[go: up one dir, main page]

JP2002076396A - Multi-junction thin-film solar cell and method of manufacturing the same - Google Patents

Multi-junction thin-film solar cell and method of manufacturing the same

Info

Publication number
JP2002076396A
JP2002076396A JP2000258511A JP2000258511A JP2002076396A JP 2002076396 A JP2002076396 A JP 2002076396A JP 2000258511 A JP2000258511 A JP 2000258511A JP 2000258511 A JP2000258511 A JP 2000258511A JP 2002076396 A JP2002076396 A JP 2002076396A
Authority
JP
Japan
Prior art keywords
layer
refractive index
cell
solar cell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000258511A
Other languages
Japanese (ja)
Other versions
JP4110718B2 (en
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2000258511A priority Critical patent/JP4110718B2/en
Publication of JP2002076396A publication Critical patent/JP2002076396A/en
Application granted granted Critical
Publication of JP4110718B2 publication Critical patent/JP4110718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【課題】複数のpin型セルを積層した多接合型薄膜太
陽電池において、変換効率が高く、しかも製造の容易な
a-Si太陽電池およびその製造方法を提供する。 【解決手段】上側セルと下側セルとの境界部に下側セル
の他の半導体層より低屈折率の半導体層、例えば、屈折
率が2.5〜3のn型の微結晶シリコン層を設ける。製
造方法としては,100℃以下の基板温度、且つ100
倍以下の水素希釈度で製膜することにより、屈折率が3
以下の微結晶シリコン層が得られる。
(57) Abstract: A multi-junction thin-film solar cell in which a plurality of pin-type cells are stacked has a high conversion efficiency and is easy to manufacture.
Provided are an a-Si solar cell and a method for manufacturing the same. A semiconductor layer having a lower refractive index than another semiconductor layer of a lower cell, for example, an n-type microcrystalline silicon layer having a refractive index of 2.5 to 3 is provided at a boundary between an upper cell and a lower cell. Provide. As a manufacturing method, a substrate temperature of 100 ° C. or less and 100 ° C.
By forming a film with a hydrogen dilution of less than 2 times, the refractive index becomes 3
The following microcrystalline silicon layer is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アモルファスシリ
コン(以下a-Siと記す)を主材料としたpin型セルを
複数積層してなる多接合型薄膜太陽電池およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-junction thin-film solar cell comprising a plurality of pin-type cells mainly composed of amorphous silicon (hereinafter referred to as a-Si) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】a-Si太陽電池は、薄膜、低温プロセス、
大面積化が容易という特徴から低コスト太陽電池の本命
として開発が進められている。しかしながら、このa-Si
太陽電池は、単結晶Siや多結晶Si等のバルク結晶型太陽
電池に比べて変換効率が低いという問題を抱えている。
これは、a-Si膜のバンドギャップが1.7〜1.8eVと
広く、その影響で分光感度を有する波長が300〜80
0nmと狭いことに起因している。
2. Description of the Related Art a-Si solar cells are made of thin films, low-temperature processes,
The development of low-cost solar cells is being promoted as a favorite because of the feature that the area can be easily increased. However, this a-Si
A solar cell has a problem that its conversion efficiency is lower than that of a bulk crystalline solar cell made of single-crystal Si, polycrystalline Si, or the like.
This is because the band gap of the a-Si film is as wide as 1.7 to 1.8 eV, and the wavelength having the spectral sensitivity is 300 to 80 due to the influence.
This is due to the narrowness of 0 nm.

【0003】この問題を解決する方法としてナローギャ
ップの下側セル(以下ボトムセルと記す)とのタンデム
セル化が提案されている。主なナローギャップ材料とし
ては、アモルファスシリコンゲルマニウム(a-SiGe)と
薄膜多結晶および薄膜微結晶があり、これらはすべてa-
Siと同様にプラズマCVD法で製膜することができる。
As a method for solving this problem, a tandem cell with a lower cell (hereinafter referred to as a bottom cell) of a narrow gap has been proposed. The main narrow gap materials are amorphous silicon germanium (a-SiGe), thin-film polycrystals and thin-film microcrystals, all of which are a-
Like Si, it can be formed by a plasma CVD method.

【0004】これらのナローギャップ材料を用いると、
上側セル(以下トップセルと記す)とボトムセルとを合
わせて20〜28mA/cm2程度の短絡電流(以下Jsc と記
す)が得られるが、トップセルはほぼその半分の10〜
14mA/cm2のJsc を受け持つことになる。しかしなが
ら、トップセルでは反射光の効果を殆ど期待できないの
で、膜厚を200〜300nmと厚くする必要があり、こ
のため、曲線因子(以下FFと記す)が低下するという特
性面の問題、および材料コストが嵩むというコスト上の
問題があった。
Using these narrow gap materials,
A short circuit current (hereinafter, referred to as Jsc) of about 20 to 28 mA / cm 2 can be obtained by combining the upper cell (hereinafter, referred to as the top cell) and the bottom cell.
Jsc of 14 mA / cm 2 will be taken over. However, since the effect of reflected light can hardly be expected in the top cell, the film thickness needs to be increased to 200 to 300 nm, which causes a problem in the characteristic aspect that the fill factor (hereinafter referred to as FF) is reduced, and a material. There is a cost problem that the cost increases.

【0005】このうち特性上の問題を解決する手段とし
て、ミラー層と称する低屈折率の金属酸化物をトップセ
ルとボトムセル間のn/p接合部に挟み、屈折率の差を
利用して故意にある程度の光をミラー層で反射させて、
トップセルの短絡電流を増加させる技術がニューシャテ
ル大のフィッシャーらによって提案された[25th IEEE
PVSC 1053 〜1056頁参照] 。
As a means for solving the problem of characteristics, a metal oxide having a low refractive index called a mirror layer is sandwiched between n / p junctions between a top cell and a bottom cell, and the difference in refractive index is used intentionally. To reflect some light on the mirror layer,
A technique to increase the short-circuit current of the top cell was proposed by Fisher et al. Of New Chatel University [25th IEEE
PVSC 1053-1056].

