波数シフトされた2波長直交
偏光光L1、L2と周波数f22で周波数シフトされた
ウエハ19側からの反射光L3、L4とは、それぞれ、
L1とL4、L2とL3で光ヘテロダイン干渉光を生成
し、さらに偏光ビームスプリッター21により水平偏光
の光ヘテロダイン干渉光と垂直偏光の光ヘテロダイン干
渉光に分離される。At this time, the non-polarizing beam splitter 13
Accordingly, the two-wavelength orthogonally polarized lights L1 and L2 frequency-shifted at the frequency f11 and the reflected lights L3 and L4 from the wafer 19 side frequency-shifted at the frequency f22 are respectively
Optical heterodyne interference light is generated by L1 and L4 and L2 and L3, and further separated by a polarization beam splitter 21 into horizontally polarized optical heterodyne interference light and vertically polarized optical heterodyne interference light.
【0008】垂直偏光の光ヘテロダイン干渉光は、波長
がλ1(周波数:f1)のレーザー光を基に生成された
光ヘテロダイン干渉光であり、L2とL3の垂直偏光の
光ヘテロダイン干渉光と、L1とL4の垂直偏光の光ヘ
テロダイン干渉光は、それぞれ独立に2分割ディテクタ
22により検出してビート信号I1、I2としてビート
信号処理制御部24に送られる。また、水平偏光の光ヘ
テロダイン干渉光は、波長がλ2(周波数:f2)のレ
ーザー光を基に生成された光ヘテロダイン干渉光であ
り、L2とL3の水平偏光の光ヘテロダイン干渉光と、
L1とL4の垂直偏光の光ヘテロダイン干渉光は、それ
ぞれ独立に2分割ディテクタ23により検出してビート
信号I3、I4としてビート信号処理制御部24に送ら
れる。The vertically polarized optical heterodyne interference light is an optical heterodyne interference light generated based on a laser beam having a wavelength of λ1 (frequency: f1), and the vertically polarized optical heterodyne interference light of L2 and L3 and L1 And L4 vertically polarized optical heterodyne interference light are independently detected by the split detector 22, and sent to the beat signal processing control unit 24 as beat signals I1 and I2. The horizontally polarized optical heterodyne interference light is an optical heterodyne interference light generated based on a laser beam having a wavelength of λ2 (frequency: f2), and includes a horizontally polarized optical heterodyne interference light of L2 and L3;
The vertically polarized optical heterodyne interference lights of L1 and L4 are independently detected by the split detector 23 and sent to the beat signal processing control unit 24 as beat signals I3 and I4.
【0009】L2、L3の垂直偏光光は、波長がλ1
(周波数:f1)のレーザー光の周波数が(f1+f1
1)、(f1+f22)にシフトしたレーザー光であ
り、振幅強度をそれぞれE1、E2とすると、式
(1)、(2)のように表される。The vertically polarized light of L2 and L3 has a wavelength of λ1
The frequency of the laser light (frequency: f1) is (f1 + f1)
1) and a laser beam shifted to (f1 + f22). If the amplitude intensities are E1 and E2, respectively, they are expressed as in equations (1) and (2).
【0010】 E1(t)=A1exp{i(2π(f1+f11)t+φ1)} …(1) E2(t)=A2exp{i(2π(f1+f22)t+φ2)} …(2) ここで、A1、A2は振幅、φ1、φ2は初期位相であ
る。光ヘテロダイン干渉ビート信号I1は、 I1(t)=|E1(t)+E2(t)|2 =A12+A22+2A1A2cos(2πf0t+△φ12) …(3) で表され、f0=|f11−f22|、△φ12=φ1
−φ2である。E1 (t) = A1exp {i (2π (f1 + f11) t + φ1)} (1) E2 (t) = A2exp {i (2π (f1 + f22) t + φ2)} (2) where A1 and A2 are Amplitude, φ1, φ2 are initial phases
You. The optical heterodyne interference beat signal I1 is given by I1 (t) = | E1 (t) + E2 (t) |2 = A12+ A22+ 2A1A2cos (2πf0t + △ φ12) (3) where f0 = | f11−f22 |, △ φ12 = φ1
−φ2.
【0011】同様に、L1、L4の垂直偏光光の光ヘテ
ロダイン干渉ビート信号I2は、 I2(t)=A12+A22+2A1A2cos(2πf0t+△φ12+2πD1 /λ1) …(4) となり、D1は波長λ1のレーザー光が光学系内で生じ
る光路長差である。[0011] Similarly, the optical heterodyne interference beat signal I2 vertically polarized light L1, L4 is, I2 (t) = A1 2 + A2 2 + 2A1A2cos (2πf0t + △ φ12 + 2πD1 / λ1) ... (4) next, D1 is the wavelength .lambda.1 This is the optical path length difference generated in the optical system by the laser light.
【0012】一方、L2、L3の水平偏光光は、波長が
λ2(周波数:f2)のレーザー光の周波数が(f2+f
11)、(f2+f22)にシフトしたレーザー光であ
り、同様に振幅強度をそれぞれE3、E4とすると、式
(5)、(6)のように表される。On the other hand, the horizontally polarized light beams L2 and L3 have a frequency of (f2 + f) of a laser beam having a wavelength of λ2 (frequency: f2).
11) and laser light shifted to (f2 + f22). Similarly, if the amplitude intensities are E3 and E4, respectively,
They are expressed as (5) and (6).
【0013】 E3(t)=A3exp{i(2π(f2+f22)t+φ3)} …(5) E4(t)=A4exp{i(2π(f2+f22)t+φ4)} …(6) ここで、A3、A4は振幅、φ3、φ4は初期位相であ
る。同様に、光ヘテロダイン干渉ビート信号I3は、 I3(t)=|E3(t)+E4(t)|2 =A32+A42+2A3A4cos(2πf0t+△φ34) …(7) で表され、△φ34=φ3−φ4である。E3 (t) = A3exp {i (2π (f2 + f22) t + φ3)} (5) E4 (t) = A4exp {i (2π (f2 + f22) t + φ4)} (6) where A3 and A4 are Amplitude, φ3, φ4 are initial phases
You. Similarly, the optical heterodyne interference beat signal I3 is given by I3 (t) = | E3 (t) + E4 (t) |2 = A32+ A42+ 2A3A4cos (2πf0t + △ φ34) (7) where Δφ34 = φ3-φ4.
【0014】同様に、L1、L4の水平偏光光の光ヘテ
ロダイン干渉ビート信号I4は、 I4(t)=A32+A42+2A3A4cos(2πf0t+△φ34+2πD2 /λ2) …(8) となり、D2は波長λ2のレーザー光が光学系内で生じ
る光路長差である。[0014] Similarly, L1, optical heterodyne interference beat signal I4 horizontally polarized light L4 is, I4 (t) = A3 2 + A4 2 + 2A3A4cos (2πf0t + △ φ34 + 2πD2 / λ2) ... (8) next, D2 is the wavelength .lambda.2 This is the optical path length difference generated in the optical system by the laser light.
【0015】レーザー光L3、L4がウエハ19面上の
平坦面に入射した場合は、光学系内で生じる光路長差は
一定値となり、ビート信号I1(t)とI2(t)の位相差
φ10=2πD1/λ1、I3(t)とI4(t)の位相差
φ20=2πD2/λ2は固定値となる。When the laser beams L3 and L4 are incident on the flat surface on the surface of the wafer 19, the optical path length difference generated in the optical system becomes a constant value, and the phase difference φ10 between the beat signals I1 (t) and I2 (t). = 2πD1 / λ1, the phase difference φ20 = 2πD2 / λ2 between I3 (t) and I4 (t) is a fixed value.
【0016】図5は、図4の投影光学系15から出射し
たレーザービームL3のビームスポット17が、ウエハ
19面上の段差パタン近傍付近に、図4の縮小光学系1
6により絞られたレーザービームL4のビームスポット
18がウエハ19面上の段差パタンの下部に入射した場
合の段差パタン部の拡大図を示す。FIG. 5 shows that the beam spot 17 of the laser beam L3 emitted from the projection optical system 15 shown in FIG.
6 is an enlarged view of a step pattern portion when the beam spot 18 of the laser beam L4 narrowed by 6 is incident on a lower portion of the step pattern on the surface of the wafer 19.
【0017】この場合、測定したいパタンAの段差部に
対し、レファレンス(参照光)であるレーザー光L3のビ
ームスポット17の中にパタンBが置かれている例を示
している。ビームスポット17からの反射光の位相差は
ビームスポット17内の段差状態の平均化された値とな
って検出されるため、ビームスポット18が段差の上部
と下部に入射する場合に生じる光学系内の光路長差から
段差が検出できる。パタンの段差部の大きさをDとする
と、パタン上部からの反射光とパタン下部からの反射光
には2Dの光路長差が生じる。In this case, an example is shown in which a pattern B is placed in a beam spot 17 of a laser beam L3 as a reference (reference light) with respect to a step portion of a pattern A to be measured. Since the phase difference of the reflected light from the beam spot 17 is detected as an averaged value of the state of the step in the beam spot 17, the phase difference generated in the optical system when the beam spot 18 enters the upper and lower parts of the step Can be detected from the optical path length difference. Assuming that the size of the step portion of the pattern is D, a 2D optical path length difference occurs between the reflected light from the upper portion of the pattern and the reflected light from the lower portion of the pattern.
【0018】ビート信号は、前述の固定値φ10、φ2
0を考慮して式(4)、(8)は、(9)、(10)のように表
される。The beat signal has the fixed values φ10, φ2
Equations (4) and (8) are expressed as (9) and (10) in consideration of 0.
【0019】 I2(t)=A12+A22+2A1A2cos{2πf0t+△φ12+φ10 +2π(2D)/λ1} …(9) I4(t)=A32+A42+2A3A4cos{2πf0t+△φ34+φ20 +2π(2D)/λ2} …(10) 図4のビート信号処理制御部24では、ビート信号I1
(t)とI2(t)との位相差Φ21、I3(t)とI4(t)
との位相差Φ43を算出する。[0019] I2 (t) = A1 2 + A2 2 + 2A1A2cos {2πf0t + △ φ12 + φ10 + 2π (2D) / λ1} ... (9) I4 (t) = A3 2 + A4 2 + 2A3A4cos {2πf0t + △ φ34 + φ20 + 2π (2D) / λ2} ... (10) The beat signal processing control unit 24 in FIG.
phase difference Φ21 between (t) and I2 (t), I3 (t) and I4 (t)
Is calculated.
【0020】 Φ21=φ10+2π(2D)/λ1 …(11) Φ43=φ20+2π(2D)/λ2 …(12) さらに、位相差Φ21と位相差Φ43との差を演算する
ことによりウエハ19面上の段差を求めることができ
る。Φ21 = φ10 + 2π (2D) / λ1 (11) Φ43 = φ20 + 2π (2D) / λ2 (12) Further, a difference between the phase difference Φ21 and the phase difference Φ43 is calculated to obtain a step on the wafer 19 surface. Can be requested.
【0021】 △Φ=Φ43−Φ21 =(φ20−φ10)+2π(2D)/λ2−2π(2D)/λ1 =(φ20−φ10)+2π(2D)/{(λ1・λ2)/(λ1−λ2)} …( 13) 式(13)から明らかなように、(φ20−φ10)は固定
値であるから位相差信号{△Φ−(φ20−φ10)}
は、段差D=(λ1・λ2)/{2(λ1−λ2)}を周期
として位相変化する。したがって、波長λ1とλ2を選
択することにより、段差測定範囲が決定される。例え
ば、LSIのプロセスウエハでは、段差の測定範囲とし
ては最大10μm程度あれば十分であり、λ1=690
nm、λ2=670nmを選択すると、位相差信号{△
Φ−(φ20−φ10)}の周期は、約11.6μmとな
る。位相差検出分解能を0.5°とすれば、約16nm
の段差検出分解能が得られる。ΔΦ = Φ43−Φ21 = (φ20−φ10) + 2π (2D) / λ2-2π (2D) / λ1 = (φ20−φ10) + 2π (2D) / {(λ1 · λ2) / (λ1−λ2) )} (13) As is clear from equation (13), since (φ20−φ10) is a fixed value, the phase difference signal {φ− (φ20−φ10)}
Changes in phase with a step D = (λ1 · λ2) / {2 (λ1−λ2)} as a cycle. Therefore, the step measurement range is determined by selecting the wavelengths λ1 and λ2. For example, in the case of an LSI process wafer, a maximum measurement range of the step is about 10 μm, and λ1 = 690
When nm and λ2 = 670 nm are selected, the phase difference signal {△
The period of Φ− (φ20−φ10)} is about 11.6 μm. If the phase difference detection resolution is 0.5 °, about 16 nm
Is obtained.
【0022】ここで、2Dの値がそれぞれのレーザー波
長λ1、λ2について、何波長分あるかを求める。それ
ぞれN1、N2波長分以上であるとすると、N1、N2
は、式(13)から求めることができる。Here, it is determined how many 2D values are present for the respective laser wavelengths λ1 and λ2. If the wavelengths are equal to or more than N1 and N2 wavelengths, respectively, N1 and N2
Can be obtained from Expression (13).
【0023】N1は、{△Φ−(φ20−φ10)}
{(λ1・λ2)/(λ1−λ2)}/(2π・λ1)の整数
部(小数点以下切り捨て)、N2は、{△Φ−(φ20−
φ10)}{(λ1・λ2)/(λ1−λ2)}/(2π・λ
2)の整数部(小数点以下切り捨て)となる。したがっ
て、2Dは、次のようにも表される。N1 is {Φ- (φ20-φ10)}
The integer part of {(λ1 · λ2) / (λ1-λ2)} / (2π · λ1) (rounded down to the decimal point), N2 is represented by Φ− (φ20−
φ10) {(λ1 · λ2) / (λ1-λ2)} / (2π · λ
2) is the integer part (truncated below the decimal point). Therefore, 2D is also expressed as:
【0024】 2D={N1+(Φ21−φ10)/2π}λ1 …(14) 2D={N2+(Φ43−φ20)/2π}λ2 …(15) この式より、例えば前記の例と同様に、位相差検出分解
能を0.5°とすると、段差の検出分解能としては、λ
1/720、またはλ2/720が得られる。N1、N
2の値は、2波長による測定によって求められる値であ
る。2D = {N1 + (Φ21−φ10) / 2π} λ1 (14) 2D = {N2 + (Φ43−φ20) / 2π} λ2 (15) From this equation, for example, as in the above example, Assuming that the phase difference detection resolution is 0.5 °, the step difference detection resolution is λ
1/720, or λ2 / 720. N1, N
The value of 2 is a value obtained by measurement using two wavelengths.
【0025】[0025]
【発明が解決しようとする課題】ところで、このような
従来の段差測定装置では、試料であるウエハ19面上の
パタン形状を測定するためには、図6に示すようにビー
ムスポット18をウエハ19面上の段差の上下で測定す
る必要がある。図6(a)のように集光されたビームの
焦点深度が段差に対して十分大きい場合は問題とならな
いが、図6(b)のようにビームスポット18の大きさ
を小さく絞って細かいパタンの段差を測定しようとする
場合、焦点深度が段差よりも小さくなると反射光の強度
が弱くなり、光ヘテロダイン干渉光の強度が劣化する。
さらに、焦点がぼけることによる光路長変化から位相ず
れが生じてしまう。したがって、焦点深度よりも大きな
段差を測定できないという課題を有していた。すなわ
ち、ビーム径を絞って細かいパタンの段差を測定しよう
とする場合、測定可能な段差に制約があるという課題が
あった。In such a conventional step measuring apparatus, in order to measure a pattern shape on the surface of a wafer 19 as a sample, a beam spot 18 is formed as shown in FIG. It is necessary to measure above and below the step on the surface. There is no problem when the focal depth of the focused beam is sufficiently large with respect to the step as shown in FIG. 6A, but the size of the beam spot 18 is narrowed down as shown in FIG. If the depth of focus is smaller than the step, the intensity of the reflected light becomes weaker, and the intensity of the optical heterodyne interference light deteriorates.
Further, a phase shift occurs due to a change in optical path length due to defocus. Therefore, there is a problem that a step larger than the depth of focus cannot be measured. In other words, when trying to measure a fine pattern step by narrowing the beam diameter, there is a problem that the measurable step is limited.
【0026】本発明は、従来技術の以上のような課題に
鑑み創案されたもので、ウエハ表面、あるいは光学素子
などの段差形状、さらに表面の面荒さや面形状などの表
面形状を、非接触、かつ被測定物の段差について制約を
受けないで、ビーム径を絞った状態で焦点深度が小さく
ても位相ずれの影響がなく、高精度に計測できる表面形
状測定方法及び表面形状測定器を提供するものである。The present invention has been made in view of the above-described problems of the prior art, and is intended to reduce the surface shape such as the surface of a wafer or a step such as an optical element, and the surface roughness such as surface roughness and surface shape in a non-contact manner. Provided is a surface shape measuring method and a surface shape measuring device that can measure with high accuracy without being affected by a phase shift even if the depth of focus is small in a state where the beam diameter is narrowed, without being restricted by a step of an object to be measured. Is what you do.
【0027】[0027]
【課題を解決するための手段】前記課題を解決するため
に、本発明の表面形状測定方法は、偏光面が互いに垂直
で、周波数が異なる2周波光を発生させ、前記2周波光
を第1の2周波光、第2の2周波光の2つに分割し、前
記第1の2周波光、前記第2の2周波光の少なくとも一
方の周波数をシフトさせ、前記第1の2周波光を2つに
分割して第3の2周波光、第4の2周波光を生成し、前
記第2の2周波光を2つに分割して第5の2周波光、第
6の2周波光を生成し、前記第5の2周波光、前記第6
の2周波光のいずれか一方の2周波光を光学素子により
集光して集光ビームを形成し、前記集光ビームと、前記
第5の2周波光、前記第6の2周波光の他方の集光させ
ないビームを被測定物体上に入射させ、前記集光ビーム
が前記被測定物体上で焦点が合うように前記被測定物体
の位置を制御し、前記第3の2周波光、前記第4の2周
波光と、前記被測定物体によって反射された前記集光ビ
ーム、前記集光させないビームをそれぞれ合成し、前記
第3の2周波光と前記第5の2周波光の合成によって得
られた光ヘテロダイン干渉光を、偏光面の異なる第1、
第3の光ヘテロダイン干渉光に分離し、第1、第3のビ
ート信号を求め、前記第4の2周波光と前記第6の2周
波光の合成によって得られた光ヘテロダイン干渉光を、
偏光面の異なる第2、第4の光ヘテロダイン干渉光に分
離し、第2、第4のビート信号を求め、前記第1のビー
ト信号と前記第2のビート信号の位相差、及び前記第3
のビート信号と前記第4のビート信号の位相差に基づい
て、前記被測定物体の表面形状を算出することを特徴と
する。In order to solve the above-mentioned problems, a surface shape measuring method according to the present invention generates two-frequency light beams having polarization planes perpendicular to each other and different frequencies, and converts the two-frequency light beams into a first light beam. And the second dual-frequency light is divided into two, and the frequency of at least one of the first dual-frequency light and the second dual-frequency light is shifted. A third dual-frequency light and a fourth dual-frequency light are generated by dividing into two, and the second dual-frequency light is divided into two to form a fifth dual-frequency light and a sixth dual-frequency light. And the fifth dual-frequency light and the sixth
One of the two-frequency light is condensed by an optical element to form a condensed beam, and the condensed beam and the other of the fifth dual-frequency light and the sixth dual-frequency light A non-condensed beam is incident on the object to be measured, and the position of the object to be measured is controlled so that the converged beam is focused on the object to be measured. 4 and the condensed beam and the non-condensed beam reflected by the object to be measured, respectively, and are obtained by synthesizing the third dual-frequency light and the fifth dual-frequency light. Optical heterodyne interference light into a first,
The optical signal is separated into third optical heterodyne interference light, first and third beat signals are obtained, and the optical heterodyne interference light obtained by combining the fourth dual-frequency light and the sixth dual-frequency light is
The light is separated into second and fourth optical heterodyne interference lights having different polarization planes, and second and fourth beat signals are obtained. The phase difference between the first beat signal and the second beat signal, and the third
The surface shape of the measured object is calculated based on a phase difference between the beat signal and the fourth beat signal.
【0028】また、本発明の表面形状測定方法は、前記
集光ビームの被測定物体上でのビームスポット領域を、
前記集光させないビームの被測定物体上でのビームスポ
ット領域内に含まれるようにしたことを特徴とする。Further, in the surface shape measuring method according to the present invention, the beam spot area of the condensed beam on the object to be measured is defined as:
The non-condensed beam is included in a beam spot area on the measured object.
【0029】また、本発明の表面形状測定方法は、偏光
面が互いに垂直で、周波数が異なる2周波光を発生さ
せ、前記2周波光を第1の2周波光、第2の2周波光の
2つに分割し、前記第1の2周波光、前記第2の2周波
光の少なくとも一方の周波数をシフトさせ、前記第1の
2周波光を2つに分割して第3の2周波光、第4の2周
波光を生成し、前記第2の2周波光を2つに分割して第
5の2周波光、第6の2周波光を生成し、前記第5の2
周波光、前記第6の2周波光のいずれか一方の2周波光
を光学素子により集光して集光ビームを形成し、前記集
光ビームを被測定物体上に入射させ、前記第5の2周波
光、前記第6の他方の集光させないビームを前記被測定
物体上に入射させないで、ミラーにより反射させ、前記
集光ビームが前記被測定物体上で焦点が合うように前記
被測定物体の位置を制御し、前記第3の2周波光、前記
第4の2周波光と、前記被測定物体によって反射された
前記集光ビーム、前記ミラーにより反射させた前記集光
させないビームをそれぞれ合成し、前記第3の2周波光
と前記第5の2周波光の合成によって得られた光ヘテロ
ダイン干渉光を、偏光面の異なる第1、第3の光ヘテロ
ダイン干渉光に分離し、第1、第3のビート信号を求
め、前記第4の2周波光と前記第6の2周波光の合成に
よって得られた光ヘテロダイン干渉光を、偏光面の異な
る第2、第4の光ヘテロダイン干渉光に分離し、第2、
第4のビート信号を求め、前記第1のビート信号と前記
第2のビート信号の位相差、及び前記第3のビート信号
と前記第4のビート信号の位相差に基づいて、前記被測
定物体の表面形状を算出することを特徴とする。Further, the surface shape measuring method of the present invention generates two-frequency light having polarization planes perpendicular to each other and different frequencies, and converts the two-frequency light into a first two-frequency light and a second two-frequency light. Dividing into two, shifting at least one frequency of the first dual-frequency light and the second dual-frequency light, dividing the first dual-frequency light into two, and dividing into a third dual-frequency light , Generating a fourth dual-frequency light, dividing the second dual-frequency light into two, generating a fifth dual-frequency light and a sixth dual-frequency light,
And a condensed beam is formed by condensing any one of the two-frequency light of the high-frequency light and the sixth two-frequency light by an optical element, and the condensed beam is incident on the object to be measured. The two-frequency light and the sixth non-condensed beam are reflected by a mirror without being incident on the object to be measured, and the object to be measured is focused so that the condensed beam is focused on the object to be measured. And the third dual-frequency light, the fourth dual-frequency light, the condensed beam reflected by the measured object, and the non-condensed beam reflected by the mirror are combined. Then, the optical heterodyne interference light obtained by combining the third dual-frequency light and the fifth dual-frequency light is separated into first and third optical heterodyne interference lights having different polarization planes. The third beat signal is obtained, and the fourth beat signal is obtained. The optical heterodyne interference light obtained by the synthesis of the optical sixth two-frequency light is separated into the second, fourth optical heterodyne interference light beams having different polarization planes, the second,
A fourth beat signal is obtained, and the measured object is determined based on a phase difference between the first beat signal and the second beat signal and a phase difference between the third beat signal and the fourth beat signal. Is calculated.
【0030】また、本発明の表面形状測定方法は、偏光
面が互いに垂直で、周波数が異なる前記2周波光のいず
れか一方の偏光面の光を用い、前記第1のビート信号と
前記第2のビート信号の位相差、あるいは前記第3のビ
ート信号と前記第4のビート信号の位相差から、前記被
測定物体の表面形状を算出することを特徴とする。In the surface shape measuring method according to the present invention, the first beat signal and the second beat signal may be used by using light of one of the two-frequency lights whose polarization planes are perpendicular to each other and have different frequencies. Or the phase difference between the third beat signal and the fourth beat signal is used to calculate the surface shape of the object to be measured.
【0031】また、本発明の表面形状測定方法は、前記
第1の2周波光、前記第2の2周波光の両方についてそ
れぞれ異なる周波数で周波数シフトさせることを特徴と
する。The surface shape measuring method of the present invention is characterized in that both the first two-frequency light and the second two-frequency light are frequency-shifted at different frequencies.
【0032】また、本発明の表面形状測定器は、偏光面
が互いに垂直で、周波数が異なる2周波光を発生させる
2周波光発生手段と、前記2周波光を第1の2周波光、
第2の2周波光の2つに分割する第1の2周波光分割手
段と、前記第1の2周波光、前記第2の少なくとも一方
の周波数をシフトさせる周波数シフト手段と、被測定物
体を載せるための試料台と、前記第1の2周波光を、第
3の2周波光、第4の2周波光の2つに分割する第2の
2周波光分割手段と、前記第2の2周波光を、第5の2
周波光、第6の2周波光の2つに分割する第3の2周波
光分割手段と、前記第5の2周波光、前記第6の2周波
光のいずれか一方の2周波光を集光させて被測定物体上
に入射させる集光ビーム入射手段と、前記集光ビームが
前記被測定物体上で焦点が合う位置を検出する焦点検出
光学系手段と、前記集光ビームが前記被測定物体上で焦
点が合うように前記被測定物体をのせた試料台の位置を
制御する焦点合わせ手段と、前記第5の2周波光、前記
第6の2周波光の他方を集光させないで被測定物体上に
入射させるビーム入射手段と、前記第3の2周波光、第
4の2周波光と、前記被測定物体によって反射された前
記集光ビームと前記集光させないビームの2周波光をそ
れぞれ合成する光合成手段と、前記第3の2周波光と前
記第5の2周波光の合成により得られた光ヘテロダイン
干渉光を、偏光面の異なる第1の光ヘテロダイン干渉
光、第3の光ヘテロダイン干渉光に分離し、前記第4の
2周波光と前記第6の2周波光の合成により得られた光
ヘテロダイン干渉光を、偏光面の異なる第2の光ヘテロ
ダイン干渉光、第4の光ヘテロダイン干渉光に分離する
干渉光分離手段と、前記第1の光ヘテロダイン干渉光、
前記第3の光ヘテロダイン干渉光からそれぞれ独立に第
1のビート信号、第3のビート信号を検出し、前記第2
の光ヘテロダイン干渉光、前記第4の光ヘテロダイン干
渉光からそれぞれ独立に第2のビート信号、第4のビー
ト信号を検出する信号検出手段と、前記第1のビート信
号と前記第2のビート信号の位相差、及び前記第3のビ
ート信号と前記第4のビート信号の位相差に基づいて、
前記被測定物体の表面形状を算出する信号処理制御手段
とを有することを特徴とする。Further, the surface profile measuring device of the present invention comprises: a two-frequency light generating means for generating two-frequency light having mutually perpendicular polarization planes and different frequencies;
A first two-frequency light splitting means for splitting the second two-frequency light into two, a frequency shift means for shifting at least one of the first two-frequency light and the second frequency; A sample stage for mounting, a second dual-frequency light splitting unit for splitting the first dual-frequency light into two, a third dual-frequency light and a fourth dual-frequency light, and the second dual-frequency light splitting unit; High frequency light to the fifth 2
A third dual-frequency light splitting unit that splits the two-frequency light into a second high-frequency light and a sixth dual-frequency light, and collects one of the fifth dual-frequency light and the sixth dual-frequency light. Condensed beam incidence means for illuminating the object to be measured and focus detecting optical system means for detecting a position where the condensed beam is focused on the object to be measured; and Focusing means for controlling the position of the sample stage on which the object to be measured is placed so as to be focused on the object; and a focusing means for collecting the other of the fifth dual-frequency light and the sixth dual-frequency light without condensing the other. Beam incidence means for entering the object to be measured, the third dual-frequency light, the fourth dual-frequency light, and the two-frequency light of the focused beam reflected by the measured object and the non-focused beam. Light combining means for combining the light, the third dual-frequency light, and the fifth dual-frequency light The optical heterodyne interference light obtained by the synthesis is separated into a first optical heterodyne interference light and a third optical heterodyne interference light having different polarization planes, and the fourth dual-frequency light and the sixth dual-frequency light are separated. An interference light separating unit that separates the optical heterodyne interference light obtained by the combining into a second optical heterodyne interference light and a fourth optical heterodyne interference light having different polarization planes, and the first optical heterodyne interference light;
Detecting a first beat signal and a third beat signal independently from the third optical heterodyne interference light,
Signal detection means for independently detecting a second beat signal and a fourth beat signal from the optical heterodyne interference light and the fourth optical heterodyne interference light, respectively, the first beat signal and the second beat signal And the phase difference between the third beat signal and the fourth beat signal,
Signal processing control means for calculating a surface shape of the measured object.
【0033】また、本発明の表面形状測定器は、前記集
光ビームの前記被測定物体上でのビームスポット領域
を、前記集光させないで前記被測定物体上に入射させる
ビームスポット領域内に含まれるようにした集光ビーム
入射手段を有することを特徴とする。In the surface profile measuring apparatus according to the present invention, the beam spot area of the condensed beam on the object to be measured is included in the beam spot area for impinging on the object to be measured without being focused. And a condensed beam incident means.
【0034】また、本発明の表面形状測定器は、偏光面
が互いに垂直で、周波数が異なる2周波光を発生させる
2周波光発生手段と、前記2周波光を第1の2周波光、
第2の2周波光の2つに分割する第1の2周波光分割手
段と、前記第1の2周波光、前記第2の少なくとも一方
の周波数をシフトさせる周波数シフト手段と、被測定物
体を載せるための試料台と、前記第1の2周波光を、第
3の2周波光、第4の2周波光の2つに分割する第2の
2周波光分割手段と、前記第2の2周波光を、第5の2
周波光、第6の2周波光の2つに分割する第3の2周波
光分割手段と、前記第5の2周波光、前記第6の2周波
光のいずれか一方の2周波光を集光させて被測定物体上
に入射させる集光ビーム入射手段と、前記集光ビームが
前記被測定物体上で焦点が合う位置を検出する焦点検出
光学系手段と、前記集光ビームが前記被測定物体上で焦
点が合うように前記被測定物体をのせた試料台の位置を
制御する焦点合わせ手段と、前記第5の2周波光、前記
第6の2周波光の他方の集光させない2周波光を、前記
被測定物体上に入射させないで前記第3の2周波光、あ
るいは前記第4の2周波光と合成させるために反射させ
る反射光学手段と、前記第3の2周波光、前記第4の2
周波光と、前記被測定物体によって反射された前記集光
ビームと前記反射光学手段により反射された前記集光さ
せないビームの2周波光をそれぞれ合成する光合成手段
と、前記第3の2周波光と前記第5の2周波光の合成に
より得られた光ヘテロダイン干渉光を、偏光面の異なる
第1の光ヘテロダイン干渉光、第3の光ヘテロダイン干
渉光に分離し、前記第4の2周波光と前記第6の2周波
光の合成により得られた光ヘテロダイン干渉光を、偏光
面の異なる第2の光ヘテロダイン干渉光、第4の光ヘテ
ロダイン干渉光に分離する干渉光分離手段と、前記第1
の光ヘテロダイン干渉光、前記第3の光ヘテロダイン干
渉光からそれぞれ独立に第1のビート信号、第3のビー
ト信号を検出し、前記第2の光ヘテロダイン干渉光、前
記第4の光ヘテロダイン干渉光からそれぞれ独立に第2
のビート信号、第4のビート信号を検出する信号検出手
段と、前記第1のビート信号と前記第2のビート信号の
位相差、及び前記第3のビート信号と前記第4のビート
信号の位相差に基づいて、前記被測定物体の表面形状を
算出する信号処理制御手段とを有することを特徴とす
る。Further, the surface shape measuring device of the present invention comprises: a two-frequency light generating means for generating two-frequency light having mutually perpendicular polarization planes and different frequencies;
A first two-frequency light splitting means for splitting the second two-frequency light into two, a frequency shift means for shifting at least one of the first two-frequency light and the second frequency; A sample stage for mounting, a second dual-frequency light splitting unit for splitting the first dual-frequency light into two, a third dual-frequency light and a fourth dual-frequency light, and the second dual-frequency light splitting unit; High frequency light to the fifth 2
A third dual-frequency light splitting unit that splits the two-frequency light into a second high-frequency light and a sixth dual-frequency light, and collects one of the fifth dual-frequency light and the sixth dual-frequency light. Condensed beam incidence means for illuminating the object to be measured and focus detecting optical system means for detecting a position where the condensed beam is focused on the object to be measured; and Focusing means for controlling the position of the sample stage on which the object to be measured is placed so as to be in focus on the object; and two non-condensing two frequencies of the fifth two-frequency light and the sixth two-frequency light Reflection optical means for reflecting light so as to be combined with the third dual-frequency light or the fourth dual-frequency light without being incident on the object to be measured, and the third dual-frequency light, 4 in 2
Frequency light, two-frequency light of the condensed beam reflected by the object to be measured and the two-frequency light of the non-condensed beam reflected by the reflection optical means, and the third two-frequency light; The optical heterodyne interference light obtained by combining the fifth dual-frequency light is separated into a first optical heterodyne interference light and a third optical heterodyne interference light having different polarization planes. An interference light separating unit that separates the optical heterodyne interference light obtained by combining the sixth two-frequency light into a second optical heterodyne interference light and a fourth optical heterodyne interference light having different polarization planes;
Detecting the first beat signal and the third beat signal independently from the optical heterodyne interference light and the third optical heterodyne interference light, respectively, and detecting the second optical heterodyne interference light and the fourth optical heterodyne interference light. Independently from each other
Signal detection means for detecting the beat signal of the second beat signal, the phase difference between the first beat signal and the second beat signal, and the positions of the third beat signal and the fourth beat signal. Signal processing control means for calculating a surface shape of the measured object based on the phase difference.
【0035】また、本発明の表面形状測定器は、前記2
周波光発生手段から発生する偏光面が互いに垂直で、周
波数が異なる2周波光のいずれか一方の偏光面の光を用
い、前記第1のビート信号と前記第2のビート信号の位
相差、あるいは前記第3のビート信号と前記第4のビー
ト信号の位相差から前記被測定物体の表面形状を算出す
る信号処理制御手段を有することを特徴とする。Further, the surface shape measuring instrument of the present invention is characterized in that
The polarization planes generated by the frequency light generation means are perpendicular to each other, and the light of one of the polarization planes of the two frequency lights having different frequencies is used, and the phase difference between the first beat signal and the second beat signal, or A signal processing control unit for calculating a surface shape of the measured object from a phase difference between the third beat signal and the fourth beat signal.
【0036】また、本発明の表面形状測定器は、前記第
1の2周波光、前記第2の2周波光の両方についてそれ
ぞれ異なる周波数で周波数シフトさせる周波数シフト手
段を有することを特徴とする。Further, the surface shape measuring device of the present invention is characterized in that it has a frequency shift means for shifting both the first two-frequency light and the second two-frequency light at different frequencies.
【0037】また、本発明の表面形状測定器は、前記試
料台は、前記被測定物体の表面に対して平行な方向に移
動可能なものであることを特徴とする。In the surface shape measuring instrument according to the present invention, the sample stage is movable in a direction parallel to the surface of the object to be measured.
【0038】また、本発明の表面形状測定器は、前記2
周波光発生手段、前記第1の2周波光分割手段、前記第
2の2周波光分割手段、前記第3の2周波光分割手段、
前記周波数シフト手段、前記集光ビーム入射手段、前記
ビーム入射手段、前記光合成手段、前記干渉光分離手
段、及び前記信号検出手段が、同一の光学系ステージ上
に配置され、この光学ステージは前記被測定物体の表面
に対して平行な方向に移動可能なものであることを特徴
とする。The surface shape measuring instrument of the present invention is characterized in that
Frequency light generating means, said first two-frequency light dividing means, said second two-frequency light dividing means, said third two-frequency light dividing means,
The frequency shift unit, the converging beam incident unit, the beam incident unit, the light combining unit, the interference light separating unit, and the signal detecting unit are arranged on a same optical system stage, and the optical stage is It is characterized by being movable in a direction parallel to the surface of the measurement object.
【0039】本発明では、2波長のレーザー光からな
り、集光させたレーザービームと集光させないレーザー
ビームの2本のビーム、あるいは集光させたレーザービ
ームのみを、直接、測定対象に入射させる。集光させな
いレーザービームを測定対象に入射させる場合は、測定
対象上の広い領域を照射するため、測定対象上のパタン
形状による制約を受けない。また、集光させたレーザー
ビームは、測定したい箇所の近傍に入射させる。なお、
集光ビームについては、測定対象上で焦点が合うように
測定対象物をのせた試料台を制御する。測定対象からの
2つあるいは1つの反射光と2波長のレーザー光からな
る参照光2本とを光ヘテロダイン干渉させ、位相差信号
によりウエハ表面、あるいは光学素子などの段差形状、
表面の面荒さや面形状などの表面形状を、非接触で直接
計測でき、しかもビームスポットの大きさによる焦点深
度の違いから生ずる測定可能なパタンの段差の制約を受
けることがなく、高精度の表面形状測定を実現すること
が可能となる。In the present invention, two beams of laser light of two wavelengths, a focused laser beam and a laser beam not to be focused, or only the focused laser beam is directly incident on the object to be measured. . When a laser beam that is not focused is incident on the measurement target, a large area on the measurement target is irradiated, so that there is no restriction due to the pattern shape on the measurement target. The condensed laser beam is incident on the vicinity of a portion to be measured. In addition,
As for the focused beam, the sample stage on which the object to be measured is placed is controlled so that the focused beam is focused on the object to be measured. Two or one reflected lights from the object to be measured and two reference lights composed of two wavelengths of laser light are subjected to optical heterodyne interference, and a phase difference signal is used to form a stepped shape on a wafer surface or an optical element.
It can directly measure the surface shape, such as surface roughness and surface shape, in a non-contact manner, and is not subject to the limitations of measurable pattern steps caused by differences in the depth of focus due to the size of the beam spot. Surface shape measurement can be realized.
【0040】[0040]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について詳細に説明する。なお、以下で説明す
る図面で、同一機能を有するものは同一符号を付け、そ
の繰り返しの説明は省略する。Embodiments of the present invention will be described below in detail with reference to the drawings. In the drawings described below, those having the same functions are denoted by the same reference numerals, and the repeated description thereof will be omitted.
【0041】実施の形態1 図1は、本発明による表面形状測定器の実施の形態1、
すなわち、半導体ICやLSI製造プロセスにおいてパ
タン加工されたウエハ面の段差測定装置の概略構成を示
す図である。Embodiment 1 FIG. 1 shows Embodiment 1 of a surface shape measuring instrument according to the present invention.
That is, it is a diagram showing a schematic configuration of a device for measuring a step on a wafer surface that has been patterned in a semiconductor IC or LSI manufacturing process.
【0042】図1において、1、2はレーザー光源、3
は1/2波長板、4、7、12はミラー、5、21は偏
光ビームスプリッター、6、13は無偏光ビームスプリ
ッター、L1、L2、L3、L4はレーザービーム、
8、9は音響光学素子、10、11は平行プリズム、1
4はミラー、15は投影光学系、16は縮小光学系、1
7、18はウエハ面ビームスポット、19はウエハ、2
0はウエハxyステージ、22、23は2分割ディテク
タ、24はビート信号処理制御部、30はウエハzステ
ージ、31はダイクロイックミラー、32は焦点検出光
学系、33はz軸ステージ信号処理制御系である。In FIG. 1, reference numerals 1 and 2 denote laser light sources, 3
Is a half-wave plate, 4, 7, 12 are mirrors, 5, 21 are polarization beam splitters, 6, 13 are non-polarization beam splitters, L1, L2, L3, L4 are laser beams,
8, 9 are acousto-optic elements, 10, 11 are parallel prisms, 1
4 is a mirror, 15 is a projection optical system, 16 is a reduction optical system, 1
7, 18 are beam spots on the wafer surface, 19 is the wafer, 2
0 is a wafer xy stage, 22 and 23 are two-divided detectors, 24 is a beat signal processing control unit, 30 is a wafer z stage, 31 is a dichroic mirror, 32 is a focus detection optical system, and 33 is a z-axis stage signal processing control system. is there.
【0043】レーザー光源1、2から発したレーザー光
は、光路中でダイクロイックミラー31を透過すること
以外は、光電検出器22、23でビート信号として検出
され、ビート信号処理制御部24でウエハ19面上の段
差として計測される検出原理については図4の装置とほ
ぼ同じである。The laser light emitted from the laser light sources 1 and 2 is detected as beat signals by the photoelectric detectors 22 and 23 except that the laser light is transmitted through the dichroic mirror 31 in the optical path. The detection principle measured as a step on the surface is almost the same as that of the apparatus in FIG.
【0044】ここで、焦点検出光学系32から発生した
レーザー光は、ダイクロイックミラー31により反射さ
れ、縮小光学系16を通ってウエハ19に入射し、ウエ
ハ19からの反射光は、縮小光学系16を通って逆にダ
イクロイックミラー31を介して焦点検出光学系32に
もどる。焦点検出光学系32では、ウエハ19のz方向
の変化に対するもどってきた反射光のビーム位置、ビー
ム径の大きさ、あるいは光強度などの変動を検出し、z
軸ステージ信号処理制御系33に送られる。z軸ステー
ジ信号処理制御系33では、焦点検出光学系32の検出
信号に基づきウエハzステージ30を制御して、縮小光
学系16からのレーザービームがウエハ19面上で焦点
合わせされるように設定する。Here, the laser light generated from the focus detection optical system 32 is reflected by the dichroic mirror 31 and enters the wafer 19 through the reduction optical system 16. The reflected light from the wafer 19 is reflected by the reduction optical system 16. And returns to the focus detection optical system 32 via the dichroic mirror 31. The focus detection optical system 32 detects a change in the beam position, the beam diameter, or the light intensity of the returned reflected light with respect to the change in the z direction of the wafer 19, and
The signal is sent to the axis stage signal processing control system 33. The z-axis stage signal processing control system 33 controls the wafer z-stage 30 based on the detection signal of the focus detection optical system 32 so that the laser beam from the reduction optical system 16 is focused on the surface of the wafer 19. I do.
【0045】図2は、焦点深度の小さい縮小光学系16
について、段差の上下で焦点合わせして計測した場合の
概略図を示す。図2(a)は、段差上部のA点でビーム
が焦点合わせされた様子を示す。ウエハ19はビームL
4の焦点深度内のZ=aの位置に設定されている。各波
長についての位相差をφ21a、φ43aとすると、A
点での合成波長の位相差は、 △φa=φ43a−φ21a …(16) となる。図2(b)は、段差下部のB点でビームが焦点
合わせされた様子を示す。このとき、ウエハ19は、ウ
エハxyステージ20により集光ビームL4が段差下部
のB点の位置に設定されるように平行移動されている。
また、ウエハ19はビームL4の焦点深度内のZ=bの
位置に設定されている。各波長についての位相差をφ2
1b、φ43bとすると、B点での合成波長の位相差
は、 △φb=φ43b−φ21b …(17) となる。したがって、式(16)、(17)よりA点とB点
との段差△Φabは、 △Φab=△φa−△φb=(φ43a−φ21a)−(φ43b−φ21b) …(18) となる。ここで、焦点深度内では位相差の変動がないこ
とから、φ21a=φ21bとなる。FIG. 2 shows a reduction optical system 16 having a small depth of focus.
FIG. 3 is a schematic diagram showing a case where measurement is performed by focusing on the top and bottom of a step. FIG. 2A shows a state where the beam is focused at a point A above the step. Wafer 19 has beam L
4 is set at the position of Z = a within the depth of focus. If the phase difference for each wavelength is φ21a, φ43a, A
The phase difference of the combined wavelength at the point is Δφa = φ43a−φ21a (16) FIG. 2B shows a state where the beam is focused at a point B below the step. At this time, the wafer 19 has been translated by the wafer xy stage 20 so that the focused beam L4 is set at the position of point B below the step.
The wafer 19 is set at a position of Z = b within the depth of focus of the beam L4. The phase difference for each wavelength is φ2
Assuming that 1b and φ43b, the phase difference of the combined wavelength at point B is Δφb = φ43b−φ21b (17). Therefore, from the equations (16) and (17), the step Δφab between the point A and the point B is Δφab = φφa−φφb = (φ43a−φ21a) − (φ43b−φ21b) (18) Here, since there is no change in the phase difference within the depth of focus, φ21a = φ21b.
【0046】すなわち、式(18)は、以下のようにな
る。That is, equation (18) becomes as follows.
【0047】 △Φab=△φa−△φb=φ43a−φ43b …(19) 段差に対して、焦点深度が小さい集光ビームの場合にお
いても、各点で焦点合わせを行うことにより、段差計測
が可能である。式(19)は合成波長の位相差であり、式
(14)、(15)を基に、各波長について計算すれば高精
度で段差測定ができる。ΔΦab = △ φa− △ φb = φ43a−φ43b (19) Even if the focused beam has a small depth of focus with respect to the step, the step can be measured by focusing at each point. It is. Equation (19) is the phase difference of the composite wavelength,
If the calculation is performed for each wavelength based on (14) and (15), the step can be measured with high accuracy.
【0048】すなわち、本実施の形態1の表面形状測定
方法は、偏光面が互いに垂直で、周波数が異なる2周波
光を発生させ、前記2周波光を無偏光ビームスプリッタ
ー6で第1の2周波光、第2の2周波光の2つに分割
し、前記第1の2周波光、前記第2の2周波光の両方の
(少なくとも一方でよい)周波数を音響光学素子8、9
シフトさせ、前記第1の2周波光を平行プリズム10で
2つに分割して第3の2周波光L1、第4の2周波光L
2を生成し、前記第2の2周波光を平行プリズム11で
2つに分割して第5の2周波光L3、第6の2周波光L
4を生成し、前記第5の2周波光、前記第6の2周波光
のいずれか一方の2周波光L4を縮小光学系16により
集光して集光ビームを形成し、前記集光ビームと、第5
の2周波光L3、第6の2周波光L4の他方の集光させ
ないビームを被測定物体であるウエハ19上に入射さ
せ、前記集光ビームがウエハ19上で焦点が合うように
ウエハ19の位置を焦点検出光学系32、z軸ステージ
信号処理制御系33により制御し、第3の2周波光L
1、第4の2周波光L2と、ウエハ19によって反射さ
れた前記集光ビーム、前記集光させないビームを無偏光
ビームスプリッター13でそれぞれ合成し、第3の2周
波光L1と第5の2周波光L3の合成によって得られた
光ヘテロダイン干渉光を、偏光ビームスプリッター21
で偏光面の異なる第1、第3の光ヘテロダイン干渉光に
分離し、2分割ディテクタ22で第1、第3のビート信
号を求め、第4の2周波光L2と第6の2周波光L4の
合成によって得られた光ヘテロダイン干渉光を、偏光ビ
ームスプリッター21で偏光面の異なる第2、第4の光
ヘテロダイン干渉光に分離し、2分割ディテクタ23で
第2、第4のビート信号を求め、ビート信号処理制御部
24で前記第1のビート信号と前記第2のビート信号の
位相差、及び前記第3のビート信号と前記第4のビート
信号の位相差に基づいて、前記被測定物体の表面形状を
算出する。That is, according to the surface shape measuring method of the first embodiment, two-frequency light beams whose polarization planes are perpendicular to each other and have different frequencies are generated, and the two-frequency light beam is first polarized by the non-polarizing beam splitter 6. Light and second two-frequency light, and acousto-optic devices 8 and 9 for both (or at least one) frequency of the first two-frequency light and the second two-frequency light
The first two-frequency light is divided into two by the parallel prism 10 and the third two-frequency light L1 and the fourth two-frequency light L
2, the second dual-frequency light is split into two by the parallel prism 11, and the fifth dual-frequency light L3 and the sixth dual-frequency light L
4 and the condensing beam is formed by condensing the two-frequency light L4 of either the fifth dual-frequency light or the sixth dual-frequency light by the reduction optical system 16, and forming the condensed beam. And the fifth
The other non-condensed beams of the two-frequency light L3 and the sixth dual-frequency light L4 are incident on the wafer 19, which is an object to be measured, and the focused beam is focused on the wafer 19 so that the focused beam is focused on the wafer 19. The position is controlled by the focus detection optical system 32 and the z-axis stage signal processing control system 33, and the third two-frequency light L
The first and fourth dual-frequency lights L2, the condensed beam reflected by the wafer 19, and the non-condensed beam are combined by a non-polarizing beam splitter 13, and the third dual-frequency light L1 and the fifth The optical heterodyne interference light obtained by synthesizing the high-frequency light L3 is converted into a polarization beam splitter 21.
To separate the first and third optical heterodyne interference lights having different polarization planes. The first and third beat signals are obtained by the two-segment detector 22, and the fourth two-frequency light L2 and the sixth two-frequency light L4 are obtained. Is separated into second and fourth optical heterodyne interference lights having different polarization planes by the polarization beam splitter 21, and second and fourth beat signals are obtained by the split detector 23. And the beat signal processing control unit 24, based on the phase difference between the first beat signal and the second beat signal and the phase difference between the third beat signal and the fourth beat signal, Is calculated.
【0049】また、本実施の形態1の表面形状測定器
は、偏光面が互いに垂直で、周波数が異なる2周波光を
発生させる2周波光発生手段(レーザー光源1、2、1
/2波長板3、ミラー4、偏光ビームスプリッター5)
と、前記2周波光を第1の2周波光、第2の2周波光の
2つに分割する第1の2周波光分割手段(無偏光ビーム
スプリッター6)と、前記第1の2周波光、前記第2の
少なくとも一方の周波数をシフトさせる周波数シフト手
段(音響光学素子8、9)と、被測定物体であるウエハ
19を載せるための試料台(ウエハxyステージ20、
ウエハzステージ30)と、前記第1の2周波光を、第
3の2周波光L1、第4の2周波光L2の2つに分割す
る第2の2周波光分割手段(平行プリズム10)と、前
記第2の2周波光を、第5の2周波光L3、第6の2周
波光L4の2つに分割する第3の2周波光分割手段(平
行プリズム11)と、第5の2周波光L3、第6の2周
波光L4のいずれか一方の2周波光を集光させてウエハ
19上に入射させる集光ビーム入射手段(縮小光学系1
6)と、前記集光ビームがウエハ19上で焦点が合う位
置を検出する焦点検出光学系手段(焦点検出光学系3
2)と、前記集光ビームがウエハ19上で焦点が合うよ
うにウエハ19をのせた試料台(ウエハxyステージ2
0、ウエハzステージ30)の位置を制御する焦点合わ
せ手段(z軸ステージ信号処理制御系33と、第5の2
周波光L3、第6の2周波光L4の他方を集光させない
でウエハ19上に入射させるビーム入射手段(投影光学
系15)と、第3の2周波光L1、第4の2周波光L2
と、ウエハ19によって反射された前記集光ビームと前
記集光させないビームの2周波光をそれぞれ合成する光
合成手段(無偏光ビームスプリッター13)と、第3の
2周波光L1と第5の2周波光L3の合成により得られ
た光ヘテロダイン干渉光を、偏光面の異なる第1の光ヘ
テロダイン干渉光、第3の光ヘテロダイン干渉光に分離
し、前記第4の2周波光と前記第6の2周波光の合成に
より得られた光ヘテロダイン干渉光を、偏光面の異なる
第2の光ヘテロダイン干渉光、第4の光ヘテロダイン干
渉光に分離する干渉光分離手段(偏光ビームスプリッタ
ー21)と、前記第1の光ヘテロダイン干渉光、前記第
3の光ヘテロダイン干渉光からそれぞれ独立に第1のビ
ート信号、第3のビート信号を検出し、前記第2の光ヘ
テロダイン干渉光、前記第4の光ヘテロダイン干渉光か
らそれぞれ独立に第2のビート信号、第4のビート信号
を検出する信号検出手段(2分割ディテクタ22、2
3)と、前記第1のビート信号と前記第2のビート信号
の位相差、及び前記第3のビート信号と前記第4のビー
ト信号の位相差に基づいて、前記被測定物体の表面形状
を算出する信号処理制御手段(ビート信号処理制御部2
4)とを有する。Further, the surface shape measuring instrument of the first embodiment is provided with two-frequency light generating means (laser light sources 1, 2, 1) for generating two-frequency light having mutually perpendicular polarization planes and different frequencies.
/ 2 wavelength plate 3, mirror 4, polarization beam splitter 5)
A first two-frequency light splitting means (unpolarized beam splitter 6) for splitting the two-frequency light into two, a first two-frequency light and a second two-frequency light, and the first two-frequency light Frequency shift means (acoustic optical elements 8 and 9) for shifting at least one of the second frequencies, and a sample stage (wafer xy stage 20,
A wafer z-stage 30) and a second dual-frequency light splitting unit (parallel prism 10) for splitting the first dual-frequency light into two, a third dual-frequency light L1 and a fourth dual-frequency light L2. A third dual-frequency light splitting means (parallel prism 11) for splitting the second dual-frequency light into two, a fifth dual-frequency light L3 and a sixth dual-frequency light L4; A condensed beam incident means (condensed optical system 1) for converging any one of the two-frequency light L3 and the sixth two-frequency light L4 and making it incident on the wafer 19.
6) and focus detection optical system means (focus detection optical system 3) for detecting a position where the condensed beam is focused on the wafer 19.
2) and a sample stage (wafer xy stage 2) on which wafer 19 is placed so that the focused beam is focused on wafer 19
0, a z-axis stage signal processing control system 33 for controlling the position of the wafer z-stage 30;
A beam incident means (projection optical system 15) for causing the other of the high frequency light L3 and the sixth dual frequency light L4 to be incident on the wafer 19 without being focused, a third dual frequency light L1 and a fourth dual frequency light L2
A light combining means (non-polarizing beam splitter 13) for combining the two-frequency lights of the condensed beam and the non-condensed beam reflected by the wafer 19; a third two-frequency light L1 and a fifth two-frequency light; The optical heterodyne interference light obtained by synthesizing the light L3 is separated into a first optical heterodyne interference light and a third optical heterodyne interference light having different polarization planes, and the fourth dual-frequency light and the sixth optical heterodyne interference light are separated. Interference light separating means (polarizing beam splitter 21) for separating the optical heterodyne interference light obtained by synthesizing the high-frequency light into a second optical heterodyne interference light and a fourth optical heterodyne interference light having different polarization planes; A first beat signal and a third beat signal are detected independently from the first optical heterodyne interference light and the third optical heterodyne interference light, and the second optical heterodyne interference light is detected. The second beat signal independently from said fourth optical heterodyne interference light, the signal detecting means for detecting a fourth beat signal (two-divided detector 22, 24, 32
3) and, based on the phase difference between the first beat signal and the second beat signal and the phase difference between the third beat signal and the fourth beat signal, change the surface shape of the object to be measured. Signal processing control means for calculating (beat signal processing control unit 2
4).
【0050】なお、試料台(ウエハxyステージ20)
は、ウエハ19の表面に対して平行な方向に移動可能に
なっている。また、前記2周波光発生手段、前記第1の
2周波光分割手段、前記第2の2周波光分割手段、前記
第3の2周波光分割手段、前記周波数シフト手段、前記
集光ビーム入射手段、前記ビーム入射手段、前記光合成
手段、前記干渉光分離手段、及び前記信号検出手段が、
同一の光学系ステージ(図示省略)上に配置され、この
光学ステージはウエハ19の表面に対して平行な方向に
移動可能なものである。The sample stage (wafer xy stage 20)
Is movable in a direction parallel to the surface of the wafer 19. The two-frequency light generating means, the first two-frequency light splitting means, the second two-frequency light splitting means, the third two-frequency light splitting means, the frequency shifting means, and the condensed beam incident means , The beam incident means, the light combining means, the interference light separating means, and the signal detecting means,
The optical stage is arranged on the same optical system stage (not shown), and is movable in a direction parallel to the surface of the wafer 19.
【0051】本実施の形態では、2波長のレーザー光か
らなり、集光させたレーザービームと集光させないレー
ザービームの2本のビームを、直接、測定対象に入射さ
せる。集光させないレーザービームは、測定対象である
ウエハ19上の広い領域を照射するため、ウエハ19上
のパタン形状による制約を受けない。また、集光させた
レーザービームは、測定したい箇所の近傍に入射させ
る。なお、集光ビームについては、ウエハ19上で焦点
が合うようにウエハ19をのせた試料台(ウエハzステ
ージ30)を制御する。ウエハ19からの2つの反射光
L3、L4と2波長のレーザー光からなる参照光2本L
1、L2とを光ヘテロダイン干渉させ、位相差信号によ
りウエハ19表面(あるいは光学素子などの段差形状、
表面の面荒さや面形状など)の表面形状を、非接触で直
接計測でき、しかもビームスポットの大きさによる焦点
深度の違いから生ずる測定可能なパタンの段差の制約を
受けることがなく、高精度の表面形状測定を実現するこ
とが可能となる。In this embodiment, two beams of laser light of two wavelengths, a focused laser beam and a non-focused laser beam, are directly incident on the object to be measured. Since the laser beam that is not focused irradiates a wide area on the wafer 19 to be measured, there is no restriction due to the pattern shape on the wafer 19. The condensed laser beam is incident on the vicinity of a portion to be measured. For the focused beam, the sample stage (wafer z-stage 30) on which the wafer 19 is placed is controlled so that it is focused on the wafer 19. Two reference beams L composed of two reflected beams L3 and L4 from the wafer 19 and two wavelength laser beams.
1 and L2 are subjected to optical heterodyne interference, and the phase difference signal causes the surface of the wafer 19 (or a stepped shape such as an optical element,
Surface roughness (surface roughness, surface shape, etc.) can be measured directly without contact, and it is highly accurate without being limited by measurable pattern steps caused by differences in the depth of focus due to the beam spot size. Surface shape measurement can be realized.
【0052】実施の形態2 図3は、本発明による表面形状測定器の実施の形態2、
すなわち、半導体ICやLSI製造プロセスにおいてパ
タン加工されたウエハ面の段差測定装置の概略構成を示
す図である。Embodiment 2 FIG. 3 is a view showing Embodiment 2 of a surface shape measuring device according to the present invention.
That is, it is a diagram showing a schematic configuration of a device for measuring a step on a wafer surface that has been patterned in a semiconductor IC or LSI manufacturing process.
【0053】図3において、34はミラーである。In FIG. 3, reference numeral 34 denotes a mirror.
【0054】本実施の形態2では、図3に示すように、
前記集光させないレーザービームの2周波光L3をウエ
ハ19上に入射させないで、ミラー34を挿入して、該
ミラー34に反射させて第3の2周波光L1、あるいは
第4の2周波光L2と合成させ、光ヘテロダイン干渉さ
せてビート信号を生成しても、実施の形態1と同様の効
果が得られる。In the second embodiment, as shown in FIG.
The mirror 34 is inserted without reflecting the two-frequency light L3 of the laser beam that is not focused on the wafer 19, and is reflected by the mirror 34 to be the third two-frequency light L1 or the fourth two-frequency light L2. The same effect as in the first embodiment can be obtained even if the beat signal is generated by combining the signals with optical heterodyne interference.
【0055】以上本発明を実施の形態に基づいて具体的
に説明したが、本発明は前記実施の形態に限定されるも
のではなく、その要旨を逸脱しない範囲において種々変
更可能であることは勿論である。Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention. It is.
【0056】例えば、偏光面が互いに垂直で、周波数が
異なる前記2周波光のいずれか一方の偏光面の光を用
い、前記第1のビート信号と前記第2のビート信号の位
相差、あるいは前記第3のビート信号と前記第4のビー
ト信号の位相差から、前記被測定物体の表面形状を算出
してもよい。すなわち、本発明において、測定しようと
するウエハ19面上の段差が波長λ1(またはλ2)の
1/2よりも小さい場合には、N1=0(またはN2=
0)となる。したがって、式(14)または式(15)は、
それぞれ偏光面の異なるいずれか一方の光学系から得ら
れるビート信号の位相差から計算できる。For example, the phase difference between the first beat signal and the second beat signal, or the phase difference between the first beat signal and the second beat signal, using light of one of the two-frequency lights whose polarization planes are perpendicular to each other and have different frequencies. The surface shape of the measured object may be calculated from a phase difference between a third beat signal and the fourth beat signal. That is, in the present invention, when the step on the surface of the wafer 19 to be measured is smaller than の of the wavelength λ1 (or λ2), N1 = 0 (or N2 =
0). Therefore, equation (14) or equation (15) is
It can be calculated from the phase difference between the beat signals obtained from one of the optical systems having different polarization planes.
【0057】また、図示は省略するが、前記集光ビーム
のウエハ19上でのビームスポット領域を、前記集光さ
せないビームのウエハ19上でのビームスポット領域内
に含まれるようにしてもよい。これにより、寸法の小さ
い試料でも高精度に測定することが可能である。Although not shown, the beam spot area of the focused beam on the wafer 19 may be included in the beam spot area of the unfocused beam on the wafer 19. As a result, it is possible to measure even small-sized samples with high accuracy.
【0058】また、実施の形態1、2において、2つの
音響光学素子を用いて周波数シフトさせる方法を示した
が、いずれか一つを用いて片側のレーザー光のみを周波
数シフトさせる方法を用いても同様の効果が得られる。In the first and second embodiments, the method of shifting the frequency by using two acousto-optical elements has been described. However, the method of shifting the frequency of only one side of the laser beam by using one of the two is used. Has the same effect.
【0059】[0059]
【発明の効果】以上説明したように、本発明によれば、
ウエハ表面の段差形状、表面の面荒さや面形状などの表
面形状を、非接触で直接計測でき、集光ビームのビーム
径が小さく、焦点深度が小さい場合においても段差測定
が可能であり、パタンの寸法、段差の深さに対して制約
を受けずに、高精度の表面形状測定ができるという効果
が得られる。As described above, according to the present invention,
It is possible to directly measure non-contact surface shapes such as the step shape of the wafer surface, surface roughness and surface shape, and to measure the step even when the beam diameter of the condensed beam is small and the depth of focus is small. The effect that the surface shape can be measured with high accuracy without being restricted by the dimension and the depth of the step is obtained.
【図1】本発明の実施の形態1の表面形状測定器の概略
構成図である。FIG. 1 is a schematic configuration diagram of a surface shape measuring instrument according to Embodiment 1 of the present invention.
【図2】焦点深度の小さい縮小光学系について、段差の
上下で焦点合わせして計測した場合の概略図である。FIG. 2 is a schematic diagram of a reduction optical system having a small depth of focus, which is measured by focusing on and under a step.
【図3】本発明の実施の形態2の表面形状測定器の概略
構成図である。FIG. 3 is a schematic configuration diagram of a surface shape measuring device according to a second embodiment of the present invention.
【図4】従来の段差測定器の概略構成図である。FIG. 4 is a schematic configuration diagram of a conventional step measurement device.
【図5】従来の段差測定器における段差パタン部の拡大
図である。FIG. 5 is an enlarged view of a step pattern portion in a conventional step measuring device.
【図6】従来の段差測定器において焦点深度が異なるビ
ームによる測定概略図である。FIG. 6 is a schematic diagram of measurement using beams having different depths of focus in a conventional step measurement device.
1、2…レーザー光源、3…1/2波長板、4、7、1
2…ミラー、5、21…偏光ビームスプリッター、6、
13…無偏光ビームスプリッター、L1、L2、L3、
L4…レーザービーム、8、9…音響光学素子、10、
11…平行プリズム、14…ミラー、15…投影光学
系、16…縮小光学系、17、18…ウエハ面ビームス
ポット、19…ウエハ、20…ウエハxyステージ、2
2、23…2分割ディテクタ、24…ビート信号処理制
御部、30…ウエハzステージ、31…ダイクロイック
ミラー、32…焦点検出光学系、33…z軸ステージ信
号処理制御系、34…ミラー。1, 2, laser light source, 3 1/2 wavelength plate, 4, 7, 1
2 ... Mirror, 5, 21 ... Polarizing beam splitter, 6,
13: Non-polarizing beam splitter, L1, L2, L3,
L4: laser beam, 8, 9: acousto-optic device, 10,
11: parallel prism, 14: mirror, 15: projection optical system, 16: reduction optical system, 17, 18: beam spot on wafer surface, 19: wafer, 20: wafer xy stage, 2
2, 23: two-divided detector, 24: beat signal processing control unit, 30: wafer z stage, 31: dichroic mirror, 32: focus detection optical system, 33: z-axis stage signal processing control system, 34: mirror.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉原 秀雄 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 三好 一功 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 Fターム(参考) 2F065 AA06 AA25 AA50 AA52 AA53 BB02 CC18 CC19 CC20 CC22 DD00 DD10 FF04 FF49 FF52 GG04 GG23 HH04 HH09 HH13 KK03 LL04 LL12 LL20 LL35 LL37 LL46 LL57 PP22 PP24 QQ00 UU01 UU02 UU05 UU07 5F046 CC16 DB05 GA02 GA14 GA18 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideo Yoshihara 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo NTT Advanced Technology Corporation (72) Inventor Kazuyoshi Miyoshi Shinjuku, Tokyo 2-1-1, Nishi-Shinjuku-ku, Tokyo F-term within NTT Advanced Technology Corporation (reference) 2F065 AA06 AA25 AA50 AA52 AA53 BB02 CC18 CC19 CC20 CC22 DD00 DD10 FF04 FF49 FF52 GG04 GG23 HH04 HH09 HH13 KK03 LL04 LL12 LL20 LL35 LL37 LL46 LL57 PP22 PP24 QQ00 UU01 UU02 UU05 UU07 5F046 CC16 DB05 GA02 GA14 GA18
Claims (12)
周波光を発生させ、 前記2周波光を第1の2周波光、第2の2周波光の2つ
に分割し、 前記第1の2周波光、前記第2の2周波光の少なくとも
一方の周波数をシフトさせ、 前記第1の2周波光を2つに分割して第3の2周波光、
第4の2周波光を生成し、 前記第2の2周波光を2つに分割して第5の2周波光、
第6の2周波光を生成し、 前記第5の2周波光、前記第6の2周波光のいずれか一
方の2周波光を光学素子により集光して集光ビームを形
成し、 前記集光ビームと、前記第5の2周波光、前記第6の2
周波光の他方の集光させないビームを被測定物体上に入
射させ、 前記集光ビームが前記被測定物体上で焦点が合うように
前記被測定物体の位置を制御し、 前記第3の2周波光、前記第4の2周波光と、前記被測
定物体によって反射された前記集光ビーム、前記集光さ
せないビームをそれぞれ合成し、 前記第3の2周波光と前記第5の2周波光の合成によっ
て得られた光ヘテロダイン干渉光を、偏光面の異なる第
1、第3の光ヘテロダイン干渉光に分離し、第1、第3
のビート信号を求め、 前記第4の2周波光と前記第6の2周波光の合成によっ
て得られた光ヘテロダイン干渉光を、偏光面の異なる第
2、第4の光ヘテロダイン干渉光に分離し、第2、第4
のビート信号を求め、 前記第1のビート信号と前記第2のビート信号の位相
差、及び前記第3のビート信号と前記第4のビート信号
の位相差に基づいて、前記被測定物体の表面形状を算出
することを特徴とする表面形状測定方法。1. The polarization planes are perpendicular to each other and have different frequencies.
Frequency light, dividing the two-frequency light into two, a first two-frequency light and a second two-frequency light, wherein at least one of the first two-frequency light and the second two-frequency light Shifting the frequency, dividing the first dual-frequency light into two, and dividing the first dual-frequency light into two,
Generating a fourth dual-frequency light, dividing the second dual-frequency light into two, a fifth dual-frequency light,
Generating a sixth dual-frequency light; condensing any one of the fifth dual-frequency light and the sixth dual-frequency light by an optical element to form a condensed beam; A light beam, the fifth two-frequency light, the sixth
The other non-condensed beam of the frequency light is incident on the object to be measured, and the position of the object to be measured is controlled so that the converged beam is focused on the object to be measured. Light, the fourth dual-frequency light, the condensed beam reflected by the object to be measured, and the non-condensed beam are combined, and the third dual-frequency light and the fifth dual-frequency light are combined. The optical heterodyne interference light obtained by the synthesis is separated into first and third optical heterodyne interference lights having different polarization planes.
The optical heterodyne interference light obtained by combining the fourth dual-frequency light and the sixth dual-frequency light is separated into second and fourth optical heterodyne interference lights having different polarization planes. , Second, fourth
A beat signal of the object to be measured based on a phase difference between the first beat signal and the second beat signal and a phase difference between the third beat signal and the fourth beat signal. A method for measuring a surface shape, comprising calculating a shape.
スポット領域を、前記集光させないビームの被測定物体
上でのビームスポット領域内に含まれるようにしたこと
を特徴とする請求項1記載の表面形状測定方法。2. The apparatus according to claim 1, wherein a beam spot area of the focused beam on the object to be measured is included in a beam spot area of the beam to be unfocused on the object to be measured. 2. The method for measuring a surface shape according to 1.
周波光を発生させ、 前記2周波光を第1の2周波光、第2の2周波光の2つ
に分割し、 前記第1の2周波光、前記第2の2周波光の少なくとも
一方の周波数をシフトさせ、 前記第1の2周波光を2つに分割して第3の2周波光、
第4の2周波光を生成し、 前記第2の2周波光を2つに分割して第5の2周波光、
第6の2周波光を生成し、 前記第5の2周波光、前記第6の2周波光のいずれか一
方の2周波光を光学素子により集光して集光ビームを形
成し、 前記集光ビームを被測定物体上に入射させ、前記第5の
2周波光、前記第6の他方の集光させないビームを前記
被測定物体上に入射させないで、ミラーにより反射さ
せ、 前記集光ビームが前記被測定物体上で焦点が合うように
前記被測定物体の位置を制御し、 前記第3の2周波光、前記第4の2周波光と、前記被測
定物体によって反射された前記集光ビーム、前記ミラー
により反射させた前記集光させないビームをそれぞれ合
成し、 前記第3の2周波光と前記第5の2周波光の合成によっ
て得られた光ヘテロダイン干渉光を、偏光面の異なる第
1、第3の光ヘテロダイン干渉光に分離し、第1、第3
のビート信号を求め、 前記第4の2周波光と前記第6の2周波光の合成によっ
て得られた光ヘテロダイン干渉光を、偏光面の異なる第
2、第4の光ヘテロダイン干渉光に分離し、第2、第4
のビート信号を求め、 前記第1のビート信号と前記第2のビート信号の位相
差、及び前記第3のビート信号と前記第4のビート信号
の位相差に基づいて、前記被測定物体の表面形状を算出
することを特徴とする表面形状測定方法。3. The polarization planes are perpendicular to each other and have different frequencies.
Frequency light, dividing the two-frequency light into two, a first two-frequency light and a second two-frequency light, wherein at least one of the first two-frequency light and the second two-frequency light Shifting the frequency, dividing the first dual-frequency light into two, and dividing the first dual-frequency light into two,
Generating a fourth dual-frequency light, dividing the second dual-frequency light into two, a fifth dual-frequency light,
Generating a sixth dual-frequency light; condensing any one of the fifth dual-frequency light and the sixth dual-frequency light by an optical element to form a condensed beam; A light beam is made incident on the object to be measured, and the fifth dual-frequency light and the sixth non-condensed beam are reflected by a mirror without being made incident on the object to be measured. Controlling the position of the measured object so as to be focused on the measured object; the third dual-frequency light, the fourth dual-frequency light, and the condensed beam reflected by the measured object Combining the non-condensed beams reflected by the mirror, and converting the optical heterodyne interference light obtained by combining the third dual-frequency light and the fifth dual-frequency light into a first light having a different polarization plane. , Into a third optical heterodyne interference light, Third
The optical heterodyne interference light obtained by combining the fourth dual-frequency light and the sixth dual-frequency light is separated into second and fourth optical heterodyne interference lights having different polarization planes. , Second, fourth
A beat signal of the object to be measured based on a phase difference between the first beat signal and the second beat signal and a phase difference between the third beat signal and the fourth beat signal. A method for measuring a surface shape, comprising calculating a shape.
記2周波光のいずれか一方の偏光面の光を用い、前記第
1のビート信号と前記第2のビート信号の位相差、ある
いは前記第3のビート信号と前記第4のビート信号の位
相差から、前記被測定物体の表面形状を算出することを
特徴とする請求項1または3記載の表面形状測定方法。4. A phase difference between the first beat signal and the second beat signal, wherein light of one of the two-frequency lights whose polarization planes are perpendicular to each other and have different frequencies is used. 4. The surface shape measuring method according to claim 1, wherein a surface shape of the measured object is calculated from a phase difference between a third beat signal and the fourth beat signal.
の両方についてそれぞれ異なる周波数で周波数シフトさ
せることを特徴とする請求項1または3記載の表面形状
測定方法。5. The surface shape measuring method according to claim 1, wherein both the first dual-frequency light and the second dual-frequency light are frequency-shifted at different frequencies.
周波光を発生させる2周波光発生手段と、 前記2周波光を第1の2周波光、第2の2周波光の2つ
に分割する第1の2周波光分割手段と、 前記第1の2周波光、前記第2の少なくとも一方の周波
数をシフトさせる周波数シフト手段と、 被測定物体を載せるための試料台と、 前記第1の2周波光を、第3の2周波光、第4の2周波
光の2つに分割する第2の2周波光分割手段と、 前記第2の2周波光を、第5の2周波光、第6の2周波
光の2つに分割する第3の2周波光分割手段と、 前記第5の2周波光、前記第6の2周波光のいずれか一
方の2周波光を集光させて被測定物体上に入射させる集
光ビーム入射手段と、 前記集光ビームが前記被測定物体上で焦点が合う位置を
検出する焦点検出光学系手段と、 前記集光ビームが前記被測定物体上で焦点が合うように
前記被測定物体をのせた試料台の位置を制御する焦点合
わせ手段と、 前記第5の2周波光、前記第6の2周波光の他方を集光
させないで被測定物体上に入射させるビーム入射手段
と、 前記第3の2周波光、第4の2周波光と、前記被測定物
体によって反射された前記集光ビームと前記集光させな
いビームの2周波光をそれぞれ合成する光合成手段と、 前記第3の2周波光と前記第5の2周波光の合成により
得られた光ヘテロダイン干渉光を、偏光面の異なる第1
の光ヘテロダイン干渉光、第3の光ヘテロダイン干渉光
に分離し、前記第4の2周波光と前記第6の2周波光の
合成により得られた光ヘテロダイン干渉光を、偏光面の
異なる第2の光ヘテロダイン干渉光、第4の光ヘテロダ
イン干渉光に分離する干渉光分離手段と、 前記第1の光ヘテロダイン干渉光、前記第3の光ヘテロ
ダイン干渉光からそれぞれ独立に第1のビート信号、第
3のビート信号を検出し、前記第2の光ヘテロダイン干
渉光、前記第4の光ヘテロダイン干渉光からそれぞれ独
立に第2のビート信号、第4のビート信号を検出する信
号検出手段と、 前記第1のビート信号と前記第2のビート信号の位相
差、及び前記第3のビート信号と前記第4のビート信号
の位相差に基づいて、前記被測定物体の表面形状を算出
する信号処理制御手段とを有することを特徴とする表面
形状測定器。6. Polarization planes are perpendicular to each other and have different frequencies.
A two-frequency light generating means for generating high-frequency light; a first two-frequency light dividing means for dividing the two-frequency light into two, a first two-frequency light and a second two-frequency light; Frequency shift means for shifting at least one of the second frequency light and the second at least one frequency; a sample stage on which an object to be measured is placed; and a third dual frequency light, A second two-frequency light splitting unit that splits the two-frequency light into two, and a third that splits the second two-frequency light into two of a fifth two-frequency light and a sixth two-frequency light. Two-frequency light splitting means; condensed beam incident means for converging any one of the fifth two-frequency light and the sixth two-frequency light to be incident on an object to be measured; Focus detection optical system means for detecting a position at which the focused beam is focused on the object to be measured; and Focusing means for controlling the position of the sample stage on which the object to be measured is placed so as to be in focus on the object to be measured, without measuring the other of the fifth dual-frequency light and the sixth dual-frequency light Beam incidence means for entering the object, the third dual-frequency light, the fourth dual-frequency light, and the two-frequency light of the focused beam and the non-focused beam reflected by the object to be measured, respectively. A light combining means for combining light, and an optical heterodyne interference light obtained by combining the third dual-frequency light and the fifth dual-frequency light into a first light having different polarization planes.
And a third optical heterodyne interference light, and the optical heterodyne interference light obtained by combining the fourth dual-frequency light and the sixth dual-frequency light is converted into a second optical heterodyne interference light having a different polarization plane. An interference light separating unit that separates the first light heterodyne interference light and the fourth light heterodyne interference light into a first beat signal and a fourth beat signal, respectively. Signal detecting means for detecting a third beat signal and independently detecting a second beat signal and a fourth beat signal from the second optical heterodyne interference light and the fourth optical heterodyne interference light, respectively, A signal processing system for calculating a surface shape of the measured object based on a phase difference between the first beat signal and the second beat signal and a phase difference between the third beat signal and the fourth beat signal. Surface profile measuring instrument, characterized in that it comprises a means.
ームスポット領域を、前記集光させないで前記被測定物
体上に入射させるビームスポット領域内に含まれるよう
にした集光ビーム入射手段を有することを特徴とする請
求項6記載の表面形状測定器。7. A condensed beam incident means wherein a beam spot area of the condensed beam on the object to be measured is included in a beam spot area which is incident on the object to be measured without being condensed. The surface profile measuring device according to claim 6, comprising:
周波光を発生させる2周波光発生手段と、 前記2周波光を第1の2周波光、第2の2周波光の2つ
に分割する第1の2周波光分割手段と、 前記第1の2周波光、前記第2の少なくとも一方の周波
数をシフトさせる周波数シフト手段と、 被測定物体を載せるための試料台と、 前記第1の2周波光を、第3の2周波光、第4の2周波
光の2つに分割する第2の2周波光分割手段と、 前記第2の2周波光を、第5の2周波光、第6の2周波
光の2つに分割する第3の2周波光分割手段と、 前記第5の2周波光、前記第6の2周波光のいずれか一
方の2周波光を集光させて被測定物体上に入射させる集
光ビーム入射手段と、 前記集光ビームが前記被測定物体上で焦点が合う位置を
検出する焦点検出光学系手段と、 前記集光ビームが前記被測定物体上で焦点が合うように
前記被測定物体をのせた試料台の位置を制御する焦点合
わせ手段と、 前記第5の2周波光、前記第6の2周波光の他方の集光
させない2周波光を、前記被測定物体上に入射させない
で前記第3の2周波光、あるいは前記第4の2周波光と
合成させるために反射させる反射光学手段と、 前記第3の2周波光、前記第4の2周波光と、前記被測
定物体によって反射された前記集光ビームと前記反射光
学手段により反射された前記集光させないビームの2周
波光をそれぞれ合成する光合成手段と、 前記第3の2周波光と前記第5の2周波光の合成により
得られた光ヘテロダイン干渉光を、偏光面の異なる第1
の光ヘテロダイン干渉光、第3の光ヘテロダイン干渉光
に分離し、前記第4の2周波光と前記第6の2周波光の
合成により得られた光ヘテロダイン干渉光を、偏光面の
異なる第2の光ヘテロダイン干渉光、第4の光ヘテロダ
イン干渉光に分離する干渉光分離手段と、 前記第1の光ヘテロダイン干渉光、前記第3の光ヘテロ
ダイン干渉光からそれぞれ独立に第1のビート信号、第
3のビート信号を検出し、前記第2の光ヘテロダイン干
渉光、前記第4の光ヘテロダイン干渉光からそれぞれ独
立に第2のビート信号、第4のビート信号を検出する信
号検出手段と、 前記第1のビート信号と前記第2のビート信号の位相
差、及び前記第3のビート信号と前記第4のビート信号
の位相差に基づいて、前記被測定物体の表面形状を算出
する信号処理制御手段とを有することを特徴とする表面
形状測定器。8. Polarization planes are perpendicular to each other and have different frequencies.
A two-frequency light generating means for generating high-frequency light; a first two-frequency light dividing means for dividing the two-frequency light into two, a first two-frequency light and a second two-frequency light; Frequency shift means for shifting at least one of the second frequency light and the second at least one frequency; a sample stage on which an object to be measured is placed; and a third dual frequency light, A second two-frequency light splitting unit that splits the two-frequency light into two, and a third that splits the second two-frequency light into two of a fifth two-frequency light and a sixth two-frequency light. Two-frequency light splitting means; condensed beam incident means for converging any one of the fifth two-frequency light and the sixth two-frequency light to be incident on an object to be measured; Focus detection optical system means for detecting a position at which the focused beam is focused on the object to be measured; and Focusing means for controlling the position of the sample stage on which the object to be measured is placed so as to be focused on; and the other of the fifth dual-frequency light and the sixth dual-frequency light, the non-focused dual-frequency light. Reflection optical means for reflecting the third dual-frequency light or the fourth dual-frequency light without being incident on the object to be measured; and the third dual-frequency light and the fourth Light combining means for combining the two-frequency light, the condensed beam reflected by the object to be measured, and the two-frequency light of the non-condensed beam reflected by the reflection optical means; The optical heterodyne interference light obtained by combining the light and the fifth two-frequency light is converted into first light having different polarization planes.
And a third optical heterodyne interference light, and the optical heterodyne interference light obtained by combining the fourth dual-frequency light and the sixth dual-frequency light is converted into a second optical heterodyne interference light having a different polarization plane. An interference light separating unit that separates the first light heterodyne interference light and the fourth light heterodyne interference light into a first beat signal and a fourth beat signal, respectively. Signal detecting means for detecting a third beat signal and independently detecting a second beat signal and a fourth beat signal from the second optical heterodyne interference light and the fourth optical heterodyne interference light, respectively, A signal processing system for calculating a surface shape of the measured object based on a phase difference between the first beat signal and the second beat signal and a phase difference between the third beat signal and the fourth beat signal. Surface profile measuring instrument, characterized in that it comprises a means.
が互いに垂直で、周波数が異なる2周波光のいずれか一
方の偏光面の光を用い、前記第1のビート信号と前記第
2のビート信号の位相差、あるいは前記第3のビート信
号と前記第4のビート信号の位相差から前記被測定物体
の表面形状を算出する信号処理制御手段を有することを
特徴とする請求項6または8記載の表面形状測定器。9. The first beat signal and the second beat signal are generated by using light of one of polarization planes of two-frequency lights whose polarization planes generated by the two-frequency light generation means are perpendicular to each other and have different frequencies. 9. A signal processing control means for calculating a surface shape of the object to be measured from a phase difference between beat signals or a phase difference between the third beat signal and the fourth beat signal. Surface profiler as described.
光の両方についてそれぞれ異なる周波数で周波数シフト
させる周波数シフト手段を有することを特徴とする請求
項6または8記載の表面形状測定器。10. The surface shape measurement according to claim 6, further comprising frequency shift means for shifting both the first two-frequency light and the second two-frequency light at different frequencies. vessel.
対して平行な方向に移動可能なものであることを特徴と
する請求項6または8記載の表面形状測定器。11. The surface shape measuring device according to claim 6, wherein the sample stage is movable in a direction parallel to a surface of the object to be measured.
波光分割手段、前記第2の2周波光分割手段、前記第3
の2周波光分割手段、前記周波数シフト手段、前記集光
ビーム入射手段、前記ビーム入射手段、前記光合成手
段、前記干渉光分離手段、及び前記信号検出手段が、同
一の光学系ステージ上に配置され、この光学ステージは
前記被測定物体の表面に対して平行な方向に移動可能な
ものであることを特徴とする請求項6または8記載の表
面形状測定器。12. The two-frequency light generating means, the first two-frequency light splitting means, the second two-frequency light splitting means, and the third frequency light splitting means.
The two-frequency light splitting means, the frequency shifting means, the focused beam incident means, the beam incident means, the light combining means, the interference light separating means, and the signal detecting means are arranged on the same optical system stage. 9. The surface shape measuring instrument according to claim 6, wherein said optical stage is movable in a direction parallel to a surface of said measured object.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000264938A JP3421309B2 (en) | 2000-09-01 | 2000-09-01 | Surface shape measuring method and surface shape measuring instrument |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000264938A JP3421309B2 (en) | 2000-09-01 | 2000-09-01 | Surface shape measuring method and surface shape measuring instrument |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002071327A true JP2002071327A (en) | 2002-03-08 |
| JP3421309B2 JP3421309B2 (en) | 2003-06-30 |
Family
ID=18752276
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000264938A Expired - Fee Related JP3421309B2 (en) | 2000-09-01 | 2000-09-01 | Surface shape measuring method and surface shape measuring instrument |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3421309B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009031770A1 (en) * | 2007-09-07 | 2009-03-12 | Korea Research Institute Of Standards And Science | Shape measurement apparatus and method |
| CN102305588A (en) * | 2011-07-18 | 2012-01-04 | 苏州天准精密技术有限公司 | Dual-laser combined image measurement system |
| JP2014071432A (en) * | 2012-10-02 | 2014-04-21 | Astro Design Inc | Laser scanning microscope device |
| CN107764203A (en) * | 2017-10-27 | 2018-03-06 | 北京理工大学 | Dual wavelength phase shift interference non-spherical measuring method and device based on part penalty method |
-
2000
- 2000-09-01 JP JP2000264938A patent/JP3421309B2/en not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009031770A1 (en) * | 2007-09-07 | 2009-03-12 | Korea Research Institute Of Standards And Science | Shape measurement apparatus and method |
| KR100925783B1 (en) * | 2007-09-07 | 2009-11-11 | 한국표준과학연구원 | Shape measuring device and method |
| US8279448B2 (en) | 2007-09-07 | 2012-10-02 | Korea Research Institute Of Standards And Science | Shape measurement apparatus and method |
| CN102305588A (en) * | 2011-07-18 | 2012-01-04 | 苏州天准精密技术有限公司 | Dual-laser combined image measurement system |
| JP2014071432A (en) * | 2012-10-02 | 2014-04-21 | Astro Design Inc | Laser scanning microscope device |
| CN107764203A (en) * | 2017-10-27 | 2018-03-06 | 北京理工大学 | Dual wavelength phase shift interference non-spherical measuring method and device based on part penalty method |
| CN107764203B (en) * | 2017-10-27 | 2019-08-23 | 北京理工大学 | Dual wavelength phase shift interference non-spherical measuring method and device based on part penalty method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3421309B2 (en) | 2003-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8064066B2 (en) | Method and apparatus for measuring displacement of a sample to be inspected using an interference light | |
| JP3881125B2 (en) | Level difference measuring apparatus and etching monitor apparatus and etching method using the level difference measuring apparatus | |
| JP2003279309A (en) | Laser apparatus and method for measuring length | |
| US4842408A (en) | Phase shift measuring apparatus utilizing optical meterodyne techniques | |
| EP0458354B1 (en) | A compact reticle/wafer alignment system | |
| CN1176394C (en) | confocal microscope | |
| JP5348224B2 (en) | Displacement measuring method and apparatus | |
| JP3421309B2 (en) | Surface shape measuring method and surface shape measuring instrument | |
| CN107036527B (en) | Optical system and method for synchronously measuring absolute addressing distance and deflection angle | |
| JP3282790B2 (en) | Defect inspection system for phase shift mask | |
| JP2002148025A (en) | 3D shape measuring device | |
| JP3184913B2 (en) | Surface shape measuring method and surface shape measuring instrument | |
| JP3184914B2 (en) | Surface shape measuring method and surface shape measuring instrument | |
| JPS63229309A (en) | Depth measurement method and device for fine patterns | |
| JP2002071326A (en) | Surface shape measuring method and surface shape measuring instrument | |
| JP5093220B2 (en) | Displacement measuring method and apparatus | |
| JP2886755B2 (en) | Microstructure measuring device | |
| JPH10274513A (en) | Surface shape measuring method and surface shape measuring instrument | |
| JP2000304518A (en) | Surface shape measuring method and surface shape measuring instrument | |
| JPH09138110A (en) | Positioning method and apparatus using diffraction grating | |
| JPH08159723A (en) | Surface shape measuring method and surface shape measuring instrument | |
| JP2564799Y2 (en) | 3D shape measuring device | |
| JPH11325848A (en) | Aspherical shape measuring device | |
| KR0178885B1 (en) | Semiconductor film forming method and apparatus | |
| JPH0629688B2 (en) | Method and apparatus for determining line centers in microdevices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |