JP2002013647A - Shaft sealing mechanism and gas turbine - Google Patents
Shaft sealing mechanism and gas turbineInfo
- Publication number
- JP2002013647A JP2002013647A JP2001032132A JP2001032132A JP2002013647A JP 2002013647 A JP2002013647 A JP 2002013647A JP 2001032132 A JP2001032132 A JP 2001032132A JP 2001032132 A JP2001032132 A JP 2001032132A JP 2002013647 A JP2002013647 A JP 2002013647A
- Authority
- JP
- Japan
- Prior art keywords
- thin plate
- pressure side
- pressure
- rotating shaft
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 124
- 238000007789 sealing Methods 0.000 title claims abstract description 36
- 230000002093 peripheral effect Effects 0.000 claims description 114
- 238000009826 distribution Methods 0.000 claims description 69
- 230000007423 decrease Effects 0.000 claims description 26
- 230000001154 acute effect Effects 0.000 claims description 16
- 238000009423 ventilation Methods 0.000 claims description 16
- 238000013459 approach Methods 0.000 claims description 11
- 238000005299 abrasion Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 238
- 238000007667 floating Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 16
- 239000000567 combustion gas Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000036316 preload Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガスタービン、蒸
気タービン、圧縮機、水車、冷凍機、ポンプなどの大型
流体機械の回転軸等に用いて好適な軸シール機構に関す
る。本発明はまた、高温高圧のガスをタービンに導いて
膨張させ、ガスの熱エネルギーを機械的な回転エネルギ
ーに変換して動力を発生させるガスタービンに関し、特
にその回転軸に適用される軸シール機構に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shaft seal mechanism suitable for use as a rotating shaft of a large fluid machine such as a gas turbine, a steam turbine, a compressor, a water turbine, a refrigerator, a pump, and the like. The present invention also relates to a gas turbine that guides a high-temperature and high-pressure gas to a turbine and expands the gas to convert the heat energy of the gas into mechanical rotational energy to generate power, and in particular, a shaft seal mechanism applied to a rotary shaft thereof. About.
【0002】[0002]
【従来の技術】ガスタービンにおいて、静翼と回転軸と
の間には、高圧側から低圧側に漏れる燃焼ガスの漏れ量
を低減するための軸シール機構が設けられている。この
軸シール機構としては、非接触型のラビリンスシールが
従来から幅広く使用されている。ところで、このラビリ
ンスシールは、回転過渡期の軸振動、或いは過渡的な熱
変形時にもフィン先端の隙間が接触しないようにフィン
先端の隙間をある程度大きくしなければならないため、
ガスの漏れ量が大きい。このようなラビリンスシールに
代え、漏れ量の低減を狙って開発されたシール材として
ブラシシールがある。2. Description of the Related Art In a gas turbine, a shaft seal mechanism is provided between a stationary blade and a rotating shaft to reduce the amount of combustion gas leaking from a high pressure side to a low pressure side. As this shaft seal mechanism, a non-contact labyrinth seal has been widely used conventionally. By the way, in this labyrinth seal, since the gap at the fin tip must be increased to some extent so that the gap at the fin tip does not come into contact even during shaft vibration during transient rotation or transient thermal deformation,
Gas leakage is large. Instead of such a labyrinth seal, there is a brush seal as a seal material developed to reduce the amount of leakage.
【0003】図16(a),(b)はこの種のブラシシ
ールの概略構成図である。同図において、符号1は回転
軸、符号2はケーシング、符号3は低圧側側板、符号4
は高圧側側板、符号5はろう付け部、符号6はワイヤで
ある。ワイヤ6は、回転軸1の振動、或いは熱変形によ
る偏心などを吸収できるように適度の剛性を有する線径
50〜100μmのフィラメントで構成され、ワイヤ6
間は隙間がないように幅3〜5mmの密集した束となって
いる。また、ワイヤ6は回転軸1の外周と鋭角をなすよ
うに回転方向に対して傾斜して取付けられている。ワイ
ヤ6の先端は回転軸1の外周に対して所定の予圧をもっ
て接触しており、この接触によって軸方向の漏れ量を低
減する構造となっている。FIGS. 16A and 16B are schematic diagrams of a brush seal of this type. In the figure, reference numeral 1 denotes a rotating shaft, reference numeral 2 denotes a casing, reference numeral 3 denotes a low-pressure side plate, and reference numeral 4
Is a high-pressure side plate, 5 is a brazing portion, and 6 is a wire. The wire 6 is composed of a filament having an appropriate rigidity and a wire diameter of 50 to 100 μm so as to absorb eccentricity due to vibration of the rotating shaft 1 or thermal deformation.
There is a dense bundle with a width of 3 to 5 mm so that there is no gap between them. The wire 6 is attached at an angle to the rotation direction so as to form an acute angle with the outer periphery of the rotating shaft 1. The distal end of the wire 6 is in contact with the outer periphery of the rotary shaft 1 with a predetermined preload, and the contact reduces the amount of leakage in the axial direction.
【0004】ワイヤ6は、回転軸1に対して接触摺動
し、雰囲気条件或いは周速によって発熱して赤熱状態に
なるため、使用条件に応じてインコネル、ハステロイな
どの耐高熱材が用いられている。また、ワイヤ6ととも
に回転軸1外周の摺動面も摩耗するため、回転軸1の摺
動面には耐摩耗材がコーティングされている。さらに、
ワイヤ6は回転軸1の軸方向の剛性が小さいので、低圧
側側板3の内径を回転軸1の外周とほぼ等しくすること
でワイヤ6の破損が防止されている。[0004] The wire 6 slides in contact with the rotating shaft 1 and generates heat under atmospheric conditions or peripheral speeds and becomes a red-hot state. I have. Since the sliding surface of the outer periphery of the rotary shaft 1 is worn together with the wire 6, the sliding surface of the rotary shaft 1 is coated with a wear-resistant material. further,
Since the wire 6 has a small rigidity in the axial direction of the rotary shaft 1, breakage of the wire 6 is prevented by making the inner diameter of the low-pressure side plate 3 substantially equal to the outer circumference of the rotary shaft 1.
【0005】また、この他にも、例えば図17に示すよ
うなリーフシール10が開発されてきている。このリー
フシール10は、同図に示すように、回転軸11の軸方
向に所定の幅寸法を有する平板状の薄板18を回転軸1
1の周方向に多層に配置した構造となっている。これら
薄板18は、その外周側基端のみがケーシング12内に
ろう付け(ろう付け部15)されており、回転軸11の
外周をシールすることによって回転軸11の周囲空間を
高圧側領域と低圧側領域とに分けている。また、薄板1
8の両側において、高圧側領域には高圧側側板14、低
圧側領域には低圧側側板13がそれぞれ圧力作用方向の
ガイド板として装着されている。In addition, a leaf seal 10 as shown in FIG. 17, for example, has been developed. As shown in FIG. 1, the leaf seal 10 includes a flat thin plate 18 having a predetermined width dimension in the axial direction of the rotary shaft 11.
1 are arranged in multiple layers in the circumferential direction. These thin plates 18 are brazed (brazed portions 15) only at the base end on the outer peripheral side in the casing 12. It is divided into side areas. In addition, thin plate 1
On both sides of 8, a high-pressure side plate 14 is mounted on the high-pressure side region, and a low-pressure side plate 13 is mounted on the low-pressure side region as a guide plate in the direction of pressure action.
【0006】薄板18は、板厚で決まる所定の剛性を回
転軸11の軸方向に持つように設計されている。また、
薄板18は回転軸11の回転方向に対して回転軸11の
周面となす角が鋭角となるようにケーシング12に取付
けられており、回転軸11の停止時には薄板18の先端
が所定の予圧で回転軸11に接触しているが、回転軸1
1の回転時には回転軸11が回転することで生じる動圧
効果によって薄板18の先端が浮上するため、薄板18
と回転軸11とが非接触状態となる。多層に配置した平
板状の各薄板18どうしの間には、僅かに隙間19が設
けられている。この隙間19は、シール径が十分に大き
いため、換言すれば回転軸11の径が十分に大きいため
に、外周側基端から内周側先端まで実質的にほぼ一定と
みなすことができる。The thin plate 18 is designed to have a predetermined rigidity determined by the thickness in the axial direction of the rotating shaft 11. Also,
The thin plate 18 is attached to the casing 12 so that an angle between the thin plate 18 and the peripheral surface of the rotary shaft 11 is acute with respect to the rotation direction of the rotary shaft 11. Although it is in contact with the rotating shaft 11, the rotating shaft 1
In the rotation of 1, the tip of the thin plate 18 floats due to the dynamic pressure effect generated by the rotation of the rotating shaft 11, so that the thin plate 18
And the rotating shaft 11 are in a non-contact state. A slight gap 19 is provided between the flat thin plates 18 arranged in multiple layers. Since the gap 19 has a sufficiently large seal diameter, in other words, the diameter of the rotating shaft 11 is sufficiently large, the gap 19 can be regarded as substantially constant from the outer peripheral base end to the inner peripheral end.
【0007】上記のように構成された軸シール機構にお
いては、回転軸11の軸方向に幅を有する薄板18が、
回転軸11の周方向に多層に配置されており、これら薄
板18が回転軸11の周方向に柔らかい可撓性を有し、
軸方向には剛性の高いシール機構を構成している。この
シール機構によれば、シール部材である各薄板18が回
転軸11の軸方向に平行配置されることにより、ケーシ
ング12に固定される外周側のろう付けは、回転軸11
の軸方向に強固なものとなる。これにより、従来のブラ
シシールに見られるケーシングからのワイヤ脱落のよう
に、薄板18がケーシング12から脱落するのを防止で
きるようになっている。In the shaft sealing mechanism configured as described above, the thin plate 18 having a width in the axial direction of the rotating shaft 11 is
It is arranged in multiple layers in the circumferential direction of the rotating shaft 11, and these thin plates 18 have soft flexibility in the circumferential direction of the rotating shaft 11,
A highly rigid sealing mechanism is formed in the axial direction. According to this sealing mechanism, the brazing on the outer peripheral side fixed to the casing 12 is performed by arranging the thin plates 18 as the sealing members in parallel to the axial direction of the rotating shaft 11.
In the axial direction. Thus, it is possible to prevent the thin plate 18 from falling off the casing 12 as in the case of a wire falling off the casing as seen in a conventional brush seal.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記説
明のブラシシールでは、次のような問題点がある。すな
わち、このブラシシールにおいては、ワイヤ6間からの
漏れと、ワイヤ6先端が回転軸1外周と接触する摺動面
からの漏れとが問題となるが、シール差圧がワイヤ6の
線径、低圧側側板3の配置等から決まる許容値を越える
と、ワイヤ6全体が低圧側に変形を生じて倒れ、ワイヤ
6と回転軸1との間が吹き抜け状態となってシール機能
を失ってしまう恐れがあるという問題である。However, the brush seal described above has the following problems. That is, in this brush seal, leakage from between the wires 6 and leakage from the sliding surface where the tip of the wire 6 is in contact with the outer periphery of the rotating shaft 1 poses a problem. If the allowable value determined by the arrangement of the low-pressure side plate 3 or the like is exceeded, the entire wire 6 may be deformed on the low-pressure side and fall down, and the space between the wire 6 and the rotating shaft 1 may be blown off, thereby losing the sealing function. The problem is that there is.
【0009】ブラシシールを構成するワイヤ6の剛性は
回転軸1の軸振れに対する追随性および回転軸1との適
正な予圧などで決められているが、ワイヤ6の線径を太
くするなどして剛性を上げるにも限界がある。したがっ
て、ワイヤ6の剛性に支配される回転軸1軸方向のシー
ル差圧は0.5MPa程度が限界で、大きな差圧をシールする
ことができない。また、ワイヤ6の線径は通常約50〜
100μmと非常に細く、回転軸1の周面と接触して摺
動することによりワイヤ6が破断して脱落する危険性が
あり、ガスタービンを長時間にわたって使用するには問
題があった。The stiffness of the wire 6 constituting the brush seal is determined by the followability of the rotating shaft 1 against the shaft runout and an appropriate preload with the rotating shaft 1, but by increasing the diameter of the wire 6 or the like. There is a limit in increasing rigidity. Therefore, the seal differential pressure in the direction of one axis of the rotating shaft, which is governed by the rigidity of the wire 6, is limited to about 0.5 MPa, and a large differential pressure cannot be sealed. The wire diameter of the wire 6 is usually about 50 to
It is extremely thin, 100 μm, and there is a danger that the wire 6 will break and fall off by sliding in contact with the peripheral surface of the rotating shaft 1, and there is a problem in using the gas turbine for a long time.
【0010】また、ワイヤ6先端からのガス漏れ量は、
ワイヤ6が回転軸1の周面に接触して摺動するため、ラ
ビリンスシールなどと比べて飛躍的に小さいが、ワイヤ
6先端間からの漏れ量を安定して小さく保持することが
難しいという問題もある。また、ワイヤ6と回転軸1の
周面とが接触して摺動するので、回転軸1の表面には耐
摩耗材のコーティングが必要である。しかしながら、大
径の回転軸1の周面に対して長時間の使用に耐える耐摩
耗材のコーティングを形成する技術が確立されておら
ず、ワイヤ6および回転軸1の摩耗が大きいため、ブラ
シシールの寿命が短く交換頻度が高い。The amount of gas leakage from the tip of the wire 6 is
Since the wire 6 comes into contact with the peripheral surface of the rotating shaft 1 and slides, it is significantly smaller than a labyrinth seal or the like, but it is difficult to stably keep the amount of leakage from between the distal ends of the wire 6 small. There is also. Further, since the wire 6 and the peripheral surface of the rotary shaft 1 come into contact with each other and slide, the surface of the rotary shaft 1 needs to be coated with a wear-resistant material. However, a technique for forming a coating of a wear-resistant material that can withstand long-time use on the peripheral surface of the large-diameter rotary shaft 1 has not been established, and the wear of the wire 6 and the rotary shaft 1 is large. Short life and high replacement frequency.
【0011】また、上記説明のリーフシール10におい
ても、次のような問題点がある。このリーフシール10
は、回転軸11の回転によって生じる動圧効果によって
薄板18の先端が回転軸11の表面から浮上して回転軸
11との接触を回避し、過大な発熱及び摩耗を防止でき
る構造となっている。しかし、低圧側側板13及び薄板
18間の隙間と、高圧側側板14及び薄板18間の隙間
とが等しくなるように低圧側側板13ならびに高圧側側
板14を設けた場合、高圧側から加圧された際に、薄板
18に対してこれを回転軸11の半径方向中心に向かっ
て変形させるような圧力荷重が加わることが確認されて
おり、動圧効果の小さい起動時等には非接触状態をつく
ることが困難となっていた。The above-described leaf seal 10 also has the following problems. This leaf seal 10
Has a structure in which the tip of the thin plate 18 floats from the surface of the rotating shaft 11 due to the dynamic pressure effect generated by the rotation of the rotating shaft 11 to avoid contact with the rotating shaft 11 and to prevent excessive heat generation and wear. . However, when the low-pressure side plate 13 and the high-pressure side plate 14 are provided such that the gap between the low-pressure side plate 13 and the thin plate 18 is equal to the gap between the high-pressure side plate 14 and the thin plate 18, pressure is applied from the high-pressure side. It has been confirmed that a pressure load is applied to the thin plate 18 so as to deform the thin plate 18 toward the center in the radial direction of the rotating shaft 11. It was difficult to make.
【0012】したがって、以上説明のブラシシール及び
リーフシールのいずれにおいても、ガス漏れ量低減と耐
摩耗性向上との両方を達成するには更なる改良を必要と
していた。Therefore, in both the brush seal and the leaf seal described above, further improvement is required to achieve both a reduction in gas leakage and an improvement in wear resistance.
【0013】本発明は、上記事情に鑑みてなされたもの
であり、高圧側から低圧側へのガスの漏れ量を低減する
とともに耐摩耗性に優れた軸シール機構及び、これを備
えたガスタービンの提供を目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a shaft seal mechanism which reduces the amount of gas leakage from a high pressure side to a low pressure side and has excellent wear resistance, and a gas turbine having the same. The purpose is to provide.
【0014】[0014]
【課題を解決するための手段】本発明は、上記課題を解
決するために以下の手段を採用した。すなわち、本発明
の請求項1記載の軸シール機構は、回転軸の軸方向に幅
を有して先端が前記回転軸の周面に摺動し、互いに隙間
を空けて外周側基端がケーシング側に固定された複数の
可撓性を有する薄板を、前記回転軸の周方向に該回転軸
の外周をシール可能に多重に備え、前記薄板と前記回転
軸の周面とが鋭角をなし、前記薄板の前記回転軸方向両
側にそれぞれ低圧側側板及び高圧側側板が設けられた軸
シール機構であり、前記薄板をその幅方向に垂直な仮想
平面で断面視し、該薄板の前記回転軸に面した面を下
面、その裏側を上面とし、該薄板に対して前記高圧側側
板から前記低圧側側板に向かうガス圧が加わった場合
に、該薄板の前記断面に沿った任意位置における前記上
面に加わるガス圧よりも前記下面に加わるガス圧の方を
高くするガス圧調整手段が設けられていることを特徴と
する。The present invention employs the following means in order to solve the above-mentioned problems. That is, the shaft sealing mechanism according to claim 1 of the present invention has a width in the axial direction of the rotating shaft, a leading end sliding on the peripheral surface of the rotating shaft, a gap between each other, and a base end on the outer peripheral side being a casing. A plurality of flexible thin plates fixed to the side are provided in a multiplex manner so as to seal the outer periphery of the rotating shaft in the circumferential direction of the rotating shaft, and the thin plate and the peripheral surface of the rotating shaft form an acute angle, A low-pressure side plate and a high-pressure side plate are provided on both sides of the thin plate in the rotation axis direction, respectively.A cross-sectional view of the thin plate in an imaginary plane perpendicular to the width direction of the thin plate is provided on the rotation axis of the thin plate. The facing surface is the lower surface, the back side is the upper surface, and when gas pressure is applied to the thin plate from the high-pressure side plate toward the low-pressure side plate, the upper surface at an arbitrary position along the cross section of the thin plate The gas pressure applied to the lower surface is higher than the gas pressure applied. Wherein the gas pressure adjusting means is provided that.
【0015】請求項2記載の軸シール機構は、回転軸の
軸方向に幅を有して先端が前記回転軸の周面に摺動し、
互いに隙間を空けて外周側基端がケーシング側に固定さ
れた複数の可撓性を有する薄板を、前記回転軸の周方向
に該回転軸の外周をシール可能に多重に備え、前記薄板
と前記回転軸の周面とが鋭角をなし、前記薄板の前記回
転軸方向両側にそれぞれ低圧側側板及び高圧側側板が設
けられた軸シール機構であり、前記高圧側側板から前記
低圧側側板に向かうガス圧が前記薄板に加わった場合
に、該薄板の上下面に対して、前記先端側でかつ前記高
圧側側板の側に位置する角部で最もガス圧が高く、かつ
対角に向かって徐々にガス圧が弱まるガス圧分布を形成
するガス圧調整手段が設けられていることを特徴とす
る。According to a second aspect of the present invention, the shaft sealing mechanism has a width in the axial direction of the rotating shaft, and a tip slides on a peripheral surface of the rotating shaft.
A plurality of flexible thin plates whose outer peripheral base ends are fixed to the casing side with a gap therebetween are provided in a multiplex manner so as to seal the outer periphery of the rotating shaft in a circumferential direction of the rotating shaft, and the thin plate and the A shaft sealing mechanism in which a low-pressure side plate and a high-pressure side plate are provided on both sides of the thin plate in the rotation axis direction at an acute angle with the peripheral surface of the rotating shaft, and a gas flowing from the high-pressure side plate to the low-pressure side plate. When the pressure is applied to the thin plate, the gas pressure is highest at the corner located on the tip side and on the side of the high-pressure side plate with respect to the upper and lower surfaces of the thin plate, and gradually toward the diagonal. Gas pressure adjusting means for forming a gas pressure distribution in which the gas pressure is weakened is provided.
【0016】上記請求項1または2記載の軸シール機構
によれば、ガス圧調整手段を設けたことで、薄板をその
幅方向に垂直な仮想平面で断面視し、該薄板の回転軸に
面した面を下面、その裏側を上面とし、該薄板に対して
高圧側側板から低圧側側板に向かうガス圧が加わった場
合に、該薄板の前記断面に沿った任意位置における前記
上面に加わるガス圧よりも前記下面に加わるガス圧の方
が高くなるので、薄板先端が浮上して回転軸と非接触状
態となる。According to the shaft sealing mechanism of the first or second aspect of the present invention, by providing the gas pressure adjusting means, the thin plate is viewed in cross section on an imaginary plane perpendicular to the width direction of the thin plate, and the thin plate is in contact with the rotation axis of the thin plate. When the gas pressure directed from the high-pressure side plate to the low-pressure side plate is applied to the thin plate, the gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate Since the gas pressure applied to the lower surface is higher than that of the lower surface, the tip of the thin plate floats and comes into a non-contact state with the rotating shaft.
【0017】これについて詳しく説明すると、高圧側か
ら低圧側に向かって流れるガスは、回転軸周面と薄板先
端との間,ならびに各薄板の上下面に沿って流れる。こ
のとき、各薄板の上下面に沿って流れるガスは、高圧側
側板と回転軸周面との間から流入し,対角に向かって広
がりをもって流れ、同時に該薄板の上下面に垂直に加わ
るガス圧は、前記先端部分に近いほど大きく、かつ外周
側基端に向かうほど小さくなる三角分布形状となる。こ
の上下面それぞれの圧力分布形状は互いに略同じものと
なるが、各薄板が回転軸の周面に対して鋭角をなすよう
に斜めに配置されているので、これら上下面における各
圧力分布の相対位置がずれており、薄板の外周基端側か
ら先端側に向かう任意点における上下面のガス圧を比較
した場合、両者で差が生じることとなる。More specifically, the gas flowing from the high pressure side to the low pressure side flows between the peripheral surface of the rotating shaft and the tip of the thin plate, and along the upper and lower surfaces of each thin plate. At this time, the gas flowing along the upper and lower surfaces of each thin plate flows from between the high-pressure side plate and the peripheral surface of the rotating shaft, flows while spreading diagonally, and simultaneously applies vertically to the upper and lower surfaces of the thin plate. The pressure has a triangular distribution shape in which the pressure increases as it approaches the distal end portion and decreases as it approaches the outer peripheral base end. Although the pressure distribution shapes of the upper and lower surfaces are substantially the same as each other, since the thin plates are arranged obliquely so as to form an acute angle with respect to the peripheral surface of the rotating shaft, the relative pressure distribution on the upper and lower surfaces is relatively small. When the gas pressures of the upper and lower surfaces at an arbitrary point from the outer peripheral base end side to the distal end side of the thin plate are compared with each other, a difference occurs between the two.
【0018】つまり、下面に加わるガス圧(これをFb
とする)の方が上面に加わるガス圧(これをFaとす
る)よりも高くなるので、薄板を回転軸より浮かせるよ
うに変形させる方向に作用する。このとき、薄板の先端
近傍部分では逆となり、上面にのみガス圧が加わる(薄
板の最先端部分を、回転軸周面に対して面接触するよう
に斜めに切り取った場合、下面に相当する部分がなくな
るので。)が、この力は、回転軸周面と薄板先端との間
を流れるガスのガス圧が、薄板先端を回転軸周面から浮
かせる方向に作用(これをFcとする)して打ち消すの
で、薄板先端を回転軸に押さえ込もうとする力を生じさ
せない。したがって、薄板に加わるガス圧による圧力荷
重は、(Fb+Fc)>Faとなるので、薄板が回転軸
周面より浮くようにこれを変形させることが可能とな
る。That is, the gas pressure applied to the lower surface (this is referred to as Fb
) Is higher than the gas pressure applied to the upper surface (this is referred to as Fa), and acts in a direction to deform the thin plate so as to float from the rotation shaft. At this time, the gas pressure is applied only to the upper surface, and the gas pressure is applied only to the upper surface (the portion corresponding to the lower surface when the foremost portion of the thin plate is cut obliquely so as to make surface contact with the rotating shaft peripheral surface). However, this force causes the gas pressure of the gas flowing between the peripheral surface of the rotating shaft and the distal end of the thin plate to act in a direction in which the distal end of the thin plate floats from the peripheral surface of the rotating shaft (this is referred to as Fc). Since it counteracts, no force is exerted to press the thin plate tip against the rotating shaft. Therefore, the pressure load due to the gas pressure applied to the thin plate is (Fb + Fc)> Fa, so that the thin plate can be deformed so as to float above the rotating shaft peripheral surface.
【0019】この他、従来のブラシシールのワイヤと比
較した場合、ケーシングに対する固定部の大きさが比較
的大きく取れるので、薄板をケーシングに対して強固に
固定することもできるようになる。また、薄板の先端
は、回転軸の軸方向では剛性が高くてかつ回転軸の周方
向では柔らかくなっているので、差圧方向(軸方向)へ
の変形を起こし難くなってシール差圧の許容値が引き上
げられることに加えて、回転軸の振動に際して薄板と回
転軸との接触が緩和されるようになっている。In addition, when compared with a conventional brush seal wire, the size of the fixing portion for the casing can be relatively large, so that the thin plate can be firmly fixed to the casing. In addition, the tip of the thin plate has high rigidity in the axial direction of the rotating shaft and is soft in the circumferential direction of the rotating shaft, so that deformation in the differential pressure direction (axial direction) is unlikely to occur, and the seal differential pressure is allowed. In addition to increasing the value, the contact between the thin plate and the rotating shaft during the vibration of the rotating shaft is reduced.
【0020】請求項3記載の軸シール機構は、請求項1
または2記載の軸シール機構において、前記ガス圧調整
手段が、前記薄板と前記低圧側側板との間の隙間を、前
記薄板と前記高圧側側板との間の隙間よりも大きくする
隙間寸法調節であることを特徴とする。The shaft seal mechanism according to the third aspect is the first aspect.
Or in the shaft seal mechanism according to 2, wherein the gas pressure adjusting means adjusts a gap between the thin plate and the low-pressure side plate to be larger than a gap between the thin plate and the high-pressure side plate. There is a feature.
【0021】上記請求項3記載の軸シール機構によれ
ば、高圧側から加圧された際に、薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、薄板
と低圧側側板との間の隙間を、薄板と高圧側側板との間
の隙間よりも大きくして広く空間を空けておくことで、
高圧側側板と回転軸周面との間から流入したガスは薄板
の上下面に沿って対角に向かい広く流れると同時に,外
周側基端には低圧の領域が広がる。これにより、薄板の
幅方向に垂直な断面に沿った任意位置で、該薄板の上下
面に加わるガス圧分布を、薄板先端側から外周側基端に
向かって徐々に小さくなる三角形状とすることができ
る。したがって、前述の理由により、薄板の上下面にお
ける圧力差を生じせしめて、該薄板を回転軸周面より浮
くように変形させて非接触状態を形成することができ
る。According to the shaft seal mechanism of the third aspect, when the gas is pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. By making the gap between the low-pressure side plate larger than the gap between the thin plate and the high-pressure side plate and leaving a wide space,
Gas flowing from between the high-pressure side plate and the peripheral surface of the rotating shaft flows widely diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low-pressure region spreads at the outer peripheral base end. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0022】請求項4記載の軸シール機構は、請求項1
または2記載の軸シール機構において、前記ガス圧調整
手段が、前記低圧側側板の前記回転軸半径方向の長さ寸
法を前記高圧側側板の前記回転軸半径方向の長さ寸法よ
りも短くする側板寸法調節であることを特徴とする。According to the fourth aspect of the present invention, there is provided a shaft sealing mechanism.
Or the shaft seal mechanism according to 2, wherein the gas pressure adjusting means makes the length of the low-pressure side plate in the radial direction of the rotating shaft shorter than the length of the high-pressure side plate in the radial direction of the rotating shaft. It is characterized by dimensional adjustment.
【0023】上記請求項4記載の軸シール機構によれ
ば、高圧側から加圧された際に,薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、低圧
側側板の回転軸半径方向の長さ寸法を高圧側側板の回転
軸半径方向の長さ寸法よりも短くして低圧側に広い空間
を空けておくことで、高圧側側板と回転軸周面との間か
ら流入したガスは,薄板の上下面に沿って対角に向かっ
て広く流れると同時に,外周側基端に低圧の領域が広が
る。これにより、薄板の幅方向に垂直な断面に沿った任
意位置で、該薄板の上下面に加わるガス圧分布を、薄板
先端側から外周側基端に向かって徐々に小さくなる三角
形状とすることができる。したがって、前述の理由によ
り、薄板の上下面における圧力差を生じせしめて、該薄
板を回転軸周面より浮くように変形させて非接触状態を
形成することができる。According to the shaft seal mechanism of the fourth aspect, when the gas is pressurized from the high pressure side, the gas passes through the thin plate and tends to flow from the high pressure side to the low pressure side. By making the length of the side plate in the radial direction of the rotating shaft shorter than the length of the high-pressure side plate in the radial direction of the rotating shaft and leaving a wide space on the low-pressure side, the space between the high-pressure side plate and the peripheral surface of the rotating shaft is reduced. The gas that has flowed in from between flows broadly diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low pressure region spreads to the outer peripheral base. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0024】請求項5記載の軸シール機構は、請求項1
または2記載の軸シール機構において、前記ガス圧調整
手段が、前記薄板の高圧側に配されてかつ前記回転軸方
向に可撓性を有する可撓板であることを特徴とする。According to a fifth aspect of the present invention, there is provided a shaft sealing mechanism.
3. The shaft seal mechanism according to claim 2, wherein the gas pressure adjusting means is a flexible plate disposed on the high pressure side of the thin plate and having flexibility in the rotation axis direction.
【0025】上記請求項5記載の軸シール機構によれ
ば、高圧側から加圧された際に,薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、回転
軸方向に可撓性を有する可撓板を薄板の高圧側に設ける
(例えば、高圧側側板を回転軸方向に可撓性を有する薄
肉板状としたり、もしくは、高圧側側板と薄板との間の
隙間に回転軸軸方向に可撓性を有する薄肉板を設けるな
ど。)と、高圧側のガス圧による可撓板の撓みによっ
て,薄板と高圧側側板との間の隙間が狭まり,薄板と低
圧側側板との間の隙間より小さくなる。したがって,高
圧側側板と回転軸周面との間から流入したガスは,薄板
の上下面に沿って対角に向かって広く流れると同時に,
外周側基端に低圧の領域が広がる。これにより、薄板の
幅方向に垂直な断面に沿った任意位置で、該薄板の上下
面に加わるガス圧分布を、薄板先端側から外周側基端に
向かって徐々に小さくなる三角形状とすることができ
る。したがって、前述の理由により、薄板の上下面にお
ける圧力差を生じせしめて、該薄板を回転軸周面より浮
くように変形させて非接触状態を形成することができ
る。According to the shaft seal mechanism of the fifth aspect, when the gas is pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. A flexible plate having flexibility in the direction is provided on the high-pressure side of the thin plate (for example, the high-pressure side plate is formed into a thin plate shape having flexibility in the rotation axis direction, or a thin plate between the high-pressure side plate and the thin plate is provided. A thin plate having flexibility in the axial direction of the rotating shaft is provided in the gap, and the flexible plate is bent by the gas pressure on the high pressure side, so that the gap between the thin plate and the high pressure side plate is narrowed. It becomes smaller than the gap between the side plates. Therefore, gas flowing from between the high-pressure side plate and the peripheral surface of the rotating shaft flows widely diagonally along the upper and lower surfaces of the thin plate, and at the same time,
A low pressure region spreads to the outer peripheral base end. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0026】請求項6記載の軸シール機構は、請求項1
または2記載の軸シール機構において、前記ガス圧調整
手段が、前記薄板の高圧側に配されて前記回転軸方向に
可撓性を有し、かつその全周で2ヶ所以上のスリットが
形成されているスリット付き可撓板であることを特徴と
する。[0026] The shaft sealing mechanism according to the sixth aspect is the first aspect.
Or the shaft seal mechanism according to 2, wherein the gas pressure adjusting means is arranged on the high pressure side of the thin plate, has flexibility in the rotation axis direction, and has two or more slits formed in the entire circumference thereof. It is a flexible plate with a slit.
【0027】上記請求項6記載の軸シール機構によれ
ば、高圧側から加圧された際に,薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、回転
軸方向に可撓性を有し、かつその全周で2ヶ所以上のス
リットが形成されているスリット付き可撓板を薄板の高
圧側に設ける(例えば、高圧側側板を、全周で2ヶ所以
上のスリット形状が形成されてかつ回転軸方向に可撓性
を有する薄板としたり、もしくは、高圧側側板と薄板と
の間に回転軸方向に可撓性を有してかつ全周で2ヶ所以
上のスリットが形成された薄肉板を配置すなど。)と、
高圧側のガス圧による可撓板の撓みによって,薄板と高
圧側側板との間の隙間が狭まり,薄板と低圧側側板との
間の隙間より小さくなる。したがって,高圧側側板と回
転軸周面との間から流入したガスは,薄板の上下面に沿
って対角に向かって広く流れると同時に,外周側基端に
低圧の領域が広がる。これにより、薄板の幅方向に垂直
な断面に沿った任意位置で、該薄板の上下面に加わるガ
ス圧分布を、薄板先端側から外周側基端に向かって徐々
に小さくなる三角形状とすることができる。したがっ
て、前述の理由により、薄板の上下面における圧力差を
生じせしめて、該薄板を回転軸周面より浮くように変形
させて非接触状態を形成することができる。According to the shaft seal mechanism of the sixth aspect, when the gas is pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. A flexible plate with slits having flexibility in the direction and having two or more slits formed on the entire circumference is provided on the high-pressure side of the thin plate (for example, two or more high-pressure side plates are provided on the entire circumference). Or a thin plate having a slit shape and having flexibility in the direction of the rotation axis, or having flexibility in the direction of the rotation axis between the high-pressure side plate and the thin plate and having two or more locations in the entire circumference. A thin plate with slits is formed.)
The gap between the thin plate and the high-pressure side plate is narrowed by the bending of the flexible plate due to the high-pressure gas pressure, and is smaller than the gap between the thin plate and the low-pressure side plate. Therefore, the gas flowing from between the high-pressure side plate and the peripheral surface of the rotary shaft widely flows diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low-pressure region spreads to the outer peripheral base end. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0028】請求項7記載の軸シール機構は、請求項1
または2記載の軸シール機構において、前記ガス圧調整
手段が、前記回転軸の軸線方向に前記低圧側側板を貫く
複数の通風孔であることを特徴とする。[0028] The shaft sealing mechanism according to the seventh aspect is the first aspect.
3. The shaft seal mechanism according to claim 2, wherein the gas pressure adjusting means is a plurality of ventilation holes penetrating the low-pressure side plate in the axial direction of the rotating shaft.
【0029】上記請求項7記載の軸シール機構によれ
ば、高圧側から加圧された際に、薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、回転
軸の軸線方向に低圧側側板を貫く複数の通風孔を該低圧
側側板に設けておく(例えば、低圧側側板に対して回転
軸軸方向に向かって形成された複数の導圧孔を設けた
り、もしくは、低圧側側板の材質として多孔質材を採用
するなど。)ことで、高圧側側板と回転軸周面との間か
ら流入したガスは,薄板の上下面に沿って対角に向かっ
て広く流れると同時に,外周側基端に低圧の領域が広が
る。これにより、薄板の幅方向に垂直な断面に沿った任
意位置で、該薄板の上下面に加わるガス圧分布を、薄板
先端側から外周側基端に向かって徐々に小さくなる三角
形状とすることができる。したがって、前述の理由によ
り、薄板の上下面における圧力差を生じせしめて、該薄
板を回転軸周面より浮くように変形させて非接触状態を
形成することができる。According to the shaft seal mechanism of the present invention, when the gas is pressurized from the high pressure side, the gas passes through the thin plate and tends to flow from the high pressure side to the low pressure side. A plurality of ventilation holes that penetrate the low-pressure side plate in the axial direction of the low-pressure side plate are provided in the low-pressure side plate (for example, a plurality of pressure guiding holes formed in the low-pressure side plate toward the rotation axis axis direction, Alternatively, a porous material is used as the material of the low-pressure side plate, so that the gas flowing from between the high-pressure side plate and the peripheral surface of the rotating shaft spreads diagonally along the upper and lower surfaces of the thin plate. At the same time as the flow, a low pressure area spreads to the base end on the outer peripheral side. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0030】請求項8記載の軸シール機構は、回転軸の
軸方向に幅を有して先端が前記回転軸の周面に摺動し、
互いに隙間を空けて外周側基端がケーシング側に固定さ
れた複数の可撓性を有する薄板を、前記回転軸の周方向
に該回転軸の外周をシール可能に多重に備え、前記薄板
と前記回転軸の周面とが鋭角をなす軸シール機構であ
り、前記薄板の、前記軸方向の低圧側に、高圧側から低
圧側に向かうガスの通過を許可するガス通過空間が形成
されていることを特徴とする。In the shaft seal mechanism according to the present invention, the tip has a width in the axial direction of the rotating shaft, and the tip slides on the peripheral surface of the rotating shaft.
A plurality of flexible thin plates whose outer peripheral base ends are fixed to the casing side with a gap therebetween are provided in a multiplex manner so as to seal the outer periphery of the rotating shaft in a circumferential direction of the rotating shaft, and the thin plate and the A shaft sealing mechanism that forms an acute angle with the peripheral surface of the rotating shaft, and a gas passage space that allows the passage of gas from the high pressure side to the low pressure side is formed on the low pressure side in the axial direction of the thin plate. It is characterized by.
【0031】上記請求項8記載の軸シール機構によれ
ば、高圧側から加圧された際に、薄板を通過してガスが
高圧側から低圧側へ流れようとするが、このとき、薄板
の軸方向の低圧側に、高圧側から低圧側に向かうガスの
通過を許可するガス通過空間が形成されていることで、
高圧側側板と回転軸周面との間から流入したガスは,薄
板の上下面に沿って対角に向かって広く流れると同時
に,外周側基端に低圧の領域が広がる。これにより、薄
板の幅方向に垂直な断面に沿った任意位置で、該薄板の
上下面に加わるガス圧分布を、薄板先端側から外周側基
端に向かって徐々に小さくなる三角形状とすることがで
きる。したがって、前述の理由により、薄板の上下面に
おける圧力差を生じせしめて、該薄板を回転軸周面より
浮くように変形させて非接触状態を形成することができ
る。According to the shaft seal mechanism of the eighth aspect, when the gas is pressurized from the high pressure side, the gas tends to flow from the high pressure side to the low pressure side through the thin plate. By forming a gas passage space that allows the passage of gas from the high pressure side to the low pressure side on the low pressure side in the axial direction,
The gas flowing from between the high-pressure side plate and the peripheral surface of the rotating shaft widely flows diagonally along the upper and lower surfaces of the thin plate, and at the same time, a low-pressure region spreads to the base end on the outer peripheral side. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate, the gas pressure distribution applied to the upper and lower surfaces of the thin plate is formed into a triangular shape that gradually decreases from the leading end side of the thin plate toward the base end on the outer peripheral side. Can be. Therefore, for the above-mentioned reason, it is possible to generate a pressure difference between the upper and lower surfaces of the thin plate and deform the thin plate so as to float above the peripheral surface of the rotating shaft, thereby forming a non-contact state.
【0032】請求項9記載の軸シール機構は、請求項3
または5もしくは6のいずれかに記載の軸シール機構に
おいて、前記低圧側側板と前記薄板との間には、該低圧
側側板に向かって前記薄板が接近しようとした場合に、
該薄板を支持して、これら低圧側側板及び薄板間の隙間
寸法を維持する隙間寸法調整手段が設けられていること
を特徴とする。According to the ninth aspect of the present invention, there is provided a shaft seal mechanism according to the third aspect.
Or in the shaft seal mechanism according to any one of 5 or 6, when the thin plate approaches the low-pressure side plate between the low-pressure side plate and the thin plate,
A gap size adjusting means for supporting the thin plate and maintaining a gap size between the low-pressure side plate and the thin plate is provided.
【0033】請求項10記載の軸シール機構は、請求項
9記載の軸シール機構において、前記隙間寸法調整手段
が、前記薄板側に向かって突出するように前記低圧側側
板の側に設けられた第1の段形状部であり、該第1の段
形状部が、前記低圧側側板に沿って前記回転軸周りの環
状をなしていることを特徴とする。According to a tenth aspect of the present invention, in the shaft seal mechanism of the ninth aspect, the gap dimension adjusting means is provided on the side of the low-pressure side plate so as to protrude toward the thin plate side. A first step-shaped portion, wherein the first step-shaped portion forms an annular shape around the rotation axis along the low-pressure side plate.
【0034】請求項11記載の軸シール機構は、請求項
10記載の軸シール機構において、前記第1の段形状部
には、前記環状の内周側及び外周側の空間を連通させる
通気孔が形成されていることを特徴とする。The shaft seal mechanism according to an eleventh aspect of the present invention is the shaft seal mechanism according to the tenth aspect, wherein the first step-shaped portion is provided with a ventilation hole that communicates the annular inner and outer peripheral spaces. It is characterized by being formed.
【0035】請求項12記載の軸シール機構は、請求項
9記載の軸シール機構において、前記隙間寸法調整手段
は、前記薄板側に向かって突出するように前記低圧側側
板の側に設けられた第2の段形状部であり、該第2の段
形状部が、互いに間隔を置いた状態で、前記低圧側側板
に沿って前記回転軸周りの環状をなすように間欠配置さ
れた複数枚の環状分割板からなることを特徴とする。According to a twelfth aspect of the present invention, in the shaft seal mechanism of the ninth aspect, the gap dimension adjusting means is provided on the side of the low-pressure side plate so as to protrude toward the thin plate side. A plurality of second step-shaped portions, wherein the second step-shaped portions are intermittently arranged so as to form an annular shape around the rotation axis along the low-pressure side plate while being spaced apart from each other; It is characterized by comprising an annular split plate.
【0036】請求項13記載の軸シール機構は、請求項
10〜12のいずれかに記載の軸シール機構において、
前記第1または第2の段形状部が、前記回転軸を軸心と
する同心円状に複数段が設けられていることを特徴とす
る。A shaft seal mechanism according to a thirteenth aspect is the shaft seal mechanism according to any one of the tenth to twelfth aspects,
It is characterized in that the first or second step-shaped portion is provided with a plurality of steps concentrically with the rotation axis as an axis.
【0037】請求項14記載の軸シール機構は、請求項
9記載の軸シール機構において、前記隙間寸法調整手段
が、前記薄板側に向かって突出するように前記低圧側側
板の側に設けられた第3の段形状部であり、該第3の段
形状部が、前記薄板側から前記低圧側側板を見た場合
に、該低圧側側板の内周側から外周側に向かってスパイ
ラル状に配置された複数枚のスパイラル板からなり、こ
れらスパイラル板間には、互いに間隔が設けられている
ことを特徴とする。According to a fourteenth aspect of the present invention, in the shaft seal mechanism of the ninth aspect, the clearance dimension adjusting means is provided on the side of the low-pressure side plate so as to project toward the thin plate side. A third step-shaped portion, wherein the third step-shaped portion is spirally arranged from the inner peripheral side to the outer peripheral side of the low-pressure side plate when the low-pressure side plate is viewed from the thin plate side. It is characterized by comprising a plurality of spiral plates provided with an interval therebetween.
【0038】請求項15記載の軸シール機構は、請求項
10記載の軸シール機構において、前記第1の段形状部
が、前記低圧側側板の半径方向に沿って前記ケーシング
の位置まで形成されていることを特徴とする。According to a fifteenth aspect of the present invention, in the shaft seal mechanism according to the tenth aspect, the first stepped portion is formed up to a position of the casing along a radial direction of the low-pressure side plate. It is characterized by being.
【0039】請求項16記載の軸シール機構は、請求項
15記載の軸シール機構において、前記高圧側側板に、
該高圧側側板を前記回転軸の軸線方向に貫く導圧孔が形
成されていることを特徴とする。The shaft sealing mechanism according to a sixteenth aspect is the shaft sealing mechanism according to the fifteenth aspect, wherein:
A pressure guiding hole is formed through the high-pressure side plate in the axial direction of the rotating shaft.
【0040】請求項17記載の軸シール機構は、請求項
9記載の軸シール機構において、前記隙間寸法調整手段
が、前記低圧側側板に向かって突出するように前記薄板
の側に設けられた第4の段形状部であることを特徴とす
る。In the shaft seal mechanism according to a seventeenth aspect, in the shaft seal mechanism according to the ninth aspect, the gap dimension adjusting means is provided on the thin plate side so as to protrude toward the low-pressure side plate. 4 is a step-shaped portion.
【0041】上記請求項9〜17のいずれかに記載の軸
シール機構によれば、隙間寸法調整手段を設けたこと
で、薄板の位置が低圧側側板の側に向かって接近しよう
としても、この薄板が、隙間寸法調整手段によって支持
されることで接近が阻止されるようになっているので、
軸シール機構組立時における組立誤差や、運転時におけ
る高圧側から低圧側に向かう流体圧による薄板の変形等
が発生しても、薄板と低圧側側板との間を所定の隙間寸
法に維持することができる。したがって、薄板と低圧側
側板との隙間寸法を、薄板と高圧側側板との間の隙間寸
法よりも確実に大きく保つことができる。これにより、
請求項3,5,6のいずれかの作用を確実に得ることが
できるので、薄板の上下面における圧力差を生じせしめ
て、該薄板を回転軸周面より浮くように変形させ、起動
時等の動圧効果の小さい時でも、非接触状態を確実に形
成させることができる。According to the shaft seal mechanism according to any one of the ninth to seventeenth aspects, by providing the clearance dimension adjusting means, even if the position of the thin plate approaches the side of the low-pressure side plate, the position of the thin plate can be reduced. Since the thin plate is supported by the gap size adjusting means, the approach is prevented,
The gap between the thin plate and the low-pressure side plate must be maintained at a predetermined gap even if the thin plate and the low-pressure side plate are deformed due to an assembly error when assembling the shaft seal mechanism or fluid pressure from the high pressure side to the low pressure side during operation. Can be. Therefore, the gap between the thin plate and the low-pressure side plate can be reliably kept larger than the gap between the thin plate and the high-pressure side plate. This allows
Since the function of any one of claims 3, 5, and 6 can be reliably obtained, a pressure difference is generated between the upper and lower surfaces of the thin plate, and the thin plate is deformed so as to float from the peripheral surface of the rotating shaft. Even when the dynamic pressure effect is small, the non-contact state can be reliably formed.
【0042】さらに、上記請求項11記載の軸シール機
構によれば、隙間寸法調整手段である第1の段形状部に
通気孔を形成したことで、薄板と低圧側側板との間の隙
間空間における、第1の段形状部を境とした、回転軸半
径方向内周側と回転軸半径方向外周側との両空間の間で
のガス流れに対する抵抗が低減されるようになる。これ
により、第1の段形状部による薄板の支持を確保しなが
らも、あたかも第1の段形状部が存在しないかのよう
に、前記隙間空間における回転軸半径方向の圧力分布を
形成させることができる。したがって、高圧側側板から
低圧側側板に向かうガス圧が薄板に加わった場合に、該
薄板の上下面に対して、回転軸に対向する先端側でかつ
高圧側側板の側に位置する角部で最もガス圧が高く、か
つ対角に向かって徐々にガス圧が弱まるガス圧分布の範
囲をより広く形成させることができるようになるので、
薄板の上下面における圧力差を確実に生じせしめて、該
薄板を回転軸周面より浮かせるという薄板浮上のための
ガス圧調整が的確にできるようになる。Further, according to the shaft seal mechanism of the eleventh aspect, since the ventilation hole is formed in the first step-shaped portion which is the clearance dimension adjusting means, the clearance space between the thin plate and the low pressure side plate. , The resistance to the gas flow between the two spaces on the inner peripheral side in the radial direction of the rotating shaft and the outer peripheral side in the radial direction of the rotating shaft with respect to the first step-shaped portion is reduced. Thus, while the support of the thin plate by the first step-shaped portion is ensured, the pressure distribution in the radial direction of the rotating shaft in the clearance space can be formed as if the first step-shaped portion does not exist. it can. Therefore, when the gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the upper and lower surfaces of the thin plate are at the corners located on the distal end side facing the rotation axis and on the high-pressure side plate side. Since the gas pressure distribution is the highest, and the gas pressure distribution range in which the gas pressure gradually decreases diagonally can be formed,
The pressure difference between the upper and lower surfaces of the thin plate is reliably generated, and the gas pressure for floating the thin plate, that is, the thin plate is lifted from the peripheral surface of the rotating shaft, can be accurately adjusted.
【0043】また、上記請求項12記載の軸シール機構
によれば、隙間寸法調整手段である第2の段形状部を、
互いに間隔を置いて環状配置された複数枚の環状分割板
としたことで、薄板と低圧側側板との間の隙間空間にお
ける、第2の段形状部を境とした、回転軸半径方向内周
側と回転軸半径方向外周側との両空間の間でのガス流れ
に対する抵抗が低減されるようになる。これにより、第
2の段形状部による薄板の支持を確保しながらも、あた
かも第2の段形状部が存在しないかのように、前記隙間
空間における回転軸半径方向の圧力分布を形成させるこ
とができる。したがって、高圧側側板から低圧側側板に
向かうガス圧が薄板に加わった場合に、該薄板の上下面
に対して、回転軸に対向する先端側でかつ高圧側側板の
側に位置する角部で最もガス圧が高く、かつ対角に向か
って徐々にガス圧が弱まるガス圧分布の範囲をより広く
形成させることができるようになるので、薄板の上下面
における圧力差を確実に生じせしめて、該薄板を回転軸
周面より浮かせるという薄板浮上のためのガス圧調整が
的確にできるようになる。また、請求項13記載の軸シ
ール機構においても、上記請求項12記載の軸シール機
構と同様の作用を得ることができる。According to the shaft sealing mechanism of the twelfth aspect, the second step-shaped portion, which is the gap dimension adjusting means, is
By forming a plurality of annular divided plates annularly spaced apart from each other, the inner circumference in the rotation axis radial direction of the gap space between the thin plate and the low-pressure side plate, bordering on the second step-shaped portion The resistance to the gas flow between the space on the side and the outer periphery in the radial direction of the rotating shaft is reduced. Thereby, while the support of the thin plate by the second step-shaped portion is ensured, the pressure distribution in the radial direction of the rotating shaft in the clearance space can be formed as if the second step-shaped portion does not exist. it can. Therefore, when the gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the upper and lower surfaces of the thin plate are at the corners located on the distal end side facing the rotation axis and on the high-pressure side plate side. Since the gas pressure is highest and the range of the gas pressure distribution where the gas pressure gradually decreases in the diagonal direction can be formed wider, the pressure difference between the upper and lower surfaces of the thin plate is surely generated, The gas pressure for floating the thin plate by floating the thin plate from the peripheral surface of the rotating shaft can be accurately adjusted. Also, in the shaft seal mechanism according to the thirteenth aspect, the same operation as the shaft seal mechanism according to the twelfth aspect can be obtained.
【0044】また、上記請求項14記載の軸シール機構
によれば、隙間寸法調整手段である第3の段形状部を、
互いに間隔を置いてスパイラル状に配置された複数枚の
スパイラル板としたことで、薄板と低圧側側板との間の
隙間空間における、回転軸半径方向内周側と回転軸半径
方向外周側との両空間の間でのガス流れに対する抵抗が
低減されるようになる。これにより、第3の段形状部に
よる薄板の支持を確保しながらも、あたかも第3の段形
状部が存在しないかのように、前記隙間空間における回
転軸半径方向の圧力分布を形成させることができる。し
たがって、高圧側側板から低圧側側板に向かうガス圧が
薄板に加わった場合に、該薄板の上下面に対して、回転
軸に対向する先端側でかつ高圧側側板の側に位置する角
部で最もガス圧が高く、かつ対角に向かって徐々にガス
圧が弱まるガス圧分布の範囲をより広く形成させること
ができるようになるので、薄板の上下面における圧力差
を確実に生じせしめて、該薄板を回転軸周面より浮かせ
るという薄板浮上のためのガス圧調整が的確にできるよ
うになる。According to the shaft sealing mechanism of the fourteenth aspect, the third step-shaped portion, which is the gap dimension adjusting means, is provided.
By making a plurality of spiral plates arranged in a spiral shape at intervals, the gap between the thin plate and the low-pressure side plate, between the radially inner circumferential side of the rotating shaft and the radially outer circumferential side of the rotating shaft. The resistance to gas flow between the two spaces is reduced. This makes it possible to form the pressure distribution in the radial direction of the rotating shaft in the gap space as if the third step-shaped portion does not exist, while securing the support of the thin plate by the third step-shaped portion. it can. Therefore, when the gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the upper and lower surfaces of the thin plate are at the corners located on the distal end side facing the rotation axis and on the high-pressure side plate side. Since the gas pressure is highest and the range of the gas pressure distribution where the gas pressure gradually decreases in the diagonal direction can be formed wider, the pressure difference between the upper and lower surfaces of the thin plate is surely generated, The gas pressure for floating the thin plate by floating the thin plate from the peripheral surface of the rotating shaft can be accurately adjusted.
【0045】また、上記請求項17記載の軸シール機構
によれば、隙間寸法調整手段である第4の段形状部を、
薄板側に設けられた突出部としたことで、薄板と低圧側
側板との間の隙間空間における、第4の段形状部を境と
した、回転軸半径方向内周側と回転軸半径方向外周側と
の両空間の間でのガス流れが、薄板間の隙間を通って流
通可能となるので、このガス流れに対する抵抗が低減さ
れるようになる。これにより、第4の段形状部による薄
板の支持を確保しながらも、あたかも第4の段形状部が
存在しないかのように、前記隙間空間における回転軸半
径方向の圧力分布を形成させることができる。したがっ
て、高圧側側板から低圧側側板に向かうガス圧が薄板に
加わった場合に、該薄板の上下面に対して、回転軸に対
向する先端側でかつ高圧側側板の側に位置する角部で最
もガス圧が高く、かつ対角に向かって徐々にガス圧が弱
まるガス圧分布の範囲をより広く形成させることができ
るようになるので、薄板の上下面における圧力差を確実
に生じせしめて、該薄板を回転軸周面より浮かせるとい
う薄板浮上のためのガス圧調整が的確にできるようにな
る。According to the shaft seal mechanism of the seventeenth aspect, the fourth step-shaped portion, which is the gap dimension adjusting means, is
Since the projection is provided on the thin plate side, the inner peripheral side in the rotation axis radial direction and the outer periphery in the rotation axis radial direction of the gap space between the thin plate and the low-pressure side plate, bordering on the fourth step-shaped portion. Since the gas flow between the two spaces on the side and the side can flow through the gap between the thin plates, the resistance to the gas flow is reduced. This makes it possible to form the pressure distribution in the radial direction of the rotating shaft in the clearance space as if the fourth step-shaped portion does not exist, while securing the support of the thin plate by the fourth step-shaped portion. it can. Therefore, when the gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the upper and lower surfaces of the thin plate are at the corners located on the distal end side facing the rotation axis and on the high-pressure side plate side. Since the gas pressure is highest and the range of the gas pressure distribution where the gas pressure gradually decreases in the diagonal direction can be formed wider, the pressure difference between the upper and lower surfaces of the thin plate is surely generated, The gas pressure for floating the thin plate by floating the thin plate from the peripheral surface of the rotating shaft can be accurately adjusted.
【0046】請求項18記載のガスタービンは、高温高
圧のガスをケーシングに導き、該ケーシングの内部に回
転可能に支持された回転軸の動翼に吹き付けることで前
記ガスの熱エネルギーを機械的な回転エネルギーに変換
して動力を発生するガスタービンにおいて、請求項1〜
17のいずれかに記載の軸シール機構を備えたことを特
徴とする。上記請求項18記載のガスタービンによれ
ば、上記請求項1〜17のいずれかに記載の軸シール機
構と同様の作用を得ることができる。In the gas turbine according to the present invention, the gas having a high temperature and a high pressure is guided to a casing, and is blown onto a moving blade of a rotating shaft rotatably supported inside the casing, thereby mechanically transferring the heat energy of the gas to the casing. A gas turbine that generates power by converting it into rotational energy,
17. A shaft seal mechanism according to any one of (17) to (17). According to the gas turbine according to the eighteenth aspect, it is possible to obtain the same operation as the shaft seal mechanism according to the first aspect.
【0047】[0047]
【発明の実施の形態】本発明に係る軸シール機構及びこ
れを備えたガスタービンの各実施の形態についての説明
を以下に行うが、本発明がこれらのみに限定解釈される
ものでないことは、勿論である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a shaft seal mechanism and a gas turbine provided with the same according to the present invention will be described below, but it should be understood that the present invention is not limited to these embodiments. Of course.
【0048】まず、図1〜図3を参照しながら第1の実
施の形態についての説明を行う。図1に、ガスタービン
の概略構成を示す。同図において、符号20は圧縮機、
符号21は燃焼器、符号22はタービンである。圧縮機
20は、多量の空気をその内部に取り入れて圧縮するも
のである。通常、ガスタービンでは、後述する回転軸2
3で得られる動力の一部が、圧縮機の動力として利用さ
れている。燃焼器21は、圧縮機20で圧縮された空気
に燃料を混合して燃焼させるものである。タービン22
は、燃焼器21で発生させた燃焼ガスをその内部に導入
して膨張させ、回転軸23に設けられた動翼23eに吹
き付けることで燃焼ガスの熱エネルギーを機械的な回転
エネルギーに変換して動力を発生させるものである。First, the first embodiment will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a gas turbine. In the figure, reference numeral 20 denotes a compressor,
Reference numeral 21 denotes a combustor, and reference numeral 22 denotes a turbine. The compressor 20 takes in a large amount of air therein and compresses it. Usually, in a gas turbine, a rotating shaft 2 described later is used.
Part of the power obtained in 3 is used as power for the compressor. The combustor 21 mixes fuel with air compressed by the compressor 20 and burns it. Turbine 22
Converts the heat energy of the combustion gas into mechanical rotation energy by introducing the combustion gas generated in the combustor 21 into the interior thereof, expanding the combustion gas, and blowing the combustion gas onto a moving blade 23 e provided on the rotation shaft 23. It generates power.
【0049】タービン22には、回転軸23側の複数の
動翼23eの他に、ケーシング24側に複数の静翼24
aが設けられており、これら動翼23eと静翼24aと
が回転軸23の軸方向に交互に配列されている。動翼2
3eは回転軸23の軸方向に流れる燃焼ガスの圧力を受
けて回転軸23を回転させ、回転軸23に与えられた回
転エネルギーが軸端から取り出されて利用されるように
なっている。静翼24aと回転軸23との間には、高圧
側から低圧側に漏れる燃焼ガスの漏れ量を低減するため
の軸シール機構として、リーフシール25が設けられて
いる。The turbine 22 has a plurality of moving blades 23e on the rotating shaft 23 side and a plurality of stationary blades 24 on the casing 24 side.
The moving blades 23e and the stationary blades 24a are alternately arranged in the axial direction of the rotating shaft 23. Bucket 2
Reference numeral 3e rotates the rotating shaft 23 by receiving the pressure of the combustion gas flowing in the axial direction of the rotating shaft 23, and rotational energy given to the rotating shaft 23 is taken out from the shaft end and used. A leaf seal 25 is provided between the stationary blade 24a and the rotary shaft 23 as a shaft seal mechanism for reducing the amount of combustion gas leaking from the high pressure side to the low pressure side.
【0050】図2はこのリーフシール25の構成を示す
斜視図である。同図に示すように、このリーフシール2
5は、回転軸23の軸方向に幅を有して先端が回転軸2
3の周面23aに摺動し、互いに隙間30を空けて外周
側基端がケーシング24側に固定(ろう付け部28)さ
れた複数の可撓性を有する薄板29を、回転軸23の周
方向に該回転軸23の外周をシール可能に多重に備え、
薄板29と回転軸23の周面23aとが鋭角をなし、各
薄板29の回転軸方向両側にそれぞれ低圧側側板26及
び高圧側側板27が設けられた構成となっている。FIG. 2 is a perspective view showing the structure of the leaf seal 25. As shown in FIG.
5 has a width in the axial direction of the rotating shaft 23, the tip of which is the rotating shaft 2;
3, a plurality of flexible thin plates 29 whose outer peripheral base ends are fixed to the casing 24 side (brazing portions 28) with a gap 30 therebetween, and The outer periphery of the rotating shaft 23 is multiplexed in the direction so as to be sealable,
The thin plate 29 and the peripheral surface 23a of the rotary shaft 23 form an acute angle, and the low-pressure side plate 26 and the high-pressure side plate 27 are provided on both sides of each thin plate 29 in the rotation axis direction.
【0051】各薄板29は、回転軸23の軸方向に所定
の幅を有する平板形状を有しており、回転軸23の周方
向に多層に配置された構造になっている。そして、その
外周側基端は、ケーシング24内にろう付け(ろう付け
部28)されており、回転軸23の外周をシールするこ
とによって回転軸23の周囲空間を高圧側領域と低圧側
領域とに分けている。また、薄板29の幅方向両側にお
いて、高圧側領域には前記高圧側側板27が、低圧側領
域には前記低圧側側板26がそれぞれ圧力作用方向のガ
イド板として装着されている。Each thin plate 29 has a flat plate shape having a predetermined width in the axial direction of the rotating shaft 23, and has a structure arranged in multiple layers in the circumferential direction of the rotating shaft 23. The base end on the outer peripheral side is brazed (brazing portion 28) in the casing 24, and by sealing the outer periphery of the rotating shaft 23, the space around the rotating shaft 23 is divided into a high-pressure side region and a low-pressure side region. Is divided into Further, on both sides in the width direction of the thin plate 29, the high-pressure side plate 27 is mounted on the high-pressure side region, and the low-pressure side plate 26 is mounted on the low-pressure side region as a guide plate in the pressure acting direction.
【0052】そして、このリーフシール25には、図3
(a)に示すように高圧側領域から低圧側領域に向かう
(高圧側側板27から低圧側側板26に向かう)ガス圧
が各薄板29に加わった場合に、各薄板29の上面29
a及び下面29bに対して、先端側でかつ高圧側側板2
7の側に位置する角部r1で最もガス圧が高く、かつ対
角の角部r2に向かって徐々にガス圧が弱まるガス圧分
布30aを形成するガス圧調整手段が設けられた構成と
なっている。Then, the leaf seal 25 has the shape shown in FIG.
As shown in (a), when a gas pressure from the high pressure side region toward the low pressure side region (from the high pressure side plate 27 to the low pressure side plate 26) is applied to each thin plate 29, the upper surface 29 of each thin plate 29
a and the high-pressure side plate 2 on the distal end side with respect to the lower surface 29b.
The gas pressure adjusting means for forming the gas pressure distribution 30a in which the gas pressure is the highest at the corner r1 located on the side of No. 7 and the gas pressure gradually decreases toward the diagonal corner r2 is provided. ing.
【0053】換言すると、このガス圧調整手段は、図3
(b)に示すように、各薄板29をその幅方向に垂直な
仮想平面で断面視し、これら薄板29の回転軸23に面
した面を下面29b、その裏側を上面29aとし、各薄
板29に対して高圧側領域から低圧側領域に向かう(高
圧側側板27から低圧側側板26に向かう)ガス圧が加
わった場合に、各薄板29の前記断面に沿った任意位置
における上面29aに加わるガス圧よりも、下面29b
に加わるガス圧の方を高くするようにガス圧を調整する
ことが可能となっている(このメカニズムについては、
後で詳説する。)。In other words, this gas pressure adjusting means is provided in
As shown in (b), each thin plate 29 is cross-sectionally viewed on an imaginary plane perpendicular to the width direction, the surface of the thin plate 29 facing the rotation axis 23 is defined as a lower surface 29b, and the back side thereof is defined as an upper surface 29a. When a gas pressure is applied from the high-pressure side region to the low-pressure side region (from the high-pressure side plate 27 to the low-pressure side plate 26), the gas applied to the upper surface 29a at an arbitrary position along the cross section of each thin plate 29 Lower surface 29b than pressure
It is possible to adjust the gas pressure so that the gas pressure applied to is higher (for this mechanism,
I will elaborate later. ).
【0054】本実施の形態では、各薄板29と低圧側側
板26との間の低圧側隙間31を、各薄板29と高圧側
側板27との間の高圧側隙間32よりも大きくする隙間
寸法調節を前記ガス圧調整手段としている。このように
隙間寸法調節を行って低圧側側板側に比較的広い空間を
空けておくことで、高圧側から加圧された際に、各薄板
29を通過して高圧側領域から低圧側領域へ流れるガス
gは、各薄板29の上面29a及び下面29bに沿って
対角に向かって広く流れると同時に,外周部基端には低
圧の領域が広がる。これにより、前述したように、薄板
29の幅方向に垂直な断面に沿った任意位置で、該薄板
29の上面29a及び下面29bのそれぞれに加わるガ
ス圧分布を、薄板29の先端側から外周側基端に向かっ
て徐々に小さくなる三角形状とすることができる。In the present embodiment, the gap size adjustment is performed such that the low pressure side gap 31 between each thin plate 29 and the low pressure side plate 26 is larger than the high pressure side gap 32 between each thin plate 29 and the high pressure side plate 27. Is the gas pressure adjusting means. By adjusting the gap size in this way and leaving a relatively large space on the low pressure side plate side, when pressurized from the high pressure side, it passes through each thin plate 29 from the high pressure side region to the low pressure side region. The flowing gas g flows widely diagonally along the upper surface 29a and the lower surface 29b of each thin plate 29, and at the same time, a low pressure region spreads at the base end of the outer peripheral portion. Thereby, as described above, the gas pressure distribution applied to each of the upper surface 29a and the lower surface 29b of the thin plate 29 at an arbitrary position along the cross section perpendicular to the width direction of the thin plate 29 is changed from the distal end side to the outer peripheral side of the thin plate 29. It can be a triangular shape that gradually decreases toward the base end.
【0055】これについて詳しく説明すると、高圧側領
域から低圧側領域に向かって流れるガスgは、回転軸2
3の周面23aと薄板29の先端との間,ならびに、各
薄板29の上面29a及び下面29bに沿って流れる。
このとき、各薄板29の上面29a及び下面29bに沿
って流れるガスgは、図3(a)に示すように、高圧側
側板27と回転軸23の周面23aとの間から流入し,r
1からr2の方向へ放射状に流れ,外周側基端には低圧
の領域が広がる。これにより、各薄板29の上面29a
及び下面29bに垂直に加わるガス圧分布30b,30
cは、図3(b)に示すように前記先端部分に近いほど
大きく、かつ外周側基端に向かうほど小さくなる三角分
布形状となる。More specifically, the gas g flowing from the high pressure side region toward the low pressure side region is
3, and flows along the upper surface 29a and the lower surface 29b of each thin plate 29.
At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 flows from between the high-pressure side plate 27 and the peripheral surface 23a of the rotating shaft 23 as shown in FIG.
It flows radially in the direction from 1 to r2, and a low pressure region spreads at the base end on the outer peripheral side. Thereby, the upper surface 29a of each thin plate 29
Pressure distribution 30b, 30 applied perpendicularly to the lower surface 29b
As shown in FIG. 3 (b), c has a triangular distribution shape that is larger as it is closer to the distal end portion and smaller as it approaches the outer peripheral base end.
【0056】この上面29a及び下面29bそれぞれに
おけるガス圧力分布30b,30cの形状は互いに略同
じものとなるが、各薄板29が回転軸23の周面23a
に対して鋭角をなすように斜めに配置されているので、
これら上面29a及び下面29bにおける各ガス圧分布
30b,30cの相対位置が寸法s1だけずれており、
薄板29の外周基端側から先端側に向かう任意点Pにお
ける上面29a及び下面29bのガス圧を比較した場
合、両者で差が生じることとなる。The shapes of the gas pressure distributions 30b and 30c on the upper surface 29a and the lower surface 29b are substantially the same as each other.
Because it is arranged diagonally so as to form an acute angle with respect to
The relative positions of the gas pressure distributions 30b and 30c on the upper surface 29a and the lower surface 29b are shifted by the dimension s1,
When comparing the gas pressure of the upper surface 29a and the gas pressure of the lower surface 29b at an arbitrary point P from the outer peripheral base end side to the distal end side of the thin plate 29, a difference occurs between the two.
【0057】つまり、前述したように、下面29bに加
わるガス圧(これをFbとする)の方が上面29aに加
わるガス圧(これをFaとする)よりも高くなるので、
薄板29を回転軸23より浮かせるように変形させる方
向に作用する。このとき、薄板29の先端近傍部分では
逆となり、上面29aにのみガス圧のみが加わる(薄板
29の最先端部分は、周面23aに対して面接触するよ
うに斜めに切り取られて切断面29cが設けられている
ので、下面29bに相当する部分がなくなる。)が、こ
の力は、周面23aと薄板29の先端との間を流れるガ
スのガス圧が、薄板29の先端を周面23aから浮かせ
る方向に作用(これをFcとする)して打ち消すので、
薄板29の先端を回転軸23に対して押さえ込もうとす
る力を生じさせない。したがって、各薄板29に加わる
ガス圧による圧力荷重は、(Fb+Fc)>Faとなる
ので、各薄板29を周面23aより浮かせるように変形
させることが可能となる。したがって、各薄板29の上
面29a及び下面29b間に圧力差を生じせしめて、こ
れら薄板29が周面23aより浮くように変形させて非
接触状態を形成することができる。That is, as described above, the gas pressure applied to the lower surface 29b (referred to as Fb) is higher than the gas pressure applied to the upper surface 29a (referred to as Fa).
It acts in a direction to deform the thin plate 29 so as to float from the rotation shaft 23. At this time, the gas pressure is applied only to the upper surface 29a in the vicinity of the front end of the thin plate 29, and only the gas pressure is applied to the upper surface 29a. Provided, there is no portion corresponding to the lower surface 29b.) However, this force causes the gas pressure of the gas flowing between the peripheral surface 23a and the distal end of the thin plate 29 to move the distal end of the thin plate 29 to the peripheral surface 23a. Since it acts in the direction of floating from above (this is Fc) and cancels out,
No force is generated to press the tip of the thin plate 29 against the rotating shaft 23. Therefore, since the pressure load due to the gas pressure applied to each thin plate 29 is (Fb + Fc)> Fa, it is possible to deform each thin plate 29 so as to float above the peripheral surface 23a. Therefore, a pressure difference is generated between the upper surface 29a and the lower surface 29b of each thin plate 29, and these thin plates 29 can be deformed so as to float above the peripheral surface 23a to form a non-contact state.
【0058】以上の説明では、高圧側から加圧された際
の差圧を利用して,各薄板29を回転軸23に対して非
接触状態にするメカニズムについて説明したが、以下に
説明するように、回転軸23の回転によっても各薄板2
9を回転軸23に対して非接触状態とすることが可能と
なっている。すなわち、各薄板29は、板厚で決まる所
定の剛性を回転軸23の軸方向に持つように設計されて
いる。また、各薄板29は、前述したように回転軸23
の回転方向に対して回転軸23の周面23aとなす角が
鋭角となるようにケーシング24に取付けられており、
回転軸23の停止時には、各薄板29の先端が所定の予
圧で回転軸23に接触しているが、回転軸23の回転時
には回転軸23が回転することで生じる動圧効果によっ
て各薄板29の先端が浮上するため、薄板29と回転軸
23とが非接触状態となる。In the above description, a mechanism has been described in which each thin plate 29 is brought into a non-contact state with respect to the rotating shaft 23 by utilizing the differential pressure when the pressure is applied from the high pressure side. In addition, each of the thin plates 2
9 can be brought into a non-contact state with the rotating shaft 23. That is, each thin plate 29 is designed to have a predetermined rigidity determined by the plate thickness in the axial direction of the rotating shaft 23. Further, as described above, each thin plate 29 is
Is attached to the casing 24 so that an angle between the peripheral surface 23a of the rotating shaft 23 and the rotating direction of the rotating shaft 23 is acute.
When the rotating shaft 23 is stopped, the tip of each thin plate 29 is in contact with the rotating shaft 23 with a predetermined preload. However, when the rotating shaft 23 rotates, the dynamic pressure effect generated by the rotation of the rotating shaft 23 causes each thin plate 29 to rotate. Since the tip floats, the thin plate 29 and the rotating shaft 23 are in a non-contact state.
【0059】なお、多層に配置した平板状の各薄板29
の間には僅かに隙間30(図2参照)が設けられてい
る。この隙間30は、シール径が十分に大きいため、換
言すれば回転軸23の径が十分に大きいために、外周側
基端から内周側先端まで実質的にほぼ一定とみなすこと
ができる。It is to be noted that each flat plate-like thin plate 29 arranged in multiple layers
A slight gap 30 (see FIG. 2) is provided between them. Since the gap 30 has a sufficiently large seal diameter, in other words, the diameter of the rotating shaft 23 is sufficiently large, the gap 30 can be regarded as substantially substantially constant from the outer peripheral base end to the inner peripheral end.
【0060】以上説明の本実施の形態のリーフシール2
5(軸シール機構)及びこれを備えたガスタービンによ
れば、各薄板29と回転軸23の周面23aとの間の角
度を鋭角にし、かつ各薄板29に浮力を与える圧力調整
手段として前記隙間寸法調節を設けたことで、動圧効果
の小さい起動時等においても薄板29の上面29a及び
下面29bの間に圧力荷重差((Fb+Fc)>Fa)
を生じさせ、薄板29の先端を回転軸23の周面23a
から浮上させて回転軸23との接触を回避できる。した
がって、各薄板29と回転軸23との接触による過大な
発熱及び摩耗を防止することができる。さらに、各薄板
29と回転軸23との接触による発熱が防止されること
により、回転軸23でのサーマルバランスによる振動の
発生を回避することも可能となる。The leaf seal 2 of the present embodiment described above
5 (shaft seal mechanism) and the gas turbine having the same, the angle between each thin plate 29 and the peripheral surface 23a of the rotating shaft 23 is made acute, and the pressure adjusting means for giving buoyancy to each thin plate 29 is used as the pressure adjusting means. By providing the gap size adjustment, the pressure load difference ((Fb + Fc)> Fa) between the upper surface 29a and the lower surface 29b of the thin plate 29 even at startup or the like where the dynamic pressure effect is small.
And the tip of the thin plate 29 is connected to the peripheral surface 23a of the rotating shaft 23.
To avoid contact with the rotating shaft 23. Therefore, excessive heat generation and abrasion due to contact between each thin plate 29 and the rotating shaft 23 can be prevented. Further, since heat generation due to contact between each thin plate 29 and the rotating shaft 23 is prevented, it is also possible to avoid occurrence of vibration due to thermal balance in the rotating shaft 23.
【0061】また、共振点通過時などの回転軸23の振
動が大きいときには、鋭角に取付けられた薄板29が変
形して回転軸23との接触が緩和されることに加え、回
転軸23の回転によって生じる動圧効果によって各薄板
29の先端を回転軸23の周面23aから浮上させて回
転軸23との接触を回避することが可能となっている。When the vibration of the rotating shaft 23 is large, such as when passing through a resonance point, the thin plate 29 attached at an acute angle is deformed, so that the contact with the rotating shaft 23 is eased. Due to the dynamic pressure effect caused by this, the tip of each thin plate 29 can be floated from the peripheral surface 23 a of the rotating shaft 23 to avoid contact with the rotating shaft 23.
【0062】また、シール部材として薄板29を使用す
ることにより、従来のワイヤと比較してケーシング24
に対する固定部分の大きさが拡大されるので、各薄板2
9がケーシング24に対して強固に固定される。これに
より、従来のブラシシールにおけるワイヤ脱落のような
ケーシング24からの薄板29の脱落を防止することが
できる。また、各薄板29の先端は回転軸23の軸方向
に高い剛性を有し回転軸の周方向には柔らかいので、従
来のブラシシールに比べて差圧方向への変形を起こし難
くなり、シール差圧の許容値を向上させることが可能と
なっている。Further, by using the thin plate 29 as a sealing member, the casing 24 can be compared with a conventional wire.
Since the size of the fixed portion with respect to is increased, each thin plate 2
9 is firmly fixed to the casing 24. As a result, it is possible to prevent the thin plate 29 from dropping from the casing 24 as in the case of a wire drop in a conventional brush seal. In addition, since the tip of each thin plate 29 has high rigidity in the axial direction of the rotating shaft 23 and is soft in the circumferential direction of the rotating shaft, deformation in the direction of the differential pressure is less likely to occur as compared with the conventional brush seal. It is possible to improve the allowable value of the pressure.
【0063】また、各薄板29間の隙間30を外周側と
内周側とで等しくすることで、各薄板29をより密に配
置することが可能となり、各薄板29の先端と回転軸2
3との隙間を、非接触型のラビリンスシールなどと比べ
て飛躍的に小さくすることができる。これにより、ラビ
リンスシールの1/10程度まで漏れ量を低減すること
が可能となり、結果的にガスタービンの性能を10%程
度向上させることができる。したがって、以上説明のリ
ーフシール25及びこれを備えたガスタービンによれ
ば、高圧側領域から低圧側領域へのガスの漏れ量を低減
するとともに耐摩耗性の向上を得ることが可能となる。Further, by making the gaps 30 between the thin plates 29 equal on the outer circumferential side and the inner circumferential side, it becomes possible to arrange the thin plates 29 more densely, and the leading end of each thin plate 29 and the rotating shaft 2
3 can be significantly reduced as compared with a non-contact labyrinth seal or the like. This makes it possible to reduce the amount of leakage to about 1/10 of the labyrinth seal, thereby improving the performance of the gas turbine by about 10%. Therefore, according to the above-described leaf seal 25 and the gas turbine including the same, it is possible to reduce the amount of gas leakage from the high-pressure side region to the low-pressure side region and to improve the wear resistance.
【0064】ところで、上記第1の実施の形態では、前
記圧力調整手段として、低圧側側板26及び高圧側側板
27を、低圧側隙間31が高圧側隙間32より大きくな
るよう配置することで、高圧側から加圧された際に薄板
29に前記圧力荷重差を生じせしめて、各薄板29の先
端部を浮上させるものとしているが、この他にも、例え
ば変形例として以下に説明する各実施の形態も採用可能
である。In the first embodiment, as the pressure adjusting means, the low-pressure side plate 26 and the high-pressure side plate 27 are arranged such that the low-pressure side gap 31 is larger than the high-pressure side gap 32, so that the high-pressure side When the pressure is applied from the side, the above-mentioned pressure load difference is generated in the thin plate 29 so that the tip end of each thin plate 29 is floated. A form can also be adopted.
【0065】以下、本発明の第2の実施の形態について
の説明を図4を参照しながら行うが、その特徴部分を中
心に説明するものとし、その他の、上記第1の実施の形
態と同一部分については説明を省略する。図4は、高圧
側領域から加圧された際に各薄板29の薄板上面29a
及び薄板下面29b間に圧力荷重差を生じさせ、各薄板
29の先端部を浮上させるための他の圧力調整手段を備
えたリーフシール25を示すものである。そして、本実
施の形態では、低圧側側板26の回転軸23の半径方向
の長さ寸法(低圧側側板長さ33)を、高圧側側板27
の回転軸23の半径方向の長さ寸法(高圧側側板長さ3
4)よりも短くする側板寸法調節を前記ガス圧調整手段
としている。Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 4, but the description will be focused on its characteristic portions, and the other portions will be the same as those of the first embodiment. The description of the parts is omitted. FIG. 4 shows a thin plate upper surface 29a of each thin plate 29 when pressed from the high pressure side region.
And a leaf seal 25 provided with another pressure adjusting means for causing a pressure load difference between the thin plate lower surface 29b and floating the leading end of each thin plate 29. In the present embodiment, the length of the low-pressure side plate 26 in the radial direction of the rotating shaft 23 (the low-pressure side plate length 33) is set to the high-pressure side plate 27.
Length of the rotary shaft 23 in the radial direction (high-pressure side plate length 3
The side plate dimension adjustment shorter than 4) is used as the gas pressure adjusting means.
【0066】このように側板寸法調節を行って低圧側側
板26側に比較的広い空間を空けておくことで、高圧側
から加圧された際、各薄板29を通過してガスgが高圧
側領域から低圧側領域へ流れようとするが、このガスg
が、各薄板29の上面29a及び下面29bに沿ってr
1からr2の方向へ放射状に流れることとなる。これに
より、前述したように、薄板29の幅方向に垂直な断面
に沿った任意位置で、該薄板29の上面29a及び下面
29bのそれぞれに加わるガス圧分布を、薄板29の先
端側から外周側基端に向かって徐々に小さくなる三角形
状とすることができる。したがって、上記第1の実施の
形態と同様の理由により、薄板29の上面29a及び下
面29b間における圧力分布の相対位置に差を生じせし
めて、各薄板29を回転軸23の周面23aより浮くよ
うに変形させて非接触状態を形成することができる。By adjusting the size of the side plate and leaving a relatively large space on the side of the low-pressure side plate 26 as described above, when pressurized from the high-pressure side, the gas g passes through each thin plate 29 and the gas g passes through the high-pressure side. The gas g tends to flow from the region to the low pressure side region.
Along the upper surface 29a and the lower surface 29b of each thin plate 29.
It will flow radially from 1 to r2. Thereby, as described above, the gas pressure distribution applied to each of the upper surface 29a and the lower surface 29b of the thin plate 29 at an arbitrary position along the cross section perpendicular to the width direction of the thin plate 29 is changed from the distal end side to the outer peripheral side of the thin plate 29. It can be a triangular shape that gradually decreases toward the base end. Therefore, for the same reason as in the first embodiment, a difference is generated in the relative position of the pressure distribution between the upper surface 29a and the lower surface 29b of the thin plate 29, and each thin plate 29 floats from the peripheral surface 23a of the rotating shaft 23. Thus, the non-contact state can be formed.
【0067】すなわち、前記隙間30を通るガスgによ
って薄板29の上面29a及び下面29bに垂直に加わ
るガス圧分布30aは、上記第1の実施の形態と同様
に、薄板29の先端側でかつ高圧側側板27側に位置す
る角部r1で最もガス圧が高く、かつ対角の角部r2に
向かって徐々にガス圧が弱まるガス圧分布30aとな
る。That is, the gas pressure distribution 30a applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas g passing through the gap 30 is similar to that of the first embodiment, and is located at the tip end of the thin plate 29 and at the high pressure. The gas pressure distribution 30a has the highest gas pressure at the corner r1 located on the side plate 27 side, and the gas pressure gradually decreases toward the diagonal corner r2.
【0068】このとき、薄板29の軸方向幅の任意の断
面の半径方向圧力分布は、上記第1の実施の形態の図3
(b)で説明したガス圧分布30b,30cのようにな
り、薄板上面29aと、薄板下面29b及び薄板先端面
29cとの間に圧力荷重差((Fb+Fc)>Fa)を
生じさせるので、この圧力荷重差が薄板29に対してそ
の先端部を浮上させる方向の力として作用する。したが
って、薄板29に生じた前記圧力荷重差により、その先
端部を浮上させる方向の力が作用する。本実施の形態を
上記第1の実施の形態と比較した場合、第1の実施の形
態のように低圧側隙間31と高圧側隙間32の寸法をコ
ントロールをするよりも、本実施の形態のように低圧側
側板長さ33及び高圧側側板長さ34をコントロールす
るほうが寸法精度も要求されず容易である上に、組立性
も良く製造が容易となり、製作コストも安く済むのでよ
り好ましいと言える。At this time, the radial pressure distribution of an arbitrary cross section of the axial width of the thin plate 29 is the same as that of the first embodiment shown in FIG.
As shown in the gas pressure distributions 30b and 30c described in (b), a pressure load difference ((Fb + Fc)> Fa) is generated between the thin plate upper surface 29a and the thin plate lower surface 29b and the thin plate tip surface 29c. The pressure load difference acts on the thin plate 29 as a force in the direction of lifting the tip thereof. Therefore, the force in the direction of floating the tip portion acts due to the pressure load difference generated in the thin plate 29. When the present embodiment is compared with the above-described first embodiment, the size of the low-pressure side gap 31 and the high-pressure side gap 32 is controlled as in the first embodiment. It is more preferable to control the length 33 of the low-pressure side plate and the length 34 of the high-pressure side plate, because dimensional accuracy is not required and the assembly is easy, the manufacturing is easy, and the manufacturing cost can be reduced.
【0069】なお、本実施の形態では、低圧側側板26
の回転軸23の半径方向の長さ寸法(低圧側側板長さ3
3)を、高圧側側板27の回転軸23の半径方向の長さ
(高圧側側板長さ34)よりも短くする側板寸法調節を
前記ガス圧調整手段としたが、これに限らず、薄板29
の、回転軸23の軸方向低圧側に、高圧側領域から低圧
側領域に向かうガスgの通過を許可するガス通過空間形
成する(例えば、低圧側側板26を省いた構成とするな
ど。)ことでも、同様の効果を得ることが可能である。In this embodiment, the low pressure side plate 26
Of the rotary shaft 23 in the radial direction (the low-pressure side plate length 3
In (3), the gas pressure adjusting means is used to adjust the side plate dimension to make the length of the high-pressure side plate 27 shorter than the radial length of the rotating shaft 23 (the high-pressure side plate length 34).
On the low-pressure side of the rotating shaft 23 in the axial direction, a gas passage space that allows the passage of the gas g from the high-pressure side region to the low-pressure side region is formed (for example, a configuration in which the low-pressure side plate 26 is omitted). However, a similar effect can be obtained.
【0070】以下、本発明の第3の実施の形態について
の説明を図5(a),(b)を参照しながら行うが、そ
の特徴部分を中心に説明するものとし、その他の、上記
第1の実施の形態と同一部分については説明を省略す
る。なお、本実施の形態では、薄板29の高圧領域側に
配されてかつ回転軸23方向に可撓性を有する可撓板を
前記ガス圧調整手段とする構成を採用している。図5
(a),(b)は、高圧側領域から加圧された際に各薄
板29の薄板上面29a及び薄板下面29b間に圧力荷
重差を生じさせ、各薄板29の先端部を浮上させるため
の他の圧力調整手段を備えたリーフシール25を示すも
ので、図5(a)は高圧側側板27を回転軸23の軸方
向に可撓性を有する薄肉板にした場合であり、図5
(b)は高圧側側板27と薄板29との間の隙間に回転
軸23の軸方向に可撓性を有する高圧側隙間微調整用薄
板35を配置したものである。Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 5 (a) and 5 (b). The description of the same parts as those of the first embodiment is omitted. Note that, in the present embodiment, a configuration is adopted in which a flexible plate disposed on the high-pressure region side of the thin plate 29 and having flexibility in the direction of the rotation shaft 23 is used as the gas pressure adjusting means. FIG.
(A) and (b) are for generating a pressure load difference between the thin plate upper surface 29a and the thin plate lower surface 29b of each thin plate 29 when pressurized from the high pressure side region, and for floating the tip end of each thin plate 29. FIG. 5A shows a leaf seal 25 provided with another pressure adjusting means, in which the high-pressure side plate 27 is a thin plate having flexibility in the axial direction of the rotating shaft 23.
(B) is such that a high-pressure-side gap fine-adjustment thin plate 35 having flexibility in the axial direction of the rotating shaft 23 is disposed in a gap between the high-pressure side plate 27 and the thin plate 29.
【0071】このような可撓性を有する高圧側側板27
或いは高圧側隙間微調整用薄板35を設けることで、高
圧側から加圧された際に,高圧側のガス圧により,高圧
側側板27或いは高圧側隙間微調整用薄板35は回転軸
23の軸方向に撓み,高圧側側板23と薄板29との間
の隙間は小さく保持できる。このとき、各薄板29の上
面29a及び下面29bに沿って流れるガスgは、図5
に示すように、高圧側側板27と回転軸23の周面23
aとの間から流入し,r1からr2の方向へ放射状に流
れ,外周側基端には低圧の領域が広がる。これにより、
薄板29の幅方向に垂直な断面に沿った任意位置で、該
薄板29の上下面に加わるガス圧を、薄板先端側から外
周側基端に向かって徐々に小さくなる三角形状とするこ
とができる。したがって、上記第1の実施の形態と同様
の理由により、薄板29の上面29a及び下面29b間
における圧力分布の相対位置に差を生じせしめて、各薄
板29を回転軸23の周面23aより浮くように変形さ
せて非接触状態を形成することができる。The high-pressure side plate 27 having such flexibility
Alternatively, by providing the high-pressure-side gap fine-adjustment thin plate 35, when pressurized from the high-pressure side, the high-pressure-side gasket pressure causes the high-pressure side plate 27 or the high-pressure-side gap fine adjustment thin plate 35 to rotate along the axis of the rotating shaft 23. The gap between the high-pressure side plate 23 and the thin plate 29 can be kept small. At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 is as shown in FIG.
, The high-pressure side plate 27 and the peripheral surface 23 of the rotating shaft 23
and flows radially in the direction from r1 to r2, and a low-pressure region spreads at the outer peripheral base end. This allows
At any position along the cross section perpendicular to the width direction of the thin plate 29, the gas pressure applied to the upper and lower surfaces of the thin plate 29 can be formed into a triangular shape that gradually decreases from the leading end of the thin plate toward the base end on the outer peripheral side. . Therefore, for the same reason as in the first embodiment, a difference is generated in the relative position of the pressure distribution between the upper surface 29a and the lower surface 29b of the thin plate 29, and each thin plate 29 floats from the peripheral surface 23a of the rotating shaft 23. Thus, the non-contact state can be formed.
【0072】すなわち、前記隙間30を通るガスgによ
って薄板29の上面29a及び下面29bに垂直に加わ
るガス圧分布30aは、上記第1の実施の形態と同様
に、薄板29の先端側でかつ高圧側側板27側に位置す
る角部r1で最もガス圧が高く、かつ対角の角部r2に
向かって徐々にガス圧が弱まるガス圧分布形状となる。
このとき、薄板29の軸方向幅の任意位置の断面の半径
方向圧力分布は、上記第1の実施の形態の図3(b)で
説明したガス圧分布30b,30cのようになり、薄板
上面29aと、薄板下面29b及び薄板先端面29cと
の間に圧力荷重差((Fb+Fc)>Fa)を生じさせ
るので、この圧力荷重差が薄板29に対してその先端部
を浮上させる方向の力として作用する。That is, the gas pressure distribution 30a applied perpendicularly to the upper surface 29a and the lower surface 29b of the thin plate 29 by the gas g passing through the gap 30 is similar to that of the first embodiment, and is located at the tip end of the thin plate 29 and at the high pressure. A gas pressure distribution shape is obtained in which the gas pressure is highest at the corner r1 located on the side plate 27 side and the gas pressure gradually decreases toward the diagonal corner r2.
At this time, the radial pressure distribution of the cross section at an arbitrary position in the axial width of the thin plate 29 becomes like the gas pressure distributions 30b and 30c described with reference to FIG. Since a pressure load difference ((Fb + Fc)> Fa) is generated between the thin plate 29a and the thin plate lower surface 29b and the thin plate front end surface 29c, the pressure load difference is generated as a force in the direction of lifting the front end of the thin plate 29 with respect to the thin plate 29. Works.
【0073】したがって、薄板29に生じた前記圧力荷
重差により、その先端部を浮上させる方向の力が作用す
る。本実施の形態を上記第1の実施の形態と比較した場
合、上記第2の実施の形態で説明したのと同様の理由に
より、組立性と製作コストが安い上、シール差圧により
隙間(薄板29と、高圧側側板27或いは高圧側隙間微
調整用薄板35との間の隙間)を自動的に高精度に形成
できるメリットがある。Therefore, the force in the direction of lifting the tip portion acts on the thin plate 29 due to the pressure load difference generated on the thin plate 29. When this embodiment is compared with the first embodiment, for the same reasons as described in the second embodiment, the assemblability and manufacturing cost are low, and the gap (thin plate) There is a merit that the gap between the high pressure side plate 27 and the high pressure side gap fine adjustment thin plate 35) can be automatically formed with high precision.
【0074】以下、本発明の第4の実施の形態について
の説明を図6(a),(b)を参照しながら行うが、そ
の特徴部分を中心に説明するものとし、その他の、上記
第1の実施の形態と同一部分については説明を省略す
る。なお、本実施の形態では、薄板29の高圧側に配さ
れて回転軸23方向に可撓性を有し、かつその全周で2
ヶ所以上のスリットが形成されているスリット付き可撓
板を前記ガス圧調整手段とする構成を採用している。図
6(a)は、高圧側側板に対して全周で2ヶ所以上のス
リット41aが形成されるとともに回転軸23の軸方向
に可撓性持たせたものを、前記スリット付き可撓板41
とした場合であり、図6(b)は、高圧側側板27と薄
板29との間の隙間に回転軸23の軸方向に可撓性を有
し全周で2ヶ所以上のスリット42aが形成された薄肉
板を、前記スリット付き可撓板42とした場合を示して
いる。Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS. 6 (a) and 6 (b). The description of the same parts as those of the first embodiment is omitted. In the present embodiment, the thin plate 29 is arranged on the high pressure side, has flexibility in the direction of the rotating shaft 23, and has a width of 2
A configuration is adopted in which a flexible plate with a slit in which two or more slits are formed is used as the gas pressure adjusting means. FIG. 6 (a) shows the high-pressure side plate in which two or more slits 41a are formed in the entire circumference and flexibility is provided in the axial direction of the rotating shaft 23.
FIG. 6B shows that two or more slits 42 a are formed in the gap between the high-pressure side plate 27 and the thin plate 29 in the axial direction of the rotary shaft 23 and have two or more slits around the entire circumference. In this case, the obtained thin plate is used as the flexible plate 42 with the slit.
【0075】このようなスリット付き可撓板41,42
を設けることで、高圧側から加圧された際に,高圧側の
ガス圧により,高圧側側板27或いは高圧側隙間微調整
用薄板40は回転軸23の軸方向に撓み,高圧側側板2
3と薄板29との間の隙間は小さく保持できる。このと
き、各薄板29の上面29a及び下面29bに沿って流
れるガスgは、図6に示すように、高圧側側板27と回
転軸23の周面23aとの間から流入し,r1からr2の
方向へ放射状に流れ,外周側基端には低圧の領域が広が
る。これにより、薄板29の幅方向に垂直な断面に沿っ
た任意位置で、該薄板29の上下面に加わるガス圧を、
薄板先端側から外周側基端に向かって徐々に小さくなる
三角形状とすることができる。したがって、上記第1の
実施の形態と同様の理由により、薄板29の上面29a
及び下面29b間における圧力分布の相対位置に差を生
じせしめて、各薄板29を回転軸23の周面23aより
浮くように変形させて非接触状態を形成することができ
る。The flexible plates 41 and 42 having such slits
Is provided, when pressurized from the high pressure side, the high pressure side plate 27 or the high pressure side gap fine adjustment thin plate 40 bends in the axial direction of the rotating shaft 23 due to the gas pressure on the high pressure side, and the high pressure side plate 2
The gap between 3 and thin plate 29 can be kept small. At this time, the gas g flowing along the upper surface 29a and the lower surface 29b of each thin plate 29 flows from between the high-pressure side plate 27 and the peripheral surface 23a of the rotating shaft 23 as shown in FIG. Flow radially in the direction, and a low pressure area spreads at the base end on the outer peripheral side. Thereby, at an arbitrary position along a cross section perpendicular to the width direction of the thin plate 29, the gas pressure applied to the upper and lower surfaces of the thin plate 29 is
The shape can be a triangular shape that gradually decreases from the distal end side of the thin plate toward the base end on the outer peripheral side. Therefore, for the same reason as in the first embodiment, the upper surface 29a of the thin plate 29 is formed.
By making a difference in the relative position of the pressure distribution between the lower surface 29b and the lower surface 29b, each thin plate 29 can be deformed so as to float above the peripheral surface 23a of the rotating shaft 23, and a non-contact state can be formed.
【0076】すなわち、前記隙間30を通るガスgによ
って薄板29の上面29a及び下面29bに垂直に加わ
るガス圧分布30aは、上記第1の実施の形態と同様
に、薄板29の先端側でかつ高圧側側板27側に位置す
る角部r1で最もガス圧が高く、かつ対角の角部r2に
向かって徐々にガス圧が弱まるガス圧分布形状となる。
このとき、薄板29の軸方向幅の任意の断面の半径方向
圧力分布は、上記第1の実施の形態の図3(b)で説明
したガス圧分布30b,30cのようになり、薄板上面
29aと、薄板下面29b及び薄板先端面29cとの間
に圧力荷重差((Fb+Fc)>Fa)を生じさせるの
で、この圧力荷重差が薄板29に対してその先端部を浮
上させる方向の力として作用する。That is, the gas pressure distribution 30 a vertically applied to the upper surface 29 a and the lower surface 29 b of the thin plate 29 by the gas g passing through the gap 30 is similar to that in the first embodiment, and is located at the tip end of the thin plate 29 and at high pressure. A gas pressure distribution shape is obtained in which the gas pressure is highest at the corner r1 located on the side plate 27 side and the gas pressure gradually decreases toward the diagonal corner r2.
At this time, the radial pressure distribution of an arbitrary cross section of the thin plate 29 in the axial direction becomes the gas pressure distribution 30b, 30c described in FIG. 3B of the first embodiment, and the thin plate upper surface 29a , A pressure load difference ((Fb + Fc)> Fa) is generated between the thin plate lower surface 29b and the thin plate front end surface 29c, and this pressure load difference acts as a force in the direction of lifting the front end portion of the thin plate 29. I do.
【0077】したがって、薄板29に生じた前記圧力荷
重差により、その先端部を浮上させる方向の力が作用す
る。本実施の形態を上記第1の実施の形態と比較した場
合、上記第2の実施の形態で説明したのと同様の理由に
より、組立性と製作コストが安い上、シール差圧により
隙間(薄板29と、スリット付き可撓板41,42との
間の隙間)を自動的に高精度に形成できるメリットがあ
る。また本実施の形態では、上記第1の実施の形態と比
較して組立性と製作コストの点で優れるのに加え、第3
の実施の形態と比較してもスリット41a,42aの形
状により隙間(薄板29と、スリット付き可撓板41,
42との間の隙間)の微調整が可能というメリットがあ
る。Therefore, the force in the direction of lifting the tip portion acts on the thin plate 29 due to the pressure load difference generated. When this embodiment is compared with the first embodiment, for the same reasons as described in the second embodiment, the assemblability and manufacturing cost are low, and the gap (thin plate) There is a merit that a gap between the slit 29 and the slit-shaped flexible plates 41 and 42) can be automatically formed with high precision. Also, in the present embodiment, in addition to being superior in terms of assemblability and manufacturing cost as compared with the first embodiment, the third embodiment
The gaps (the thin plate 29, the flexible plate 41 with slits,
There is an advantage that the fine adjustment of the gap between the gap and the gap 42 is possible.
【0078】以下、本発明の第5の実施の形態について
の説明を図7を参照しながら行うが、その特徴部分を中
心に説明するものとし、その他の、上記第1の実施の形
態と同一部分については説明を省略する。なお、本実施
の形態では、回転軸23の軸線方向に低圧側側板26を
貫く複数の通風孔を前記ガス圧調整手段とする構成を採
用している。図7は、リーフシール25を回転軸23の
軸線を通る断面より見た断面図であり、符号26aが前
記通風孔を示している。この他にも、低圧側側板26と
して多孔質の材料を用いる構成も採用可能である。Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG. 7, but the description will be focused on the features of the fifth embodiment, and the other features will be the same as those of the first embodiment. The description of the parts is omitted. In this embodiment, a configuration is adopted in which a plurality of ventilation holes penetrating through the low-pressure side plate 26 in the axial direction of the rotating shaft 23 are used as the gas pressure adjusting means. FIG. 7 is a cross-sectional view of the leaf seal 25 as viewed from a cross-section passing through the axis of the rotating shaft 23, and reference numeral 26a indicates the ventilation hole. In addition, a configuration using a porous material as the low-pressure side plate 26 can be adopted.
【0079】このような通風孔26aを備えた低圧側側
板26を採用すると、高圧側からガスで加圧された際に
前記隙間30を通るガスによって薄板29の上面29a
及び下面29bに垂直に加わるガス圧の圧力分布は、上
記第1の実施の形態と同様に、圧力分布30aに示す等
圧線分布形状となる。すなわち、薄板29において、そ
の先端側でかつ高圧側側板27側に位置する角部r1で
最もガス圧が高く、かつ対角の角部r2に向かって徐々
にガス圧が弱まるガス圧分布形状となる。When the low-pressure side plate 26 having such ventilation holes 26a is employed, the upper surface 29a of the thin plate 29 is pressed by the gas passing through the gap 30 when pressurized with gas from the high-pressure side.
The pressure distribution of the gas pressure applied vertically to the lower surface 29b and the lower surface 29b has the isobar distribution shape shown in the pressure distribution 30a, as in the first embodiment. That is, in the thin plate 29, the gas pressure distribution shape is such that the gas pressure is highest at the corner r1 located on the distal end side and on the high-pressure side plate 27 side, and the gas pressure gradually decreases toward the diagonal corner r2. Become.
【0080】このとき、薄板29の軸方向幅の任意の断
面の半径方向圧力分布は、上記第1の実施の形態の図3
(b)で説明したガス圧分布30b,30cのようにな
り、薄板上面29aと、薄板下面29b及び薄板先端面
29cとの間に圧力荷重差((Fb+Fc)>Fa)を
生じさせるので、この圧力荷重差が薄板29に対してそ
の先端部を浮上させる方向の力として作用する。At this time, the radial pressure distribution of an arbitrary cross section of the thin plate 29 in the axial width is the same as that of the first embodiment shown in FIG.
As shown in the gas pressure distributions 30b and 30c described in (b), a pressure load difference ((Fb + Fc)> Fa) is generated between the thin plate upper surface 29a and the thin plate lower surface 29b and the thin plate tip surface 29c. The pressure load difference acts on the thin plate 29 as a force in the direction of lifting the tip thereof.
【0081】したがって、薄板29に生じた前記圧力荷
重差により、その先端部を浮上させる方向の力が作用す
る。しかも、本実施の形態では、通風孔26aの孔形状
を形成するだけなので製作しやすくて組立性も良く、製
作コストを低くできる。更に、孔形状の配置や大きさに
より複雑な圧力分布も形成可能となる。また、薄板の露
出部が上記第2の実施の形態と比較して小さく、組立時
の接触などによる薄板の変形が小さいというメリットが
ある。Therefore, the force in the direction of floating the tip portion acts due to the pressure load difference generated on the thin plate 29. Moreover, in the present embodiment, since only the hole shape of the ventilation hole 26a is formed, the production is easy, the assemblability is good, and the production cost can be reduced. Further, a complicated pressure distribution can be formed depending on the arrangement and size of the hole shape. Further, there is an advantage that the exposed portion of the thin plate is smaller than that of the second embodiment, and the deformation of the thin plate due to contact during assembly is small.
【0082】以下、本発明の第6の実施の形態について
の説明を図8を参照しながら行うが、その特徴部分を中
心に説明するものとし、その他の、上記第1の実施の形
態と同一部分については説明を省略する。なお、本実施
の形態では、前記低圧側隙間31の方が必ず高圧側隙間
32よりも大きくなるように維持するための隙間寸法調
整手段を更に備えている点が特に特徴的となっている。
図8の(a)は、リーフシール25を回転軸23の軸線
を通る断面より見た断面図であり、(b)は(a)をC
−C線より見た断面図である。Hereinafter, the sixth embodiment of the present invention will be described with reference to FIG. The description of the parts is omitted. The present embodiment is particularly characterized in that it further includes a gap dimension adjusting means for maintaining the low pressure side gap 31 larger than the high pressure side gap 32 without fail.
FIG. 8A is a cross-sectional view of the leaf seal 25 viewed from a cross-section passing through the axis of the rotating shaft 23, and FIG.
It is sectional drawing seen from the -C line.
【0083】同図に示すように、低圧側側板26と各薄
板29との間には、低圧側側板26に向かって各薄板2
9が接近しようとした場合に、該薄板29を支持して、
これら低圧側側板26及び各薄板29間の低圧側隙間3
1の隙間寸法を維持するための前記隙間寸法調整手段と
して、段形状部50(第1の段形状部)が設けられてい
る。この段形状部50は、図8(a)に示すように、回
転軸23の軸線を通る断面で見た場合には、各薄板29
側に向かって突出するように低圧側側板26の側に設け
られており、また図8(b)に示すように、回転軸23
の軸線に垂直をなす断面より見た場合には、環状の低圧
側側板26に沿って回転軸23周りの全周に渡って連続
した環状をなすリング形状の部品である。なお、この段
形状部50は、低圧側側板26と別部品としても良い
し、低圧側側板26と一体の部品としても良い。As shown in the drawing, between the low pressure side plate 26 and each thin plate 29, each thin plate 2
9 supports the thin plate 29 when approaching,
The low pressure side gap 3 between the low pressure side plate 26 and each thin plate 29
A step-shaped portion 50 (first step-shaped portion) is provided as the gap size adjusting means for maintaining the first gap size. As shown in FIG. 8A, the step-shaped portion 50 is formed such that each of the thin plates 29
8B is provided on the side of the low-pressure side plate 26 so as to project toward the side, and as shown in FIG.
When viewed from a cross section perpendicular to the axis, the ring-shaped component forms a continuous ring along the entire circumference around the rotation shaft 23 along the low-pressure side plate 26. The stepped portion 50 may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
【0084】各薄板29を支持するためには、段形状部
50を各薄板29側に極力接近させておく必要がある。
しかしながら、あまり近づけすぎて各薄板29の側縁を
段形状部50が圧迫して変形させることのないようにす
る必要があるので、段形状部50の厚み寸法をt1(回
転軸23の軸心方向の厚み寸法)とし、低圧側隙間31
の隙間寸法をt2とした場合には、t2≧t1(厚み寸
法t1は、低圧側隙間31の隙間寸法t2と等しいか、
もしくはそれよりも狭い)とする必要がある。この段形
状部50によれば、各薄板29のずれあるいは変形を拘
束することで、低圧側隙間31の隙間寸法t2以下にな
ることを防ぐことができ、容易に所定の隙間寸法に維持
することが可能となる。In order to support each thin plate 29, it is necessary to bring the step-shaped portion 50 as close as possible to each thin plate 29 side.
However, it is necessary to prevent the step-shaped portion 50 from being deformed by pressing the side edge of each thin plate 29 too close, so that the thickness of the step-shaped portion 50 is set to t1 (the axis of the rotating shaft 23). Thickness in the direction) and the low pressure side gap 31
When the gap size of t is t2, t2 ≧ t1 (the thickness dimension t1 is equal to the gap dimension t2 of the low pressure side gap 31,
Or narrower). According to the step-shaped portion 50, the displacement or deformation of each thin plate 29 is restrained, so that the gap size t2 of the low pressure side gap 31 can be prevented from being smaller than t2, and the predetermined gap size can be easily maintained. Becomes possible.
【0085】以上説明の本実施の形態のリーフシール2
5(軸シール機構)及びこれを備えたガスタービンによ
れば、段形状部50を設けたことで、各薄板29の位置
が低圧側側板26の側に向かって接近しようとしても、
これら薄板29が、段形状部50によって支持されるこ
とで接近が阻止されるようになっているので、軸シール
機構組立時における組立誤差や、運転時における高圧側
から低圧側に向かう流体圧による各薄板29の変形等が
発生しても、各薄板29と低圧側側板26との間を所定
の隙間寸法t2に維持することができる。The leaf seal 2 of the present embodiment described above
According to 5 (shaft seal mechanism) and the gas turbine provided with the same, the provision of the stepped portion 50 allows the position of each thin plate 29 to approach the low-pressure side plate 26,
Since the thin plates 29 are supported by the step-shaped portion 50, the approach is prevented. Therefore, there is an assembly error at the time of assembling the shaft seal mechanism and a fluid pressure from the high pressure side to the low pressure side at the time of operation. Even if each thin plate 29 is deformed, the gap between each thin plate 29 and the low-pressure side plate 26 can be maintained at the predetermined gap size t2.
【0086】これにより、各薄板29と低圧側側板26
との間の低圧側隙間31を、各薄板29と高圧側側板2
7との間の高圧側隙間32よりも大きくするという、上
記第1の実施の形態で説明した前記隙間寸法調節を確実
に行わせることが可能となっている。よって、起動時等
の動圧効果の小さい時でも、確実に各薄板29の先端を
浮かせて回転軸23の周面23aとの間を非接触状態に
できる。したがって、各薄板29と回転軸23との接触
による過大な発熱及び摩耗を防止することができる。さ
らに、各薄板29と回転軸23との接触による発熱が防
止されることにより、回転軸23でのサーマルバランス
による振動の発生を回避することも可能となる。なお、
この他にも、上記第1の実施の形態で説明した効果と同
様の効果が得られることは勿論である。Thus, each thin plate 29 and the low pressure side plate 26
Between the thin plates 29 and the high-pressure side plate 2.
7, the gap size adjustment described in the first embodiment, which is made larger than the high-pressure side gap 32, can be surely performed. Therefore, even when the dynamic pressure effect is small at the time of starting or the like, the tip of each thin plate 29 can be reliably lifted to make a non-contact state with the peripheral surface 23a of the rotating shaft 23. Therefore, excessive heat generation and abrasion due to contact between each thin plate 29 and the rotating shaft 23 can be prevented. Further, since heat generation due to contact between each thin plate 29 and the rotating shaft 23 is prevented, it is also possible to avoid occurrence of vibration due to thermal balance in the rotating shaft 23. In addition,
In addition, it goes without saying that the same effects as those described in the first embodiment can be obtained.
【0087】次に、本発明の第7の実施の形態について
の説明を図9を参照しながら行う。なお、本実施の形態
は、上記第6の実施の形態の変形例に相当するものであ
るので、上記第6の実施の形態との相違点を中心に説明
するものとし、その他の、上記第6の実施の形態と同一
部分については説明を省略する。図9の(a)は、リー
フシール25を回転軸23の軸線を通る断面より見た断
面図であり、(b)は(a)をD−D線より見た断面図
である。Next, a seventh embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modified example of the sixth embodiment. Therefore, the description will be focused on the differences from the sixth embodiment, and the other points will be described. The description of the same parts as in the sixth embodiment will be omitted. 9A is a cross-sectional view of the leaf seal 25 as viewed from a cross-section passing through the axis of the rotating shaft 23, and FIG. 9B is a cross-sectional view of FIG. 9A as viewed from the line DD.
【0088】同図に示すように、本実施の形態では、上
記第6の実施の形態で説明した環状の前記段形状部50
に、この環状の内周側及び外周側の空間を連通させる通
気孔51を形成した点が特徴的となっている。この通気
孔51は、図9(b)に示すように、複数個が互いに等
間隔をおいて形成されたものとなっている。このよう
に、段形状部50に複数の通気孔51を形成したこと
で、各薄板29と低圧側側板26との間の隙間空間にお
ける、段形状部50を境とした、回転軸半径方向内周側
と回転軸半径方向外周側との両空間の間でのガス流れに
対する抵抗が低減されるようになる。これにより、段形
状部50による各薄板29の支持を確保しながらも、あ
たかも段形状部50が存在しないかのように、前記隙間
空間における回転軸半径方向の圧力分布を形成させるこ
とができるようになる。As shown in the figure, in this embodiment, the annular step-shaped portion 50 described in the sixth embodiment is used.
In addition, a characteristic feature is that a vent hole 51 is formed to communicate the annular inner and outer spaces. As shown in FIG. 9B, a plurality of the ventilation holes 51 are formed at equal intervals. As described above, by forming the plurality of ventilation holes 51 in the step-shaped portion 50, in the gap space between each thin plate 29 and the low-pressure side plate 26, in the radial direction of the rotation axis with the step-shaped portion 50 as a boundary. The resistance to the gas flow between both the space on the circumferential side and the space on the outer circumferential side in the radial direction of the rotating shaft is reduced. Thereby, while the support of each thin plate 29 by the step-shaped portion 50 is ensured, the pressure distribution in the radial direction of the rotating shaft in the clearance space can be formed as if the step-shaped portion 50 does not exist. become.
【0089】これにより、高圧側側板27から低圧側側
板26に向かうガス圧が各薄板29に加わった場合に、
これら薄板29の上下面に対して、回転軸23に対向す
る先端側でかつ高圧側側板27の側に位置する角部r1
で最もガス圧が高く、かつ対角の角部r2に向かって徐
々にガス圧が弱まるガス圧分布を広い範囲(図9(a)
の実線矢印R1で示す範囲)に形成させることができ、
例えば図9(a)の二点鎖線の矢印R2で示す狭い範囲
のガス圧分布とならないようにすることができる。した
がって、広いガス圧分布を各薄板29に与えることがで
きるので、各薄板29の広い範囲に渡ってその上下面に
圧力差を確実に生じせしめて、これら薄板29を回転軸
23の周面23aより浮かせるという薄板浮上のための
ガス圧調整が的確に行えるようになる。Thus, when gas pressure from the high pressure side plate 27 to the low pressure side plate 26 is applied to each thin plate 29,
With respect to the upper and lower surfaces of these thin plates 29, corners r1 located on the front end side facing the rotating shaft 23 and on the high pressure side plate 27 side.
The gas pressure distribution where the gas pressure is the highest and the gas pressure gradually decreases toward the diagonal corner r2 is widened (FIG. 9A).
In the range indicated by the solid line arrow R1).
For example, it is possible to prevent the gas pressure distribution in a narrow range indicated by a two-dot chain line arrow R2 in FIG. 9A. Therefore, a wide gas pressure distribution can be given to each thin plate 29, so that a pressure difference is reliably generated on the upper and lower surfaces of each thin plate 29 over a wide range, and these thin plates 29 are attached to the peripheral surface 23a of the rotating shaft 23. It is possible to accurately adjust the gas pressure for floating the thin plate, that is, to make it float more.
【0090】次に、本発明の第8の実施の形態について
の説明を図10を参照しながら行う。なお、本実施の形
態は、上記第6の実施の形態の変形例に相当するもので
あるので、上記第6の実施の形態との相違点を中心に説
明するものとし、その他の、上記第6の実施の形態と同
一部分については説明を省略する。図10の(a)は、
リーフシール25を回転軸23の軸線を通る断面より見
た断面図であり、(b),(c)は(a)をE−E線よ
り見た断面図である。Next, an eighth embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modified example of the sixth embodiment. Therefore, the description will be focused on the differences from the sixth embodiment, and the other points will be described. The description of the same parts as in the sixth embodiment will be omitted. (A) of FIG.
It is sectional drawing which looked at the leaf seal 25 from the cross section which passes along the axis of the rotating shaft 23, (b), (c) is sectional drawing which looked at (a) from EE line.
【0091】図10(b)に示すように、本実施の形態
では、上記第6の実施の形態で説明した全周に渡って環
状に連続した前記段形状部50の代わりに、互いに等し
い間隔Gを置いた状態で、低圧側側板26に沿って回転
軸23周りの環状をなすように間欠配置された複数枚の
環状分割板50aから構成される段形状部50A(第2
の段形状部)を、1周(1段)、低圧側側板26に固定
した点が特に特徴的となっている。この段形状部50A
は、図10(a)に示すように、回転軸23の軸線を通
る断面で見た場合には、各薄板29側に向かって突出す
るように低圧側側板26の側に設けられている。なお、
この段形状部50A(環状分割板50a)は、低圧側側
板26と別部品としても良いし、低圧側側板26と一体
の部品としても良い。As shown in FIG. 10B, in the present embodiment, the step-shaped portions 50 which are annularly continuous over the entire periphery described in the sixth embodiment are replaced with equal intervals. In the state where G is placed, a step-shaped portion 50A (the second portion 50A) composed of a plurality of annular divided plates 50a intermittently arranged so as to form an annular shape around the rotation axis 23 along the low-pressure side plate 26.
Is characterized by being fixed to the low-pressure side plate 26 for one turn (one step). This step-shaped portion 50A
As shown in FIG. 10A, when viewed in a cross section passing through the axis of the rotating shaft 23, is provided on the side of the low-pressure side plate 26 so as to project toward each thin plate 29. In addition,
The step-shaped portion 50A (annular split plate 50a) may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
【0092】本実施の形態では、上記第7の実施の形態
の前記各通気孔51の代わりの役目を前記各間隔Gが行
うので、各薄板29と低圧側側板26との間の隙間空間
における、段形状部50Aを境とした、回転軸半径方向
内周側と回転軸半径方向外周側との両空間の間でのガス
流れに対する抵抗が低減されるようになっている。これ
により、段形状部50Aによる各薄板29の支持を確保
しながらも、あたかも段形状部50Aが存在しないかの
ように、前記隙間空間における回転軸半径方向の圧力分
布を形成させることができるようになる。In the present embodiment, the gaps G serve as substitutes for the ventilation holes 51 of the seventh embodiment, so that the gaps between the thin plates 29 and the low-pressure side plate 26 are provided. The resistance to the gas flow between the space on the inner side in the radial direction of the rotating shaft and the outer side in the radial direction on the rotating shaft with the step-shaped portion 50A as a boundary is reduced. Thereby, while the support of each thin plate 29 by the step-shaped portion 50A is ensured, it is possible to form the pressure distribution in the radial direction of the rotating shaft in the gap space as if the step-shaped portion 50A does not exist. become.
【0093】これにより、高圧側側板27から低圧側側
板26に向かうガス圧が各薄板29に加わった場合に、
これら薄板29の上下面に対して、回転軸23に対向す
る先端側でかつ高圧側側板27の側に位置する角部r1
で最もガス圧が高く、かつ対角の角部r2に向かって徐
々にガス圧が弱まるガス圧分布を広い範囲(図10
(a)の実線矢印R1で示す範囲)に形成させることが
でき、例えば図10(a)の二点鎖線の矢印R2で示す
狭い範囲のガス圧分布とならないようにすることができ
る。したがって、広いガス圧分布を各薄板29に与える
ことができるので、各薄板29の広い範囲に渡ってその
上下面に圧力差を確実に生じせしめて、これら薄板29
を回転軸23の周面23aより浮かせるという薄板浮上
のためのガス圧調整が的確に行えるようになる。Thus, when the gas pressure from the high pressure side plate 27 to the low pressure side plate 26 is applied to each thin plate 29,
With respect to the upper and lower surfaces of these thin plates 29, corners r1 located on the front end side facing the rotating shaft 23 and on the high pressure side plate 27 side.
The gas pressure distribution where the gas pressure is the highest and the gas pressure gradually decreases toward the diagonal corner r2 (FIG. 10)
(A range indicated by a solid arrow R1 in FIG. 10A), for example, so that a gas pressure distribution in a narrow range indicated by a two-dot chain line arrow R2 in FIG. Therefore, a wide gas pressure distribution can be given to each thin plate 29, so that a pressure difference is reliably generated on the upper and lower surfaces of each thin plate 29 over a wide range, and these thin plates 29
The gas pressure can be adjusted accurately for floating the thin plate, that is, floating the peripheral surface 23a of the rotating shaft 23.
【0094】なお、本実施の形態の変形例として、例え
ば図10(c)に示すように回転軸23を軸心とする同
心円状に段形状部50Aを2周(2段)に配置したり、
もしくは3周以上(3段以上)に配置する構成(図示せ
ず)も勿論可能である。As a modification of the present embodiment, for example, as shown in FIG. 10C, the step-shaped portion 50A is arranged concentrically around the rotation shaft 23 in two rounds (two steps). ,
Alternatively, a configuration (not shown) of arranging three or more rounds (three or more stages) is of course possible.
【0095】次に、本発明の第9の実施の形態について
の説明を図11を参照しながら行う。なお、本実施の形
態は、上記第6の実施の形態の変形例に相当するもので
あるので、上記第6の実施の形態との相違点を中心に説
明するものとし、その他の、上記第6の実施の形態と同
一部分については説明を省略する。図11の(a)は、
リーフシール25を回転軸23の軸線を通る断面より見
た断面図であり、(b),(c)は(a)をF−F線よ
り見た断面図である。Next, a ninth embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modified example of the sixth embodiment. Therefore, the description will be focused on the differences from the sixth embodiment, and the other points will be described. The description of the same parts as in the sixth embodiment will be omitted. (A) of FIG.
It is sectional drawing which looked at the leaf seal 25 from the cross section which passes along the axis of the rotating shaft 23, (b), (c) is sectional drawing which looked at (a) from FF line.
【0096】図11(b)に示すように、本実施の形態
では、上記第6の実施の形態で説明した全周に渡って環
状に連続した前記段形状部50の代わりに、各薄板29
側から低圧側側板26を見た場合に、該低圧側側板26
の内周側から外周側に向かってスパイラル状に配置さ
れ、互いの間に間隔Gが設けられた複数枚のスパイラル
板50bから構成される段形状部50B(第3の段形状
部)を、低圧側側板26に固定した点が特に特徴的とな
っている。この段形状部50Bは、図11(a)に示す
ように、回転軸23の軸線を通る断面で見た場合には、
各薄板29側に向かって突出するように低圧側側板26
の側に設けられている。そして、各スパイラル板50b
は、各薄板29側から低圧側側板26を見た場合(すな
わち図11(b)の視線で見た場合)に、各薄板29と
交差するクロス方向に傾斜した状態で、低圧側側板26
に固定されている。なお、この段形状部50B(スパイ
ラル板50b)は、低圧側側板26と別部品としても良
いし、低圧側側板26と一体の部品としても良い。As shown in FIG. 11 (b), in this embodiment, each thin plate 29 is replaced with the stepped portion 50 which is annularly continuous over the entire circumference described in the sixth embodiment.
When the low pressure side plate 26 is viewed from the side, the low pressure side plate 26
A step-shaped portion 50B (third step-shaped portion) composed of a plurality of spiral plates 50b arranged in a spiral shape from the inner peripheral side toward the outer peripheral side and having an interval G therebetween is provided. The point that it is fixed to the low-pressure side plate 26 is particularly characteristic. As shown in FIG. 11A, the step-shaped portion 50B has a cross section passing through the axis of the rotating shaft 23, as shown in FIG.
The low-pressure side plate 26 projects toward each thin plate 29 side.
Side. And each spiral plate 50b
When the low-pressure side plate 26 is viewed from each thin plate 29 side (that is, when viewed from the line of sight of FIG. 11B), the low-pressure side plate 26 is inclined in the cross direction crossing each thin plate 29.
It is fixed to. The stepped portion 50B (spiral plate 50b) may be a separate component from the low-pressure side plate 26, or may be a component integrated with the low-pressure side plate 26.
【0097】なお、本実施の形態の変形例として、例え
ば図11(c)に示すように、各スパイラル板50b
を、各薄板29側から低圧側側板26を見た場合に、各
薄板29と同方向かつ異なる傾斜角度(回転軸23の周
面23aに対する傾斜角度)に傾斜した状態で、低圧側
側板26に固定する構成も勿論採用可能である。しかし
ながら、図11(b)で示したクロス方向に傾斜させた
方が、一枚あたりのスパイラル板50bにより多くの枚
数の薄板29を支持させることができるのでより好まし
いと言える。As a modification of the present embodiment, for example, as shown in FIG.
When the low-pressure side plate 26 is viewed from the side of each thin plate 29, the low-pressure side plate 26 is tilted in the same direction and at a different tilt angle (the tilt angle of the rotating shaft 23 with respect to the peripheral surface 23a). Of course, a fixed configuration can also be adopted. However, it is more preferable to incline in the cross direction shown in FIG. 11B because a larger number of thin plates 29 can be supported by one spiral plate 50b.
【0098】本実施の形態では、上記第7の実施の形態
の前記各通気孔51の代わりの役目を前記各間隔Gが行
うので、各薄板29と低圧側側板26との間の隙間空間
における、段形状部50Bを境とした、回転軸半径方向
内周側と回転軸半径方向外周側との両空間の間でのガス
流れに対する抵抗が低減されるようになっている。これ
により、段形状部50Bによる各薄板29の支持を確保
しながらも、あたかも段形状部50Bが存在しないかの
ように、前記隙間空間における回転軸半径方向の圧力分
布を形成させることができるようになる。In the present embodiment, since the gaps G serve as substitutes for the ventilation holes 51 of the seventh embodiment, the gap G between the thin plates 29 and the low-pressure side plate 26 is used. The resistance to the gas flow between the space on the inner side in the radial direction of the rotating shaft and the outer peripheral side in the radial direction on the rotating shaft with the step-shaped portion 50B as a boundary is reduced. Thus, the pressure distribution in the radial direction of the rotating shaft in the gap space can be formed as if the step-shaped portion 50B does not exist, while securing the support of each thin plate 29 by the step-shaped portion 50B. become.
【0099】これにより、高圧側側板27から低圧側側
板26に向かうガス圧が各薄板29に加わった場合に、
これら薄板29の上下面に対して、回転軸23に対向す
る先端側でかつ高圧側側板の側に位置する角部r1で最
もガス圧が高く、かつ対角の角部r2に向かって徐々に
ガス圧が弱まるガス圧分布を広い範囲(図11(a)の
実線矢印R1で示す範囲)に形成させることができ、狭
い範囲のガス圧分布とならないようにすることができ
る。したがって、広いガス圧分布を各薄板29に与える
ことができるので、各薄板29の広い範囲に渡ってその
上下面に圧力差を確実に生じせしめて、これら薄板29
を回転軸23の周面23aより浮かせるという薄板浮上
のためのガス圧調整が的確に行えるようになる。Thus, when the gas pressure from the high pressure side plate 27 to the low pressure side plate 26 is applied to each thin plate 29,
With respect to the upper and lower surfaces of these thin plates 29, the gas pressure is highest at a corner r1 located on the tip side facing the rotating shaft 23 and on the side of the high pressure side plate, and gradually toward the diagonal corner r2. The gas pressure distribution in which the gas pressure is weakened can be formed in a wide range (the range indicated by the solid arrow R1 in FIG. 11A), and the gas pressure distribution in a narrow range can be prevented. Therefore, a wide gas pressure distribution can be given to each thin plate 29, so that a pressure difference is reliably generated on the upper and lower surfaces of each thin plate 29 over a wide range, and these thin plates 29
The gas pressure can be adjusted accurately for floating the thin plate, that is, floating the peripheral surface 23a of the rotating shaft 23.
【0100】次に、本発明の第10の実施の形態につい
ての説明を図12を参照しながら行う。なお、本実施の
形態は、上記第6の実施の形態の変形例に相当するもの
であるので、上記第6の実施の形態との相違点を中心に
説明するものとし、その他の、上記第6の実施の形態と
同一部分については説明を省略する。図12は、リーフ
シール25を回転軸23の軸線を通る断面より見た断面
図である。Next, a tenth embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modified example of the sixth embodiment. Therefore, the description will be focused on the differences from the sixth embodiment, and the other points will be described. The description of the same parts as in the sixth embodiment will be omitted. FIG. 12 is a cross-sectional view of the leaf seal 25 as viewed from a cross section passing through the axis of the rotating shaft 23.
【0101】図12に示すように、本実施の形態では、
上記第6の実施の形態で説明した低圧側薄板26側に設
けられた前記段形状部50の代わりに、低圧側側板26
に向かって突出するように各薄板29の側にそれぞれ設
けられた段形状部50C(第4の段形状部)を設けた点
が特に特徴的となっている。各段形状部50Cは、それ
ぞれの薄板29に一体に形成された突出部であり、互い
の間に、各薄板29間に形成される隙間と同じ寸法の隙
間が生じるようになっている。As shown in FIG. 12, in the present embodiment,
Instead of the step-shaped portion 50 provided on the low pressure side thin plate 26 side described in the sixth embodiment, the low pressure side plate 26
This is particularly characterized in that a step-shaped portion 50C (fourth step-shaped portion) provided on each thin plate 29 side so as to project toward the thin plate 29 is provided. Each step-shaped portion 50C is a protruding portion formed integrally with each thin plate 29, and a gap having the same size as a gap formed between each thin plate 29 is generated between them.
【0102】本実施の形態では、上記第7の実施の形態
の前記各通気孔51の代わりの役目を、各段形状部50
C間の隙間が行うので、各薄板29と低圧側側板26と
の間の隙間空間における、段形状部50Cを境とした、
回転軸半径方向内周側と回転軸半径方向外周側との両空
間の間でのガス流れに対する抵抗が低減されるようにな
っている。これにより、段形状部50Cによる各薄板2
9の支持を確保しながらも、あたかも段形状部50Cが
存在しないかのように、前記隙間空間における回転軸半
径方向の圧力分布を形成させることができるようにな
る。In the present embodiment, each of the stepped portions 50 is replaced by the stepped portion 50 instead of the vent hole 51 of the seventh embodiment.
Since the gap between C is formed, in the gap space between each thin plate 29 and the low-pressure side plate 26, with the step-shaped portion 50C as a boundary,
The resistance to the gas flow between the two spaces on the inner peripheral side in the radial direction of the rotating shaft and the outer peripheral side in the radial direction on the rotating shaft is reduced. Thereby, each thin plate 2 by the step-shaped portion 50C is formed.
9, the pressure distribution in the radial direction of the rotating shaft in the clearance space can be formed as if the step-shaped portion 50C does not exist.
【0103】これにより、高圧側側板27から低圧側側
板26に向かうガス圧が各薄板29に加わった場合に、
これら薄板29の上下面に対して、回転軸23に対向す
る先端側でかつ高圧側側板27の側に位置する角部r1
で最もガス圧が高く、かつ対角の角部r2に向かって徐
々にガス圧が弱まるガス圧分布を広い範囲(図12の実
線矢印R1で示す範囲)に形成させることができ、例え
ば図12の二点鎖線の矢印R2で示す狭い範囲のガス圧
分布とならないようにすることができる。したがって、
広いガス圧分布を各薄板29に与えることができるの
で、各薄板29の広い範囲に渡ってその上下面に圧力差
を確実に生じせしめて、これら薄板29を回転軸23の
周面23aより浮かせるという薄板浮上のためのガス圧
調整が的確に行えるようになる。また、本実施の形態で
は、各薄板29の形状を変えるだけで、低圧側側板26
に加工あるいは取付けする必要がないので、製作コスト
面でメリットが大きいという効果も有している。Accordingly, when the gas pressure from the high pressure side plate 27 to the low pressure side plate 26 is applied to each thin plate 29,
With respect to the upper and lower surfaces of these thin plates 29, corners r1 located on the front end side facing the rotating shaft 23 and on the high pressure side plate 27 side.
The gas pressure distribution where the gas pressure is the highest and the gas pressure gradually decreases toward the diagonal corner r2 can be formed in a wide range (the range indicated by the solid arrow R1 in FIG. 12). The gas pressure distribution in the narrow range shown by the two-dot chain line arrow R2 can be prevented. Therefore,
Since a wide gas pressure distribution can be given to each thin plate 29, a pressure difference is surely generated on the upper and lower surfaces of each thin plate 29 over a wide range, and these thin plates 29 are floated from the peripheral surface 23a of the rotating shaft 23. This makes it possible to accurately adjust the gas pressure for floating the thin plate. Further, in the present embodiment, only by changing the shape of each thin plate 29, the low-pressure side plate 26
Since there is no need to process or attach the device, there is also an effect that there is a great advantage in terms of manufacturing cost.
【0104】次に、本発明の第11の実施の形態につい
ての説明を図13を参照しながら行う。なお、本実施の
形態は、上記第6の実施の形態の変形例に相当するもの
であるので、上記第6の実施の形態との相違点を中心に
説明するものとし、その他の、上記第6の実施の形態と
同一部分については説明を省略する。図13は、リーフ
シール25を回転軸23の軸線を通る断面より見た断面
図である。Next, an eleventh embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modified example of the sixth embodiment. Therefore, the description will be focused on the differences from the sixth embodiment, and the other points will be described. The description of the same parts as in the sixth embodiment will be omitted. FIG. 13 is a cross-sectional view of the leaf seal 25 as viewed from a cross-section passing through the axis of the rotating shaft 23.
【0105】図13に示すように、本実施の形態では、
上記第6の実施の形態で説明した環状の前記段形状部5
0(第1の段形状部)が、低圧側側板26の半径方向に
沿ってケーシング24の位置まで連続して形成されてい
る点が特に特徴的となっている。すなわち、本実施の形
態の段形状部50は、同図の断面で見た場合に、ケーシ
ング24と低圧側側板26との接続部分である、低圧側
側板26の付け根位置(基部)まで連続して幅広に形成
されたものとなっている。なお、この段形状部50は、
通常運転状態では、その各薄板29に対向する面が各薄
板29に対して直接接触しておらず、両者の間には微少
な隙間が形成された状態となっている。この段形状部5
0によれば、各薄板29のずれあるいは変形を拘束する
ことで、低圧側隙間31の隙間寸法t2以下になること
を防ぐことができ、容易に所定の隙間寸法に維持するこ
とが可能となる。As shown in FIG. 13, in the present embodiment,
The annular step-shaped portion 5 described in the sixth embodiment.
It is particularly characteristic that 0 (first step-shaped portion) is formed continuously to the position of the casing 24 along the radial direction of the low-pressure side plate 26. That is, the step-shaped portion 50 of the present embodiment, when viewed in the cross section in FIG. 3, is continuous to the base position (base portion) of the low-pressure side plate 26, which is the connection portion between the casing 24 and the low-pressure side plate 26. It is formed wide. In addition, this step-shaped part 50 is
In the normal operation state, the surface facing each thin plate 29 is not in direct contact with each thin plate 29, and a small gap is formed between the two. This step-shaped part 5
According to 0, by restricting the displacement or deformation of each thin plate 29, it is possible to prevent the gap size t2 of the low pressure side gap 31 from becoming smaller than the gap size t2, and it is possible to easily maintain the gap size at a predetermined size. .
【0106】以上説明の本実施の形態のリーフシール2
5(軸シール機構)及びこれを備えたガスタービンによ
れば、段形状部50を設けたことで、各薄板29の位置
が低圧側側板26の側に向かって接近しようとしても、
これら薄板29が、段形状部50によって支持されるこ
とで接近が阻止されるようになっているので、軸シール
機構組立時における組立誤差や、運転時における高圧側
から低圧側に向かう流体圧による各薄板29の変形等が
発生しても、各薄板29と低圧側側板26との間を所定
の隙間寸法t2に維持することができる。The leaf seal 2 of the present embodiment described above
According to 5 (shaft seal mechanism) and the gas turbine provided with the same, the provision of the stepped portion 50 allows the position of each thin plate 29 to approach the low-pressure side plate 26,
Since the thin plates 29 are supported by the step-shaped portion 50, the approach is prevented. Therefore, there is an assembly error at the time of assembling the shaft seal mechanism and a fluid pressure from the high pressure side to the low pressure side at the time of operation. Even if each thin plate 29 is deformed, the gap between each thin plate 29 and the low-pressure side plate 26 can be maintained at the predetermined gap size t2.
【0107】すなわち、各薄板29と、高圧側側板27
及び低圧側側板26との間を、それぞれ所定の隙間寸法
に形成させることができるので、高圧側と低圧側との間
での圧力変動が生じても各隙間寸法が変化しにくくなる
ので、適用するシール差圧範囲を拡大することが可能と
なる。また、上述のように段形状部50と各薄板29と
の間には微少な隙間が形成されているので、高圧側側板
27及び低圧側側板26と各薄板29との間の隙間公差
をゆるめに設計でき、加工コストを低減させることがで
きる。なお、この他にも、上記第6の実施の形態で説明
した効果と同様の効果が得られることは勿論である。That is, each thin plate 29 and the high-pressure side plate 27
Since the gap between the high-pressure side and the low-pressure side plate 26 can be formed to have a predetermined gap size, even if a pressure fluctuation occurs between the high-pressure side and the low-pressure side, each gap size is unlikely to change. It is possible to expand the range of the seal differential pressure. Further, since a minute gap is formed between the step-shaped portion 50 and each thin plate 29 as described above, the gap tolerance between the high-pressure side plate 27 and the low-pressure side plate 26 and each thin plate 29 is relaxed. And the processing cost can be reduced. In addition, it goes without saying that effects similar to those described in the sixth embodiment can be obtained.
【0108】次に、本発明の第12の実施の形態につい
ての説明を、図14を参照しながら行う。なお、本実施
の形態は、上記第11の実施の形態の変形例に相当する
ものであるので、上記第11の実施の形態との相違点を
中心に説明するものとし、その他の、上記第11の実施
の形態と同一部分については説明を省略する。図14
は、リーフシール25を回転軸23の軸線を通る断面よ
り見た断面図である。Next, a twelfth embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a modification of the eleventh embodiment, and therefore, will be described focusing on the differences from the eleventh embodiment. The description of the same parts as in the eleventh embodiment is omitted. FIG.
Is a cross-sectional view of the leaf seal 25 viewed from a cross-section passing through the axis of the rotating shaft 23.
【0109】図14に示すように、本実施の形態では、
上記第11の実施の形態で説明した前記段形状部50に
加えて、上記第3の実施の形態で図5(b)を参照して
説明した前記高圧側隙間微調整用薄板35を、高圧側側
板27と薄板29との間の隙間に配置した点が特に特徴
的となっている。この構成によれば、高圧側側板27か
ら低圧側側板26に向かうガス圧が各薄板29に加わっ
た場合に、これら薄板29の上下面に対して、回転軸2
3に対向する先端側でかつ高圧側側板27の側に位置す
る角部r1で最もガス圧が高く、かつ対角の角部r2に
向かって徐々にガス圧が弱まるガス圧分布を形成させる
ことができる。以上説明の本実施の形態のリーフシール
25(軸シール機構)及びこれを備えたガスタービンに
よれば、上記第11の実施の形態及び上記第3の実施の
形態と同様の作用効果を得ることが可能となる。As shown in FIG. 14, in the present embodiment,
In addition to the stepped portion 50 described in the eleventh embodiment, the high-pressure-side gap fine-adjustment thin plate 35 described in the third embodiment with reference to FIG. The point that it is arranged in the gap between the side plate 27 and the thin plate 29 is particularly characteristic. According to this configuration, when gas pressure from the high-pressure side plate 27 to the low-pressure side plate 26 is applied to each thin plate 29, the rotating shaft 2
The gas pressure distribution is formed such that the gas pressure is highest at the corner r1 located on the side of the high-pressure side plate 27 on the front end side opposite to the pressure side 3 and the gas pressure gradually decreases toward the diagonal corner r2. Can be. According to the leaf seal 25 (shaft seal mechanism) of the present embodiment described above and the gas turbine provided with the same, it is possible to obtain the same operation and effects as those of the above-described eleventh and third embodiments. Becomes possible.
【0110】次に、本発明の第13の実施の形態につい
ての説明を、図15を参照しながら行う。なお、本実施
の形態は、上記第12の実施の形態の変形例に相当する
ものであるので、上記第12の実施の形態との相違点を
中心に説明するものとし、その他の、上記第12の実施
の形態と同一部分については説明を省略する。図15
は、リーフシール25を回転軸23の軸線を通る断面よ
り見た断面図である。Next, a thirteenth embodiment of the present invention will be described with reference to FIG. This embodiment is equivalent to a modification of the twelfth embodiment, and therefore, will be described focusing on the differences from the twelfth embodiment. The description of the same parts as in the twelfth embodiment is omitted. FIG.
Is a cross-sectional view of the leaf seal 25 viewed from a cross-section passing through the axis of the rotating shaft 23.
【0111】図15に示すように、本実施の形態では、
上記第12の実施の形態の高圧側側板27に、該高圧側
側板27を回転軸23の軸線方向に貫く導圧孔100
が、円周方向に複数設けられている点が特に特徴的とな
っている。この構成によれば、高圧側領域のガスの一部
を、各導圧孔100を介して高圧側側板27を通過させ
るように前記高圧側隙間微調整用薄板35に加えること
ができるので、高圧側隙間微調整用薄板35をより効果
的に撓ませることが可能となる。したがって、上記第1
2の実施の形態の作用をより確実に得ることが可能とな
る。以上説明の本実施の形態のリーフシール25(軸シ
ール機構)及びこれを備えたガスタービンによれば、上
記第12の実施の形態の効果をより確実に得ることが可
能となる。As shown in FIG. 15, in the present embodiment,
In the high-pressure side plate 27 of the twelfth embodiment, a pressure guiding hole 100 penetrating the high-pressure side plate 27 in the axial direction of the rotating shaft 23.
However, it is particularly characterized in that a plurality of such members are provided in the circumferential direction. According to this configuration, a part of the gas in the high-pressure side region can be added to the high-pressure-side gap fine-adjustment thin plate 35 so as to pass through the high-pressure side plate 27 through each pressure guiding hole 100. The side gap fine-adjustment thin plate 35 can be more effectively bent. Therefore, the first
The operation of the second embodiment can be obtained more reliably. According to the leaf seal 25 (shaft seal mechanism) of the present embodiment described above and the gas turbine provided with the same, the effects of the twelfth embodiment can be obtained more reliably.
【0112】以上に本発明の軸シール機構及びこれを備
えたガスタービンの第1〜第13の実施の形態をそれぞ
れ説明してきたが、このガスタービンとしては、燃焼ガ
スを利用してタービン軸を回転させて動力を得る一般的
なガスタービンに加え、航空機用ガスタービンエンジン
等も含んでいる。また、本発明に係るガスタービンとし
ては、水蒸気を利用する蒸気タービン等の流体機械にも
転用可能である。また、本発明に係る軸シール機構とし
ては、ガスタービン、ガスタービンエンジン、蒸気ター
ビンなどの各種流体機械にも適用可能である。また、上
記第3,第4の各実施の形態の軸シール機構(リーフシ
ール25)及びこれを備えたガスタービンに対して、上
記説明の隙間寸法調整手段50,50A,50B,50
Cを組み合わせる構成も採用可能である。この場合にお
いても、隙間寸法調整手段50,50A,50B,50
Cの採用による同様の作用効果が得られることは、勿論
である。The shaft seal mechanism according to the present invention and the first to thirteenth embodiments of the gas turbine provided with the same have been described above. This gas turbine uses a combustion gas to reduce the turbine shaft. In addition to a general gas turbine that obtains power by rotating, it also includes an aircraft gas turbine engine and the like. Further, the gas turbine according to the present invention can be diverted to a fluid machine such as a steam turbine using steam. Further, the shaft seal mechanism according to the present invention can be applied to various fluid machines such as a gas turbine, a gas turbine engine, and a steam turbine. Further, with respect to the shaft seal mechanism (leaf seal 25) of each of the third and fourth embodiments and the gas turbine provided with the same, the clearance dimension adjusting means 50, 50A, 50B, 50 described above is provided.
A configuration in which C is combined can also be adopted. Also in this case, the gap dimension adjusting means 50, 50A, 50B, 50
Obviously, the same operation and effect can be obtained by adopting C.
【0113】[0113]
【発明の効果】本発明の請求項1〜17のいずれかに記
載の軸シール機構、または請求項18記載のガスタービ
ンによれば、薄板と回転軸周面との間の角度を鋭角に
し、かつ薄板に浮力が付与されるように圧力調整手段を
設けたことで、共振点通過時などの回転軸の振動が大き
いときには鋭角に取付けられた薄板が変形して回転軸と
の接触が緩和されることに加え、定格条件では回転軸の
回転によって生じる動圧効果により、そして動圧効果の
小さい起動時等にも薄板に生じる圧力荷重差により薄板
の先端が回転軸の表面から浮上して回転軸との接触が回
避される。したがって、薄板と回転軸との接触による過
大な発熱及び摩耗を防止することができる。さらに、薄
板と回転軸との接触による発熱が防止されることによ
り、回転軸におけるサーマルバランスによる振動の発生
を回避することが可能となる。According to the shaft sealing mechanism according to any one of claims 1 to 17 of the present invention or the gas turbine according to claim 18, the angle between the thin plate and the peripheral surface of the rotary shaft is made acute, In addition, by providing pressure adjusting means so that buoyancy is applied to the thin plate, the thin plate attached at an acute angle is deformed when vibration of the rotating shaft is large, such as when passing through a resonance point, so that contact with the rotating shaft is reduced. In addition, under the rated conditions, the tip of the thin plate floats from the surface of the rotating shaft due to the dynamic pressure effect generated by the rotation of the rotating shaft, and also due to the difference in pressure load generated in the thin plate even at startup when the dynamic pressure effect is small. Contact with the shaft is avoided. Therefore, excessive heat generation and wear due to contact between the thin plate and the rotating shaft can be prevented. Further, since heat generation due to contact between the thin plate and the rotating shaft is prevented, it is possible to avoid occurrence of vibration due to thermal balance in the rotating shaft.
【0114】また、シール部材に薄板を使用することに
より、従来のワイヤと比較してケーシングに対する固定
部分が拡大されるので、薄板がケーシングに対して強固
に固定される。これにより、従来のブラシシールにおけ
るワイヤ脱落のようなケーシングからの脱落を防止する
ことができる。また、薄板先端は回転軸の軸方向に高い
剛性を有し回転軸の周方向には柔らかいので、従来のブ
ラシシールに比べて差圧方向への変形を起こし難くな
り、シール差圧の許容値を向上させることができる。Further, by using a thin plate for the seal member, the fixed portion to the casing is enlarged as compared with the conventional wire, so that the thin plate is firmly fixed to the casing. As a result, it is possible to prevent the brush seal from falling off the casing, such as the wire falling off. In addition, the tip of the thin plate has high rigidity in the axial direction of the rotating shaft and is soft in the circumferential direction of the rotating shaft. Can be improved.
【0115】また、薄板間の隙間を外周側と内周側とで
等しくすることで薄板をより密に配置することが可能と
なり、薄板の先端と回転軸との隙間を非接触型のラビリ
ンスシールなどと比べて飛躍的に小さくすることができ
る。これにより、ガスの漏れ量を低減することが可能と
なり、これをガスタービンに用いた場合には、その性能
を向上させることができる。したがって、以上説明の請
求項1〜17のいずれかに記載の軸シール機構、または
請求項18記載のガスタービンによれば、高圧側から低
圧側へのガスの漏れ量を低減させるとともに耐摩耗性の
向上を得ることが可能となる。Further, by making the gap between the thin plates equal between the outer circumferential side and the inner circumferential side, the thin plates can be arranged more densely, and the gap between the leading end of the thin plate and the rotating shaft can be replaced with a non-contact type labyrinth seal. It can be dramatically reduced as compared to the like. As a result, the amount of gas leakage can be reduced, and when this is used in a gas turbine, its performance can be improved. Therefore, according to the shaft seal mechanism according to any one of claims 1 to 17 described above or the gas turbine according to claim 18, the amount of gas leakage from the high pressure side to the low pressure side is reduced and the wear resistance is reduced. Can be improved.
【0116】さらに、上記請求項11〜14のいずれか
もしくは上記請求項17に記載の軸シール機構、または
この軸シール機構を備えた請求項18記載のガスタービ
ンによれば、回転軸半径方向内周側と回転軸半径方向外
周側との両空間の間を流れるガス流に対する抵抗が低減
されるようになる。これにより、薄板の支持を確保しな
がらも、薄板と低圧側側板との間の隙間空間における回
転軸半径方向の圧力分布を形成させることができる。し
たがって、高圧側側板から低圧側側板に向かうガス圧が
薄板に加わった場合に、該薄板の上下面に対して、回転
軸に対向する先端側でかつ高圧側側板の側に位置する角
部で最もガス圧が高く、かつ対角に向かって徐々にガス
圧が弱まるガス圧分布の範囲をより広く形成させること
ができるようになるので、薄板の上下面における圧力差
を確実に生じせしめて、該薄板を回転軸周面より浮かせ
るという薄板浮上のためのガス圧調整が的確にできるよ
うになる。Further, according to any one of claims 11 to 14 or the shaft seal mechanism according to claim 17, or according to the gas turbine according to claim 18, which is provided with the shaft seal mechanism, the radial direction of the rotary shaft is limited. The resistance to the gas flow flowing between the space on the circumferential side and the space on the radially outer side in the radial direction of the rotating shaft is reduced. Thereby, the pressure distribution in the radial direction of the rotating shaft can be formed in the gap space between the thin plate and the low-pressure side plate while securing the support of the thin plate. Therefore, when the gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the upper and lower surfaces of the thin plate are at the corners located on the distal end side facing the rotation axis and on the high-pressure side plate side. Since the gas pressure is highest and the range of the gas pressure distribution where the gas pressure gradually decreases in the diagonal direction can be formed wider, the pressure difference between the upper and lower surfaces of the thin plate is surely generated, The gas pressure for floating the thin plate by floating the thin plate from the peripheral surface of the rotating shaft can be accurately adjusted.
【図1】 本発明に係る軸シール機構を備えたガスター
ビンの第1の実施の形態を示す概略構成断面図である。FIG. 1 is a schematic configuration sectional view showing a first embodiment of a gas turbine provided with a shaft seal mechanism according to the present invention.
【図2】 同実施の形態のリーフシール(軸シール機
構)の斜視図である。FIG. 2 is a perspective view of a leaf seal (shaft seal mechanism) of the embodiment.
【図3】 同実施の形態のリーフシールを示す図であっ
て、(a)は回転軸の軸線を通る断面より見た断面図で
あり、(b)は(a)をB−B線より見た断面図であ
る。3A and 3B are views showing the leaf seal according to the embodiment, wherein FIG. 3A is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft, and FIG. It is sectional drawing seen.
【図4】 本発明に係る軸シール機構(リーフシール)
の第2の実施の形態を示す図であって、回転軸の軸線を
通る断面より見た断面図である。FIG. 4 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 6 is a view showing a second embodiment of the present invention, and is a cross-sectional view as viewed from a cross-section passing through an axis of a rotating shaft.
【図5】 本発明に係る軸シール機構(リーフシール)
の第3の実施の形態を示す図であって、(a),(b)
は回転軸の軸線を通る断面より見た断面図である。FIG. 5 is a shaft seal mechanism (leaf seal) according to the present invention.
FIGS. 7A and 7B are diagrams showing a third embodiment of the present invention, wherein FIGS.
Is a cross-sectional view as seen from a cross-section passing through the axis of the rotating shaft.
【図6】 本発明に係る軸シール機構(リーフシール)
の第4の実施の形態を示す図であって、(a)はその斜
視図であり、(b)はその変形例を示す斜視図である。FIG. 6 is a shaft seal mechanism (leaf seal) according to the present invention.
FIGS. 9A and 9B are views showing a fourth embodiment of the present invention, in which FIG. 9A is a perspective view thereof, and FIG.
【図7】 本発明に係る軸シール機構(リーフシール)
の第5の実施の形態を示す図であって、回転軸の軸線を
通る断面より見た断面図である。FIG. 7 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 14 is a view showing a fifth embodiment of the present invention, and is a cross-sectional view as seen from a cross-section passing through an axis of a rotating shaft.
【図8】 本発明に係る軸シール機構(リーフシール)
の第6の実施の形態を示す図であって、(a)は回転軸
の軸線を通る断面より見た断面図であり、(b)は
(a)をC−C線より見た断面図である。FIG. 8 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 13 is a view showing a sixth embodiment of the present invention, in which (a) is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft, and (b) is a cross-sectional view as viewed from (a) along line CC. It is.
【図9】 本発明に係る軸シール機構(リーフシール)
の第7の実施の形態を示す図であって、(a)は回転軸
の軸線を通る断面より見た断面図であり、(b)は
(a)をD−D線より見た断面図である。FIG. 9 shows a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 14 is a view showing a seventh embodiment of the present invention, in which (a) is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft, and (b) is a cross-sectional view as viewed from (a) along line DD. It is.
【図10】 本発明に係る軸シール機構(リーフシー
ル)の第8の実施の形態を示す図であって、(a)は回
転軸の軸線を通る断面より見た断面図であり、(b),
(c)は(a)をE−E線より見た断面図である。FIG. 10 is a view showing an eighth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, wherein FIG. 10 (a) is a cross-sectional view as viewed from a cross section passing through the axis of the rotating shaft, and FIG. ),
(C) is a cross-sectional view of (a) taken along line EE.
【図11】 本発明に係る軸シール機構(リーフシー
ル)の第9の実施の形態を示す図であって、(a)は回
転軸の軸線を通る断面より見た断面図であり、(b),
(c)は(a)をF−F線より見た断面図である。11A and 11B are diagrams showing a ninth embodiment of the shaft seal mechanism (leaf seal) according to the present invention, in which FIG. ),
(C) is a sectional view of (a) as seen from line FF.
【図12】 本発明に係る軸シール機構(リーフシー
ル)の第10の実施の形態を示す図であって、回転軸の
軸線を通る断面より見た断面図である。FIG. 12 is a view showing a tenth embodiment of a shaft seal mechanism (leaf seal) according to the present invention, and is a cross-sectional view as seen from a cross-section passing through an axis of a rotating shaft.
【図13】本発明に係る軸シール機構(リーフシール)
の第11の実施の形態を示す図であって、回転軸の軸線
を通る断面より見た断面図である。FIG. 13 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 29 is a view showing the eleventh embodiment of the present invention, and is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft.
【図14】本発明に係る軸シール機構(リーフシール)
の第12の実施の形態を示す図であって、回転軸の軸線
を通る断面より見た断面図である。FIG. 14 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 39 is a view showing the twelfth embodiment of the present invention, and is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft.
【図15】本発明に係る軸シール機構(リーフシール)
の第13の実施の形態を示す図であって、回転軸の軸線
を通る断面より見た断面図である。FIG. 15 is a shaft seal mechanism (leaf seal) according to the present invention.
FIG. 37 is a view showing a thirteenth embodiment of the present invention, and is a cross-sectional view as viewed from a cross-section passing through an axis of a rotation shaft.
【図16】 従来の軸シール機構の一例を示す図であっ
て、(a)は回転軸の軸線を通る断面より見た断面図で
あり、(b)は(a)のA−A線より見た断面図であ
る。16A and 16B are views showing an example of a conventional shaft sealing mechanism, wherein FIG. 16A is a cross-sectional view as viewed from a cross-section passing through the axis of the rotating shaft, and FIG. 16B is a cross-sectional view taken along line AA of FIG. It is sectional drawing seen.
【図17】 従来の軸シール機構の他の例を示す斜視図
である。FIG. 17 is a perspective view showing another example of the conventional shaft seal mechanism.
23・・・回転軸 23a・・・周面 23e・・・動翼 24・・・ケーシング 25・・・リーフシール(軸シール機構) 26・・・低圧側側板 26a・・・通風孔 27,35・・・高圧側側板,高圧側隙間微調整用薄板
(可撓板) 29・・・薄板 29a・・・上面 29b・・・下面 30・・・隙間 30a・・・ガス圧分布 31・・・低圧側隙間(薄板と低圧側側板との間の隙間) 32・・・高圧側隙間(薄板と高圧側側板との間の隙間) 33・・・低圧側側板長さ(低圧側側板の回転軸半径方向
の長さ寸法) 34・・・高圧側側板長さ(高圧側側板の回転軸半径方向
の長さ寸法) 41,42・・・スリット付き可撓板 41a,42a・・・スリット 50・・・隙間寸法調整手段,第1の段形状部 50A・・・隙間寸法調整手段,第2の段形状部 50B・・・隙間寸法調整手段,第3の段形状部 50C・・・隙間寸法調整手段,第4の段形状部 50a・・・環状分割板 50b・・・スパイラル板 51・・・通気孔 100・・・導圧孔 G・・・間隔 g・・・ガス r1・・・角部 r2・・・角部(対角)Reference numeral 23: rotating shaft 23a: peripheral surface 23e: moving blade 24: casing 25: leaf seal (shaft sealing mechanism) 26: low-pressure side plate 26a: ventilation holes 27, 35 ... High-pressure side plate, high-pressure side gap fine adjustment thin plate (flexible plate) 29 ... Thin plate 29a ... Top surface 29b ... Bottom surface 30 ... Gap 30a ... Gas pressure distribution 31 ... Low pressure side gap (gap between thin plate and low pressure side plate) 32 ... High pressure side gap (gap between thin plate and high pressure side plate) 33 ... Low pressure side plate length (rotation axis of low pressure side plate) (Length in radial direction) 34 ... Length of high-pressure side plate (Length of rotation direction of high-pressure side plate in radial direction) 41, 42 ... Flexible plate with slit 41a, 42a ... Slit 50 ..Gap size adjusting means, first stepped portion 50A ... Gap size adjusting means, Second step-shaped portion 50B: gap size adjusting means, third step-shaped portion 50C: gap size adjusting means, fourth step-shaped portion 50a: annular split plate 50b: spiral plate 51 ..Ventilation hole 100 ・ ・ ・ Pressure guide hole G ・ ・ ・ Interval g ・ ・ ・ Gas r1 ・ ・ ・ Corner r2 ・ ・ ・ Corner (diagonal)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤城 弘一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 由里 雅則 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G002 HA03 HA09 3J042 AA05 BA01 CA01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Koichi Akagi 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Works, Mitsubishi Heavy Industries, Ltd. No.1 Mitsubishi Heavy Industries, Ltd. Takasago Plant F-term (reference) 3G002 HA03 HA09 3J042 AA05 BA01 CA01
Claims (18)
記回転軸の周面に摺動し、互いに隙間を空けて外周側基
端がケーシング側に固定された複数の可撓性を有する薄
板を、前記回転軸の周方向に該回転軸の外周をシール可
能に多重に備え、前記薄板と前記回転軸の周面とが鋭角
をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧
側側板及び高圧側側板が設けられた軸シール機構であ
り、 前記薄板をその幅方向に垂直な仮想平面で断面視し、該
薄板の前記回転軸に面した面を下面、その裏側を上面と
し、該薄板に対して前記高圧側側板から前記低圧側側板
に向かうガス圧が加わった場合に、該薄板の前記断面に
沿った任意位置における前記上面に加わるガス圧よりも
前記下面に加わるガス圧の方を高くするガス圧調整手段
が設けられていることを特徴とする軸シール機構。1. A plurality of flexible members each having a width in the axial direction of a rotating shaft, a leading end sliding on a peripheral surface of the rotating shaft, and a base end on an outer peripheral side fixed to a casing side with a gap therebetween. Are provided in a multiplex manner so as to seal the outer periphery of the rotating shaft in the circumferential direction of the rotating shaft, the thin plate and the circumferential surface of the rotating shaft form an acute angle, and are provided on both sides of the thin plate in the rotating shaft direction. A shaft seal mechanism provided with a low-pressure side plate and a high-pressure side plate. When a gas pressure is applied to the thin plate from the high-pressure side plate toward the low-pressure side plate, a gas applied to the lower surface more than a gas pressure applied to the upper surface at an arbitrary position along the cross section of the thin plate. Gas pressure adjusting means to increase the pressure is provided Shaft sealing mechanism, wherein the door.
記回転軸の周面に摺動し、互いに隙間を空けて外周側基
端がケーシング側に固定された複数の可撓性を有する薄
板を、前記回転軸の周方向に該回転軸の外周をシール可
能に多重に備え、前記薄板と前記回転軸の周面とが鋭角
をなし、前記薄板の前記回転軸方向両側にそれぞれ低圧
側側板及び高圧側側板が設けられた軸シール機構であ
り、 前記高圧側側板から前記低圧側側板に向かうガス圧が前
記薄板に加わった場合に、該薄板の上下面に対して、前
記先端側でかつ前記高圧側側板の側に位置する角部で最
もガス圧が高く、かつ対角に向かって徐々にガス圧が弱
まるガス圧分布を形成するガス圧調整手段が設けられて
いることを特徴とする軸シール機構。2. A plurality of flexible members each having a width in the axial direction of the rotating shaft, the leading ends sliding on the peripheral surface of the rotating shaft, and the outer peripheral base fixed to the casing side with a gap therebetween. Are provided in a multiplex manner so as to seal the outer periphery of the rotating shaft in the circumferential direction of the rotating shaft, the thin plate and the circumferential surface of the rotating shaft form an acute angle, and are provided on both sides of the thin plate in the rotating shaft direction. A shaft sealing mechanism provided with a low-pressure side plate and a high-pressure side plate, wherein when gas pressure from the high-pressure side plate toward the low-pressure side plate is applied to the thin plate, the tip ends with respect to the upper and lower surfaces of the thin plate. Gas pressure adjusting means for forming a gas pressure distribution in which the gas pressure is highest at a corner located on the side of the high pressure side plate and the gas pressure gradually decreases diagonally. Characteristic shaft seal mechanism.
において、 前記ガス圧調整手段は、前記薄板と前記低圧側側板との
間の隙間を、前記薄板と前記高圧側側板との間の隙間よ
りも大きくする隙間寸法調節であることを特徴とする軸
シール機構。3. The shaft sealing mechanism according to claim 1, wherein the gas pressure adjusting means includes a gap between the thin plate and the low pressure side plate and a gap between the thin plate and the high pressure side plate. A shaft seal mechanism characterized in that the gap size is adjusted to be larger than the gap.
において、 前記ガス圧調整手段は、前記低圧側側板の前記回転軸半
径方向の長さ寸法を前記高圧側側板の前記回転軸半径方
向の長さ寸法よりも短くする側板寸法調節であることを
特徴とする軸シール機構。4. The shaft seal mechanism according to claim 1, wherein the gas pressure adjusting means adjusts a length dimension of the low-pressure side plate in the radial direction of the rotating shaft in a direction of the radial direction of the high-pressure side plate. A shaft seal mechanism wherein side plate dimensions are adjusted to be shorter than a length dimension.
において、 前記ガス圧調整手段は、前記薄板の高圧側に配されてか
つ前記回転軸方向に可撓性を有する可撓板であることを
特徴とする軸シール機構。5. The shaft sealing mechanism according to claim 1, wherein the gas pressure adjusting means is a flexible plate disposed on a high pressure side of the thin plate and having flexibility in the rotation axis direction. A shaft sealing mechanism.
において、 前記ガス圧調整手段は、前記薄板の高圧側に配されて前
記回転軸方向に可撓性を有し、かつその全周で2ヶ所以
上のスリットが形成されているスリット付き可撓板であ
ることを特徴とする軸シール機構。6. The shaft sealing mechanism according to claim 1, wherein the gas pressure adjusting means is disposed on a high pressure side of the thin plate, has flexibility in the direction of the rotation axis, and has a full circumference. A shaft seal mechanism comprising a flexible plate with a slit in which two or more slits are formed.
において、 前記ガス圧調整手段は、前記回転軸の軸線方向に前記低
圧側側板を貫く複数の通風孔であることを特徴とする軸
シール機構。7. The shaft seal according to claim 1, wherein the gas pressure adjusting means is a plurality of ventilation holes that penetrate the low-pressure side plate in an axial direction of the rotating shaft. mechanism.
記回転軸の周面に摺動し、互いに隙間を空けて外周側基
端がケーシング側に固定された複数の可撓性を有する薄
板を、前記回転軸の周方向に該回転軸の外周をシール可
能に多重に備え、前記薄板と前記回転軸の周面とが鋭角
をなす軸シール機構であり、 前記薄板の、前記軸方向の低圧側に、高圧側から低圧側
に向かうガスの通過を許可するガス通過空間が形成され
ていることを特徴とする軸シール機構。8. A plurality of flexible members each having a width in the axial direction of the rotating shaft, the leading ends sliding on the peripheral surface of the rotating shaft, and the outer peripheral side base end fixed to the casing side with a gap therebetween. A thin plate having a multiplicity of seals in the circumferential direction of the rotating shaft so as to seal the outer periphery of the rotating shaft, wherein the thin plate and the circumferential surface of the rotating shaft form an acute angle, A shaft sealing mechanism, wherein a gas passage space is formed on the low pressure side in the axial direction to allow passage of gas from the high pressure side to the low pressure side.
かに記載の軸シール機構において、 前記低圧側側板と前記薄板との間には、該低圧側側板に
向かって前記薄板が接近しようとした場合に、該薄板を
支持して、これら低圧側側板及び薄板間の隙間寸法を維
持する隙間寸法調整手段が設けられていることを特徴と
する軸シール機構。9. The shaft seal mechanism according to claim 3, wherein the thin plate approaches the low-pressure side plate between the low-pressure side plate and the thin plate. A shaft seal mechanism provided with gap size adjusting means for supporting the thin plate and maintaining a gap size between the low-pressure side plate and the thin plate.
て、 前記隙間寸法調整手段は、前記薄板側に向かって突出す
るように前記低圧側側板の側に設けられた第1の段形状
部であり、 該第1の段形状部は、前記低圧側側板に沿って前記回転
軸周りの環状をなしていることを特徴とする軸シール機
構。10. The shaft seal mechanism according to claim 9, wherein the gap dimension adjusting means is a first step-shaped portion provided on the side of the low-pressure side plate so as to protrude toward the thin plate side. The shaft seal mechanism, wherein the first stepped portion forms an annular shape around the rotation axis along the low-pressure side plate.
いて、 前記第1の段形状部には、前記環状の内周側及び外周側
の空間を連通させる通気孔が形成されていることを特徴
とする軸シール機構。11. The shaft seal mechanism according to claim 10, wherein the first step-shaped portion is formed with a ventilation hole that communicates the annular inner and outer spaces. Shaft sealing mechanism.
て、 前記隙間寸法調整手段は、前記薄板側に向かって突出す
るように前記低圧側側板の側に設けられた第2の段形状
部であり、 該第2の段形状部は、互いに間隔を置いた状態で、前記
低圧側側板に沿って前記回転軸周りの環状をなすように
間欠配置された複数枚の環状分割板からなることを特徴
とする軸シール機構。12. The shaft seal mechanism according to claim 9, wherein the clearance dimension adjusting means is a second step-shaped portion provided on the side of the low-pressure side plate so as to project toward the thin plate side. The second step-shaped portion comprises a plurality of annular divided plates intermittently arranged so as to form an annular shape around the rotation axis along the low-pressure side plate while being spaced from each other. Shaft seal mechanism.
の軸シール機構において、 前記第1または第2の段形状部は、前記回転軸を軸心と
する同心円状に複数段が設けられていることを特徴とす
る軸シール機構。13. The shaft seal mechanism according to claim 10, wherein the first or second step-shaped portion is provided with a plurality of steps concentrically around the rotation axis. A shaft seal mechanism.
て、 前記隙間寸法調整手段は、前記薄板側に向かって突出す
るように前記低圧側側板の側に設けられた第3の段形状
部であり、 該第3の段形状部は、前記薄板側から前記低圧側側板を
見た場合に、該低圧側側板の内周側から外周側に向かっ
てスパイラル状に配置された複数枚のスパイラル板から
なり、これらスパイラル板間には、互いに間隔が設けら
れていることを特徴とする軸シール機構。14. The shaft seal mechanism according to claim 9, wherein the clearance dimension adjusting means is a third step-shaped portion provided on the side of the low-pressure side plate so as to protrude toward the thin plate side. The third stepped portion is formed by a plurality of spiral plates arranged in a spiral from the inner peripheral side to the outer peripheral side of the low-pressure side plate when the low-pressure side plate is viewed from the thin plate side. A shaft seal mechanism characterized in that a gap is provided between the spiral plates.
いて、 前記第1の段形状部は、前記低圧側側板の半径方向に沿
って前記ケーシングの位置まで形成されていることを特
徴とする軸シール機構。15. The shaft seal according to claim 10, wherein the first stepped portion is formed up to a position of the casing along a radial direction of the low-pressure side plate. mechanism.
いて、 前記高圧側側板には、該高圧側側板を前記回転軸の軸線
方向に貫く導圧孔が形成されていることを特徴とする軸
シール機構。16. The shaft seal according to claim 15, wherein the high-pressure side plate is formed with a pressure guiding hole passing through the high-pressure side plate in an axial direction of the rotating shaft. mechanism.
て、 前記隙間寸法調整手段は、前記低圧側側板に向かって突
出するように前記薄板の側に設けられた第4の段形状部
であることを特徴とする軸シール機構。17. The shaft seal mechanism according to claim 9, wherein the clearance dimension adjusting means is a fourth step-shaped portion provided on the side of the thin plate so as to project toward the low-pressure side plate. A shaft sealing mechanism.
き、該ケーシングの内部に回転可能に支持された回転軸
の動翼に吹き付けることで前記ガスの熱エネルギーを機
械的な回転エネルギーに変換して動力を発生するガスタ
ービンにおいて、 請求項1〜17のいずれかに記載の
軸シール機構を備えたことを特徴とするガスタービン。18. A high-temperature and high-pressure gas is introduced into a casing, and is blown onto a rotor blade of a rotating shaft rotatably supported inside the casing, thereby converting heat energy of the gas into mechanical rotational energy to convert the heat energy into mechanical rotational energy. A gas turbine comprising the shaft seal mechanism according to any one of claims 1 to 17.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001032132A JP3616016B2 (en) | 2000-04-28 | 2001-02-08 | Shaft seal mechanism and gas turbine |
| CA002359933A CA2359933C (en) | 2001-02-08 | 2001-10-25 | Shaft seal and gas turbine |
| DE60121539T DE60121539T8 (en) | 2001-02-08 | 2001-10-26 | Shaft seal arrangement and gas turbine |
| US09/983,881 US7066468B2 (en) | 2001-02-08 | 2001-10-26 | Shaft seal and gas turbine |
| EP01125628A EP1231416B1 (en) | 2001-02-08 | 2001-10-26 | Shaft seal and gas turbine |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000-131684 | 2000-04-28 | ||
| JP2000131684 | 2000-04-28 | ||
| JP2001032132A JP3616016B2 (en) | 2000-04-28 | 2001-02-08 | Shaft seal mechanism and gas turbine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002013647A true JP2002013647A (en) | 2002-01-18 |
| JP3616016B2 JP3616016B2 (en) | 2005-02-02 |
Family
ID=26591302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001032132A Expired - Lifetime JP3616016B2 (en) | 2000-04-28 | 2001-02-08 | Shaft seal mechanism and gas turbine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3616016B2 (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005009402A1 (en) * | 2004-03-08 | 2005-09-29 | Alstom Technology Ltd | Sealing arrangement in turbomachinery |
| EP1626210A1 (en) | 2004-08-10 | 2006-02-15 | Mitsubishi Heavy Industries, Ltd. | Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine |
| US7226053B2 (en) | 2003-05-21 | 2007-06-05 | Mitsubishi Heavy Industries, Ltd. | Shaft seal mechanism, shaft seal mechanism assembling structure and large size fluid machine |
| CN100343556C (en) * | 2003-06-20 | 2007-10-17 | 三菱重工业株式会社 | Method of manufacturing axis seals, axis seals, axis seals members and rotary machine using axis seals |
| JP2008039180A (en) * | 2006-07-10 | 2008-02-21 | Rolls Royce Plc | Seal device |
| JP2008275158A (en) * | 2007-04-30 | 2008-11-13 | General Electric Co <Ge> | Method and device to facilitate sealing in rotary machine |
| JP2009243685A (en) * | 2008-03-28 | 2009-10-22 | Alstom Technology Ltd | Leaf seal for turbo-machine |
| JP2009281437A (en) * | 2008-05-20 | 2009-12-03 | Mitsubishi Heavy Ind Ltd | Axially sealing device of rotary machine |
| JP2010522297A (en) * | 2007-03-24 | 2010-07-01 | クロス マニュファクチュアリング カンパニー (1938)リミテッド | sticker |
| WO2012057204A1 (en) * | 2010-10-27 | 2012-05-03 | 三菱重工業株式会社 | Shaft seal mechanism and rotary machine provided with same |
| JP4927731B2 (en) * | 2004-08-07 | 2012-05-09 | ロールス・ロイス・ピーエルシー | Leaf seal device |
| WO2013105606A1 (en) * | 2012-01-13 | 2013-07-18 | 三菱重工業株式会社 | Shaft seal device and rotary machine with same |
| EP2626603A1 (en) * | 2012-02-08 | 2013-08-14 | Rolls-Royce plc | Leaf seal |
| WO2014129371A1 (en) * | 2013-02-22 | 2014-08-28 | 三菱重工業株式会社 | Shaft seal device and rotary machine |
| US9103223B2 (en) | 2011-10-26 | 2015-08-11 | Mitsubishi Hitachi Power Systems, Ltd. | Shaft sealing device and rotating machine comprising same |
| KR20170103005A (en) | 2015-02-20 | 2017-09-12 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Sealing device and turbine for turbine, and thin plate for sealing device |
| KR20170103004A (en) | 2015-02-20 | 2017-09-12 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Turbine sealing devices and turbines, and thin plates for sealing devices |
| WO2023008060A1 (en) * | 2021-07-30 | 2023-02-02 | 三菱重工業株式会社 | Shaft sealing device, and rotating machine |
| WO2023167133A1 (en) * | 2022-03-04 | 2023-09-07 | 三菱パワー株式会社 | Shaft sealing device, and rotary machine |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5595259B2 (en) | 2010-12-27 | 2014-09-24 | 三菱重工業株式会社 | Shaft seal device and rotary machine equipped with the same |
| JP5693292B2 (en) * | 2011-02-25 | 2015-04-01 | 三菱重工業株式会社 | Shaft seal mechanism |
| US20130106061A1 (en) * | 2011-10-28 | 2013-05-02 | General Electric Company | High temperature seal system |
| JP5851890B2 (en) | 2012-03-08 | 2016-02-03 | 三菱重工業株式会社 | Shaft seal device |
| WO2015056343A1 (en) | 2013-10-18 | 2015-04-23 | 三菱日立パワーシステムズ株式会社 | Shaft sealing device and rotating machine provided therewith |
-
2001
- 2001-02-08 JP JP2001032132A patent/JP3616016B2/en not_active Expired - Lifetime
Cited By (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7226053B2 (en) | 2003-05-21 | 2007-06-05 | Mitsubishi Heavy Industries, Ltd. | Shaft seal mechanism, shaft seal mechanism assembling structure and large size fluid machine |
| EP2397729A2 (en) | 2003-05-21 | 2011-12-21 | Mitsubishi Heavy Industries, Ltd. | Shaft seal mechanism assembling structure and large size fluid machine |
| EP2397728A2 (en) | 2003-05-21 | 2011-12-21 | Mitsubishi Heavy Industries, Ltd. | Shaft seal mechanism and large size fluid machine |
| CN100343556C (en) * | 2003-06-20 | 2007-10-17 | 三菱重工业株式会社 | Method of manufacturing axis seals, axis seals, axis seals members and rotary machine using axis seals |
| DE102005009402A1 (en) * | 2004-03-08 | 2005-09-29 | Alstom Technology Ltd | Sealing arrangement in turbomachinery |
| JP4927731B2 (en) * | 2004-08-07 | 2012-05-09 | ロールス・ロイス・ピーエルシー | Leaf seal device |
| EP1626210A1 (en) | 2004-08-10 | 2006-02-15 | Mitsubishi Heavy Industries, Ltd. | Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine |
| US7261515B2 (en) | 2004-08-10 | 2007-08-28 | Mitsubishi Heavy Industries, Ltd. | Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine |
| JP2008039180A (en) * | 2006-07-10 | 2008-02-21 | Rolls Royce Plc | Seal device |
| JP2010522297A (en) * | 2007-03-24 | 2010-07-01 | クロス マニュファクチュアリング カンパニー (1938)リミテッド | sticker |
| JP2008275158A (en) * | 2007-04-30 | 2008-11-13 | General Electric Co <Ge> | Method and device to facilitate sealing in rotary machine |
| JP2009243685A (en) * | 2008-03-28 | 2009-10-22 | Alstom Technology Ltd | Leaf seal for turbo-machine |
| JP2009281437A (en) * | 2008-05-20 | 2009-12-03 | Mitsubishi Heavy Ind Ltd | Axially sealing device of rotary machine |
| US9841109B2 (en) | 2010-10-27 | 2017-12-12 | Mitsubishi Heavy Industries, Ltd. | Shaft seal mechanism and rotary machine provided with same |
| WO2012057204A1 (en) * | 2010-10-27 | 2012-05-03 | 三菱重工業株式会社 | Shaft seal mechanism and rotary machine provided with same |
| JP2012092905A (en) * | 2010-10-27 | 2012-05-17 | Mitsubishi Heavy Ind Ltd | Shaft seal mechanism and rotary machine provided with the same |
| KR101457824B1 (en) * | 2010-10-27 | 2014-11-04 | 미츠비시 쥬고교 가부시키가이샤 | Shaft seal mechanism and rotary machine provided with same |
| US9103223B2 (en) | 2011-10-26 | 2015-08-11 | Mitsubishi Hitachi Power Systems, Ltd. | Shaft sealing device and rotating machine comprising same |
| WO2013105606A1 (en) * | 2012-01-13 | 2013-07-18 | 三菱重工業株式会社 | Shaft seal device and rotary machine with same |
| CN104040229A (en) * | 2012-01-13 | 2014-09-10 | 三菱重工业株式会社 | Shaft sealing apparatus and rotating machine equipped therewith |
| US9091348B2 (en) | 2012-01-13 | 2015-07-28 | Mitsubishi Heavy Industries, Ltd. | Shaft sealing apparatus and rotating machine equipped therewith |
| EP2626603A1 (en) * | 2012-02-08 | 2013-08-14 | Rolls-Royce plc | Leaf seal |
| US9677669B2 (en) | 2013-02-22 | 2017-06-13 | Mitsubishi Hitachi Power Systems, Ltd. | Shaft seal device and rotary machine |
| WO2014129371A1 (en) * | 2013-02-22 | 2014-08-28 | 三菱重工業株式会社 | Shaft seal device and rotary machine |
| JP2014163420A (en) * | 2013-02-22 | 2014-09-08 | Mitsubishi Heavy Ind Ltd | Shaft seal device and rotary machine |
| CN104870871A (en) * | 2013-02-22 | 2015-08-26 | 三菱日立电力系统株式会社 | Shaft seal device and rotary machine |
| US10731499B2 (en) | 2015-02-20 | 2020-08-04 | Mitsubishi Hitachi Power Systems, Ltd. | Seal device for turbine, turbine, and thin plate for seal device |
| KR20170103004A (en) | 2015-02-20 | 2017-09-12 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Turbine sealing devices and turbines, and thin plates for sealing devices |
| US10662796B2 (en) | 2015-02-20 | 2020-05-26 | Mitsubishi Hitachi Power Systems, Ltd. | Seal device for turbine, turbine, and thin plate for seal device |
| KR20170103005A (en) | 2015-02-20 | 2017-09-12 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | Sealing device and turbine for turbine, and thin plate for sealing device |
| WO2023008060A1 (en) * | 2021-07-30 | 2023-02-02 | 三菱重工業株式会社 | Shaft sealing device, and rotating machine |
| CN116529460A (en) * | 2021-07-30 | 2023-08-01 | 三菱重工业株式会社 | Shaft seals and rotating machinery |
| JP7456073B2 (en) | 2021-07-30 | 2024-03-26 | 三菱重工業株式会社 | Shaft seal device and rotating machinery |
| US12345335B2 (en) | 2021-07-30 | 2025-07-01 | Mitsubishi Heavy Industries, Ltd. | Shaft seal device and rotary machine |
| WO2023167133A1 (en) * | 2022-03-04 | 2023-09-07 | 三菱パワー株式会社 | Shaft sealing device, and rotary machine |
| JP7566201B2 (en) | 2022-03-04 | 2024-10-11 | 三菱重工業株式会社 | Shaft seal device and rotating machine |
| US12247490B2 (en) | 2022-03-04 | 2025-03-11 | Mitsubishi Heavy Industries, Ltd. | Shaft sealing device and rotary machine |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3616016B2 (en) | 2005-02-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2002013647A (en) | Shaft sealing mechanism and gas turbine | |
| JP5174241B2 (en) | Shaft seal and rotating machine equipped with the same | |
| US7066468B2 (en) | Shaft seal and gas turbine | |
| JP6047236B2 (en) | Film riding seal for rotating machine | |
| EP1626210B1 (en) | Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine | |
| US9074486B2 (en) | Method and apparatus for labyrinth seal packing ring | |
| JP4015586B2 (en) | Shaft seal mechanism, turbine including the same, and shaft seal leakage prevention system | |
| US8628092B2 (en) | Method and apparatus for packing rings | |
| US20040207158A1 (en) | Hydrodynamic foil face seal | |
| JP2003113945A (en) | Shaft sealing mechanism and turbine | |
| JPH11182684A (en) | Flexible cloth seal assembly | |
| CA2909467A1 (en) | Flexible film-riding seal | |
| JP2011169460A (en) | Method and apparatus for labyrinth seal packing ring | |
| JP2003314704A (en) | Aspirating face seal with axially biasing one piece annular spring | |
| JP2008008490A (en) | Seal assembly provided with l-shaped butt gap seal between segments and rotary machine | |
| JP6012505B2 (en) | Shaft seal device and rotary machine | |
| JP2011137491A (en) | Tilting-pad journal bearing device | |
| JP2016223603A (en) | Seal device and rotary machine | |
| JP5734052B2 (en) | Rotary shaft seal structure | |
| JP3950455B2 (en) | Shaft sealing member, shaft sealing mechanism and large fluid machine | |
| JP7114520B2 (en) | Thrust foil bearings, foil bearing units, turbomachinery and foils | |
| JP2004162569A (en) | Shaft sealing mechanism and turbine | |
| JP6276209B2 (en) | Turbine sealing device and turbine, and thin plate for sealing device | |
| JP7731746B2 (en) | Foil bearings | |
| JP2006112491A (en) | Shaft seal mechanism |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20040312 |
|
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20040531 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040729 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040803 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041019 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041102 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 3616016 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081112 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091112 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111112 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111112 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121112 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121112 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 9 |
|
| EXPY | Cancellation because of completion of term |