【0006】尚、特公平2−37116号公報に、複数
のpinセルを積層した多接合型の光起電力装置におい
てアモルファス半導体からなるpinセル間に微結晶化
半導体層を挟むことが記載されている。しかし、その微
結晶化半導体層は各セル間の逆方向整流性を排除するた
めのものであって、厚さは10nmと薄く、屈折率につい
ても考慮されておらず、また反射光に関する記述もな
い。従って、上記公報は、本発明とは目的も構成も異な
るものである。
Japanese Patent Publication No. 2-37116 discloses that a microcrystalline semiconductor layer is interposed between pin cells made of an amorphous semiconductor in a multi-junction type photovoltaic device in which a plurality of pin cells are stacked. I have. However, the microcrystallized semiconductor layer is for eliminating backward rectification between cells, and has a thickness as thin as 10 nm. No consideration is given to the refractive index. Absent. Therefore, the above publication has a different purpose and configuration from the present invention.

【0007】[0007]

【発明が解決しようとする課題】ミラー層である金属酸
化物は、スパッタリングや蒸着により形成されるため、
プラズマCVD装置に組み込むのが困難であり、2台の
製膜装置を必要とする。さらに、ボトムセル製膜とミラ
ー層製膜の間、ミラー層製膜とトップセル製膜の間で大
気に晒すことになり、不純物の取り込みやピンホールの
発生といった問題があった。
Since the metal oxide serving as the mirror layer is formed by sputtering or vapor deposition,
It is difficult to incorporate into a plasma CVD apparatus, and requires two film forming apparatuses. Furthermore, since the film is exposed to the air between the bottom cell film formation and the mirror layer film formation and between the mirror cell film formation and the top cell film formation, there are problems such as incorporation of impurities and generation of pinholes.

【0008】本発明の目的は、これらの問題を解決し、
不純物の取り込みやピンホールの発生が無く変換効率
(以下Eff と記す)の高い、しかも製造の容易なa-Si太
陽電池およびその製造方法を提供することにある。
[0008] The object of the present invention is to solve these problems,
An object of the present invention is to provide an a-Si solar cell which has high conversion efficiency (hereinafter referred to as Eff) without incorporation of impurities and generation of pinholes, and which is easy to manufacture, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記課題の解決のため本
発明は、複数のpin型セルを積層してなる多接合型薄
膜太陽電池において、上側セルと下側セルとの境界をな
す二つの層の少なくともいずれかまたはその一部が、そ
の層またはその一部より上側の半導体層と比較して屈折
率の低い低屈折率層であるものとする。
In order to solve the above-mentioned problems, the present invention provides a multi-junction thin-film solar cell comprising a plurality of pin-type cells stacked on each other, the two cells forming a boundary between an upper cell and a lower cell. At least one or a part of the layer is a low-refractive-index layer having a lower refractive index than a semiconductor layer above the layer or a part thereof.

【0010】上側pinセルの最下層またはその一部が
低屈折率であっても、下側pinセルの最上層またはそ
の一部が低屈折率であってもよい。または、上側セルと
下側セルとの境界に、上側セルの半導体層と比較して屈
折率の低い低屈折率層を有するものとしても良い。低屈
折率の半導体層を設けるとその層がミラー層と同じ役割
を果たし、光を反射させて、上側セルの短絡電流を増大
させる。しかも、他の半導体層と同じ装置で製膜できる
ので、金属酸化物のミラー層のときのように製膜装置か
ら取り出されて大気に晒されることが無くなる。
The lowermost layer or part of the upper pin cell may have a low refractive index, or the uppermost layer or part of the lower pin cell may have a low refractive index. Alternatively, a low refractive index layer having a lower refractive index than the semiconductor layer of the upper cell may be provided at the boundary between the upper cell and the lower cell. When a semiconductor layer having a low refractive index is provided, the layer plays the same role as the mirror layer, reflects light, and increases the short-circuit current of the upper cell. In addition, since the film can be formed using the same device as the other semiconductor layers, the film is not taken out of the film forming device and exposed to the air as in the case of the mirror layer made of metal oxide.

【0011】特に、低屈折率の層がn型の微結晶シリコ
ン(以下μc-Siと記す)膜であるものとする。μc-Si膜
とは、数十nmサイズの結晶グレインとa-Siの混晶であ
る。後記の実験で証されるように、n型のμc-Si層で
は、p型μc-Si層より、低屈折率の膜を実現し易い。ま
たa-Si層では、低屈折率の膜を実現できても、高比抵抗
となって、実用に適さない。
In particular, it is assumed that the low refractive index layer is an n-type microcrystalline silicon (hereinafter referred to as μc-Si) film. The μc-Si film is a mixed crystal of crystal grains of several tens of nm in size and a-Si. As evidenced by the experiments described later, an n-type μc-Si layer is easier to realize a film having a lower refractive index than a p-type μc-Si layer. Further, even if an a-Si layer can realize a film having a low refractive index, it has a high specific resistance and is not suitable for practical use.

【0012】低屈折率層の屈折率が2.5〜3の範囲に
あるものとする。シリコンの屈折率は約3.5であり、
微結晶シリコン薄膜、アモルファスシリコン薄膜の屈折
率もほぼ似た値である。従って、屈折率が3を越えたμ
c-Si層では、光を反射させる効果が少なくなる。屈折率
が2.5未満の型のμc-Si層を製膜することは実際的に
は困難である。
It is assumed that the low refractive index layer has a refractive index in the range of 2.5 to 3. The refractive index of silicon is about 3.5,
The refractive indices of the microcrystalline silicon thin film and the amorphous silicon thin film have almost similar values. Therefore, μ having a refractive index exceeding 3
In the c-Si layer, the effect of reflecting light is reduced. It is practically difficult to form a μc-Si layer having a refractive index of less than 2.5.

【0013】上側pinセルのi層の厚さを70〜20
0nmとする。後記の実験で証されるように、70nm未満
では、光吸収が不十分で短絡電流が小さく、200nmを
越える厚さでは、反射が少なくなって短絡電流が小さく
なる。上記のような多接合型薄膜太陽電池の製造方法と
しては、下側セルの最上層のp型μc-Si層上に、製膜温
度60〜110℃、水素希釈度65〜140倍のプラズ
マCVD法により、上側セルの最下層のn型μc-Si層を
製膜する。
The thickness of the i-layer of the upper pin cell is 70 to 20.
It is set to 0 nm. As evidenced by the experiments described below, if the thickness is less than 70 nm, the light absorption is insufficient and the short-circuit current is small. If the thickness exceeds 200 nm, the reflection is reduced and the short-circuit current is reduced. As a method for manufacturing a multi-junction thin-film solar cell as described above, a plasma CVD method with a film formation temperature of 60 to 110 ° C. and a hydrogen dilution degree of 65 to 140 times is formed on the uppermost p-type μc-Si layer of the lower cell. By the method, the lowermost n-type μc-Si layer of the upper cell is formed.

【0014】後記の実験で証されるように、この製膜条
件にすることによって、屈折率3以下のn型μc-Si層が
得られる。他の条件では屈折率3以下のn型μc-Si層が
得られない。
As evidenced by the experiments described later, an n-type μc-Si layer having a refractive index of 3 or less can be obtained by using these film forming conditions. Under other conditions, an n-type μc-Si layer having a refractive index of 3 or less cannot be obtained.

【0015】[0015]

【発明の実施の形態】〔実施例1〕ボトムセルにa-SiGe
セルを適用した例について述べる。図1は作成したタン
デムセルの断面構造図である。面積1cm2 のa-Si/a-SiG
e 太陽電池である。ガラス基板1上に下部電極2として
銀(Ag)薄膜が設けられている。その下部電極2上
に、a-Siのボトムn層3、a-SiGeのボトムi層4、μc-
Siのボトムp層5、μc-Siの第一トップn層6、アモル
ファス酸化シリコン(以下a-SiOと記す)の第二トップ
n層7、a-Siのトップi層8、a-SiOのトップp/i界
面層9、a-SiOのトップp層10が積層され、そのトッ
プp層10の表面に酸化インジウム錫(以下ITOと記
す)の上部電極11が設けられている。
[Embodiment 1] a-SiGe is applied to the bottom cell.
An example in which a cell is applied will be described. FIG. 1 is a cross-sectional structural view of the tandem cell created. A-Si / a-SiG with 1cm 2 area
e It is a solar cell. A silver (Ag) thin film is provided as a lower electrode 2 on a glass substrate 1. On the lower electrode 2, a bottom n layer 3 of a-Si, a bottom i layer 4 of a-SiGe, μc-
Si bottom p layer 5, μc-Si first top n layer 6, amorphous silicon oxide (hereinafter a-SiO) second top n layer 7, a-Si top i layer 8, a-SiO A top p / i interface layer 9 and an a-SiO top p layer 10 are laminated, and an upper electrode 11 of indium tin oxide (hereinafter referred to as ITO) is provided on the surface of the top p layer 10.

【0016】以下に試作セルの製造工程を説明する。基
板1として旭硝子社製のUタイプ二酸化錫(以下SnO2
記す)付きガラス基板を用いた。ガラス基板1上に金属
電極2としてスパッタリング法により厚さ100〜20
0nmの銀(Ag)薄膜を製膜した。
The manufacturing process of the prototype cell will be described below. Asahi Glass Co., Ltd. U-type tin dioxide as the substrate 1 was used (hereinafter referred to as SnO 2) with a glass substrate. A metal electrode 2 having a thickness of 100 to 20 on a glass substrate 1 by a sputtering method.
A silver (Ag) thin film of 0 nm was formed.

【0017】次にプラズマCVD法によりa-Si系膜3〜
10の製膜を行なった。まず、基板温度を130〜17
0℃として、モノシラン(以下SiH4と記す)を主ガス、
フォスフィン(以下PH3と記す)をドーピングガス、水
素(以下H2と記す)を希釈ガスとして、膜厚10〜20
nmのa-Siのボトムn層3を製膜し、続いて基板温度を2
00〜250℃として、SiH4とゲルマン(以下GeH4と記
す)を主ガス、H2を希釈ガスとして、膜厚100〜15
0nmのa-SiGeからなるボトムi層4を製膜した。ここ
で、i層4のバンドギャップは1.45eVとした。
Next, a-Si based films 3 to 3 are formed by plasma CVD.
Ten films were formed. First, the substrate temperature is set to 130 to 17
At 0 ° C., monosilane (hereinafter referred to as SiH 4 ) as the main gas,
Doping gas phosphine (hereinafter referred to as PH 3), hydrogen (hereinafter referred to as H 2) as the diluent gas, the film thickness 10-20
A bottom n layer 3 of a-Si of nm is formed, and then the substrate temperature is set to 2 nm.
When the temperature is set to 100 to 250 ° C., SiH 4 and germane (hereinafter, referred to as GeH 4 ) are used as main gases, and H 2 is used as a diluent gas.
A bottom i-layer 4 made of 0-nm a-SiGe was formed. Here, the band gap of the i-layer 4 was 1.45 eV.

【0018】次に基板温度を85℃として、SiH4を主ガ
ス、ジボラン(以下B2H6 と記す)をドーピングガス、
水素(以下H2と記す)を希釈ガスとして、膜厚10〜2
0nmのμc-Siのボトムp層5を製膜した。このときの水
素希釈度(H2/SiH4 )は200倍とし、ドーピング量
は、B2H6/SiH4 =0.1〜1% とした。μc-Siを製膜す
る際には注意が必要である。というのは製膜条件によっ
ては、厚さ10nm程度のa-Siの初期遷移層が形成され
る。このa-Siの初期遷移層は、あくまでもa-Siのp膜な
ので、存在すると吸収係数の増大やVoc の低下といった
悪影響を及ぼすことになる。従ってこのa-Siの初期遷移
層が形成されないような製膜条件としなければならな
い。このa-Si層の有無は、TEM観察により確認でき
る。その観察結果によると、初期遷移層の有無は基板温
度に大きく依存し、基板温度150℃以上では、遷移層
が形成されるが、製膜温度120℃以下であれば、初期
遷移層が存在せず、界面層からμc-Siが形成されること
がわかった。本実施例では、基板温度85℃なので、初
期遷移層は存在しない。
Next, at a substrate temperature of 85 ° C., SiH 4 is used as a main gas, diborane (hereinafter referred to as B 2 H 6 ) as a doping gas,
Hydrogen (hereinafter referred to as H 2 ) is used as a diluent gas,
A 0 nm bottom p layer 5 of μc-Si was formed. At this time, the hydrogen dilution (H 2 / SiH 4 ) was 200 times, and the doping amount was B 2 H 6 / SiH 4 = 0.1 to 1%. Care must be taken when forming μc-Si. This is because an initial transition layer of a-Si having a thickness of about 10 nm is formed depending on film forming conditions. Since the initial transition layer of a-Si is a p-layer of a-Si, the presence of the transition layer adversely affects the absorption coefficient and Voc. Therefore, the film formation conditions must be set so that the initial transition layer of a-Si is not formed. The presence or absence of the a-Si layer can be confirmed by TEM observation. According to the observation results, the presence or absence of the initial transition layer greatly depends on the substrate temperature. At a substrate temperature of 150 ° C. or higher, a transition layer is formed, but at a film forming temperature of 120 ° C. or lower, the initial transition layer does not exist. However, it was found that μc-Si was formed from the interface layer. In this embodiment, since the substrate temperature is 85 ° C., there is no initial transition layer.

【0019】μc-Siのボトムp層5製膜後、同じ基板温
度(85℃)で、SiH4を主ガス、PH 3をドーピングガ
ス、H2を希釈ガスとして、膜厚15〜80nmのμc-Siの
第一トップn層6を製膜した。このときのドーピング量
は、PH3/SiH4 =0.2〜2とし、水素希釈度は75〜
100倍とした。ここで重要なのは、基板温度を100
℃以下、且つ水素希釈度を100倍以下とすることであ
り、これによって屈折率3以下の膜が得られる。すなわ
ちこの第一トップn層がミラー層の役割を果たすことに
なる。本実施例では屈折率2.65の膜が得られた。
After forming the bottom p layer 5 of μc-Si, the same substrate temperature is used.
Degree (85 ° C), SiHFourThe main gas, PH ThreeDoping gas
S, HTwoIs used as a diluting gas, and μc-Si
The first top n layer 6 was formed. Doping amount at this time
Is the PHThree/ SiHFour= 0.2-2, and the hydrogen dilution degree is 75-
100 times. What is important here is that the substrate temperature is 100
° C or lower and the hydrogen dilution degree to 100 times or lower.
Thus, a film having a refractive index of 3 or less can be obtained. Sand
The first top n layer plays the role of mirror layer
Become. In this example, a film having a refractive index of 2.65 was obtained.

【0020】この上に基板温度を130〜170℃と
し、SiH4および炭酸ガス(CO2 )を主ガス、PH3をドー
ピングガス、H2を希釈ガスとして、膜厚10〜20nmの
a-SiOの第二トップn層7を製膜し、二層構造のトップ
n層とした。第二トップn層7の屈折率は約3.5であ
る。その後、SiH4を主ガス、H2を希釈ガスとして、膜厚
80〜300nmのa-Siのトップi層8、再びSiH4および
炭酸ガス(CO2 )を主ガス、B2H6 をドーピングガス、H
2を希釈ガスとして、膜厚5〜20nmのa-SiO のトップ
界面層9と膜厚4〜15nmのトップp層10を順次製膜
した。トップ界面層9とトップp層のドーピング量は、
それぞれB2H6/SiH4 =20〜500ppm 、0.5〜3%
とした。最後にスパッタリング法により透明電極11と
して膜厚80〜300nmのITOを形成した。
A substrate temperature of 130 to 170 ° C., a main gas of SiH 4 and carbon dioxide (CO 2 ), a doping gas of PH 3 and a diluting gas of H 2, and a film thickness of 10 to 20 nm
A second top n-layer 7 of a-SiO was formed into a top n-layer having a two-layer structure. The refractive index of the second top n-layer 7 is about 3.5. After that, using SiH 4 as a main gas and H 2 as a diluent gas, a top i layer 8 of a-Si having a film thickness of 80 to 300 nm, again doping SiH 4 and carbon dioxide (CO 2 ) as a main gas and B 2 H 6 Gas, H
Using 2 as a diluent gas, a top interface layer 9 of a-SiO 2 having a thickness of 5 to 20 nm and a top p layer 10 having a thickness of 4 to 15 nm were sequentially formed. The doping amount of the top interface layer 9 and the top p layer is
B 2 H 6 / SiH 4 = 20 to 500 ppm, 0.5 to 3%, respectively
And Finally, ITO having a thickness of 80 to 300 nm was formed as the transparent electrode 11 by a sputtering method.

【0021】こうして完成した太陽電池の他に、比較例
としてμc-Siの第一トップn層の屈折率を3.47とし
た太陽電池を試作した。比較例のμc-Siの第一トップn
層は、製膜温度を150℃とした以外は実施例と同様の
条件で製膜したものである。すなわちこの比較例の太陽
電池では、ミラー層が存在しないことになる。図2は、
このようにして試作した実施例1と比較例のa-Si/a-SiG
e タンデムセルのにおける、トップi層8の膜厚と、セ
ル特性との関係を示す特性関係図である。本発実施例の
セルは●印、比較例は○印で示した。
In addition to the solar cell completed in this manner, a solar cell having a μc-Si first top n-layer having a refractive index of 3.47 was prototyped as a comparative example. First Top n of μc-Si of Comparative Example
The layers were formed under the same conditions as in the example except that the film formation temperature was 150 ° C. That is, in the solar cell of this comparative example, the mirror layer does not exist. FIG.
A-Si / a-SiG of Example 1 and Comparative Example thus produced
FIG. 7 is a characteristic relation diagram showing a relation between a film thickness of a top i-layer 8 and cell characteristics in a tandem cell. The cells of the examples of the present invention are indicated by ●, and the comparative examples are indicated by ○.

【0022】この結果から、本実施例のa-Si/a-SiGe タ
ンデムセルでは、トップi層が薄い領域で、Jsc が増大
していることがわかる。また、Jsc が最大になる最適マ
ッチングの膜厚は、従来が300nm程度だったのに対し
本実施例では、180nm程度と大幅に薄くなっている。
比較例と比べて約60〜70% 程度のトップi層膜厚
で、同じJsc が得られることがわかる。開放電圧Voc お
よびFFでは、実施例と比較例とであまり差は見られな
い。
From these results, it can be seen that in the a-Si / a-SiGe tandem cell of this embodiment, Jsc increases in the region where the top i layer is thin. In the present embodiment, the film thickness of the optimum matching that maximizes Jsc is about 300 nm, whereas in the present embodiment, it is as thin as about 180 nm.
It can be seen that the same Jsc can be obtained with a top i-layer thickness of about 60 to 70% as compared with the comparative example. With respect to the open circuit voltages Voc and FF, there is little difference between the example and the comparative example.

【0023】a-Siセルでは、i 層膜厚を薄くする程、内
部電界が強くなることによって、FFが向上する。本実施
例では、最適マッチングになるトップi層を薄膜化でき
るようになったため、最適条件でのFFが向上した。結果
として、本実施例の最高効率は12.1% (トップi層
180nm時)となり、従来例の最高効率11.6% (ト
ップi層240nm時)よりも約0.5ポイント効率が向
上した。
In the a-Si cell, as the thickness of the i-layer becomes thinner, the internal electric field becomes stronger, thereby improving the FF. In the present embodiment, since the top i-layer for optimal matching can be made thinner, the FF under optimal conditions is improved. As a result, the highest efficiency of this embodiment is 12.1% (at the time of the top i layer of 180 nm), which is about 0.5 point higher than the highest efficiency of the conventional example of 11.6% (at the time of the top i layer of 240 nm). .

【0024】これらの効果は、明らかにトップセルとボ
トムセルとの境界部分に低屈折率の第一トップn層6を
設けたため、入射光の反射分が増えたミラー効果による
ものである。先に、特公平2−37116号公報に、複
数のpinセルを積層した多接合型の光起電力装置にお
いてアモルファス半導体からなるpinセル間に微結晶
層を挟むことが開示されていることを記したが、セル間
に屈折率を考慮しない微結晶層を挟んでも効率の向上が
得られないことは、この比較例によって実証されたこと
になる。
These effects are apparently due to the mirror effect in which the amount of reflection of incident light is increased because the first top n layer 6 having a low refractive index is provided at the boundary between the top cell and the bottom cell. It is noted that Japanese Patent Publication No. 2-37116 discloses that a microcrystalline layer is sandwiched between pin cells made of an amorphous semiconductor in a multi-junction type photovoltaic device in which a plurality of pin cells are stacked. However, it was proved by this comparative example that the efficiency was not improved even if a microcrystalline layer not considering the refractive index was interposed between the cells.

【0025】尚、本実施例では屈折率2.65の微結晶
シリコンを適用した場合について述べたが、屈折率3以
下の膜を適用することで、ミラー効果が得られることが
確認できている。ここでμc-Si層製膜条件と屈折率との
関係を調べるためにおこなった実験について述べる。
In this embodiment, the case where microcrystalline silicon having a refractive index of 2.65 is applied has been described. However, it has been confirmed that a mirror effect can be obtained by applying a film having a refractive index of 3 or less. . Here, an experiment conducted to investigate the relationship between the μc-Si layer deposition conditions and the refractive index will be described.

【0026】先ず、基板としてコーニング7059基板
を準備し、この上に種々の条件で膜厚300nmのμc-Si
膜の製膜をおこなった。次にこのサンプルの透過スペク
トルを評価し、波長1000〜2000nmの範囲で谷と
なる透過率から屈折率を導出した。波長1000〜20
00nmの屈折率を評価しているため、分散の効果で若干
屈折率を過大評価している可能性が考えられる。
First, a Corning 7059 substrate was prepared as a substrate, and a 300 μm-thick μc-Si
A film was formed. Next, the transmission spectrum of this sample was evaluated, and the refractive index was derived from the transmittance that became a valley in the wavelength range of 1000 to 2000 nm. Wavelength 1000-20
Since the refractive index of 00 nm is evaluated, the refractive index may be slightly overestimated due to the effect of dispersion.

【0027】図3は、水素希釈度(H2/SiH4 )100倍
で製膜したn型μc-Si膜の製膜時基板温度と、屈折率と
の関係を示す。ここで、n型不純物ドープ量は、PH3/Si
H4=1% に固定した。この図から基板温度の減少にとも
なって屈折率が減少し、基板温度100℃以下で屈折率
が3以下になることがわかった。基板温度85℃で屈折
率2.78となった。50℃まで下げると、多量のパウ
ダーが発生し膜にならなかった。
FIG. 3 shows the relationship between the substrate temperature and the refractive index when forming an n-type μc-Si film formed at a hydrogen dilution ratio (H 2 / SiH 4 ) of 100. Here, the n-type impurity doping amount is PH 3 / Si
H 4 was fixed at 1%. From this figure, it was found that the refractive index decreased as the substrate temperature decreased, and the refractive index became 3 or less at a substrate temperature of 100 ° C. or less. The refractive index was 2.78 at a substrate temperature of 85 ° C. When the temperature was lowered to 50 ° C., a large amount of powder was generated and no film was formed.

【0028】図4は、基板温度を85℃に固定して水素
希釈度を変化させた結果である。水素希釈度を低くする
ほど、屈折率は小さくなつた。水素希釈度75倍で屈折
率は2.65となった。50倍まで下げると、パウダー
が発生してしまい膜にならなかった。図5は、水素希釈
度200倍で製膜したp型μc-Si膜の製膜時基板温度と
屈折率との関係を示す。ここで、不純物ドープ量は、B2
H6/SiH4=0.5% に固定した。p型の膜は一般に言われ
ているように微結晶しにくく、このため水素希釈度を2
00倍以上にしないと微結晶化しなかった。
FIG. 4 shows the result of changing the degree of hydrogen dilution while fixing the substrate temperature at 85 ° C. The lower the hydrogen dilution, the lower the refractive index. The refractive index became 2.65 at a hydrogen dilution of 75 times. When it was reduced to 50 times, powder was generated and did not become a film. FIG. 5 shows the relationship between the substrate temperature and the refractive index when forming a p-type μc-Si film formed at a hydrogen dilution of 200 times. Here, the impurity doping amount is B 2
H 6 / SiH 4 was fixed at 0.5%. The p-type film is hardly crystallized as generally known, and therefore, the hydrogen dilution degree is 2
If it was not 00 times or more, it did not crystallize.

【0029】この結果から、p型μc-Si膜では基板温度
を下げても殆ど屈折率が変化しないことがわかった。n
型の膜と振舞いが異なっているが、これがドーパントの
差によるものなのか、水素希釈度の違いによるものかに
ついては、まだ良くわかっていない。しかしながら、p
型の膜ではあまり低希釈にできないことを考えると、低
屈折率のp型μc-Si膜を得るのは困難だと考えられる。
From these results, it was found that the refractive index of the p-type μc-Si film hardly changed even when the substrate temperature was lowered. n
Although the behavior differs from that of the mold film, it is not yet clear whether this is due to a difference in dopant or a difference in hydrogen dilution. However, p
It is considered that it is difficult to obtain a p-type μc-Si film having a low refractive index, considering that it is not possible to make the dilution too low with a type film.

【0030】最後に、本実施例では、低屈折率のμc-Si
膜を適用することについて述べたが、a-Si膜が適さない
理由について触れておく。a-Si 膜では、屈折率を3以
下にすること自体が困難であるが、屈折率を下げると、
低密度な膜となり、電気抵抗が著しく高くなつてしまう
ため、デバイスに使用できないという問題がある。これ
に対し、μc-Si膜は、数十nmサイズの結晶グレインとa-
Siの混晶である。低屈折率になるのは、この中でa-Siの
部分が低密度化してボイドリッチになるためと考えられ
るが、結晶グレイン同士が少しでも接していれば、この
部分を通して電流が流れるため、低抵抗となる。従って
ミラー層にμc-Siを用いることで始めて良好なセル特性
が得られた訳である。
Finally, in this embodiment, the low refractive index μc-Si
Although the application of the film has been described, the reason why the a-Si film is not suitable is described. With an a-Si film, it is difficult to reduce the refractive index to 3 or less.
There is a problem that the film cannot be used for a device because the film has a low density and the electric resistance is significantly increased. On the other hand, the μc-Si film has crystal grains of several tens nm in size and a-
It is a mixed crystal of Si. It is considered that the reason why the refractive index becomes low is that the a-Si portion becomes low in density and becomes void-rich, but if the crystal grains are in contact with each other even a little, a current flows through this portion. Low resistance. Therefore, good cell characteristics were obtained only by using μc-Si for the mirror layer.

【0031】特開平6−181331号公報に、アモル
ファス半導体太陽電池において、アモルファス半導体か
らなるpinセルと光入射側の電極との間に低屈折率の
層を設けることが開示されている。しかし、その低屈折
率の層の目的は反射光の反射を図ることにあり、またそ
の実施例も電子ビーム蒸着した酸化チタン層(屈折率=
1.9)であって、本発明のように積層されたセル間で
入射光を一部透過させながら、反射させるものではな
く、さらに、低屈折率の半導体層を意図したものではな
い。従って、この公報も、本発明とは目的も構成も異な
るものである。
Japanese Patent Application Laid-Open No. 6-181331 discloses that an amorphous semiconductor solar cell is provided with a low refractive index layer between a pin cell made of an amorphous semiconductor and an electrode on the light incident side. However, the purpose of the low refractive index layer is to reflect the reflected light, and in this embodiment, the titanium oxide layer (refractive index =
1.9) does not reflect incident light while partially transmitting it between the stacked cells as in the present invention, and further does not intend a semiconductor layer having a low refractive index. Therefore, this publication also has a different purpose and configuration from the present invention.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、p
in型セルを積層した多接合型薄膜太陽電池において、
上側セルと下側セルとの境界部に低屈折率の半導体層を
設けることにより、不純物の取り込みやピンホールの発
生を抑え変換効率の高い多接合型薄膜太陽電池とするこ
とができる。特に微結晶シリコンの低屈折率膜とするこ
とにより、1台の装置で一括してセルの製膜をおこなう
ことが可能となり、設備コストを抑え低コストの太陽電
池を高い歩留りで製造することができる。詳しい製造方
法についても記述した。
As described above, according to the present invention, p
In a multi-junction thin-film solar cell in which in-type cells are stacked,
By providing a semiconductor layer having a low refractive index at the boundary between the upper cell and the lower cell, the incorporation of impurities and the generation of pinholes can be suppressed, and a multi-junction thin-film solar cell with high conversion efficiency can be obtained. In particular, by using microcrystalline silicon as a low-refractive-index film, it is possible to perform cell film formation collectively with one apparatus, and to reduce equipment costs and manufacture low-cost solar cells with high yield. it can. Detailed manufacturing methods are also described.

【0033】よって本発明は、多接合型薄膜太陽電池の
実用化および普及に貢献するところ大である。
Therefore, the present invention greatly contributes to the practical use and spread of multi-junction thin-film solar cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるa-Si/a-SiGe タンデムセルの断
面構造図
FIG. 1 is a sectional structural view of an a-Si / a-SiGe tandem cell according to the present invention.

【図2】本発明の実施例および比較例のタンデムセルに
おける特性のトップi層膜厚依存性比較図
FIG. 2 is a graph showing the dependence of the characteristics of the tandem cells of the embodiment of the present invention and the comparative example on the thickness of the top i-layer.

【図3】希釈度100倍で製膜したn型微結晶シリコン
膜の製膜時基板温度と屈折率との関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the substrate temperature and the refractive index when forming an n-type microcrystalline silicon film formed at a dilution of 100 times.

【図4】基板温度100℃で製膜したn型微結晶シリコ
ン膜の希釈度と屈折率との関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the degree of dilution and the refractive index of an n-type microcrystalline silicon film formed at a substrate temperature of 100 ° C.

【図5】希釈度200倍で製膜したp型微結晶シリコン
膜の製膜時基板温度と屈折率との関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the substrate temperature and the refractive index when forming a p-type microcrystalline silicon film formed at a dilution of 200 times.

【符号の説明】[Explanation of symbols]

1 基板 2 金属電極 3 ボトムセルn層 4 ボトムセルi層 5 ボトムセルp層 6 第一トップセルn層 7 第二トップセルn層 8 トップセルi層 9 トップセルp/i界面層 10 トップセルp層 11 透明電極 Reference Signs List 1 substrate 2 metal electrode 3 bottom cell n layer 4 bottom cell i layer 5 bottom cell p layer 6 first top cell n layer 7 second top cell n layer 8 top cell i layer 9 top cell p / i interface layer 10 top cell p layer 11 Transparent electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数のpin型セルを積層してなる多接合
型薄膜太陽電池において、上側セルと下側セルとの境界
をなす二つの層の少なくともいずれかまたはその一部
が、その層またはその一部より上側の半導体層と比較し
て屈折率の低い低屈折率層であることを特徴とする多接
合型薄膜太陽電池。
In a multi-junction thin-film solar cell in which a plurality of pin cells are stacked, at least one or a part of two layers forming a boundary between an upper cell and a lower cell is the layer or the layer. A multi-junction thin-film solar cell, which is a low-refractive-index layer having a lower refractive index than a semiconductor layer above a part thereof.
【請求項2】上側pinセルの最下層またはその一部が
低屈折率であることを特徴とする請求項1に記載の多接
合型薄膜太陽電池。
2. The multi-junction thin-film solar cell according to claim 1, wherein the lowermost layer or a part of the upper pin cell has a low refractive index.
【請求項3】下側pinセルの最上層またはその一部が
低屈折率であることを特徴とする請求項1に記載の多接
合型薄膜太陽電池。
3. The multi-junction thin-film solar cell according to claim 1, wherein the uppermost layer of the lower pin cell or a part thereof has a low refractive index.
【請求項4】複数のpin型セルを積層してなる多接合
型薄膜太陽電池において、上側セルと下側セルとの境界
に、上側セルの半導体層と比較して屈折率の低い低屈折
率層を有することを特徴とする多接合型薄膜太陽電池。
4. A multi-junction thin-film solar cell comprising a plurality of pin cells stacked on each other, a low refractive index having a lower refractive index than a semiconductor layer of the upper cell at a boundary between the upper cell and the lower cell. A multi-junction thin-film solar cell comprising a layer.
【請求項5】低屈折率層がn型の微結晶シリコン層であ
ることを特徴とする請求項1ないし4のいずれかに記載
の薄膜太陽電池。
5. The thin-film solar cell according to claim 1, wherein the low refractive index layer is an n-type microcrystalline silicon layer.
【請求項6】低屈折率層の屈折率が2.5〜3の範囲に
あることを特徴とする請求項5に記載の多接合型薄膜太
陽電池。
6. The multi-junction thin-film solar cell according to claim 5, wherein the low refractive index layer has a refractive index in the range of 2.5 to 3.
【請求項7】上側pinセルのi層の厚さを70〜20
0nmとすることを特徴とする請求項5に記載の多接合型
薄膜太陽電池。
7. The thickness of the i-layer of the upper pin cell is 70 to 20.
The multi-junction thin-film solar cell according to claim 5, wherein the thickness is 0 nm.
【請求項8】複数のpin型セルを積層してなり、上側
セルと下側セルとの境界をなす二つの層のいずれかまた
はその一部が、その層またはその一部より上側の半導体
層と比較して屈折率の低い低屈折率層である多接合型薄
膜太陽電池の製造方法において、下側セルの最上層のp
型微結晶シリコン層上に、製膜温度60〜110℃、水
素希釈度60〜140倍とするプラズマCVD法によ
り、低屈折率のn型微結晶シリコン層を製膜することを
特徴とする多接合型薄膜太陽電池の製造方法。
8. A semiconductor layer in which a plurality of pin type cells are stacked, and one or a part of two layers forming a boundary between an upper cell and a lower cell is a semiconductor layer above the layer or a part thereof. In the method for manufacturing a multi-junction thin-film solar cell which is a low refractive index layer having a lower refractive index than that of
A low-refractive-index n-type microcrystalline silicon layer is formed on the microcrystalline silicon layer by a plasma CVD method at a film forming temperature of 60 to 110 ° C. and a hydrogen dilution degree of 60 to 140 times. A method for manufacturing a junction type thin film solar cell.
JP2000258511A 2000-08-29 2000-08-29 Manufacturing method of multi-junction thin film solar cell Expired - Fee Related JP4110718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258511A JP4110718B2 (en) 2000-08-29 2000-08-29 Manufacturing method of multi-junction thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258511A JP4110718B2 (en) 2000-08-29 2000-08-29 Manufacturing method of multi-junction thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002076396A true JP2002076396A (en) 2002-03-15
JP4110718B2 JP4110718B2 (en) 2008-07-02

Family

ID=18746815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258511A Expired - Fee Related JP4110718B2 (en) 2000-08-29 2000-08-29 Manufacturing method of multi-junction thin film solar cell

Country Status (1)

Country Link
JP (1) JP4110718B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
US7550665B2 (en) 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
EP1717869A3 (en) * 2005-04-26 2009-07-01 Sanyo Electric Co., Ltd. Stacked photovoltaic apparatus
JP2016086163A (en) * 2014-10-23 2016-05-19 アズール スペース ソーラー パワー ゲゼルシャフト ミット ベシュレンクテル ハフツングAZUR SPACE Solar Power GmbH Stacked integrated multi-junction solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669226U (en) * 1993-03-11 1994-09-27 有限会社創髪 Artificial hair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125669A (en) * 1983-01-07 1984-07-20 Agency Of Ind Science & Technol Solar battery
JPS6377167A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Laminated photovoltaic device
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JPH0582813A (en) * 1991-09-24 1993-04-02 Canon Inc Photovoltaic element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125669A (en) * 1983-01-07 1984-07-20 Agency Of Ind Science & Technol Solar battery
JPS6377167A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Laminated photovoltaic device
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JPH0582813A (en) * 1991-09-24 1993-04-02 Canon Inc Photovoltaic element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
佐々木敏明 他: "μc−Si(p)層を用いたアモルファスシリコンセル", 第60回応用物理学会学術講演会講演予稿集2、2A−ZS−8, JPN4007011025, 1999, JP, pages 810, ISSN: 0000863911 *
佐々木敏明 他: "μc−Si(p)層を用いたアモルファスシリコンセル", 第60回応用物理学会学術講演会講演予稿集2、2A−ZS−8, JPN7008002361, 1999, JP, pages 810, ISSN: 0001000237 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075052B2 (en) 2002-10-08 2006-07-11 Sanyo Electric Co., Ltd. Photoelectric conversion device
US7550665B2 (en) 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
EP1717869A3 (en) * 2005-04-26 2009-07-01 Sanyo Electric Co., Ltd. Stacked photovoltaic apparatus
US7952018B2 (en) 2005-04-26 2011-05-31 Sanyo Electric Co., Ltd. Stacked photovoltaic apparatus
JP2016086163A (en) * 2014-10-23 2016-05-19 アズール スペース ソーラー パワー ゲゼルシャフト ミット ベシュレンクテル ハフツングAZUR SPACE Solar Power GmbH Stacked integrated multi-junction solar cell

Also Published As

Publication number Publication date
JP4110718B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP5156379B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP4284582B2 (en) Multi-junction thin film solar cell and manufacturing method thereof
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
JPS6249672A (en) Amorphous photovoltaic device
TWI455338B (en) Superlattice structure solar cell
JPH05243596A (en) Manufacture of laminated type solar cell
WO2012020682A1 (en) Crystalline silicon solar cell
KR20060067919A (en) Stacked Photoelectric Converters
JP5222434B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPH04130671A (en) Photovoltaic device
JP2004260014A (en) Multilayer type thin film photoelectric conversion device
US20100037940A1 (en) Stacked solar cell
JP4032610B2 (en) Non-single crystal thin film solar cell manufacturing method
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JP2001028452A (en) Photoelectric conversion device
JPS6334632B2 (en)
JP2024109826A (en) Single, tandem and heterojunction solar cell devices and methods of forming same
JP2002016271A (en) Thin-film photoelectric conversion element
JPH05152592A (en) Thin film solar cell and its manufacture
JPWO2005109526A1 (en) Thin film photoelectric converter
WO2022089664A1 (en) Silicon carbide battery
JPH05275725A (en) Photovoltaic device and its manufacture
US20120305053A1 (en) Solar cell and manufacturing method thereof
JP2001284619A (en) Phtovoltaic device
JP4124309B2 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees