JP2002088586A - Highly stretchable conjugated polyester fiber - Google Patents
Highly stretchable conjugated polyester fiberInfo
- Publication number
- JP2002088586A JP2002088586A JP2000279267A JP2000279267A JP2002088586A JP 2002088586 A JP2002088586 A JP 2002088586A JP 2000279267 A JP2000279267 A JP 2000279267A JP 2000279267 A JP2000279267 A JP 2000279267A JP 2002088586 A JP2002088586 A JP 2002088586A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- dtex
- polyester
- intrinsic viscosity
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた捲縮発現能
力により布帛に適度なストレッチ性を与えることのでき
るソフト性に優れ、品位良好な高伸縮性ポリエステル系
複合繊維に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-stretch polyester conjugate fiber which is excellent in softness and excellent in quality and can give an appropriate stretch property to a fabric with excellent crimp development ability.
【0002】[0002]
【従来の技術】ポリエステルは機械的特性をはじめ、様
々な優れた特性を有しているため衣料用途のみならず幅
広く展開されている。また、近年のストレッチブームに
よりポリエステル系布帛にもストレッチ性を与えるた
め、種々の方法が採用されている。2. Description of the Related Art Polyester has various excellent properties such as mechanical properties, and is widely used not only for clothing. In addition, various methods have been adopted in order to impart a stretch property to the polyester-based fabric by a recent stretch boom.
【0003】例えば、織物中にポリウレタン系の弾性繊
維を混用し、ストレッチ性を付与する方法がある。しか
しながら、ポリウレタン系繊維を混用した場合、ポリウ
レタン固有の性質として風合いが硬く、織物の風合いや
ドレープ性が低下すると共に、ポリエステル用の分散染
料には染まり難く、汚染の問題がつきまとう。そのた
め、還元洗浄の強化など染色工程が複雑になるばかり
か、所望の色彩に染色することが困難であった。For example, there is a method in which polyurethane elastic fibers are mixed in a woven fabric to impart stretchability. However, when polyurethane-based fibers are mixed, the texture is hard as an inherent property of polyurethane, the texture and drape property of the fabric are reduced, and the disperse dye for polyester is hardly dyed, which causes a problem of contamination. This not only complicates the dyeing process, such as strengthening the reduction washing, but also makes it difficult to dye a desired color.
【0004】また、ポリエステル繊維に仮撚加工を施
し、加撚/解撚トルクを発現させた繊維を用いることに
より、織物にストレッチ性を付与する方法がある。しか
しながら、このトルクは織物表面のシボに転移し易い傾
向があり、織物欠点となり易い問題がある。このため、
熱処理やS/Z撚りとすることでトルクバランスを取
り、ストレッチ性とシボ立ちによる欠点をバランスさせ
ることも行われているが、概ねストレッチ性が低下しす
ぎることが問題となっていた。There is also a method of imparting stretchability to a woven fabric by subjecting a polyester fiber to false twisting and using a fiber exhibiting twisting / untwisting torque. However, there is a problem that this torque tends to transfer to the grain on the surface of the fabric and tends to be a defect of the fabric. For this reason,
Torque balance is achieved by heat treatment or S / Z twist to balance the stretchability and the defects caused by the crimping. However, there has been a problem that the stretchability is generally too low.
【0005】一方、ポリウレタン系繊維や仮撚加工糸を
用いない方法として、サイドバイサイド複合を利用した
潜在捲縮発現性ポリエステル繊維が種々提案されてい
る。潜在捲縮発現性ポリエステル繊維とは、熱処理によ
り捲縮が発現するか、あるいは熱処理前より微細な捲縮
が発現する能力を有するポリエステル繊維のことを言
い、通常の仮撚加工糸とは区別されるものである。On the other hand, as a method using no polyurethane fiber or false twisted yarn, various types of latently crimp-expressing polyester fibers using a side-by-side composite have been proposed. Latent crimp-expressing polyester fiber refers to a polyester fiber that exhibits crimp by heat treatment or has the ability to develop finer crimp than before heat treatment, and is distinguished from ordinary false twisted yarn. Things.
【0006】例えば、特公昭44-2504号公報や特開平 4-
308271号公報には固有粘度差あるいは極限粘度差を有す
るポリエチレンテレフタレート(以下PETと略す)の
サイドバイサイド複合糸、特開平5-295634号公報にはホ
モPETとそれより高収縮性の共重合PETのサイドバ
イサイド複合糸が記載されている。このような潜在捲縮
発現性ポリエステル繊維を用いれば、確かにある程度の
ストレッチ性を得ることはできるが、織物にした際のス
トレッチ性が不充分となり、満足なストレッチ性織物が
得られにくいという問題があった。これは、上記したよ
うなサイドバイサイド複合糸は織物拘束中での捲縮発現
能力が低い、あるいは捲縮が外力によりヘタリ易いため
である。サイドバイサイド複合糸はポリウレタン系繊維
のように繊維自身の伸縮によるストレッチ性を利用して
いるのではなく、複合ポリマ間の収縮率差によって生じ
る3次元コイルの伸縮をストレッチ性に利用している。
このため、例えば、ポリマーの収縮が制限される織物拘
束下で熱処理を受けるとそのまま熱固定され、それ以上
の収縮能を失うためコイルが十分に発現せず、上記問題
が発生すると考えられる。[0006] For example, Japanese Patent Publication No.
Japanese Patent No. 308271 discloses a side-by-side composite yarn of polyethylene terephthalate (hereinafter abbreviated as PET) having an intrinsic viscosity difference or an intrinsic viscosity difference, and Japanese Patent Application Laid-Open No. 5-295634 discloses a side-by-side of homo PET and copolymer PET having higher shrinkage. A composite yarn is described. If such a latently crimp-expressing polyester fiber is used, it is possible to obtain a certain degree of stretchability, but the stretchability of the woven fabric becomes insufficient, and it is difficult to obtain a satisfactory stretchable woven fabric. was there. This is because the side-by-side composite yarn as described above has a low crimp development ability under the constraint of the fabric, or the crimp is easily set by external force. The side-by-side composite yarn does not use the stretch property due to the expansion and contraction of the fiber itself like the polyurethane fiber, but uses the expansion and contraction of the three-dimensional coil caused by the difference in the shrinkage ratio between the composite polymers for the stretch property.
For this reason, for example, when heat treatment is performed under a woven fabric constraint in which the shrinkage of the polymer is restricted, the heat fixation is performed as it is, and the shrinkage ability is further lost.
【0007】さらに、このような複合捲縮糸は沸水処理
後に捲縮を発現するため、和装などシボを発現する用途
に用いられたりするが、その際、繊維の長手方向に繊度
変動斑が大きいと、シボが均一に発現せず品位が低下し
てしまったり、また、単繊維繊度が4dtex以上のも
のが一般的であり、ソフト性に欠けるという問題があっ
た。Further, since such a composite crimped yarn develops a crimp after being subjected to boiling water treatment, it is used for a purpose such as kimono or the like which develops a grain, but at this time, there is a large variation in fineness in the longitudinal direction of the fiber. Thus, there is a problem that the grain is not uniformly developed and the quality is deteriorated, and that the single fiber fineness is 4 dtex or more, which is generally lacking in softness.
【0008】[0008]
【発明が解決しようとする課題】本発明は、紡糸、延伸
等の製糸性が良好で、従来のポリエステル系潜在捲縮性
繊維で問題となっている織物拘束下での捲縮発現能力を
改善し、ストレッチ性とソフト性に優れた品位良好な布
帛を得ることができる高伸縮性ポリエステル繊維を提供
するものである。DISCLOSURE OF THE INVENTION The present invention has improved yarn forming properties such as spinning and drawing, and has improved crimp development ability under the constraint of woven fabric, which is a problem with conventional polyester-based latently crimpable fibers. It is another object of the present invention to provide a highly stretchable polyester fiber capable of obtaining a high-quality fabric excellent in stretchability and softness.
【0009】[0009]
【課題を解決するための手段】前記した課題を解決する
ため本発明のポリエステル系潜在捲縮性繊維は、主とし
て次の構成を有する。すなわち、2種類のポリエステル
系重合体がサイドバイサイド型に貼り合わされた複合繊
維において、2種類のポリエステル重合体がいずれもポ
リトリメチレンテレフタレートを主体としたポリエステ
ルであり、両成分の固有粘度差が下記式を満たし、マル
チフィラメント糸の繊度変動率U%値が2%以下、伸縮
伸長率が120%以上、伸縮弾性率が90%以上である
ことを特徴とする単繊維繊度1dtex以上3dtex
以下の高伸縮性ポリエステル系複合繊維である。但し、
高粘度側ポリマの固有粘度をIV(H)、低粘度側のポ
リマ固有粘度をIV(L)とした時に、両ポリマ間の固
有粘度差をΔIVとすると、 1.20>ΔIV>0.6 IV(L)≧0.6 伸縮伸長率(%)=[(L1−L0)/L0]×100 伸縮弾性率(%)=[(L1−L2)/(L1−L0)]×
100 L0:原長560mmのカセに、3.53×10-3cN/dtexの
処理荷重をかけた状態で沸水処理15分、乾熱処理17
0℃×5分を行い、次に処理荷重を外し、1.76×10-3cN
/dtexの初荷重を30秒吊した時のカセ長 L1:初荷重を外し、定荷重0.09cN/dtexを30秒吊した
時のカセ長 L2:定荷重を外して2分後に再び初荷重1.76×10-3cN/
dtexを30秒吊した時のカセ長Means for Solving the Problems To solve the above-mentioned problems, the polyester latently crimpable fiber of the present invention mainly has the following constitution. That is, in a conjugate fiber in which two types of polyester-based polymers are bonded in a side-by-side type, each of the two types of polyester polymers is a polyester mainly composed of polytrimethylene terephthalate. And a monofilament fineness of 1 dtex or more and 3 dtex, wherein the multifilament yarn has a fineness variation rate U% value of 2% or less, a stretch rate of 120% or more, and a stretch modulus of 90% or more.
The following highly stretchable polyester-based composite fibers are provided. However,
When the intrinsic viscosity of the polymer on the high viscosity side is IV (H) and the intrinsic viscosity of the polymer on the low viscosity side is IV (L), and the intrinsic viscosity difference between the two polymers is ΔIV, 1.20>ΔIV> 0.6 IV (L) ≧ 0.6 Stretching elongation (%) = [(L1-L0) / L0] × 100 Stretching elasticity (%) = [(L1-L2) / (L1-L0)] ×
100 L0: 15 minutes of boiling water treatment and 17 of dry heat treatment with a processing load of 3.53 × 10 −3 cN / dtex applied to a 560 mm long scab.
Perform 0 ° C x 5 minutes, then remove the processing load, and 1.76 x 10-3 cN
Latch length when the initial load of / dtex is suspended for 30 seconds L1: Latch length when the initial load is removed and constant load of 0.09 cN / dtex is suspended for 30 seconds L2: Initial load 1.76 again 2 minutes after the constant load is removed × 10 -3 cN /
Length of skewer when dtex is hung for 30 seconds
【0010】[0010]
【発明の実施の形態】本発明の高伸縮性ポリエステル系
複合繊維は、2種類のポリエステル系重合体が繊維長さ
方向に沿ってサイドバイサイド型に貼り合わされた複合
繊維であり、それを構成する2種類のポリエステル重合
体とは、いずれもポリトリメチレンテレフタレートを主
体としたポリエステルであり、両成分の固有粘度差が下
記式を満たしていることを特徴とする高伸縮性ポリエス
テル系複合繊維である。ここで高粘度側ポリマの固有粘
度をIV(H)、低粘度側のポリマ固有粘度をIV
(L)とした時に、両ポリマ間の固有粘度差をΔIVと
すると、 1.20>ΔIV>0.6 IV(L)≧0.6 を満たすものである。2種類の粘度の異なる該ポリマは
繊維長さ方向に沿ってサイドバイサイド型に貼り合わさ
れたものであり、粘度が異なる重合体を貼り合わせるこ
とによって、紡糸、延伸時に高粘度側に応力が集中する
ため、2成分間で内部歪みが異なる。そのため、延伸後
の弾性回復率差および布帛の熱処理工程での熱収縮率差
により高粘度側が大きく収縮し、単繊維内で歪みが生じ
て3次元コイル捲縮の形態をとる。この3次元コイルの
径および単位繊維長当たりのコイル数は、高収縮成分と
低収縮成分との収縮差(弾性回復率差を含む)によって
決まると言ってもよく、収縮差が大きいほどコイル径が
小さく、単位繊維長当たりのコイル数が多くなる。BEST MODE FOR CARRYING OUT THE INVENTION The highly stretchable polyester composite fiber of the present invention is a composite fiber in which two types of polyester polymers are bonded in a side-by-side type along the fiber length direction. Each type of polyester polymer is a polyester mainly composed of polytrimethylene terephthalate, and is a highly stretchable polyester-based composite fiber characterized in that the intrinsic viscosity difference between the two components satisfies the following formula. Here, the intrinsic viscosity of the polymer on the high viscosity side is IV (H), and the intrinsic viscosity of the polymer on the low viscosity side is IV (H).
Assuming that the intrinsic viscosity difference between the two polymers is ΔIV when (L) is satisfied, 1.20>ΔIV> 0.6 IV (L) ≧ 0.6. The two types of polymers having different viscosities are bonded in a side-by-side type along the fiber length direction. By bonding polymers having different viscosities, stress is concentrated on the high viscosity side during spinning and drawing. , The internal distortion differs between the two components. Therefore, the high-viscosity side largely shrinks due to the difference between the elastic recovery rate after the stretching and the difference in the heat shrinkage rate in the heat treatment step of the fabric, causing distortion within the single fiber to take a form of a three-dimensional coil crimp. It can be said that the diameter of the three-dimensional coil and the number of coils per unit fiber length are determined by the difference in shrinkage (including the difference in elastic recovery rate) between the high shrinkage component and the low shrinkage component. And the number of coils per unit fiber length increases.
【0011】ストレッチ素材として要求されるコイル捲
縮は、コイル径が小さく、単位繊維長当たりのコイル数
が多い(伸長特性に優れ、見映えが良い)、コイルの耐
へたり性が良い(伸縮回数に応じたコイルのへたり量が
小さく、ストレッチ保持性に優れる)、さらにはコイル
の伸長回復時におけるヒステリシスロスが小さい(反発
性に優れ、フィット感がよい)等である。これらの要求
を全て満足しつつ、ポリエステルとしての特性、例えば
適度な張り腰、ドレープ性、高染色堅牢性を有すること
で、トータルバランスに優れたストレッチ素材とするこ
とができる。A coil crimp required as a stretch material has a small coil diameter, a large number of coils per unit fiber length (excellent elongation characteristics, good appearance), and good coil set resistance (expansion and contraction). The set amount of the coil according to the number of times is small and the stretch retention is excellent), and the hysteresis loss at the time of recovery from the extension of the coil is small (excellent resilience and good fit). By satisfying all of these requirements and having the properties of polyester, such as moderate tension, drapability, and high color fastness, a stretch material excellent in total balance can be obtained.
【0012】そこで、本発明者らはポリエステルの特性
を損なうことなく前記特性を満足させるために鋭意検討
した結果、高収縮成分および低収縮成分にポリトリメチ
レンテレフタレート(以下PTTと略記する)を主体と
したポリエステルを用いることを見出した。PTT繊維
は、代表的なポリエステル繊維であるPETやポリブチ
レンテレフタレート(以下PBTと略記する)繊維と同
等の力学的特性や化学的特性を有しつつ、伸長回復性が
極めて優れている。これは、PTTの結晶構造において
アルキレングリコール部のメチレン鎖がゴーシュ−ゴー
シュの構造(分子鎖が90度に屈曲)であること、さら
にはベンゼン環同士の相互作用(スタッキング、並列)
による拘束点密度が低く、フレキシビリティーが高いこ
とから、メチレン基の回転により分子鎖が容易に伸長・
回復するためと考えている。このように、高収縮成分
(高粘度成分)、低収縮成分(低粘度成分)ともにPT
Tとし、融点、ガラス転移点を合わせることで、紡糸工
程でより高粘度成分に応力集中させることができ、収縮
率差を大きくすることができる。また、両成分をPTT
とすることにより、図3に示した沸水処理後の強伸度曲
線にみられるように繊維のヤング率を低くできるので、
よりソフトで弾発性に優れた捲縮糸が得られるのであ
る。The present inventors have conducted intensive studies to satisfy the above-mentioned properties without impairing the properties of the polyester. As a result, polytrimethylene terephthalate (hereinafter abbreviated as PTT) is mainly used as the high shrinkage component and the low shrinkage component. It was found that a polyester was used. PTT fibers have mechanical properties and chemical properties equivalent to those of typical polyester fibers such as PET and polybutylene terephthalate (hereinafter abbreviated as PBT) fibers, and are extremely excellent in elongation recovery. This is because in the PTT crystal structure, the methylene chain of the alkylene glycol moiety has a Gauche-Gauche structure (the molecular chain is bent at 90 degrees), and further, the interaction between benzene rings (stacking, parallel).
Due to the low binding point density and high flexibility, the rotation of the methylene group allows the molecular chain to easily elongate.
Think to recover. Thus, both the high shrinkage component (high viscosity component) and the low shrinkage component (low viscosity component)
By adjusting the melting point and the glass transition point to T, the stress can be concentrated on the higher viscosity component in the spinning step, and the difference in shrinkage can be increased. In addition, both components are PTT
By doing so, the Young's modulus of the fiber can be reduced as seen in the strength-elongation curve after the boiling water treatment shown in FIG.
A crimped yarn having a softer and more excellent elasticity can be obtained.
【0013】なお、本発明でいう粘度とは固有粘度(I
V)を指し、オルトクロロフェノール中に試料を溶かし
て測定した値である。The viscosity referred to in the present invention is the intrinsic viscosity (I
V) is a value measured by dissolving a sample in orthochlorophenol.
【0014】また、両成分の複合比率は製糸性および繊
維長さ方向のコイルの寸法均質性の点で、高収縮成分:
低収縮成分=75:25〜35:65(重量%)の範囲
が好ましく、65/35〜45/55の範囲がより好ま
しい。The composite ratio of the two components is determined in terms of the spinning property and the dimensional homogeneity of the coil in the fiber length direction.
Low shrinkage component = 75: 25 to 35:65 (% by weight) is preferable, and 65/35 to 45/55 is more preferable.
【0015】ここで、本発明のPTTとは、テレフタル
酸を主たる酸成分とし、1,3−プロパンジオールを主
たるグリコール成分として得られるポリエステルであ
る。ただし、20モル%、より好ましくは10モル%以
下の割合で他のエステル結合の形成が可能な共重合成分
を含むものであってもよい。共重合可能な化合物とし
て、例えばイソフタル酸、コハク酸、シクロヘキサンジ
カルボン酸、アジピン酸、ダイマ酸、セバシン酸、5−
ナトリウムスルホイソフタル酸などのジカルボン酸類、
エチレングリコール、ジエチレングリコール、ブタンジ
オール、ネオペンチルグリコール、シクロヘキサンジメ
タノール、ポリエチレングリコール、ポリプロピレング
リコールなどのジオール類を挙げることができるが、こ
れらに限定されるものではない。また、必要に応じて、
艶消し剤となる二酸化チタン、滑剤としてのシリカやア
ルミナの微粒子、抗酸化剤としてヒンダードフェノール
誘導体、着色顔料などを添加してもよい。Here, the PTT of the present invention is a polyester obtained by using terephthalic acid as a main acid component and 1,3-propanediol as a main glycol component. However, it may contain a copolymer component capable of forming another ester bond at a ratio of 20 mol%, more preferably 10 mol% or less. As the copolymerizable compound, for example, isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimeric acid, sebacic acid, 5-
Dicarboxylic acids such as sodium sulfoisophthalic acid,
Examples thereof include, but are not limited to, diols such as ethylene glycol, diethylene glycol, butanediol, neopentyl glycol, cyclohexanedimethanol, polyethylene glycol, and polypropylene glycol. Also, if necessary,
Titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives, coloring pigments and the like as antioxidants may be added.
【0016】また、本発明の高伸縮性PTT複合繊維
は、伸縮伸長率が120%以上、伸縮弾性率が90%以
上であることを特徴とする。The highly stretchable PTT conjugate fiber of the present invention is characterized in that the stretch ratio is 120% or more and the stretch modulus is 90% or more.
【0017】伸縮伸長率(%)=[(L1−L0)/L
0]×100 伸縮弾性率(%)=[(L1−L2)/(L1−L0)]×
100 L0:原長560mmのカセに、3.53×10-3cN/dtexの
処理荷重をかけた状態で沸水処理15分、乾熱処理17
0℃×5分を行い、次に処理荷重を外し、1.76×10-3cN
/dtexの初荷重を30秒吊した時のカセ長 L1:初荷重を外し、定荷重0.09cN/dtexを30秒吊した
時のカセ長 L2:定荷重を外して2分後に再び初荷重1.76×10-3cN/
dtexを30秒吊した時のカセ長 伸縮伸長率が高いほど捲縮発現能力が高いことを示して
おり、120%以上であれば本発明の目的とする伸長特
性を与えることができる。伸縮伸長率は高いほど布帛に
したときの伸長性が向上するため、好ましくは130%
以上、より好ましくは140%以上である。Expansion and contraction rate (%) = [(L1-L0) / L
0] × 100 Stretch elastic modulus (%) = [(L1-L2) / (L1-L0)] ×
100 L0: 15 minutes of boiling water treatment and 17 of dry heat treatment with a processing load of 3.53 × 10 −3 cN / dtex applied to a 560 mm long scab.
Perform 0 ° C x 5 minutes, then remove the processing load, and 1.76 x 10-3 cN
Latch length when the initial load of / dtex is suspended for 30 seconds L1: Latch length when the initial load is removed and constant load of 0.09cN / dtex is suspended for 30 seconds L2: Initial load 1.76 again 2 minutes after the constant load is removed × 10 -3 cN /
The length of the ridge when the dtex is hung for 30 seconds The higher the stretch ratio, the higher the crimp development ability, and if it is 120% or more, the desired elongation characteristics of the present invention can be provided. The higher the stretch ratio is, the higher the elongation of the fabric is.
Above, more preferably 140% or more.
【0018】なお、特公昭 44-2504号公報記載のような
固有粘度差のあるPET系複合糸、あるいは特開平5-29
5634号公報記載のようなホモPETと高収縮性共重合P
ETとの組み合わせでの複合糸では伸縮伸長率は高々2
%程度である。Incidentally, a PET-based composite yarn having an intrinsic viscosity difference as described in JP-B-44-2504 or JP-A-Hei 5-29.
No. 5634, homo-PET and highly shrinkable copolymer P
The expansion and contraction rate of the composite yarn in combination with ET is at most 2
%.
【0019】また伸縮弾性率は、形態安定性を維持する
ためにも90%以上であることが必要で、93%以上で
あることがより好ましい。伸長弾性率は高いほど歪み回
復性に優れており、形態安定性に優れている。なお、特
公昭 44-2504号公報記載のような固有粘度差のあるPE
T系複合糸では伸縮弾性率は83%程度である。Further, the elastic modulus of elasticity needs to be 90% or more in order to maintain the form stability, and is more preferably 93% or more. The higher the elongation modulus is, the more excellent the strain recovery property is, and the more excellent the shape stability is. It should be noted that PE having an intrinsic viscosity difference as described in
The elastic modulus of the T-type composite yarn is about 83%.
【0020】上記伸縮伸長率120%以上、伸縮弾性率
90%以上という特性を両方満たすようなPTT複合繊
維は伸長しやすいうえに、伸長した分のひずみが元に戻
りやすいという特徴を持ち、衣料用ストレッチ素材とし
て優れたものが得られる。PTT composite fibers satisfying both the above-mentioned characteristics of stretching and elongation of 120% or more and stretching and elasticity of 90% or more have characteristics that they are easily stretched, and that the strain corresponding to the stretch is easily restored to the original. An excellent stretch material can be obtained.
【0021】また、本発明の高捲縮性ポリエステル系複
合繊維の2成分間の複合界面は、繊維断面において直線
的であるほうが捲縮発現能が高くなり、ストレッチ性も
向上する。複合界面の直線性を示す指標としては、図1
に示す繊維断面の複合界面において、繊維表面から中心
に向かって深さ2μmの点a、bおよび界面の中心cの
3点に接する円の曲率半径R(μm)を求め、Rが10
d0.5以上であることが好ましい。ここで、dとは単繊
維の繊度(デシテックス)を示す。より好ましくは曲率
半径Rは15d0.5以上である。図2(a)〜(g)は
いずれも曲率半径Rが10d0.5以上であり、本発明に
好ましく用いられる繊維断面である。Further, when the composite interface between the two components of the highly crimpable polyester-based composite fiber of the present invention is linear in the fiber cross section, the ability to develop crimp becomes higher and the stretchability is improved. As an index indicating the linearity of the composite interface, FIG.
At the composite interface of the fiber cross section shown in FIG. 3, the radius of curvature R (μm) of a circle tangent to three points of points a and b having a depth of 2 μm from the fiber surface toward the center and the center c of the interface is determined.
d is preferably 0.5 or more. Here, d indicates the fineness (decitex) of the single fiber. More preferably, the radius of curvature R is 15d 0.5 or more. 2 (a) to 2 (g) each show a fiber cross section in which the radius of curvature R is 10d 0.5 or more and which is preferably used in the present invention.
【0022】また、本発明の高捲縮性ポリエステル系複
合繊維の繊維断面形状は、丸断面、三角断面、マルチロ
ーバル断面、偏平断面、X型断面その他公知の異形断面
であってもよく、何等限定されるものではないが、捲縮
発現性と風合いのバランスから、図2に示すような丸断
面の半円状サイドバイサイド(a)や軽量、保温を狙っ
た中空サイドバイサイド(d)、ドライ風合いを狙った
三角断面サイドバイサイド(g)等が好ましく用いられ
る。The cross-sectional shape of the highly crimpable polyester composite fiber of the present invention may be a round cross section, a triangular cross section, a multi-lobal cross section, a flat cross section, an X-shaped cross section, or any other known cross section. Although not limited, a semicircular side-by-side (a) having a round cross section as shown in FIG. A targeted triangular cross section side-by-side (g) or the like is preferably used.
【0023】このように、本発明によれば、織物拘束下
での捲縮発現能力を改善した、ストレッチ素材を得るこ
とができるが、衣料用用途などで使用する上で、特に品
位の問題は重要である。本発明のように固有粘度差の大
きなポリマーをサイドバイサイドに複合した場合、得ら
れる糸の捲縮特性は良好であるものの、紡糸糸条が高粘
度成分側に過度にベンディングするため、製糸性が悪化
し、結果として繊維の長手方向での太さ斑を生じ、結果
として布帛としたときにシボ斑が生じ、品位が低下する
ので好ましくない。したがって安定した製糸性とストレ
ッチ性、良好な品位を満たすため、繊度変動率U%は2
%以下であることが必要である。As described above, according to the present invention, it is possible to obtain a stretch material with improved crimp expression ability under the constraint of a woven fabric. is important. When a polymer having a large difference in intrinsic viscosity is compounded side-by-side as in the present invention, the resulting yarn has good crimping properties, but the spun yarn is excessively bent toward the high-viscosity component side, thus deteriorating the spinnability. However, as a result, unevenness in the thickness of the fiber in the longitudinal direction is generated, and as a result, unevenness is generated when the fabric is used. Therefore, the fineness variation rate U% is 2 in order to satisfy stable yarn-making properties, stretchability and good quality.
% Or less.
【0024】また、本発明の高伸縮性ポリエステル系複
合繊維は、ソフト性を向上させるために、単繊維繊度が
1dtex以上3dtex以下であることが必要であ
る。単繊維繊度が3dtexより大きいと、布帛とした
ときのソフト性に欠け、単繊維繊度が1dtex未満で
あると、製糸性が悪化するためである。The highly stretchable polyester composite fiber of the present invention needs to have a single fiber fineness of 1 dtex or more and 3 dtex or less in order to improve softness. When the single fiber fineness is larger than 3 dtex, the softness of the fabric is lacked, and when the single fiber fineness is less than 1 dtex, the yarn forming property is deteriorated.
【0025】本発明の高伸縮性ポリエステル系複合繊維
は単独で用いることも可能であるが、低収縮糸や自発伸
長糸と混繊して用いると、ストレッチ性にふくらみ感や
反発感を付与することができ、好ましい。The highly stretchable polyester-based composite fiber of the present invention can be used alone, but when used in combination with a low shrinkage yarn or a spontaneously elongated yarn, a stretchiness and a resilience are imparted to the stretch property. Can be preferred.
【0026】本発明の特徴を生かす用途としては、織
物、編物、不織布、さらにはクッション材など、目的に
応じて適宜選択でき、シャツ、ブラウス、パンツ、スー
ツ、ブルゾン等に好適に用いることができる。Applications utilizing the features of the present invention include fabrics, knits, non-woven fabrics, and cushion materials, which can be appropriately selected according to the purpose, and can be suitably used for shirts, blouses, pants, suits, blousons, and the like. .
【0027】次に、本発明の高捲縮性ポリエステル系複
合繊維の好ましい製法を説明する。Next, a preferred method for producing the high crimp polyester conjugate fiber of the present invention will be described.
【0028】本発明の高伸縮性ポリエステル系複合繊維
は、固有粘度の異なる2種類のPTTをそれぞれに配
し、吐出孔上部で合流させ、サイドバイサイド複合流を
形成させた後、所望の断面形状を得るための吐出孔から
吐出される。吐出された糸条は冷却され、固化した後、
一旦巻き取ってから延伸する2工程法によって製造して
もよいし、紡糸引取り後、そのまま延伸する直接紡糸延
伸法によって製造してもよい。In the highly stretchable polyester composite fiber of the present invention, two types of PTT having different intrinsic viscosities are respectively arranged and merged at the upper portion of the discharge hole to form a side-by-side composite flow. It is discharged from a discharge hole for obtaining. After the discharged yarn is cooled and solidified,
It may be manufactured by a two-step method of once winding and drawing, or may be manufactured by a direct spinning drawing method of drawing directly after spinning.
【0029】また、本発明の高伸縮性ポリエステル系複
合繊維を安定して製造するためには、各成分の固有粘度
および、各成分間の固有粘度差が重要となってくる。複
合繊維といえども、片側成分の粘度が低すぎて繊維形成
能がなかったり、逆に高すぎて特殊な紡糸装置が必要に
なるようでは実用的ではない。また、各成分間の粘度差
により、吐出孔直下での糸条のベンディング(曲がり現
象)の度合いが決まり、それが製糸性に大きく影響す
る。そのため、各成分の固有粘度(IV)は、次式を満
たす組み合わせであることが好ましい。Further, in order to stably produce the highly stretchable polyester-based composite fiber of the present invention, the intrinsic viscosity of each component and the difference in intrinsic viscosity between the components are important. Even if it is a conjugate fiber, it is not practical if the viscosity of one side component is too low and there is no fiber forming ability, or if it is too high and a special spinning device is required. Further, the degree of bending (bending phenomenon) of the yarn immediately below the discharge hole is determined by the difference in viscosity between the components, and this greatly affects the yarn forming property. Therefore, the intrinsic viscosity (IV) of each component is preferably a combination satisfying the following formula.
【0030】複合紡糸を行う際、低粘度PTTの固有粘
度(IV)が0.6以上であることが必要である。0.
6以上であることによって繊維形成性が向上し、製糸性
が良好になる。低粘度PTTの固有粘度(IV)が0.
6未満であると重合度が低すぎるため繊維形成能が乏し
く、製糸性が不良で、得られる糸の強度が低いといった
問題が発生する。また、PTTの高粘度成分と低粘度成
分との固有粘度の差ΔIVは0.6より大きくすること
により捲縮特性に優れた原糸となるが、0.7より大き
くすると、さらに伸縮性の優れた原糸となるのでより好
ましい。一方ΔIVが1.20以上になると、得られる
糸の捲縮特性は良好であるものの、紡糸糸条が高粘度成
分側に過度にベンディングするため、長時間にわたって
安定して製糸することができず、好ましくない。したが
って安定した製糸性とストレッチ回復性の両方を満たす
ため、ΔIVは0.6より大きく、1.2より小さいこ
とが必要である。When performing composite spinning, it is necessary that the intrinsic viscosity (IV) of the low-viscosity PTT is 0.6 or more. 0.
When the number is 6 or more, the fiber-forming property is improved, and the yarn-making property is improved. The low viscosity PTT has an intrinsic viscosity (IV) of 0.
If it is less than 6, the degree of polymerization is too low, resulting in poor fiber-forming ability, poor spinning properties, and low strength of the resulting yarn. When the difference ΔIV in intrinsic viscosity between the high-viscosity component and the low-viscosity component of PTT is larger than 0.6, a yarn having excellent crimping properties can be obtained. It is more preferable because it becomes an excellent raw yarn. On the other hand, when ΔIV is 1.20 or more, the obtained yarn has good crimp characteristics, but the spun yarn excessively bends toward the high-viscosity component side, and thus cannot be stably produced for a long time. Is not preferred. Therefore, in order to satisfy both stable spinning properties and stretch recoverability, ΔIV needs to be larger than 0.6 and smaller than 1.2.
【0031】また、紡糸温度はPTTのため、250〜
270℃とすることが好ましい。Also, the spinning temperature is 250 to 250, because of PTT.
The temperature is preferably set to 270 ° C.
【0032】また、複合繊維のU%を2%以下とするた
めには紡糸速度を2000m/分以下、より好ましくは1500
m/分以下とする。特に、口金の計量性を向上させた
り、口金面深度を下げ、口金面からチムニーまでに存在
するスペースを極力なくすことによって吐出した糸条を
均一に冷却すること、さらには引き取り時の紡糸張力を
アップすることなどが効果的である。また、延伸工程で
は擦過体上を滑らせながら高倍率で延伸することであ
る。操業性を考慮すると好ましくは40%以下、より好
ましくは35%以下の破断伸度になるように延伸するこ
とが好ましい。前記擦過体による摩擦抵抗により、延伸
張力を高めることができるため、内部歪みの増大により
U%も向上する。さらに延伸性、高次工程での取り扱い
性から、熱セット温度は110〜170℃の範囲が好ま
しい。また、延伸温度は50〜80℃とすることが好ま
しい。In order to make the U% of the composite fiber 2% or less, the spinning speed is set to 2000 m / min or less, more preferably 1500 m / min.
m / min or less. In particular, improving the measurement performance of the die, reducing the depth of the die surface, minimizing the space existing from the die surface to the chimney, cooling the discharged yarn uniformly, and further reducing the spinning tension during take-off Up is effective. In the stretching step, stretching is performed at a high magnification while sliding on the scraping body. In consideration of operability, it is preferable that the film is stretched so as to have a breaking elongation of preferably 40% or less, more preferably 35% or less. Since the stretching tension can be increased by the frictional resistance of the scraping body, U% is also improved by increasing the internal strain. Further, the heat setting temperature is preferably in the range of 110 to 170 ° C. from the viewpoint of stretchability and handleability in the higher order process. The stretching temperature is preferably set to 50 to 80 ° C.
【0033】[0033]
【実施例】以下、本発明を実施例で詳細に説明する。な
お、実施例中の測定方法は以下の方法を用いた。The present invention will be described below in detail with reference to examples. In addition, the measuring method in the Example used the following method.
【0034】A.固有粘度 オルソクロロフェノール(以下OCPと略記する)10
ml中に試料ポリマを0.8g溶かし、25℃にてオス
トワルド粘度計を用いて相対粘度ηrを下式により求
め、IVを算出した。A. Intrinsic viscosity orthochlorophenol (hereinafter abbreviated as OCP) 10
0.8 g of the sample polymer was dissolved in ml, and the relative viscosity ηr was determined at 25 ° C. using an Ostwald viscometer by the following equation to calculate IV.
【0035】 ηr=η/η0=(t×d)/(t0×d0) IV=0.0242ηr+0.2634 ここで、η:ポリマ溶液の粘度、η0:OCPの粘度、
t:溶液の落下時間(秒)、d:溶液の密度(g/cm
3)、t0:OCPの落下時間(秒)、d 0 :OCPの密度(g/cm3)。Ηr = η / η0= (T × d) / (t0× d0) IV = 0.0242ηr + 0.2634 where η: viscosity of polymer solution, η0: Viscosity of OCP,
t: Fall time of solution (sec), d: Density of solution (g / cm)
Three), T0: Fall time (sec) of OCP, d 0 : Density of OCP (g / cmThree).
【0036】B.伸縮伸長率および伸縮弾性率 (JIS L1090(伸縮性)C法に準ずる) 原長560mmの繊維カセに3.53×10-3cN/dtexの処理
荷重をかけた状態で、 沸騰水処理を15分行った後、
風乾させ、さらに170℃で5分の乾熱処理を 行う。
次に1.76×10-3cN/dtexの初荷重を吊した状態で30秒
間保持後、カセ 長L0を測定する。さらに速やかに荷
重を取り除き、0.09cN/dtexの定荷重を3 0秒間保持
後、カセ長L1を測定し速やかに荷重を取り除く。2分
間放置した 後、1.76×10-3cN/dtex荷重を吊して3
0秒間保持後、カセ長L2を測定す る。得られたカセ
長L0、L1、L2より、下記式にて伸縮伸長率および伸
縮弾性 率を求める。B. Stretching elongation and elasticity (according to JIS L1090 (stretchability) C method) Boiling water treatment is performed for 15 minutes while a processing load of 3.53 × 10 -3 cN / dtex is applied to a fiber cassette having an original length of 560 mm. After
Air dry and heat dry at 170 ° C for 5 minutes.
Next, after holding an initial load of 1.76 × 10 −3 cN / dtex for 30 seconds, the cassette length L0 is measured. Further, immediately remove the load, hold a constant load of 0.09 cN / dtex for 30 seconds, measure the length L1, and immediately remove the load. After leaving for 2 minutes, a load of 1.76 × 10 -3 cN / dtex is suspended and 3
After holding for 0 seconds, measure the length L2. From the obtained lengths L0, L1 and L2, the stretch and stretch ratio and stretch elastic modulus are determined by the following formulas.
【0037】 伸縮伸長率(%)=[(L0−L1)/L0]×100 伸縮弾性率(%)=[(L1−L2)/(L1−L0)]×1
00 C.繊度変動率(U%) 測定機としては市販のUster Eveness T
ester(計測器工業株式会社製)を使用する。糸の
トータル繊度により使用する測定用スロットを選択し、
糸速を200m/minとして撚糸機で約1500rp
mの回転を与え撚糸しつつノルマルテストにて測定す
る。U%値は3分間の測定を1回として、測定試料の任
意の5カ所について測定し、その平均値で表す。Stretching elongation (%) = [(L0−L1) / L0] × 100 Stretching elasticity (%) = [(L1−L2) / (L1−L0)] × 1
00 C.I. Fineness fluctuation rate (U%) A commercially available Uster Evenness T
Ester (manufactured by Keiki Kogyo Co., Ltd.) is used. Select the measurement slot to use depending on the total fineness of the yarn,
Approximately 1500 rpm with a twisting machine at a yarn speed of 200 m / min
Measurement is performed by a normal test while applying a rotation of m and twisting. The U% value is measured at any five points of the measurement sample, with three minutes of measurement being one measurement, and expressed as an average value.
【0038】D.ソフト性 得られた原糸を用いて布帛を作り、3段階の官能評価を
行った。○○はソフト性に優れている、△はPET/P
ET系バイメタル糸レベル、×はソフト性に欠ける。D. Softness A fabric was made using the obtained yarn, and a three-stage sensory evaluation was performed. ○○ is excellent in softness, △ is PET / P
ET type bimetal yarn level, x, lacks softness.
【0039】実施例1 固有粘度(IV)が1.44のホモPTTと固有粘度
(IV)が0.72のホモPTTをそれぞれ別々に溶融
し、紡糸温度260℃で図4に示す構造を有する12孔
の複合紡糸口金から複合比(重量%)50:50で吐出
し、紡糸速度1400m/分で引取り165デシテックス、
24フィラメントのサイドバイサイド型複合構造未延伸
糸(繊維断面は図2a)を得た。さらにホットロール−
熱板系延伸機(接糸長:20cm、表面粗度:3S)を
用い、ホットロール温度70℃、熱板温度145℃、延
伸倍率3.0倍で延伸して55デシテックス、24フィ
ラメント(単繊維繊度d:2.3デシテックス)の延伸
糸を得た。紡糸、延伸とも製糸性は良好であり、糸切れ
は発生しなかった。伸縮伸長率は141.2%、伸縮弾
性率は94.9%と優れた伸長回復性を示した。なお、
繊度変動率(U%)は0.3%と良好であり、品位に優
れた布帛を得ることができた。また、本原糸から得られ
た布帛は単糸繊度が2.3dtexと細いため、ソフト
性に大変優れていた。Example 1 A homo-PTT having an intrinsic viscosity (IV) of 1.44 and a homo-PTT having an intrinsic viscosity (IV) of 0.72 were separately melted, and had a structure shown in FIG. 4 at a spinning temperature of 260 ° C. The mixture is discharged from a 12-hole composite spinneret at a composite ratio (weight%) of 50:50, and is taken up at a spinning speed of 1400 m / min. 165 dtex.
A 24-filament unstretched yarn of side-by-side composite structure (fiber cross section is FIG. 2a) was obtained. Hot roll
Using a hot plate stretching machine (yarn length: 20 cm, surface roughness: 3S), the film was stretched at a hot roll temperature of 70 ° C., a hot plate temperature of 145 ° C., and a stretching ratio of 3.0 times to obtain 55 dtex and 24 filaments (single filament). A drawn yarn having a fiber fineness d: 2.3 dtex was obtained. Both spinning and drawing exhibited good spinnability, and no yarn breakage occurred. The elastic elongation was 141.2%, and the elastic modulus was 94.9%, showing excellent elongation recovery. In addition,
The fineness variation rate (U%) was as good as 0.3%, and a high quality cloth could be obtained. In addition, the fabric obtained from the original yarn was very excellent in softness since the single yarn fineness was as small as 2.3 dtex.
【0040】実施例2 固有粘度(IV)が1.27のホモPTTと固有粘度
(IV)が0.65のホモPTTの組み合わせとした以
外は実施例1と同様の方法で評価した。その結果、伸縮
伸長率は130%、伸縮弾性率は92%、繊度変動率
(U%)は0.4%であった。実施例2は口金直下のベ
ンディングも小さく、製糸性は良好であった。また、実
施例1には及ばないものの、優れた伸長回復性・ソフト
性を示し、品位の良好な布帛を得ることができた。Example 2 Evaluation was made in the same manner as in Example 1 except that a combination of a homo-PTT having an intrinsic viscosity (IV) of 1.27 and a homo-PTT having an intrinsic viscosity (IV) of 0.65 was used. As a result, the stretching elongation was 130%, the stretching elasticity was 92%, and the fineness variation (U%) was 0.4%. In Example 2, the bending immediately below the spinneret was small, and the spinning property was good. Further, although not superior to Example 1, it exhibited excellent elongation recovery properties and softness, and a high quality fabric was obtained.
【0041】比較例1 固有粘度(IV)が1.34のホモPTTと固有粘度
(IV)が0.86のホモPBTの組み合わせとした以
外は実施例1と同様の方法で評価した。伸縮伸長率は2
9.6%、伸縮弾性率は92.0%、繊度変動率(U
%)は0.2%で、布帛としたときの回復性、ソフト
性、品位は優れていたが伸長性に劣るものであった。Comparative Example 1 Evaluation was carried out in the same manner as in Example 1 except that a combination of homo-PTT having an intrinsic viscosity (IV) of 1.34 and homo-PBT having an intrinsic viscosity (IV) of 0.86 was used. The stretch rate is 2
9.6%, elastic modulus 92.0%, fineness variation (U
%) Was 0.2%, which was excellent in recoverability, softness, and quality as a fabric, but poor in elongation.
【0042】比較例2 固有粘度(IV)が1.80のホモPBTと固有粘度
(IV)が0.62のホモPTTの組み合わせとし、紡
糸温度270℃で紡糸、第1ホットロール温度85℃で
延伸した以外は実施例1と同様の方法で評価した。その
結果は伸縮伸長率が76.3%、伸縮弾性率は94.7
%、繊度変動率(U%)は0.2%であり、布帛とした
ときの回復性、ソフト性、品位は優れていたが、伸長性
に劣るものであった。Comparative Example 2 A combination of homo-PBT having an intrinsic viscosity (IV) of 1.80 and homo-PTT having an intrinsic viscosity (IV) of 0.62 was spun at a spinning temperature of 270 ° C. and at a first hot roll temperature of 85 ° C. Evaluation was performed in the same manner as in Example 1 except that the film was stretched. As a result, the stretch ratio was 76.3%, and the stretch modulus was 94.7%.
%, And the fineness variation (U%) was 0.2%, and although the recoverability, softness, and quality of the fabric were excellent, the stretchability was poor.
【0043】比較例3 固有粘度(IV)が1.18のホモPTTと固有粘度
(IV)が0.65のホモPPTの組み合わせとし、紡
糸温度260℃で紡糸し、実施例1と同様にして延伸糸
を得た。このポリマの組み合わせでは粘度差ΔIVが
0.53と低いため、伸縮伸長率が110%とやや低
く、伸縮弾性率が88%、繊度変動率(U%)が0.6
%であり、実施例1と比較するとやや劣るものであっ
た。Comparative Example 3 A combination of a homo PTT having an intrinsic viscosity (IV) of 1.18 and a homo PPT having an intrinsic viscosity (IV) of 0.65 was spun at a spinning temperature of 260 ° C. A drawn yarn was obtained. In this polymer combination, the viscosity difference ΔIV is as low as 0.53, so that the stretching and elongation is slightly lower at 110%, the stretching elasticity is 88%, and the fineness variation (U%) is 0.6.
%, Which was slightly inferior to Example 1.
【0044】比較例4 固有粘度(IV)が0.78のホモPETと固有粘度
(IV)が0.51のホモPETの組み合わせとし、紡
糸温度290℃とした以外は実施例1と同様の方法で評
価した結果を表1に示す。製糸性は比較的良好であった
が、伸縮伸長率1.8%、伸縮弾性率83.2%、繊度
変動率(U%)は1.0%であり、伸長回復性に劣るも
のであった。Comparative Example 4 A method similar to that of Example 1 except that a combination of a homo PET having an intrinsic viscosity (IV) of 0.78 and a homo PET having an intrinsic viscosity (IV) of 0.51 was used and the spinning temperature was 290 ° C. Table 1 shows the results of the evaluation. Although the yarn-forming properties were relatively good, the stretching elongation was 1.8%, the stretching elasticity was 83.2%, and the fineness variation (U%) was 1.0%, which was poor in elongation recovery. Was.
【0045】比較例5 固有粘度(IV)が1.18のホモPTTと固有粘度
(IV)が0.58のホモPTTを用いて実施例1と同
様の方法で延伸糸を得た。比較例5では低粘度成分のI
Vが低すぎるため、繊維形成能が乏しく、製糸性が不良
であった。また、得られた糸の特性も伸縮伸長率40
%、伸縮弾性率は89%、繊度変動率(U%)は2.1
%であり、伸長回復性、品位が劣り、ストレッチ素材と
してのポテンシャルに欠けるものであった。 比較例6 固有粘度(IV)が1.18のホモPTTと固有粘度
(IV)が0.88のホモPTTの組み合わせとし、口
金吐出孔の直上で高IVポリマに低IVポリマを横から
インサートする方式とした以外は実施例1と同様の方法
で評価した結果、伸縮伸長率は2.0%、伸縮弾性率は
87%、繊度変動率(U%)は0.8%、複合界面Rは
20μmであった。比較例6の製糸性は良好であった
が、捲縮発現能・伸長回復性に劣り、ストレッチ素材と
してのポテンシャルに欠けるものであった。Comparative Example 5 A drawn yarn was obtained in the same manner as in Example 1 using homo PTT having an intrinsic viscosity (IV) of 1.18 and homo PTT having an intrinsic viscosity (IV) of 0.58. In Comparative Example 5, the low viscosity component I
Since V was too low, the fiber-forming ability was poor, and the spinning property was poor. In addition, the properties of the obtained yarn also showed an expansion / contraction rate of 40%.
%, Stretch elasticity 89%, fineness variation (U%) 2.1
%, Poor elongation recovery and quality, and lacked the potential as a stretch material. Comparative Example 6 A combination of a homo-PTT having an intrinsic viscosity (IV) of 1.18 and a homo-PTT having an intrinsic viscosity (IV) of 0.88 was used, and a low-IV polymer was inserted from the side into a high-IV polymer immediately above a die discharge hole. As a result of evaluation in the same manner as in Example 1 except that the method was adopted, the stretching elongation was 2.0%, the stretching elasticity was 87%, the fineness variation (U%) was 0.8%, and the composite interface R was It was 20 μm. Comparative Example 6 had good yarn-making properties, but was inferior in crimp development ability and elongation recovery properties, and lacked the potential as a stretch material.
【0046】比較例7 固有粘度(IV)が1.61のホモPTTと固有粘度
(IV)が0.40のホモPTTの組み合わせとした以
外は実施例1と同様の方法で評価した結果を表1に示
す。比較例7のポリマ組み合わせでは口金直下でのベン
ディングがひどく、紡糸できなかった。Comparative Example 7 The results evaluated in the same manner as in Example 1 except that a combination of a homo-PTT having an intrinsic viscosity (IV) of 1.61 and a homo-PTT having an intrinsic viscosity (IV) of 0.40 were used. It is shown in FIG. With the polymer combination of Comparative Example 7, the bending immediately below the die was severe and spinning could not be performed.
【0047】比較例8 実施例1において吐出孔径の大きな口金を用いて紡糸し
たところ、口金背面圧は20kgとなった。その結果、
繊度変動率U%は3.6%となり、染色斑、シボ斑が発
生し、品位の悪いものとなってしまった。Comparative Example 8 When spinning was performed using the die having a large discharge hole diameter in Example 1, the back pressure of the die became 20 kg. as a result,
The fineness variation rate U% was 3.6%, and staining spots and grain spots occurred, resulting in poor quality.
【0048】比較例9 実施例1において、パックを変更して口金面深度を20
cmとしたところ、吐出面からチムニー面までの距離が
長くなり、冷却が不十分となってしまった。その結果、
U%は2.8%となり、品位が低下した。Comparative Example 9 In Example 1, the puck was changed to 20
cm, the distance from the ejection surface to the chimney surface was increased, resulting in insufficient cooling. as a result,
U% was 2.8%, degrading the quality.
【0049】比較例10 実施例1において、フィラメント数を12Fとする以外
は実施例1と同様にして、55デシテックス、12フィ
ラメント(単繊維繊度:4.6デシテックス)の延伸糸
を得た。得られた延伸糸はストレッチ性には優れていた
が、布帛としたときにソフト性に欠け、ゴワゴワした風
合いになってしまった。Comparative Example 10 A drawn yarn having 55 dtex and 12 filaments (single fiber fineness: 4.6 dtex) was obtained in the same manner as in Example 1 except that the number of filaments was changed to 12F. The obtained drawn yarn was excellent in stretchability, but lacked in softness when formed into a fabric, resulting in a rough texture.
【0050】比較例11 実施例1において、フィラメント数を60Fとする以外
は実施例1と同様にして、単繊維繊度が0.9デシテッ
クスのサイドバイサイド型複合構造の延伸糸を得ようと
したが、単繊維繊度が細すぎて、紡糸中に糸切れが多発
して糸を得ることができなかった。Comparative Example 11 In Example 1, a drawn yarn having a side-by-side composite structure having a single fiber fineness of 0.9 dtex was obtained in the same manner as in Example 1 except that the number of filaments was changed to 60F. Since the single fiber fineness was too small, yarn breakage frequently occurred during spinning, and a yarn could not be obtained.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【表2】 [Table 2]
【0053】[0053]
【発明の効果】本発明の高伸縮性ポリエステル系複合繊
維を用いることにより、従来問題となっていた織物拘束
下での伸長回復性を改善し、ストレッチ性、ソフト性に
優れた品位の布帛を得ることができる。As described above, by using the highly stretchable polyester-based composite fiber of the present invention, the stretch recovery property under the constraint of the woven fabric, which has been a problem in the past, is improved, and a high-quality fabric excellent in stretchability and softness can be obtained. Obtainable.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の繊維の繊維横断面における複合界面の
曲率半径Rを説明するためのモデル図である。FIG. 1 is a model diagram for explaining a radius of curvature R of a composite interface in a fiber cross section of a fiber of the present invention.
【図2】本発明の繊維の繊維横断面形状を示す図であ
る。FIG. 2 is a view showing a fiber cross-sectional shape of the fiber of the present invention.
【図3】本発明および本発明以外の繊維の沸騰水処理後
の応力−伸度曲線である。FIG. 3 is a stress-elongation curve after boiling water treatment of the present invention and fibers other than the present invention.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L041 BA02 BA05 BA10 BA32 BC17 BD13 CA08 DD01 DD04 4L045 AA05 BA03 BA21 BA36 BA50 BA57 BA60 CA25 DA42 DC02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L041 BA02 BA05 BA10 BA32 BC17 BD13 CA08 DD01 DD04 4L045 AA05 BA03 BA21 BA36 BA50 BA57 BA60 CA25 DA42 DC02
Claims (2)
イサイド型に貼り合わされた複合繊維において、2種類
のポリエステル重合体がいずれもポリトリメチレンテレ
フタレートを主体としたポリエステルであり、両成分の
固有粘度差が下記式を満たし、マルチフィラメント糸の
繊度変動率U%値が2%以下、伸縮伸長率が120%以
上、伸縮弾性率が90%以上であることを特徴とする単
繊維繊度1dtex以上3dtex以下の高伸縮性ポリ
エステル系複合繊維。高粘度側ポリマの固有粘度をIV
(H)、低粘度側のポリマ固有粘度をIV(L)とした
時に、両ポリマ間の固有粘度差をΔIVとすると、 1.20>ΔIV>0.6 IV(L)≧0.6 伸縮伸長率(%)=[(L1−L0)/L0]×100 伸縮弾性率(%)=[(L1−L2)/(L1−L0)]×
100 L0:原長560mmのカセに、3.53×10-3cN/dtexの
処理荷重をかけた状態で沸水処理15分、乾熱処理17
0℃×5分を行い、次に処理荷重を外し、1.76×10-3cN
/dtexの初荷重を30秒吊した時のカセ長 L1:初荷重を外し、定荷重0.09cN/dtexを30秒吊した
時のカセ長 L2:定荷重を外して2分後に再び初荷重1.76×10-3cN/
dtexを30秒吊した時のカセ長1. A composite fiber comprising two kinds of polyester polymers bonded in a side-by-side type, wherein each of the two kinds of polyester polymers is a polyester mainly composed of polytrimethylene terephthalate, and the intrinsic viscosity difference between the two components. Satisfies the following formula, and the fineness variation rate U% value of the multifilament yarn is 2% or less, the stretchable elongation is 120% or more, and the stretchable elastic modulus is 90% or more, wherein the single fiber fineness is 1 dtex or more and 3 dtex or less. Highly stretchable polyester composite fiber. IV of intrinsic viscosity of high viscosity polymer
(H) When the intrinsic viscosity of the polymer on the low viscosity side is IV (L) and the intrinsic viscosity difference between the two polymers is ΔIV, 1.20>ΔIV> 0.6 IV (L) ≧ 0.6 Elongation rate (%) = [(L1-L0) / L0] × 100 Stretch elastic modulus (%) = [(L1-L2) / (L1-L0)] ×
100 L0: 15 minutes of boiling water treatment and 17 of dry heat treatment with a processing load of 3.53 × 10 −3 cN / dtex applied to a 560 mm long scab.
Perform 0 ° C x 5 minutes, then remove the processing load, and 1.76 x 10-3 cN
Latch length when the initial load of / dtex is suspended for 30 seconds L1: Latch length when the initial load is removed and constant load of 0.09cN / dtex is suspended for 30 seconds L2: Initial load 1.76 again 2 minutes after the constant load is removed × 10 -3 cN /
Length of skewer when dtex is hung for 30 seconds
の曲率半径Rが単繊維繊度と下式の関係にあることを特
徴とする請求項1項記載の高伸縮性ポリエステル系複合
繊維。 曲率半径R(μm)≧10d0.5 d:単繊維繊度
(デシテックス)2. The highly stretchable polyester composite fiber according to claim 1, wherein the radius of curvature R of the composite interface between the two types of polyester polymers has the following relationship with the single fiber fineness. Curvature radius R (μm) ≧ 10d 0.5 d: single fiber fineness (decitex)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000279267A JP3582466B2 (en) | 2000-09-14 | 2000-09-14 | High stretch polyester composite fiber |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000279267A JP3582466B2 (en) | 2000-09-14 | 2000-09-14 | High stretch polyester composite fiber |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002088586A true JP2002088586A (en) | 2002-03-27 |
| JP3582466B2 JP3582466B2 (en) | 2004-10-27 |
Family
ID=18764293
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000279267A Expired - Fee Related JP3582466B2 (en) | 2000-09-14 | 2000-09-14 | High stretch polyester composite fiber |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3582466B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6673443B2 (en) | 2001-09-18 | 2004-01-06 | Asahi Kasei Kabushiki Kaisha | Polyester conjugate fiber pirn and method for producing same |
| US6689461B2 (en) | 2001-04-17 | 2004-02-10 | Asahi Kasei Kabushiki Kaisha | False twisted yarn of polyester composite fiber and method for production thereof |
| WO2004048650A1 (en) * | 2002-11-26 | 2004-06-10 | Kolon Industries, Inc | A high shrinkage side by side type composite filament and a method for manufacturing the same |
| US6824869B2 (en) | 2001-11-06 | 2004-11-30 | Asahi Kasei Fibers Corporation | Polyester type conjugate fiber package |
| KR100481296B1 (en) * | 2002-05-27 | 2005-04-07 | 주식회사 휴비스 | Polytrimethyleneterephtalate conjugated fiber and preparation thereof |
| WO2008032379A1 (en) * | 2006-09-14 | 2008-03-20 | Toray Industries, Inc. | Polyester fiber, woven knit fabric, car sheet and process for producing polyester fiber |
| US7579428B2 (en) | 2006-08-16 | 2009-08-25 | Eastman Chemical Company | Process for preparation of polyesters without solid state polymerization |
| CN108677253A (en) * | 2018-07-17 | 2018-10-19 | 北京中丽制机工程技术有限公司 | A kind of production method of composite elastic polyester fiber |
| CN110067040A (en) * | 2018-01-24 | 2019-07-30 | 东丽纤维研究所(中国)有限公司 | A kind of high strength elastic fiber and preparation method thereof and fabric |
| CN118696154A (en) * | 2022-01-05 | 2024-09-24 | 菲伯特克斯个人护理股份公司 | Nonwoven material comprising crimped multicomponent fibers |
-
2000
- 2000-09-14 JP JP2000279267A patent/JP3582466B2/en not_active Expired - Fee Related
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6689461B2 (en) | 2001-04-17 | 2004-02-10 | Asahi Kasei Kabushiki Kaisha | False twisted yarn of polyester composite fiber and method for production thereof |
| US6673443B2 (en) | 2001-09-18 | 2004-01-06 | Asahi Kasei Kabushiki Kaisha | Polyester conjugate fiber pirn and method for producing same |
| US6824869B2 (en) | 2001-11-06 | 2004-11-30 | Asahi Kasei Fibers Corporation | Polyester type conjugate fiber package |
| US6982118B2 (en) | 2001-11-06 | 2006-01-03 | Asahi Kasei Fibers Corporation | Polyester type conjugate fiber package |
| KR100481296B1 (en) * | 2002-05-27 | 2005-04-07 | 주식회사 휴비스 | Polytrimethyleneterephtalate conjugated fiber and preparation thereof |
| WO2004048650A1 (en) * | 2002-11-26 | 2004-06-10 | Kolon Industries, Inc | A high shrinkage side by side type composite filament and a method for manufacturing the same |
| US7579428B2 (en) | 2006-08-16 | 2009-08-25 | Eastman Chemical Company | Process for preparation of polyesters without solid state polymerization |
| WO2008032379A1 (en) * | 2006-09-14 | 2008-03-20 | Toray Industries, Inc. | Polyester fiber, woven knit fabric, car sheet and process for producing polyester fiber |
| CN110067040A (en) * | 2018-01-24 | 2019-07-30 | 东丽纤维研究所(中国)有限公司 | A kind of high strength elastic fiber and preparation method thereof and fabric |
| CN108677253A (en) * | 2018-07-17 | 2018-10-19 | 北京中丽制机工程技术有限公司 | A kind of production method of composite elastic polyester fiber |
| CN118696154A (en) * | 2022-01-05 | 2024-09-24 | 菲伯特克斯个人护理股份公司 | Nonwoven material comprising crimped multicomponent fibers |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3582466B2 (en) | 2004-10-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3485070B2 (en) | Highly crimpable polyester-based composite fiber, method for producing the same, and fabric | |
| JP3473890B2 (en) | Polyester composite fiber | |
| JP3582466B2 (en) | High stretch polyester composite fiber | |
| JP2011047068A (en) | Water-repelling polyester blended yarn | |
| JP3885468B2 (en) | Bulky polyester composite yarn, production method thereof and fabric | |
| JP4858038B2 (en) | Bulky polyester composite fiber yarn | |
| JP3692931B2 (en) | POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME | |
| JP2002180332A (en) | Polyester-based conjugated yarn, method for producing the same and fabric | |
| JPH11189938A (en) | Polypropylene terephthalate staple fiber and its production | |
| JP2001288621A (en) | Polyester-based conjugate fiber | |
| JP2001316923A (en) | Polyester-based stretchable lining fabric | |
| JP2002129433A (en) | Highly strechable polyester-based conjugated fiber | |
| JP2009144277A (en) | Composite yarn, woven/knitted fabric using the same, and method for producing the composite yarn | |
| JP2002061030A (en) | Method for producing polyester conjugate fiber | |
| JP2003082530A (en) | Polyester-based conjugate fiber and method for producing the same | |
| JP3506129B2 (en) | False twisted yarn and method for producing the same | |
| JP4385448B2 (en) | Composite crimped yarn, method for producing the same and fabric | |
| JP2007247107A (en) | Bulky polyester conjugate fiber | |
| JP2005113309A (en) | Modified cross-section polytrimethylene terephthalate fiber | |
| JP4639889B2 (en) | Polytrimethylene terephthalate extra fine yarn | |
| JP3061271B2 (en) | Polyester thick composite fiber yarn and method for producing the same | |
| JP2000136440A (en) | Latent crimp-expressing polyester fiber and its production | |
| JP2001089939A (en) | Latently highly crimpable polyester-based conjugate yarn | |
| JP2000248430A (en) | Latent crimp-expressing polyester fiber and production | |
| JP3693476B2 (en) | Entangled yarn suitable for the production of high resilience fabric |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040628 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040706 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040719 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 3582466 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |