JP2002075801A - Electric double layer capacitor - Google Patents
Electric double layer capacitorInfo
- Publication number
- JP2002075801A JP2002075801A JP2000262986A JP2000262986A JP2002075801A JP 2002075801 A JP2002075801 A JP 2002075801A JP 2000262986 A JP2000262986 A JP 2000262986A JP 2000262986 A JP2000262986 A JP 2000262986A JP 2002075801 A JP2002075801 A JP 2002075801A
- Authority
- JP
- Japan
- Prior art keywords
- electric double
- electrode
- layer capacitor
- double layer
- polarizable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気二重層キャパ
シタに関し、静電容量が大きな電気二重層キャパシタに
関する。The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor having a large capacitance.
【0002】[0002]
【従来の技術】電気二重層キャパシタは、多孔質セパレ
ータを介して一対の分極性電極を設け、電解質溶液中に
おいて分極性電極の表面に形成される電気二重層の静電
容量を利用したものであり、一般のキャパシタに比して
極めて大きな静電容量を有するものが得られることを特
徴としており、電子機器のバックアップ用の用途から電
力貯蔵用の用途まで幅広い利用が期待されている。2. Description of the Related Art An electric double layer capacitor is provided with a pair of polarizable electrodes via a porous separator and utilizes the capacitance of an electric double layer formed on the surface of the polarizable electrode in an electrolyte solution. There is a feature that a capacitor having an extremely large capacitance as compared with a general capacitor is obtained, and wide use is expected from a backup use of an electronic device to a power storage use.
【0003】電気二重層キャパシタに用いられる分極性
電極は、電解質溶液に安定であり、比表面積が大きく、
静電容量の大きな電気二重層の形成に有利な活性炭が一
般に用いられている。分極性電極は電極形状の焼結体を
用いたもの、粒状、繊維状等の活性炭を、導電性物質お
よび結着剤とともに混練したスラリーをシート状の電極
形状に成形したもの、集電体となるアルミニウム箔等の
導電体上にスラリーを各種の塗布方法によって塗布した
塗布型電極が用いられている。A polarizable electrode used for an electric double layer capacitor is stable in an electrolyte solution, has a large specific surface area,
Activated carbon, which is advantageous for forming an electric double layer having a large capacitance, is generally used. The polarizable electrode is one using a sintered body in the form of an electrode, granular or fibrous activated carbon, and a slurry formed by kneading a conductive material and a binder into a sheet-like electrode, and a current collector. An application type electrode in which a slurry is applied on a conductor such as an aluminum foil by various application methods is used.
【0004】電力貯蔵、車両用の動力源等の大量の電気
エネルギーを貯蔵する用途に用いられる電気二重層キャ
パシタにおいては、水溶液系の電解液を用いたものに比
べて動作電圧を高くすることが可能な非水溶媒系の電解
液を用いたものがエネルギー密度の面では優れたものと
考えられている。電気二重層キャパシタに要求される特
性には、容積当たりのエネルギー密度に関係する単位容
積当たりの静電容量、応答速度に影響する内部抵抗、充
放電回数等の使用寿命等の各種のものがあり、いずれの
特性の改良も重要であるが、特に充放電サイクルの繰り
返し寿命は大量の電気エネルギーの充放電を繰り返し行
う用途においては極めて重要である。In an electric double layer capacitor used for storing a large amount of electric energy, such as electric power storage and a power source for a vehicle, the operating voltage is required to be higher than that using an aqueous electrolytic solution. It is considered that those using a possible non-aqueous solvent-based electrolyte are excellent in terms of energy density. There are various characteristics required for electric double layer capacitors, such as the capacitance per unit volume related to the energy density per volume, the internal resistance that affects the response speed, and the service life such as the number of times of charging and discharging. It is important to improve any of these characteristics, but the repetition life of the charge / discharge cycle is extremely important especially in applications where a large amount of electric energy is repeatedly charged and discharged.
【0005】特性の劣化する要因には各種のものがあ
り、製造時の品質の管理、あるいは充放電時の管理等に
よって対処することが可能な事項もあるが、電気二重層
キャパシタの特性と結びついたものについてはその対処
が困難なものもあった。例えば、電気二重層キャパシタ
が、印加される電圧によって劣化する現象は、使用する
電解液の選択等によってある程度は対処可能であるが、
電気二重層キャパシタの作動電圧をできる限り高くして
充放電に利用可能な電気容量を大きくするという要求も
あり困難であった。有機電解液を用いた電気二重層キャ
パシタにおいて、電気二重層キャパシタの劣化について
検討したところ、特に負極側の電極が正極側の電極に比
べて早期に劣化することが明かとなった。There are various factors that cause deterioration of characteristics, and there are items that can be dealt with by controlling quality during manufacturing or controlling during charging and discharging. Some of them were difficult to deal with. For example, the phenomenon that the electric double layer capacitor is degraded by the applied voltage can be dealt with to some extent by selecting the electrolytic solution to be used.
There has been a demand to increase the operating voltage of the electric double layer capacitor as much as possible to increase the electric capacity available for charging and discharging, which has been difficult. A study of the deterioration of the electric double layer capacitor using the organic electrolyte revealed that the electrode on the negative electrode side deteriorated earlier than the electrode on the positive electrode side in particular.
【0006】[0006]
【発明が解決しようとする課題】本発明は、電気二重層
キャパシタにおいて、電気二重層キャパシタの劣化を防
止することを課題とするものであり、特に非水系電解液
を用いた電気二重層キャパシタの劣化を防止することを
課題とするものである。SUMMARY OF THE INVENTION An object of the present invention is to prevent an electric double layer capacitor from deteriorating in an electric double layer capacitor, and particularly to an electric double layer capacitor using a non-aqueous electrolyte. It is an object to prevent deterioration.
【0007】[0007]
【課題を解決するための手段】本発明の課題は、分極性
電極をセパレータを介して対向して配置した電気二重層
キャパシタにおいて、一方の分極性電極の内部抵抗が他
方の分極性電極の内部抵抗の0.5倍ないし1.5倍の
範囲内にある電気二重層キャパシタによって解決するこ
とができる。また、分極性電極の内部抵抗が導電性の多
孔性物質の細孔径分布、分極性電極の密度の少なくとも
いずれかの調整によって行ったものである電気二重キャ
パシタである。SUMMARY OF THE INVENTION An object of the present invention is to provide an electric double-layer capacitor in which polarizable electrodes are arranged to face each other with a separator interposed therebetween, so that the internal resistance of one polarizable electrode is equal to the internal resistance of the other polarizable electrode. The problem can be solved by an electric double layer capacitor in the range of 0.5 to 1.5 times the resistance. Further, the electric double capacitor has an internal resistance of the polarizable electrode which is adjusted by adjusting at least one of a pore size distribution of the conductive porous substance and a density of the polarizable electrode.
【0008】[0008]
【発明の実施の形態】本発明は、非水系電解液を用いた
電気二重層キャパシタの劣化は、正極側の電極よりも負
極側の電極の方が早く劣化することが主要な原因であ
り、負極側の電極に印加される電圧が正極側に比べて大
きなことに起因することを見いだしたものである。その
理由は定かではないが、電気二重層キャパシタにおいて
非水系溶媒として用いられている、炭酸プロピレンある
いはスルホラン系溶媒等に、ホウフッ化テトラアルキル
アンモニウム塩を溶解させた電解液は、電解液中におい
ては、ホウフッ化物が溶媒和したイオンと、テトラアル
キルアンモニウムの溶媒和したイオンとが存在するもの
と考えられる。その結果、電圧を印加した場合には、一
方の電極には、主としてホウフッ化物が溶媒和したイオ
ンが存在し、他方の電極にはテトラアルキルアンモニウ
ムが溶媒和したイオンが存在することとなる。BEST MODE FOR CARRYING OUT THE INVENTION The main cause of the present invention is that the deterioration of an electric double layer capacitor using a non-aqueous electrolyte is mainly caused by deterioration of a negative electrode side faster than a positive electrode side electrode. It has been found that the voltage applied to the negative electrode is higher than that of the positive electrode. Although the reason is not clear, the electrolytic solution obtained by dissolving a tetraalkylammonium borofluoride in propylene carbonate or a sulfolane-based solvent, which is used as a non-aqueous solvent in an electric double layer capacitor, is not used in the electrolytic solution. It is considered that there exist ions solvated with borofluoride and ions solvated with tetraalkylammonium. As a result, when a voltage is applied, one electrode mainly contains ions solvated with borofluoride, and the other electrode contains ions solvated with tetraalkylammonium.
【0009】分極性電極分極性電極を構成する多孔性炭
素中の細孔径およびその充填密度は、それぞれのイオン
の大きさが相違するために、正極と負極は異なる挙動を
示すものと考えられる。そして、テトラアルキルアンモ
ニウムが溶媒和したイオンが主として存在する分極性電
極である負極の電圧は、正極に加わる電圧に比べて高く
なり、印加される電圧が大きな負極側が早期に劣化する
こととなる。一方の電極の劣化は電気二重層キャパシタ
自体の劣化を意味するので、電気二重層キャパシタが早
期に劣化することとなる。Polarizable electrode It is considered that the positive electrode and the negative electrode behave differently in the pore diameter and the packing density in the porous carbon constituting the polarizable electrode because the size of each ion is different. The voltage of the negative electrode, which is a polarizable electrode mainly containing ions solvated with tetraalkylammonium, is higher than the voltage applied to the positive electrode, and the negative electrode to which the applied voltage is large deteriorates early. Since deterioration of one electrode means deterioration of the electric double layer capacitor itself, the electric double layer capacitor deteriorates early.
【0010】そこで、本発明はそれぞれの分極性電極の
内部抵抗をほぼ等しくすることによって、分極性電極に
印加される電圧を同等の値とし、一方の分極性電極が早
期に劣化することを防止するものである。正極、負極の
内部抵抗は等しくすることが好ましいが、一方の値が他
方の値の1.5倍の範囲にあれば本発明の目的を達する
ことができる。Accordingly, the present invention makes the voltages applied to the polarizable electrodes equal to each other by making the internal resistances of the respective polarizable electrodes substantially equal, thereby preventing one of the polarizable electrodes from being deteriorated early. Is what you do. It is preferable that the internal resistances of the positive electrode and the negative electrode are equal, but the object of the present invention can be achieved if one value is 1.5 times the other value.
【0011】分極性電極の内部抵抗の調整は、各種の手
段によって行うことが可能であり、正極側電極と負極側
電極のそれぞれに異なる特性の材料を用いることによっ
て実現しても良いが、両電極ともに同一の材料を用い、
分極性電極を製造する工程において内部抵抗が異なる分
極性電極を作製しても良い。すなわち、分極性電極の内
部抵抗に影響を及ぼす要因には種々のものがあるが、分
極性電極の内部を移動するイオンの移動度により影響を
受けるために分極性電極の内部に形成されて電解液が進
入する細孔の大小の調整によって変化させることができ
る。The internal resistance of the polarizable electrode can be adjusted by various means, and may be realized by using materials having different characteristics for the positive electrode and the negative electrode. Use the same material for both electrodes,
A polarizable electrode having a different internal resistance may be manufactured in the process of manufacturing the polarizable electrode. In other words, there are various factors that affect the internal resistance of the polarizable electrode. However, since there are various factors that affect the mobility of ions moving inside the polarizable electrode, they are formed inside the polarizable electrode and electrolyzed. It can be changed by adjusting the size of the pores into which the liquid enters.
【0012】具体的には、同一の特性の多孔性材料を用
いて、多孔性材料と結着剤からなる分極性電極の圧縮の
程度の変化による分極性電極の密度の調整によって内部
抵抗を変化させることができる。すなわち、相対的に大
きさが大きなカチオンの移動度による影響を受ける負極
の密度を小さくして、分極性電極内の空隙を大きくし、
また相対的な大きさが小さなアニオンの移動度による影
響を受ける正極の密度を大きくして分極性電極内の空隙
を小さくすることによって、負極側および正極の内部抵
抗を同等の値とすることが可能となる。また、空隙の微
細化は、内部抵抗への影響のみではなく、静電容量へも
影響を与えるので、圧縮により内部抵抗を保持した状態
でみかけの静電容量を増加させることも可能となる。More specifically, the internal resistance is changed by adjusting the density of the polarizable electrode by changing the degree of compression of the polarizable electrode composed of the porous material and the binder using porous materials having the same characteristics. Can be done. That is, the density of the negative electrode, which is affected by the mobility of the cation having a relatively large size, is reduced, and the voids in the polarizable electrode are increased,
In addition, by increasing the density of the positive electrode, which is affected by the mobility of the anion whose relative size is small, and reducing the voids in the polarizable electrode, the internal resistance of the negative electrode and the internal resistance of the positive electrode can be made equal. It becomes possible. Further, since the miniaturization of the air gap affects not only the internal resistance but also the capacitance, it is possible to increase the apparent capacitance while maintaining the internal resistance by compression.
【0013】本発明の電気二重層キャパシタの分極性電
極は、活性炭粒子をカーボンブラック等の導電性物質、
結着剤等とともに混練した混練物から分極性電極を加圧
成形する際に、成形圧力を変えることによって成形して
製造したものでも、あるいはアルミニウム等の集電体上
に混練物をドクターブレード等によって塗布した後に、
加圧し圧縮することによって製造したものであっても良
い。[0013] The polarizable electrode of the electric double layer capacitor of the present invention is formed by activating activated carbon particles with a conductive substance such as carbon black.
When pressure-molding a polarizable electrode from a kneaded material kneaded with a binder or the like, it may be manufactured by molding by changing the molding pressure, or a kneaded material such as a doctor blade may be formed on a current collector such as aluminum. After applying by
It may be manufactured by pressurizing and compressing.
【0014】活性炭粒子としては、椰子殻、フェノール
樹脂、石油ピッチの炭化物を水蒸気、水酸化物等で表面
積を増大させる賦活処理した活性炭を、粒子径2μmか
ら30μm、好ましくは10μm前後の大きさに整えた
粒子を用いることが好ましい。加圧成形によって分極性
電極を製造する場合には、結着剤としては、ポリテトラ
フルオロエチレン等を用いることができる。また、集電
体上に塗布した後に加圧成形する場合には、ポリテトラ
フルオロエチレンや、ブチルゴム、エチレンプロピレン
ジエンゴム、ブタジエンゴム、ニトリルゴムから選ばれ
る少なくとも一種のエラストマーを挙げることができ
る。これらのなかでも、ブチルゴムが好ましい。結着剤
は、活性炭粒子100重量部に対して3重量部〜20重
量部を用いることが好ましとが好ましい。3重量部より
も少ない場合には充分な結着が困難であり、また20重
量部よりも多い場合には、抵抗および容量にわたり悪影
響を示す。As the activated carbon particles, activated carbon obtained by activating a coconut shell, phenol resin, or charcoal of petroleum pitch to increase the surface area with water vapor, hydroxide, or the like is reduced to a particle diameter of 2 μm to 30 μm, preferably about 10 μm. It is preferable to use ordered particles. When a polarizable electrode is manufactured by pressure molding, polytetrafluoroethylene or the like can be used as a binder. In the case of pressure molding after coating on the current collector, at least one kind of elastomer selected from polytetrafluoroethylene, butyl rubber, ethylene propylene diene rubber, butadiene rubber, and nitrile rubber can be used. Of these, butyl rubber is preferred. The binder is preferably used in an amount of 3 to 20 parts by weight based on 100 parts by weight of the activated carbon particles. If the amount is less than 3 parts by weight, it is difficult to achieve sufficient binding, and if the amount is more than 20 parts by weight, adverse effects are exerted on resistance and capacity.
【0015】また、混練物を塗布して分極性電極を作製
する場合には、酸化亜鉛、酸化マグネシウム、酸化アル
ミニウム、酸化ケイ素、酸化バナジウム等の電気二重層
キャパシタの使用電位範囲において安定な金属酸化物粒
子を添加しても良く、これによって、活性炭粒子が完全
に結着剤によって覆われることによる電気的特性の低下
を防止することができる。このような目的で使用する金
属酸化物粒子は、結着剤100重量部に対して、1〜8
重量部とすることが好ましく、1〜5重量部とすること
がより好ましく、1〜3重量部とすることが更に好まし
い。また、金属酸化物粒子は、光散乱法による測定で平
均粒子径0.1μmないし5μmであることが好まし
く、0.5μm〜1μmであることがより好ましい。When a kneaded material is applied to produce a polarizable electrode, a metal oxide such as zinc oxide, magnesium oxide, aluminum oxide, silicon oxide, vanadium oxide, etc., which is stable in the operating potential range of an electric double layer capacitor. Substance particles may be added, whereby it is possible to prevent a decrease in electrical characteristics due to the activated carbon particles being completely covered by the binder. The metal oxide particles used for such a purpose are 1 to 8 parts by weight based on 100 parts by weight of the binder.
It is preferably set to 1 part by weight, more preferably 1 to 5 parts by weight, further preferably 1 to 3 parts by weight. Further, the metal oxide particles preferably have an average particle diameter of 0.1 μm to 5 μm, more preferably 0.5 μm to 1 μm, as measured by a light scattering method.
【0016】また、導電性粒子としては、カーボンブラ
ック、アセチレンブラック、黒鉛を挙げることができ、
平均粒子径0.05μm〜1.0μmであることが好ま
しく、0.1μm〜0.5μmであることがより好まし
い。また、結着剤にはエラストマーを架橋する架橋剤を
加えても良い。架橋剤を加えることによって、経時変化
が小さな電気二重層キャパシタを得ることができる。架
橋剤としては、イオウ、ジクミルパーオキサイド等の過
酸化物、テトラアルキルチウラムジスルフィド、カルバ
ミン亜鉛誘導体等のゴム用架橋剤を挙げることができ、
これらに架橋助剤を加えても良い。架橋剤は、結着剤1
00重量部に対して、0.5重量部〜8重量部を用いる
ことが好ましく、1重量部〜5重量部を用いることがよ
り好ましく、1重量部〜3重量部を用いることが更に好
ましい。また、エラストマーを用いた場合には、エラス
トマーを溶解する物質であり、使用材料に対して悪影響
を及ぼさない有機溶剤を用いることが好ましく、トルエ
ン、キシレン、テトラヒドロフラン、シクロヘキサン、
ノルマルヘキサン等を用いることが好ましい。また、混
練は、ニーダー、ミキサー等によって行うことができ
る。The conductive particles include carbon black, acetylene black and graphite.
The average particle size is preferably from 0.05 μm to 1.0 μm, more preferably from 0.1 μm to 0.5 μm. Further, a crosslinking agent for crosslinking the elastomer may be added to the binder. By adding a cross-linking agent, an electric double layer capacitor with a small change over time can be obtained. Examples of the crosslinking agent include sulfur, peroxides such as dicumyl peroxide, tetraalkylthiuram disulfide, rubber crosslinking agents such as carbamine zinc derivatives,
A crosslinking aid may be added to these. The crosslinking agent is a binder 1
Preferably 0.5 to 8 parts by weight, more preferably 1 to 5 parts by weight, and even more preferably 1 to 3 parts by weight, per 100 parts by weight. When an elastomer is used, it is preferable to use an organic solvent that is a substance that dissolves the elastomer and does not adversely affect the materials used.Toluene, xylene, tetrahydrofuran, cyclohexane,
It is preferable to use normal hexane or the like. The kneading can be performed by a kneader, a mixer or the like.
【0017】集電体としては、アルミニウム、ステンレ
ス、ニッケル、チタン、導電性エラストマー等からなる
薄板状あるいは網状の基体を用いることができる。ま
た、これらの基体の表面には、エッチング等によって微
細な凹凸を形成して塗布層との密着性を高めても良く、
表面にコロイダルカーボン等を塗布したものを用いてい
も良い。また、本発明の電気二重層キャパシタにおいて
は、テトラエチルアンモニウムテトラフルオロボレー
ト、トリメチルアンモニウムテトラフルオロボレートの
プロピレンカーボネート溶液等を電解液とすることがで
きる。As the current collector, a thin or net-like base made of aluminum, stainless steel, nickel, titanium, a conductive elastomer or the like can be used. Further, on the surface of these substrates, fine irregularities may be formed by etching or the like to increase the adhesion with the coating layer,
What applied the colloidal carbon etc. to the surface may be used. Further, in the electric double layer capacitor of the present invention, a propylene carbonate solution of tetraethylammonium tetrafluoroborate, trimethylammonium tetrafluoroborate or the like can be used as the electrolyte.
【0018】[0018]
【実施例】以下に実施例を示し本発明を説明する。 実施例1および比較例1 BET法で測定した平均細孔径が1.6nmの活性炭を
82mg、カーボンブラック9mgとともにポリテトラ
フルオロエチレン粉末9gを混含して直径20mmの円
盤状に圧粉成形し、その際に成形圧力を調整して密度
0.55g/mlのものを得た。これを真空デシケータ
中で1.33Pa(10-2Torr)に減圧し110℃
において4時間乾燥し分極性電極Aを得た。また分極性
電極Aと同様にして成形圧力を変化させて密度0.74
g/mlの分極性電極Bを得た。各電極を表1に示すよ
うように組み合わせて、ガラス繊維製セパレータを介し
て積層するとともに、図1に、実施例の電気二重層キャ
パシタを示すように、負極1と正極2をセパレータ3を
介して対向させるとともに、負極と同じ材料からなる電
極を参照電極4として正極1と負極2の上方に配置し、
アルミニウムフィルムと合成樹脂フィルムを積層した可
撓性フィルムからなる容器5内に配置した後に、内部を
減圧した後に、1.0Mのテトラエチルアンモニウムテ
トラフルオレートのプロピレンカーボネート溶液を充填
した後に、封口して電気二重層キャパシタ1ないし4を
作製し、5mAの定電流で2.5Vまで充電した後に、
15分間保持した後に5mAの定電流で放電する充放電
試験を3サイクル行い、放電開始時の電流と参照電極に
対して測定した正極および負極の電圧から正極および負
極の内部抵抗を求め表1に示した。The present invention will be described below with reference to examples. Example 1 and Comparative Example 1 82 mg of activated carbon having an average pore diameter of 1.6 nm measured by the BET method, 9 mg of carbon black, and 9 g of polytetrafluoroethylene powder were mixed together and compacted into a disk shape having a diameter of 20 mm. At that time, the molding pressure was adjusted to obtain one having a density of 0.55 g / ml. The pressure was reduced to 1.33 Pa (10 -2 Torr) in a vacuum desiccator, and the pressure was reduced to 110 ° C.
For 4 hours to obtain a polarizable electrode A. The molding pressure was changed in the same manner as for the polarizable electrode A to change the density to 0.74.
g / ml of the polarizable electrode B was obtained. Each electrode was combined as shown in Table 1 and laminated via a glass fiber separator, and as shown in FIG. 1, the negative electrode 1 and the positive electrode 2 were placed via a separator 3 as shown in the electric double layer capacitor of the embodiment. And an electrode made of the same material as the negative electrode is disposed as a reference electrode 4 above the positive electrode 1 and the negative electrode 2,
After being placed in a container 5 made of a flexible film in which an aluminum film and a synthetic resin film are laminated, the inside is decompressed, and then filled with a 1.0 M tetraethylammonium tetrafluorate propylene carbonate solution, and then sealed. After manufacturing the electric double layer capacitors 1 to 4 and charging them to 2.5 V with a constant current of 5 mA,
After holding for 15 minutes, a charge / discharge test of discharging at a constant current of 5 mA was performed for 3 cycles, and the internal resistance of the positive electrode and the negative electrode was determined from the current at the start of the discharge and the voltage of the positive electrode and the negative electrode measured with respect to the reference electrode. Indicated.
【0019】また、充放電試験から充放電エネルギーを
算出し、以下の式から静電容量Cを求め、その結果を表
1に示す。 E=0.5CV2 また、第1回目の充放電サイクルで得られた容量に対す
る5000サイクル目の容量の減少分を容量劣化率
(%)として表1に示す。The charge / discharge energy was calculated from the charge / discharge test, and the capacitance C was obtained from the following equation. The results are shown in Table 1. E = 0.5 CV 2 Also, Table 1 shows the capacity decrease rate (%) of the capacity decrease at the 5000th cycle with respect to the capacity obtained in the first charge / discharge cycle.
【0020】実施例2および比較例2 密閉式のミキサーに、ブチルゴム(日本ブチル製 II
R065)5重量部とトルエン1000重量部を加えて
80℃に加温してブチルゴムを溶解した。 次いで、活
性炭(大阪ガスケミカル製M25 粒径10μm)10
0重量部、カーボンブラック(電気化学工業製 デンカ
ブラック 平均粒径0.53μm)20重量部を加え
て、24時間撹拌して完全に分散した。得られた混練物
を厚さ30μmのアルミニウム箔上に塗布し乾燥した後
に、カレンダー処理し、膜厚150μmの分極性電極を
作製し、圧延する際の圧力を調整することによって密度
0.55g/mlの分極性電極Cと密度0.74g/m
lの分極性電極Dを得た。これらの電極を表1に示すよ
うに組み合わせて電気二重層キャパシタ5ないし8を作
製し、実施例1と同様にして、充放電試験を行い、負極
内部抵抗、正極内部抵抗、静電容量、容量劣化率を測定
した。Example 2 and Comparative Example 2 A butyl rubber (Nihon Butyl II
R065) and 1,000 parts by weight of toluene were added, and the mixture was heated to 80 ° C. to dissolve the butyl rubber. Then, activated carbon (M25 manufactured by Osaka Gas Chemicals, particle size: 10 μm) 10
0 parts by weight and 20 parts by weight of carbon black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 0.53 μm) were added, and the mixture was stirred for 24 hours to completely disperse. The obtained kneaded material was applied on a 30-μm-thick aluminum foil, dried, calendered to produce a polarizable electrode having a thickness of 150 μm, and the density was adjusted to 0.55 g / ml of polarizable electrode C and a density of 0.74 g / m
Thus, 1 polarizable electrode D was obtained. These electrodes were combined as shown in Table 1 to produce electric double layer capacitors 5 to 8, and subjected to a charge / discharge test in the same manner as in Example 1 to determine the internal resistance of the negative electrode, the internal resistance of the positive electrode, the capacitance, and the capacitance. The deterioration rate was measured.
【0021】[0021]
【表1】 電極の種類 内部抵抗(Ω) 単位静電 内部抵抗 容量劣化 負極 正極 負極 正極 容量(F/ml) (ΩF) 率(%) キャハ゜シタ 1 A B 0.454 0.473 21.8 20.2 6.2キャハ゜シタ 2 A A 0.788 0.525 16.0 21.0 9.8キャハ゜シタ 3 B B 1.114 0.478 21.8 34.7 12.6キャハ゜シタ 4 B A 1.453 0.363 19.0 34.5 13.9キャハ゜シタ 5 C D 0.577 0.601 17.7 20.8 6.8キャハ゜シタ 6 C C 1.004 0.669 12.8 21.4 10.3キャハ゜シタ 7 D D 1.372 0.588 17.9 35.0 13.5キャハ゜シタ 8 D C 1.857 0.464 15.0 34.8 14.1[Table 1] Electrode type Internal resistance (Ω) Unit electrostatic capacity Internal resistance Capacity degradation negative electrode Positive electrode Negative electrode Positive capacity (F / ml) (ΩF) Rate (%) Capacitor 1 AB 0.454 0.473 21.8 20.2 6.2 Capacitor 2 A A 0.788 0.525 16.0 21.0 9.8 Carrier 3 BB 1.114 0.478 21.8 34.7 12.6 Carrier 4 BA 1.453 0.363 19.0 34.5 13.9 Carrier 5 C D 0.577 0.601 17.7 20.8 6.8 Carrier 6 C C 1.004 0.669 12.8 21.4 10.3 Carrier 7 D 13.5 5.0 8 DC 1.857 0.464 15.0 34.8 14.1
【0022】[0022]
【発明の効果】本発明の電気二重層キャパシタは、正極
電極および負極電極のそれぞれの内部抵抗を同等の大き
さとしたので、正極電極および負極電極に加わる電圧を
ほぼ等しくすることができるので、容量密度を向上させ
ると共に、一方の電極が早期に劣化することがなくなり
電気的特性が優れ、充放電の繰り返しによる劣化率が小
さい電気二重層キャパシタを得ることができる。According to the electric double layer capacitor of the present invention, the internal resistances of the positive electrode and the negative electrode are made equal to each other, so that the voltages applied to the positive electrode and the negative electrode can be made substantially equal. An electric double layer capacitor can be obtained in which the density is improved, one of the electrodes is not deteriorated at an early stage, the electric characteristics are excellent, and the rate of deterioration due to repeated charging and discharging is small.
【図1】図1は、本発明の実施例の電気二重層キャパシ
タを図である。FIG. 1 is a diagram showing an electric double layer capacitor according to an embodiment of the present invention.
1…負極、2…正極、3…セパレータ、4…参照電極、
5…容器DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Reference electrode,
5… Container
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 仁 神奈川県横浜市金沢区福浦1丁目1番地の 1 株式会社パワーシステム内 (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田2−19−6 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Nakamura 1-1, Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture 1 Inside Power System Co., Ltd. (72) Inventor Didio Okamura 2-19 Minamiota, Minami-ku, Yokohama-shi, Kanagawa -6
Claims (2)
て配置した電気二重層キャパシタにおいて、一方の分極
性電極の内部抵抗が他方の分極性電極の内部抵抗の0.
5倍ないし1.5倍の範囲内にあることを特徴とする電
気二重層キャパシタ。In an electric double-layer capacitor in which polarizable electrodes are arranged to face each other with a separator interposed therebetween, the internal resistance of one polarizable electrode is equal to 0.1% of the internal resistance of the other polarizable electrode.
An electric double layer capacitor characterized by being in the range of 5 to 1.5 times.
物質の細孔径分布、分極性電極の密度の少なくともいず
れかの調整によって行ったものであることを特徴とする
請求項1記載の電気二重キャパシタ。2. The method according to claim 1, wherein the internal resistance of the polarizable electrode is adjusted by adjusting at least one of the pore size distribution of the conductive porous substance and the density of the polarizable electrode. Electric double capacitor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000262986A JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000262986A JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002075801A true JP2002075801A (en) | 2002-03-15 |
| JP3900810B2 JP3900810B2 (en) | 2007-04-04 |
Family
ID=18750584
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000262986A Expired - Lifetime JP3900810B2 (en) | 2000-08-31 | 2000-08-31 | Electric double layer capacitor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3900810B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008181493A (en) * | 2006-12-27 | 2008-08-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
2000
- 2000-08-31 JP JP2000262986A patent/JP3900810B2/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008181493A (en) * | 2006-12-27 | 2008-08-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
| US8517275B2 (en) | 2006-12-27 | 2013-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| US9965713B2 (en) | 2006-12-27 | 2018-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| US10380472B2 (en) | 2006-12-27 | 2019-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3900810B2 (en) | 2007-04-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3834746B2 (en) | Porous rubber electrode binder, porous rubber electrode using the same, and porous rubber electrode substrate | |
| CN1866432B (en) | Electrochemical capacitor electrode manufacturing method | |
| US6282081B1 (en) | Electrode for capacitor, method for producing the same and capacitor | |
| KR101289521B1 (en) | Production method for electric double layer capacitor | |
| JP5015146B2 (en) | ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE | |
| JP2004520703A (en) | Electrochemical double layer capacitor with carbon powder electrode | |
| CN101194328A (en) | Electrode for electric double layer capacitor and electric double layer capacitor | |
| KR20160040873A (en) | A method of manufacturing a carbon electrode, an energy storage device including a carbon electrode and carbon electrode produced by this | |
| WO2005064631A1 (en) | Method for producing electrode for capacitor | |
| JP2016534565A (en) | Carbon-based electrode containing molecular sieve | |
| JPH1167608A (en) | Electric double layer capacitor | |
| JP2002231585A (en) | Electric double-layered capacitor | |
| KR20220070027A (en) | Supercapacitors with biasing electrodes | |
| KR102849030B1 (en) | method for manufacturing electrode of supercapacitor | |
| JP2018092978A (en) | Electric double layer capacitor | |
| JP3900810B2 (en) | Electric double layer capacitor | |
| JP2001217162A (en) | Electric double layer capacitor | |
| JP3971441B2 (en) | Electrode member for non-aqueous electronic component having two undercoat layers | |
| JP2007335443A (en) | Electric double layer capacitor coated electrode slurry, electric double layer capacitor sheet and electric double layer capacitor | |
| WO2005064630A1 (en) | Method for producing electrode for capacitor | |
| JP3981697B1 (en) | Method for producing electrode mixture for polarizable electrode | |
| JP3679718B2 (en) | Electrode body manufacturing method | |
| KR101835596B1 (en) | High capacity energy storage capacitor | |
| JPH0974052A (en) | Method of manufacturing polarizable electrodes | |
| JP2000294459A (en) | Electric double layer capacitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041105 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041217 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061117 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061128 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061222 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061225 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3900810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |