JP2002151540A - Solder bump forming method and semiconductor device - Google Patents
Solder bump forming method and semiconductor deviceInfo
- Publication number
- JP2002151540A JP2002151540A JP2000345072A JP2000345072A JP2002151540A JP 2002151540 A JP2002151540 A JP 2002151540A JP 2000345072 A JP2000345072 A JP 2000345072A JP 2000345072 A JP2000345072 A JP 2000345072A JP 2002151540 A JP2002151540 A JP 2002151540A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- bump
- bumps
- gold
- semiconductor chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
(57)【要約】
【課題】 工程の単純化と、コストの低減を図る半田バ
ンプ形成方法を提供する。
【解決手段】 半田バンプ形成方法は、半導体チップの
電極に金ボンディングワイヤーまたは銅ボンディングワ
イヤーを圧着することによって金バンプまたは銅バンプ
を形成し、金バンプまたは銅バンプ上に溶融半田を吐出
することによって半田バンプを形成する。溶融半田を吐
出する際に、半導体チップの温度は、半田の融点以下で
あるようにする。
(57) [Problem] To provide a solder bump forming method for simplifying the process and reducing the cost. A method of forming a solder bump includes forming a gold bump or a copper bump by pressing a gold bonding wire or a copper bonding wire to an electrode of a semiconductor chip, and discharging molten solder on the gold bump or the copper bump. Form solder bumps. When the molten solder is discharged, the temperature of the semiconductor chip is set to be equal to or lower than the melting point of the solder.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半田バンプの形成
方法に関するものであり、さらに該方法により形成され
た半田バンプを有する半導体装置に関するものである。The present invention relates to a method for forming a solder bump, and more particularly to a semiconductor device having a solder bump formed by the method.
【0002】[0002]
【従来の技術】図面を参照して従来技術による半田バン
プ形成方法について説明する。まず、特開平8−288
292号公報において開示された半田バンプ形成方法に
ついて説明する。2. Description of the Related Art A conventional solder bump forming method will be described with reference to the drawings. First, JP-A-8-288
The method of forming solder bumps disclosed in Japanese Patent Publication No. 292 will be described.
【0003】図7は、従来技術による半田バンプ形成方
法の手順を説明する図であり、(a)は金バンプを形成
した状態、(b)は半田を付着した状態、(c)はブリ
ッジを除去し半田皮膜を均一化させた状態を表す。ま
ず、図7(a)に示されているように、ベアーチップ4
1の電極43上に、酸化されにくい金のボンディングワ
イヤ45を用いて金バンプ47を形成する。このとき、
キャピラリcの先端に出たボンディングワイヤ45をト
ーチロッドtからの放電エネルギーによって溶融してボ
ールを形成し、これを電極43に押し付けることによっ
て、金バンプ47を形成する。FIGS. 7A and 7B are diagrams for explaining a procedure of a conventional solder bump forming method, in which FIG. 7A shows a state in which gold bumps are formed, FIG. 7B shows a state in which solder is attached, and FIG. This shows a state where the solder film is removed and the solder film is made uniform. First, as shown in FIG.
A gold bump 47 is formed on one electrode 43 by using a gold bonding wire 45 that is hardly oxidized. At this time,
The bonding wire 45 protruding from the tip of the capillary c is melted by the discharge energy from the torch rod t to form a ball, and the ball is pressed against the electrode 43 to form the gold bump 47.
【0004】次に、図7(b)に示されているように、
比較的低い融点を有する半田(融点100°C〜140
°C程度)49が溶融された半田槽(図示せず)に、金
バンプ47を形成した面を下にしてベアーチップ41を
浸漬し、金バンプ47上に半田49を付着させる。[0004] Next, as shown in FIG.
Solder having a relatively low melting point (melting point 100 ° C to 140 ° C)
The bare chip 41 is immersed in a solder bath (not shown) in which the melting point 49 has been melted, with the surface on which the gold bump 47 is formed facing down, and the solder 49 is adhered on the gold bump 47.
【0005】なお、溶融半田の付着には、還流装置を駆
動して溶融半田を噴流ノズルの底から吹き上げ、上昇し
た溶融半田表面によって半田付けを行う噴流半田槽や、
または溶融半田を貯留するのみの静止半田槽などが用い
られている。[0005] For the adhesion of the molten solder, a circulating device is driven to blow up the molten solder from the bottom of the jet nozzle, and a jet solder tank for soldering with the raised molten solder surface;
Alternatively, a stationary solder tank or the like that only stores molten solder is used.
【0006】溶融半田を付着させる際に、金バンプ47
同士をショートするブリッジ51や、半田49が厚膜に
付着する過剰付着半田53などの生じる可能性がある。
そのため、ベアーチップ41の半田49を付着させた面
に、熱風エアー(120°C〜160°C)を吹き付
け、図7(b)に示されている金バンプ47間に形成さ
れているブリッジ51や、過剰付着半田53を熱風エア
ーの圧力により吹き飛ばして除去し、半田49の厚みを
10〜30μmに調整する。このようにして、金バンプ
47の表面に均一な厚みの半田49を有する半田バンプ
55を形成している。When depositing the molten solder, the gold bump 47
There is a possibility that a bridge 51 that short-circuits each other, an excessively adhered solder 53 where the solder 49 adheres to the thick film, and the like may occur.
Therefore, hot air (120 ° C. to 160 ° C.) is blown onto the surface of the bare chip 41 to which the solder 49 is adhered, and the bridge 51 formed between the gold bumps 47 shown in FIG. Alternatively, the excessively adhered solder 53 is blown off by the pressure of hot air to remove the solder 53, and the thickness of the solder 49 is adjusted to 10 to 30 μm. Thus, the solder bump 55 having the solder 49 with a uniform thickness is formed on the surface of the gold bump 47.
【0007】さらに、このように形成された半田バンプ
55を基板の電極に接触させ、半田バンプ55の半田4
9をリフローで溶融することによってフリップチップ接
続を行っている。[0007] Further, the solder bump 55 thus formed is brought into contact with the electrode of the substrate, and the solder 4
Flip chip connection is performed by melting 9 by reflow.
【0008】なお、通常の半田を使用した場合、金バン
プ47の表面に半田を被覆しようとすると、金が溶け、
半田に浸食されてしまう。このため、チップ電極がアル
ミである場合、半田が付かなくなり、金はバンプとして
の役割を果たさなくなるという問題が生じる。したがっ
て、この従来の半田バンプ形成方法では、この問題を解
決するために、低融点半田を用いて、このような食われ
現象が生じないようにしている。When ordinary solder is used, if the surface of the gold bump 47 is coated with the solder, the gold melts,
It will be eroded by solder. For this reason, when the chip electrode is made of aluminum, there is a problem that solder is not attached and gold does not serve as a bump. Therefore, in this conventional solder bump forming method, in order to solve this problem, a low melting point solder is used so as to prevent such an erosion phenomenon from occurring.
【0009】また、別の従来技術による半田バンプ形成
方法について説明する。図8は、従来技術により形成さ
れた半田バンプを示す概略図である。まず、半導体集積
回路が形成されているシリコン61上に外部電極である
アルミ電極62を形成する。次に、例えばプラズマCV
D法によりバッシベーション膜63を形成し、それか
ら、アルミ電極62上のパッシベーション膜63を除去
して、アルミ電極62のみを露出させる。このパッシベ
ーション膜63は、半導体集積回路を保護するためのも
のである。半導体チップ64は、シリコン61と、アル
ミ電極62と、パッシベーション膜63とで構成されて
いる。Another conventional solder bump forming method will be described. FIG. 8 is a schematic view showing a solder bump formed by the conventional technique. First, an aluminum electrode 62 as an external electrode is formed on a silicon 61 on which a semiconductor integrated circuit is formed. Next, for example, plasma CV
A passivation film 63 is formed by the method D, and then the passivation film 63 on the aluminum electrode 62 is removed to expose only the aluminum electrode 62. This passivation film 63 is for protecting the semiconductor integrated circuit. The semiconductor chip 64 includes silicon 61, an aluminum electrode 62, and a passivation film 63.
【0010】次に、半導体チップ64のアルミ電極62
上にチタン65、ニッケル66、金67で構成される下
地金属68を形成する。アルミと半田との接合性が悪い
ため、下地金属68は、接合性を改善するために設けら
れる。下地金属68は、めっきまたはスパッタにより形
成される。例えば、スパッタにより形成される場合、ウ
ェーハ全面にチタン65、ニッケル66、金67をスパ
ッタし、アルミ電極62のみにマスクとしてレジストを
塗布する。その後金67、ニッケル66、チタン65を
エッチングした後、アルミ電極62のレジストを除去す
る。Next, the aluminum electrode 62 of the semiconductor chip 64
A base metal 68 composed of titanium 65, nickel 66, and gold 67 is formed thereon. Since the bondability between aluminum and solder is poor, the base metal 68 is provided to improve the bondability. The base metal 68 is formed by plating or sputtering. For example, when formed by sputtering, titanium 65, nickel 66, and gold 67 are sputtered on the entire surface of the wafer, and a resist is applied only to the aluminum electrode 62 as a mask. Then, after etching the gold 67, the nickel 66, and the titanium 65, the resist of the aluminum electrode 62 is removed.
【0011】最後に、下地金属68上に、半田バンプ6
9を形成して、フリップチップ接続するための半導体チ
ップ64を作成する。Finally, the solder bumps 6 are formed on the underlying metal 68.
9 is formed, and a semiconductor chip 64 for flip-chip connection is formed.
【0012】また、関連する半田バンプ形成技術につい
て特開平11−346052号公報、特開平11−19
1570号公報、特開平9−283527号公報、特開
昭62−257750号公報にも開示されている。[0012] Also, related solder bump forming techniques are disclosed in JP-A-11-346052 and JP-A-11-19.
Nos. 1570, 9-283527 and 62-257750.
【0013】[0013]
【発明が解決しようとする課題】特開平8−28829
2号公報において開示された半田バンプ形成方法によれ
ば、熱風エアーを加えなければならず、工程が複雑であ
る。さらに、バンプ間ピッチが狭くなると、熱風エアー
の圧力だけでは半田ブリッジを解消できない。さらに、
金バンプの半田による食われ低減のため、低温半田(融
点100°C〜140°C程度)の使用が必要である。Problems to be Solved by the Invention
According to the method of forming solder bumps disclosed in Japanese Patent Publication No. 2, hot air must be added, and the process is complicated. Further, when the pitch between the bumps is narrow, the solder bridge cannot be eliminated only by the pressure of the hot air. further,
In order to reduce the erosion of the gold bumps by solder, it is necessary to use low-temperature solder (melting point: about 100 ° C. to 140 ° C.).
【0014】また別の従来技術による半田バンプ形成方
法によれば、アルミ電極上のみに下地金属を形成するた
めに、マスクが必要となるので、工程が複雑で、かつコ
ストが高い。このコスト高を解消するために、ウェーハ
単位で一括に作成していたが、ウェーハ単位で処理する
場合、最近のゲート数増加のためにウェーハの歩留りが
悪く、良品チップだけでなく不良品チップに対しても、
ウェーハ単位で一括して半田形成しなくてはならず、コ
スト高を解消できない。さらに、最近のチップが大型化
しており、ウェーハの歩留りが悪い場合、やはりウェー
ハ一枚当たりの生産数が減少してコスト高となる。According to another conventional method of forming a solder bump, a mask is required to form a base metal only on an aluminum electrode, so that the process is complicated and the cost is high. In order to eliminate this high cost, wafers were created in batches for each wafer.However, in the case of processing for each wafer, the yield of wafers is poor due to the recent increase in the number of gates. Again,
Soldering must be carried out collectively for each wafer, so that high cost cannot be solved. Furthermore, when recent chips have become larger and the yield of wafers is low, the number of products produced per wafer also decreases, resulting in higher costs.
【0015】本発明は、上記問題を解決するためになさ
れたものであり、工程の単純化と、コストの低減を図る
とともに、歩留りの悪いウェーハについてもコストが安
くなる半田バンプ形成方法を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a method of forming solder bumps, which simplifies the process and reduces the cost, and reduces the cost even for a wafer having a low yield. The purpose is to:
【0016】さらに、本発明は、バンプ間ピッチが狭い
場合でも半田ブリッジを防ぐことができる半田バンプ形
成方法を提供することを目的とする。Still another object of the present invention is to provide a solder bump forming method capable of preventing a solder bridge even when a pitch between bumps is narrow.
【0017】さらに、本発明は、低温半田を用いること
なく、金バンプの半田による食われ低減を実現する半田
バンプ形成方法を提供することを目的とする。Still another object of the present invention is to provide a method of forming a solder bump which can reduce the erosion of the gold bump by the solder without using low-temperature solder.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
に、本願の第1の発明に係る半田バンプ形成方法は、半
導体チップの電極に金ボンディングワイヤーまたは銅ボ
ンディングワイヤーを圧着することによって金バンプま
たは銅バンプを形成するステップと、前記金バンプまた
は前記銅バンプ上に溶融半田を吐出することによって半
田バンプを形成するステップとを含み、前記溶融半田を
吐出する際に、前記半導体チップの温度は、半田の融点
以下であることを特徴とするものである。In order to achieve the above object, a method of forming a solder bump according to a first aspect of the present invention is to provide a method for forming a gold bump by bonding a gold bonding wire or a copper bonding wire to an electrode of a semiconductor chip. Or forming a copper bump, and including forming a solder bump by discharging molten solder on the gold bump or the copper bump, when discharging the molten solder, the temperature of the semiconductor chip is , Which is lower than the melting point of the solder.
【0019】本願の第2の発明に係る半田バンプ形成方
法は、半導体チップの電極に大気圧下でプラズマを加え
るとともに、溶融半田を前記電極に吐出することによっ
て半田バンプを形成することを特徴とするものである。A method of forming a solder bump according to a second aspect of the present invention is characterized in that a plasma is applied to an electrode of a semiconductor chip under atmospheric pressure, and a solder bump is formed by discharging molten solder to the electrode. Is what you do.
【0020】本願の第3の発明に係る半田バンプ形成方
法は、本願の第2の発明に係る半田バンプ形成方法にお
いて、前記プラズマは、不活性ガス中で発生させること
を特徴とするものである。[0020] A solder bump forming method according to a third invention of the present application is the solder bump forming method according to the second invention of the present application, wherein the plasma is generated in an inert gas. .
【0021】本願の第4の発明に係る半田バンプ形成方
法は、本願の第2の発明に係る半田バンプ形成方法にお
いて、前記プラズマは、酸化還元性ガス中で発生させる
ことを特徴とするものである。[0021] A solder bump forming method according to a fourth invention of the present application is the solder bump forming method according to the second invention of the present application, wherein the plasma is generated in an oxidation-reduction gas. is there.
【0022】本願の第5の発明に係る半田バンプ形成方
法は、本願の第2の発明に係る半田バンプ形成方法にお
いて、前記溶融半田を吐出する際に、前記半導体チップ
の温度は、半田の融点以下であることを特徴とするもの
である。According to a solder bump forming method according to a fifth aspect of the present invention, in the solder bump forming method according to the second aspect of the present invention, when the molten solder is discharged, the temperature of the semiconductor chip is set to a melting point of the solder. It is characterized by the following.
【0023】本願の第6の発明に係る半導体装置は、本
願の第2ないし第5のいずれか1つに係る半田バンプ形
成方法によって形成された半田バンプを有する半導体チ
ップと、基板とがフリップチップ接続された半導体装置
である。A semiconductor device according to a sixth aspect of the present invention is a semiconductor device having a semiconductor chip having solder bumps formed by the solder bump forming method according to any one of the second to fifth aspects of the present invention, and a substrate comprising a flip chip. It is a connected semiconductor device.
【0024】[0024]
【発明の実施の形態】実施の形態1.以下、図面を参照
して本発明の実施の形態1について説明する。図1は、
本発明の実施の形態1に係る半田バンプ形成方法の手順
を示す概略図である。図1(a)は、金バンプを形成し
た状態、図1(b)は、半田バンプを形成した状態を示
す。図2は、本発明の実施の形態1に係る半田バンプ形
成方法により形成された半田バンプを示す概略図であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG.
FIG. 3 is a schematic diagram showing a procedure of a solder bump forming method according to the first embodiment of the present invention. FIG. 1A shows a state in which gold bumps are formed, and FIG. 1B shows a state in which solder bumps are formed. FIG. 2 is a schematic view showing a solder bump formed by the solder bump forming method according to the first embodiment of the present invention.
【0025】まず、図1(a)に示すように、半導体集
積回路が形成されているシリコン1上にアルミ電極2を
形成する。次に、従来の方法で、パッシベーション膜3
を形成する。例えばプラズマCVD法によりバッシベー
ション膜3を形成し、その後、アルミ電極2上のパッシ
ベーション膜3を除去して、アルミ電極2のみを露出さ
せる。このパッシベーション膜3は、半導体集積回路を
保護するためのものである。半導体チップ4は、シリコ
ン1と、アルミ電極2と、パッシベーション膜3とで構
成されている。First, as shown in FIG. 1A, an aluminum electrode 2 is formed on a silicon 1 on which a semiconductor integrated circuit is formed. Next, the passivation film 3 is formed by a conventional method.
To form For example, the passivation film 3 is formed by a plasma CVD method, and thereafter, the passivation film 3 on the aluminum electrode 2 is removed, so that only the aluminum electrode 2 is exposed. This passivation film 3 is for protecting the semiconductor integrated circuit. The semiconductor chip 4 includes the silicon 1, the aluminum electrode 2, and the passivation film 3.
【0026】次に、スタッドバンプ法により下地金属と
して金バンプ10を形成する。これは、例えばアルミ電
極2に酸化されにくい金ボンディングワイヤー11によ
り金バンプ10を形成することで行われる。このとき、
従来技術と同様に、金ボンディングワイヤー11の先端
をトーチロッド(図示せず)からの放電エネルギーによ
って溶融してボールを形成し、ワイヤーボンディングツ
ール(図示せず)を用いて圧着することによって金バン
プ10を形成する。Next, a gold bump 10 is formed as a base metal by a stud bump method. This is performed, for example, by forming the gold bumps 10 with the gold bonding wires 11 that are not easily oxidized on the aluminum electrodes 2. At this time,
As in the prior art, the tip of the gold bonding wire 11 is melted by the discharge energy from a torch rod (not shown) to form a ball, and the ball is pressed by using a wire bonding tool (not shown). Form 10.
【0027】次に、図1(b)に示すように、ソルダー
ジェット法によってソルダージェットヘッド20から矢
印12にしたがって順番に溶融半田22を金バンプ10
に向けて吐出し、金バンプ10上に半田バンプ9を形成
する。この結果、図2に示すように半田バンプ9が形成
される。溶融半田22の酸化を防ぐために、溶融半田2
2の経路にN2、Ar等の不活性ガスを供給するように
不活性ガスパイプ23が設けられる。また、この半田バ
ンプ9の形成の際に、不良品チップなど半田バンプ9の
形成が不要である半導体チップに対しては、溶融半田2
2の吐出を行わないようにすることも可能である。Next, as shown in FIG. 1B, the molten solder 22 is sequentially applied from the solder jet head 20 to the gold bump 10 according to an arrow 12 by a solder jet method.
And the solder bumps 9 are formed on the gold bumps 10. As a result, the solder bumps 9 are formed as shown in FIG. In order to prevent oxidation of the molten solder 22, the molten solder 2
An inert gas pipe 23 is provided to supply an inert gas such as N 2 or Ar to the second path. Further, when forming the solder bumps 9, the molten solder 2 is applied to a semiconductor chip such as a defective chip which does not require the formation of the solder bumps 9.
It is also possible not to perform the ejection of No. 2.
【0028】ソルダージェット法により半田バンプ9を
形成する場合、半導体チップ4を加熱すると、金バンプ
10と半田バンプ9の接合性が向上する。例えば、本発
明者らの実験では、Sn−Pbの共晶半田(融点183
°C)を用いる場合、溶融半田22を200°Cで吐出
し、かつ半導体チップ4を170°Cにすれば、金バン
プ10と半田バンプ9の接合性が向上することが確認さ
れている。さらに、半導体チップ4の温度を半田の融点
以下にすることで、吐出された溶融半田22が金バンプ
10に接触する際に、半田が急激に冷却(数100μs
〜数ms)されるため、半田による金バンプ10の食わ
れがない。さらに、半田バンプ形成後、半田表面の酸化
膜がほとんど形成されないため、半田形状が表面張力に
より必ず球形になり、安定した形状の半田バンプ9が形
成されることが確認されている。When the solder bumps 9 are formed by the solder jet method, when the semiconductor chip 4 is heated, the bondability between the gold bumps 10 and the solder bumps 9 is improved. For example, in the experiments of the present inventors, Sn-Pb eutectic solder (melting point 183) was used.
In the case of using (° C.), it has been confirmed that if the molten solder 22 is discharged at 200 ° C. and the temperature of the semiconductor chip 4 is set to 170 ° C., the bonding property between the gold bump 10 and the solder bump 9 is improved. Furthermore, by setting the temperature of the semiconductor chip 4 to be equal to or lower than the melting point of the solder, when the discharged molten solder 22 comes into contact with the gold bump 10, the solder is rapidly cooled (several 100 μs).
~ Several ms), so that the gold bumps 10 are not eroded by solder. Furthermore, since almost no oxide film is formed on the surface of the solder after the formation of the solder bump, it has been confirmed that the solder shape always becomes spherical due to surface tension, and the solder bump 9 having a stable shape is formed.
【0029】さらに、ソルダージェット法により半田バ
ンプ9を形成する場合、金バンプ10のそれぞれに微量
半田を吐出するため、金バンプ10同士をショートする
半田ブリッジや、半田バンプ9が過大になる過剰半田が
生じない。また、ソルダージェットヘッド20を調整す
ることによって、ある程度吐出する半田の量を調整する
ことが可能である。また、チップ単位での半田バンプの
形成が可能であるため、ウェーハの歩留りが悪化して
も、不良品チップに対しては半田バンプを形成せず、良
品チップのみに半田バンプを形成することができる。し
たがって、半田バンプの形成が不要な半導体チップに対
して溶融半田の吐出を行う必要がないために、半田バン
プ形成の低コスト化が可能である。Further, when the solder bumps 9 are formed by the solder jet method, since a small amount of solder is discharged to each of the gold bumps 10, a solder bridge for short-circuiting the gold bumps 10 or an excessive solder for which the solder bumps 9 become excessive. Does not occur. Further, by adjusting the solder jet head 20, it is possible to adjust the amount of solder to be discharged to some extent. In addition, since solder bumps can be formed on a chip-by-chip basis, solder bumps can be formed only on non-defective chips without forming solder bumps on defective chips, even if the yield of the wafer deteriorates. it can. Therefore, since it is not necessary to discharge the molten solder to the semiconductor chip which does not require the formation of the solder bump, the cost of forming the solder bump can be reduced.
【0030】次に、半導体チップ4を半田バンプ9が下
になるように基板30上に配置し、基板30のアルミ電
極2と位置合わせした後、従来の方法で、半導体チップ
4と基板30をフリップチップ接続する。従来の方法と
は、例えば、半田バンプ9を加熱溶融させて半導体チッ
プ4のアルミ電極2と基板30のアルミ電極2間を接合
し固着することである。このようにフリップチップ接続
された半導体装置は、図3に示されている。Next, the semiconductor chip 4 is placed on the substrate 30 so that the solder bumps 9 face down, and the semiconductor chip 4 is aligned with the aluminum electrode 2 on the substrate 30. Flip chip connection. The conventional method is, for example, to heat and melt the solder bumps 9 to bond and fix the aluminum electrodes 2 of the semiconductor chip 4 and the aluminum electrodes 2 of the substrate 30. The flip-chip connected semiconductor device is shown in FIG.
【0031】図3は、本発明の実施の形態1に係る半田
バンプ形成方法で半田バンプを形成し、フリップチップ
接続した半導体チップと基板の接合を示す概略図であ
る。図3に示されているように、半導体チップ4のアル
ミ電極2と基板30のアルミ電極2は金バンプ10と半
田バンプ9を介して接続されている。半田バンプ9の量
を少なくすれば、フリップチップ接続時の半田溶融量が
少なくてすむため、バンプ間のブリッジが発生しにくく
なり、バンプ間のピッチの微細化にも対応可能である。
図3には図示されていないが、図2と同様に、半導体チ
ップ4にはパッシベーション膜が施されている。FIG. 3 is a schematic diagram showing the bonding of a flip-chip connected semiconductor chip to a substrate by forming a solder bump by the solder bump forming method according to the first embodiment of the present invention. As shown in FIG. 3, the aluminum electrodes 2 of the semiconductor chip 4 and the aluminum electrodes 2 of the substrate 30 are connected via gold bumps 10 and solder bumps 9. If the amount of the solder bumps 9 is reduced, the amount of solder melting at the time of flip-chip connection can be reduced, so that bridging between bumps is less likely to occur, and the pitch between bumps can be reduced.
Although not shown in FIG. 3, the semiconductor chip 4 is provided with a passivation film as in FIG.
【0032】なお、実施の形態1において、下地金属と
して金バンプを形成する例を説明したが、これに限定さ
れるわけではなく、例えばスタッドバンプ法により形成
される銅バンプなど他の金属で形成されるバンプでもよ
い。さらに、アルミ電極を用いる例について説明した
が、これに限定されるわけではなく、銅電極など他の金
属で形成される電極でもよい。In the first embodiment, an example in which a gold bump is formed as a base metal has been described. However, the present invention is not limited to this. For example, a metal bump such as a copper bump formed by a stud bump method may be used. Bumps may be used. Furthermore, although an example in which an aluminum electrode is used has been described, the electrode is not limited to this, and may be an electrode formed of another metal such as a copper electrode.
【0033】実施の形態2.以下、図面を参照して本発
明の実施の形態2について説明する。図4は、本発明の
実施の形態2に係る半田バンプの形成方法を説明する概
略図である。図5は、本発明の実施の形態2に係る半田
バンプ形成方法により形成された半田バンプを示す概略
図である。Embodiment 2 FIG. Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram illustrating a method for forming a solder bump according to Embodiment 2 of the present invention. FIG. 5 is a schematic diagram showing a solder bump formed by the solder bump forming method according to the second embodiment of the present invention.
【0034】まず、半導体集積回路が形成されているシ
リコン1上にアルミ電極2を形成する。次に、例えばプ
ラズマCVD法によりバッシベーション膜3を形成し、
それから、アルミ電極2上のパッシベーション膜3を除
去して、アルミ電極2のみを露出させる。このパッシベ
ーション膜3は、半導体集積回路を保護するためのもの
である。半導体チップ4は、シリコン1と、アルミ電極
2と、パッシベーション膜3とで構成されている。First, an aluminum electrode 2 is formed on a silicon 1 on which a semiconductor integrated circuit is formed. Next, a passivation film 3 is formed by, for example, a plasma CVD method,
Then, the passivation film 3 on the aluminum electrode 2 is removed to expose only the aluminum electrode 2. This passivation film 3 is for protecting the semiconductor integrated circuit. The semiconductor chip 4 includes the silicon 1, the aluminum electrode 2, and the passivation film 3.
【0035】次に、ソルダージェット法によってソルダ
ージェットヘッド20から溶融半田22をアルミ電極2
に向けて吐出し、アルミ電極2上に直接半田バンプ9を
形成する。この結果、図5に示すように半田バンプ9が
形成される。実施の形態1と同様に溶融半田22の酸化
を防ぐために、溶融半田22の経路にN2、Ar、H2等
の不活性ガスを供給するように不活性ガスパイプ23が
設けられる。また、この半田バンプ9の形成の際に、不
良品チップなど半田バンプ9の形成が不要である半導体
チップに対しては、溶融半田22の吐出を行わないよう
にすることも可能である。Next, the molten solder 22 is applied from the solder jet head 20 to the aluminum electrode 2 by a solder jet method.
To form a solder bump 9 directly on the aluminum electrode 2. As a result, solder bumps 9 are formed as shown in FIG. As in the first embodiment, in order to prevent the molten solder 22 from being oxidized, an inert gas pipe 23 is provided to supply an inert gas such as N 2 , Ar, or H 2 to the path of the molten solder 22. In forming the solder bumps 9, it is also possible to prevent the molten solder 22 from being discharged to a semiconductor chip such as a defective chip which does not require the formation of the solder bumps 9.
【0036】一般にアルミの表面と半田の表面の自然酸
化膜およびアルミ表面の汚れにより、アルミと半田との
接合性はあまりよくない。したがって、アルミ電極2上
に半田バンプ9を形成する前処理として、アルミ電極2
の表面の自然酸化膜および汚れを除去する必要がある。
そのために、プラズマ発生装置21により、大気圧下の
空気中で、プラズマを発生させ、このプラズマにより、
アルミ電極2の表面の自然酸化膜および汚れをスパッタ
除去する。さらに、ソルダージェットヘッド20から溶
融半田22をアルミ電極2に衝突させる。その衝撃でア
ルミ電極2の表面の自然酸化膜を破壊し、かつ汚れを除
去すると同時に、アルミ電極2の表面に直接半田バンプ
9が形成される。In general, the bondability between aluminum and solder is not so good due to the natural oxide film on the surface of aluminum and the surface of solder and contamination on the aluminum surface. Therefore, as a pretreatment for forming the solder bumps 9 on the aluminum electrode 2, the aluminum electrode 2
It is necessary to remove the natural oxide film and dirt on the surface of the substrate.
For this purpose, a plasma is generated by the plasma generator 21 in air under atmospheric pressure, and
The natural oxide film and dirt on the surface of the aluminum electrode 2 are removed by sputtering. Further, the molten solder 22 is caused to collide with the aluminum electrode 2 from the solder jet head 20. The impact destroys the natural oxide film on the surface of the aluminum electrode 2 and removes dirt, and at the same time, the solder bump 9 is formed directly on the surface of the aluminum electrode 2.
【0037】なお、さらに効果を上げるために、不活性
ガス(例えば窒素)中でプラズマを発生させる。この場
合、窒素プラズマが発生し、この窒素プラズマによりス
パッタ除去を行う。さらに効果を上げるために、酸化還
元性ガス(例えば、窒素90%、水素10%)中でプラ
ズマを発生させる。この場合、窒素プラズマと水素プラ
ズマが発生し、これらのプラズマによりスパッタ除去を
行う。また、わずかに酸化膜が残っていても水素により
その酸化膜を除去することも可能である。To further enhance the effect, plasma is generated in an inert gas (for example, nitrogen). In this case, nitrogen plasma is generated, and sputter removal is performed by the nitrogen plasma. To further enhance the effect, plasma is generated in an oxidation-reduction gas (for example, nitrogen 90%, hydrogen 10%). In this case, nitrogen plasma and hydrogen plasma are generated, and sputter removal is performed using these plasmas. Further, even if an oxide film slightly remains, the oxide film can be removed with hydrogen.
【0038】また、実施の形態1と同様に、ソルダージ
ェット法により半田バンプ9を形成する際に、半導体チ
ップ4を過熱すると、アルミ電極2と半田バンプ9の接
合性が向上する。さらに、半導体チップ4の温度を半田
の融点以下にすることで、半田バンプ9の形成後、半田
表面の酸化膜がほとんど形成されないため、半田形状が
表面張力により必ず球形になり、安定した形状の半田バ
ンプ9が形成される。Further, as in the first embodiment, when the semiconductor chip 4 is heated when the solder bumps 9 are formed by the solder jet method, the bondability between the aluminum electrodes 2 and the solder bumps 9 is improved. Furthermore, by setting the temperature of the semiconductor chip 4 to be equal to or lower than the melting point of the solder, an oxide film on the surface of the solder is hardly formed after the formation of the solder bumps 9. The solder bump 9 is formed.
【0039】また、さらに、ソルダージェット法により
半田バンプ9を形成する場合、アルミ電極2のそれぞれ
に微量半田を吐出するため、アルミ電極2同士をショー
トする半田ブリッジや、半田バンプ9が過大になる過剰
半田が生じない。また、ソルダージェットヘッド20を
調整することによって、ある程度吐出する半田の量を調
整することが可能である。また、チップ単位での半田バ
ンプの形成が可能であるため、ウェーハの歩留りが悪化
しても、不良品チップに対しては半田バンプを形成せ
ず、良品チップのみに半田バンプを形成することができ
る。したがって、半田バンプの形成が不要な半導体チッ
プに対して溶融半田の吐出を行う必要がないために、半
田バンプ形成の低コスト化が可能である。Further, when the solder bumps 9 are formed by the solder jet method, a small amount of solder is discharged to each of the aluminum electrodes 2, so that a solder bridge that shorts the aluminum electrodes 2 or the solder bump 9 becomes excessively large. No excessive soldering occurs. Further, by adjusting the solder jet head 20, it is possible to adjust the amount of solder to be discharged to some extent. In addition, since solder bumps can be formed on a chip-by-chip basis, solder bumps can be formed only on non-defective chips without forming solder bumps on defective chips, even if the yield of the wafer deteriorates. it can. Therefore, since it is not necessary to discharge the molten solder to the semiconductor chip which does not require the formation of the solder bump, the cost of forming the solder bump can be reduced.
【0040】次に、半導体チップ4を半田バンプ9が下
になるように基板30上に配置し、基板30のアルミ電
極2と位置合わせした後、従来の方法で、半導体チップ
4と基板30をフリップチップ接続する。従来の方法と
は、例えば、半田バンプ9を加熱溶融させて半導体チッ
プ4のアルミ電極2と基板30のアルミ電極2間を接合
し固着することである。このようにフリップチップ接続
された半導体装置は、図6に示されている。Next, the semiconductor chip 4 is placed on the substrate 30 so that the solder bumps 9 face down, and the semiconductor chip 4 is aligned with the aluminum electrodes 2 on the substrate 30. Flip chip connection. The conventional method is, for example, to heat and melt the solder bumps 9 to bond and fix the aluminum electrodes 2 of the semiconductor chip 4 and the aluminum electrodes 2 of the substrate 30. The flip-chip connected semiconductor device is shown in FIG.
【0041】図6は、実施の形態2に係る半田バンプ形
成方法で半田バンプを形成し、フリップチップ接続した
半導体チップと基板の接合を示す概略図である。図6に
示されているように、半導体チップ4のアルミ電極2と
基板30のアルミ電極2は半田バンプ9を介して接続さ
れている。半田バンプ9の量を少なくすれば、フリップ
チップ接続時の半田溶融量が少なくてすむため、バンプ
間のブリッジが発生しにくくなり、バンプ間のピッチの
微細化にも対応可能である。図6には図示されていない
が、図5と同様に、半導体チップ4にはパッシベーショ
ン膜が施されている。FIG. 6 is a schematic view showing the bonding between a semiconductor chip and a substrate, which are formed by forming solder bumps by the solder bump forming method according to the second embodiment and are flip-chip connected. As shown in FIG. 6, the aluminum electrodes 2 of the semiconductor chip 4 and the aluminum electrodes 2 of the substrate 30 are connected via solder bumps 9. If the amount of the solder bumps 9 is reduced, the amount of solder melting at the time of flip-chip connection can be reduced, so that bridging between bumps is less likely to occur, and the pitch between bumps can be reduced. Although not shown in FIG. 6, the semiconductor chip 4 is provided with a passivation film as in FIG.
【0042】以上のことから、実施の形態2によれば、
アルミ電極2上に金バンプ等の下地金属を設ける必要が
ないために、半田バンプの形成工程を少なくすることが
でき、かつ半田バンプの形成の低コスト化を図ることが
できる。As described above, according to the second embodiment,
Since there is no need to provide a base metal such as a gold bump on the aluminum electrode 2, the number of solder bump forming steps can be reduced, and the cost of forming the solder bump can be reduced.
【0043】なお、実施の形態2において、アルミ電極
を用いる例について説明したが、これに限定されるわけ
ではなく、銅電極など他の金属で形成される電極でもよ
い。In the second embodiment, an example in which an aluminum electrode is used has been described. However, the present invention is not limited to this, and an electrode formed of another metal such as a copper electrode may be used.
【0044】[0044]
【発明の効果】本願の第1の発明に係る半田バンプ形成
方法によれば、従来技術のようなマスクを必要としない
ために、工程の単純化である。さらに、チップ単位で半
田バンプを形成するために、歩留りが低下した場合でも
コストの低減化が可能である。さらに、微量な溶融半田
を吐出するために、バンプ間ピッチが狭い場合でも半田
ブリッジを防ぐことができる。さらに、低温半田を用い
なくても、半田による金バンプまたは銅バンプの食われ
を低減することが可能である。さらに、半田表面の酸化
膜がほとんど形成されないため、安定した形状の半田バ
ンプを形成可能である。According to the method of forming a solder bump according to the first aspect of the present invention, the process is simplified because a mask is not required unlike the prior art. Further, since the solder bumps are formed for each chip, the cost can be reduced even when the yield is reduced. Furthermore, since a small amount of molten solder is discharged, solder bridges can be prevented even when the pitch between bumps is narrow. Further, the erosion of the gold bump or the copper bump by the solder can be reduced without using the low-temperature solder. Further, since an oxide film on the solder surface is hardly formed, a solder bump having a stable shape can be formed.
【0045】本願の第2の発明に係る半田バンプ形成方
法によれば、従来技術のようなマスクを必要としないた
めに、工程の単純化である。さらに、チップ単位で半田
バンプを形成するために、歩留りが低下した場合でもコ
ストの低減化が可能である。さらに、微量な溶融半田を
吐出するために、バンプ間ピッチが狭い場合でも半田ブ
リッジを防ぐことができる。According to the method of forming solder bumps according to the second aspect of the present invention, the process is simplified because a mask is not required unlike the prior art. Further, since the solder bumps are formed for each chip, the cost can be reduced even when the yield is reduced. Furthermore, since a small amount of molten solder is discharged, solder bridges can be prevented even when the pitch between bumps is narrow.
【0046】本願の第3の発明に係る半田バンプ形成方
法によれば、本願の第2の発明に係る半田バンプ形成方
法による効果に加えて、半田表面の酸化膜がほとんど形
成されないため、安定した形状の半田バンプを形成可能
であるという効果を奏する。According to the solder bump forming method according to the third invention of the present application, in addition to the effect of the solder bump forming method according to the second invention of the present application, since an oxide film on the solder surface is hardly formed, a stable There is an effect that a solder bump having a shape can be formed.
【0047】本願の第4の発明に係る半田バンプ形成方
法によれば、本願の第2の発明に係る半田バンプ形成方
法による効果に加えて、半田表面の酸化膜がほとんど形
成されないため、安定した形状の半田バンプを形成可能
であるという効果を奏する。According to the solder bump forming method according to the fourth aspect of the present invention, in addition to the effect of the solder bump forming method according to the second aspect of the present invention, since an oxide film on the solder surface is hardly formed, a stable There is an effect that a solder bump having a shape can be formed.
【0048】本願の第5の発明に係る半田バンプ形成方
法によれば、本願の第2の発明に係る半田バンプ形成方
法による効果に加えて、半田表面の酸化膜がほとんど形
成されないため、安定した形状の半田バンプを形成可能
であるという効果を奏する。According to the solder bump forming method according to the fifth aspect of the present invention, in addition to the effect of the solder bump forming method according to the second aspect of the present invention, since an oxide film on the solder surface is hardly formed, a stable There is an effect that a solder bump having a shape can be formed.
【0049】本願の第6の発明に係る半導体装置によれ
ば、チップ単位で半田バンプを形成するために、歩留り
が低下した場合でもコストの低減化が可能である。さら
に、微量な溶融半田で半田バンプを形成するために、バ
ンプ間のブリッジが発生しにくくなり、バンプ間のピッ
チの微細化にも対応可能である。According to the semiconductor device of the sixth aspect of the present invention, since the solder bumps are formed for each chip, the cost can be reduced even when the yield is reduced. Further, since the solder bumps are formed with a small amount of molten solder, bridges between the bumps are less likely to occur, and the pitch between the bumps can be reduced.
【図1】 本発明の実施の形態1に係る半田バンプ形成
方法の手順を示す概略図である。(a)は、金バンプを
形成した状態、(b)は、半田バンプを形成した状態を
示す。FIG. 1 is a schematic diagram showing a procedure of a solder bump forming method according to a first embodiment of the present invention. (A) shows a state where a gold bump is formed, and (b) shows a state where a solder bump is formed.
【図2】 本発明の実施の形態1に係る半田バンプ形成
方法により形成された半田バンプを示す概略図である。FIG. 2 is a schematic view showing a solder bump formed by the solder bump forming method according to the first embodiment of the present invention.
【図3】 本発明の実施の形態1に係る半田バンプ形成
方法で半田バンプを形成し、フリップチップ接続した半
導体チップと基板の接合を示す概略図である。FIG. 3 is a schematic diagram showing bonding of a semiconductor chip and a substrate which are flip-chip connected by forming solder bumps by the solder bump forming method according to the first embodiment of the present invention.
【図4】 本発明の実施の形態2に係る半田バンプの形
成方法を説明する概略図である。FIG. 4 is a schematic diagram illustrating a method for forming a solder bump according to a second embodiment of the present invention.
【図5】 本発明の実施の形態2に係る半田バンプ形成
方法により形成された半田バンプを示す概略図である。FIG. 5 is a schematic diagram showing a solder bump formed by a solder bump forming method according to a second embodiment of the present invention.
【図6】 本発明の実施の形態2に係る半田バンプ形成
方法で半田バンプを形成し、フリップチップ接続した半
導体チップと基板の接合を示す概略図である。FIG. 6 is a schematic diagram illustrating bonding of a semiconductor chip and a substrate that are flip-chip connected by forming solder bumps by the solder bump forming method according to the second embodiment of the present invention.
【図7】 従来技術による半田バンプ形成方法の手順を
説明する概略図であり、(a)は金バンプを形成した状
態、(b)は半田を付着した状態、(c)はショートを
取り除き半田皮膜を均一化させた状態を表す。7A and 7B are schematic views illustrating a procedure of a conventional method of forming a solder bump, wherein FIG. 7A shows a state in which a gold bump is formed, FIG. 7B shows a state in which solder is attached, and FIG. This represents a state where the film is made uniform.
【図8】 従来技術により形成された半田バンプを示す
概略図である。FIG. 8 is a schematic view showing a solder bump formed by a conventional technique.
1 シリコン、 2 アルミ電極、 3 パッシベーシ
ョン膜、 4 半導体チップ、 9 半田バンプ、 1
0 金バンプ、 11 金ボンディングワイヤー、 2
0 ソルダージェットヘッド、 21 プラズマ発生装
置、 22 溶融半田、 23 不活性ガスパイプ、
30 基板。1 silicon, 2 aluminum electrode, 3 passivation film, 4 semiconductor chip, 9 solder bump, 1
0 gold bump, 11 gold bonding wire, 2
0 solder jet head, 21 plasma generator, 22 molten solder, 23 inert gas pipe,
30 substrates.
Claims (6)
イヤーまたは銅ボンディングワイヤーを圧着することに
よって金バンプまたは銅バンプを形成するステップと、 前記金バンプまたは前記銅バンプ上に溶融半田を吐出す
ることによって半田バンプを形成するステップとを含
み、 前記溶融半田を吐出する際に、前記半導体チップの温度
は、半田の融点以下であることを特徴とする半田バンプ
形成方法。1. A step of forming a gold bump or a copper bump by pressing a gold bonding wire or a copper bonding wire to an electrode of a semiconductor chip, and discharging a molten solder onto the gold bump or the copper bump to form a solder. Forming a bump, wherein a temperature of the semiconductor chip is equal to or lower than a melting point of the solder when the molten solder is discharged.
マを加えるとともに、溶融半田を前記電極に吐出するこ
とによって半田バンプを形成することを特徴とする半田
バンプ形成方法。2. A method for forming a solder bump, wherein plasma is applied to an electrode of a semiconductor chip under atmospheric pressure, and a solder bump is formed by discharging molten solder to the electrode.
せることを特徴とする請求項2記載の半田バンプ形成方
法。3. The method according to claim 2, wherein the plasma is generated in an inert gas.
生させることを特徴とする請求項2記載の半田バンプ形
成方法。4. The method according to claim 2, wherein the plasma is generated in an oxidation-reduction gas.
体チップの温度は、半田の融点以下であることを特徴と
する請求項2記載の半田バンプ形成方法。5. The method according to claim 2, wherein a temperature of the semiconductor chip is lower than a melting point of the solder when the molten solder is discharged.
の半田バンプ形成方法によって形成された半田バンプを
有する半導体チップと、基板とがフリップチップ接続さ
れた半導体装置。6. A semiconductor device in which a semiconductor chip having a solder bump formed by the solder bump forming method according to claim 2 and a substrate are flip-chip connected.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000345072A JP2002151540A (en) | 2000-11-13 | 2000-11-13 | Solder bump forming method and semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000345072A JP2002151540A (en) | 2000-11-13 | 2000-11-13 | Solder bump forming method and semiconductor device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2002151540A true JP2002151540A (en) | 2002-05-24 |
Family
ID=18819170
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000345072A Pending JP2002151540A (en) | 2000-11-13 | 2000-11-13 | Solder bump forming method and semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2002151540A (en) |
-
2000
- 2000-11-13 JP JP2000345072A patent/JP2002151540A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5937320A (en) | Barrier layers for electroplated SnPb eutectic solder joints | |
| US6130170A (en) | Process improvements for titanium-tungsten etching in the presence of electroplated C4's | |
| JP4239310B2 (en) | Manufacturing method of semiconductor device | |
| EP0382080A2 (en) | Bump structure for reflow bonding of IC devices | |
| KR20010098699A (en) | Method of forming lead-free bump interconnections | |
| JP2000133670A (en) | Bump, its forming method, and its manufacturing equipment | |
| JPH0267731A (en) | Solder bump type semiconductor device and its manufacturing method | |
| US11121101B2 (en) | Flip chip packaging rework | |
| US6103549A (en) | No clean flux for flip chip assembly | |
| JPH10163213A (en) | Semiconductor device manufacturing method and semiconductor device mounting method | |
| KR100432325B1 (en) | Electrode forming method and bump electrode formable base used therefor | |
| JPH05235102A (en) | Semiconductor device | |
| US20080119056A1 (en) | Method for improved copper layer etching of wafers with c4 connection structures | |
| JP2002151540A (en) | Solder bump forming method and semiconductor device | |
| KR20020060307A (en) | Manufacturing method for solder bump | |
| JP2002334897A (en) | Semiconductor device bump structure and method of manufacturing the same | |
| KR20030070728A (en) | Reflow Method of fluxless solder bump using Ar-H2 Plasma | |
| US8097827B2 (en) | Method for soldering two elements together using a solder material | |
| JPS6068637A (en) | Bump electrode of semiconductor | |
| JP2002076046A (en) | Method for manufacturing semiconductor device | |
| JPH11135533A (en) | Electrode structure, silicon semiconductor element provided with the electrode, its manufacture, circuit board mounting the element and its manufacture | |
| Datta | Flip-chip interconnection | |
| KR100726059B1 (en) | Electroplating solder formation on organic circuit boards for flip chip joints and board-to-face solder joints | |
| JPH09306918A (en) | Barrier metal forming method in forming process of solder ball bump | |
| CN1319129C (en) | Solder bump formation method |