JP2002154990A - Method for producing cycloolefin - Google Patents
Method for producing cycloolefinInfo
- Publication number
- JP2002154990A JP2002154990A JP2000346559A JP2000346559A JP2002154990A JP 2002154990 A JP2002154990 A JP 2002154990A JP 2000346559 A JP2000346559 A JP 2000346559A JP 2000346559 A JP2000346559 A JP 2000346559A JP 2002154990 A JP2002154990 A JP 2002154990A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- reaction
- molecular sieve
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
(57)【要約】
【課題】 単環芳香族炭化水素の部分水素化反応によっ
て、シクロオレフィンを高い選択率、収率で効率的に製
造する。
【解決手段】 単環芳香族炭化水素を水の存在下、ルテ
ニウムを担持したシリカメソポア分子ふるい触媒を用い
液相にて部分水素化する。
【効果】 (1)単環芳香族炭化水素から高い選択率、
高収率で、かつ、ルテニウム単位重量当たりの目的とす
るシクロオレフィンを効率よく取得することができる。
(2)触媒の抜き出しや分離操作に関わる取り扱い性が
簡便である。(3)担持触媒としてルテニウムの高担持
化が可能となり、触媒当たりの活性も高くなり、金属被
毒劣化にも強く工業的安定性に優れる。という利点を持
つ極めて価値の高いものである。PROBLEM TO BE SOLVED: To efficiently produce a cycloolefin with a high selectivity and a high yield by a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon. A monocyclic aromatic hydrocarbon is partially hydrogenated in the liquid phase in the presence of water using a ruthenium-supported silica mesopore molecular sieve catalyst. [Effect] (1) High selectivity from monocyclic aromatic hydrocarbons,
The desired cycloolefin per unit weight of ruthenium can be efficiently obtained in high yield.
(2) Easy handling with respect to extraction and separation of the catalyst. (3) High loading of ruthenium as a supported catalyst becomes possible, the activity per catalyst is increased, the metal poisoning is deteriorated, and the industrial stability is excellent. It has the advantage of being extremely valuable.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、単環芳香族炭化水
素を部分水素化し、シクロオレフィンを製造する方法に
関する。詳しくは、単環芳香族炭化水素を部分水素化し
シクロオレフィンを製造するに際して、ルテニウムを担
持したシリカメソポア分子ふるい触媒を用い単環芳香族
炭化水素を水の存在下、液相にて部分水素化することを
特徴とするシクロオレフィンの製造方法に関する。[0001] The present invention relates to a method for producing a cycloolefin by partially hydrogenating a monocyclic aromatic hydrocarbon. Specifically, in the production of cycloolefins by partially hydrogenating monocyclic aromatic hydrocarbons, the monocyclic aromatic hydrocarbons are partially hydrogenated in the liquid phase in the presence of water using a ruthenium-supported silica mesopore molecular sieve catalyst. And a method for producing a cycloolefin.
【0002】[0002]
【従来の技術】シクロオレフィンの製造方法としては、
従来より単環芳香族炭化水素の部分水素化反応、シクロ
アルカノールの脱水反応およびシクロアルカンの脱水素
反応などの方法が知られている。なかでも単環芳香族炭
化水素の部分水素化による方法が最も簡素化されたプロ
セスとして好ましい。2. Description of the Related Art Cycloolefin production methods include:
Conventionally, methods such as a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon, a dehydration reaction of a cycloalkanol and a dehydrogenation reaction of a cycloalkane have been known. Among them, a method based on partial hydrogenation of a monocyclic aromatic hydrocarbon is preferred as the most simplified process.
【0003】単環芳香族炭化水素の部分水素化によるシ
クロオレフィンの製造方法としては、触媒として主にル
テニウム金属が用いられ、水および金属塩の存在下で水
素化反応を行う方法が一般的である。ルテニウム触媒と
しては、金属ルテニウム微粒子をそのまま使用する方法
(特開昭61−50930、特開昭62−45541、
特開昭62−45544等)、金属ルテニウム微粒子の
他に少なくとも一種の金属酸化物を添加して反応を行う
方法(特開昭62−201830、特開昭63−178
34、特開昭63−63627)、シリカ、アルミナ、
シリカ・ジルコニア等の担体にルテニウムを担持した触
媒を用いる方法(特開昭57−130926、特開昭6
1−40226、特開平4−74141、特開平7−2
85892等)など多くの提案がなされている。As a method for producing cycloolefin by partial hydrogenation of a monocyclic aromatic hydrocarbon, ruthenium metal is mainly used as a catalyst, and a hydrogenation reaction is generally performed in the presence of water and a metal salt. is there. As the ruthenium catalyst, a method using metal ruthenium fine particles as they are (Japanese Patent Application Laid-Open Nos. 61-50930 and 62-45541,
JP-A-62-45544, etc.) and a method of adding at least one metal oxide in addition to metal ruthenium fine particles to carry out a reaction (JP-A-62-201830, JP-A-63-178).
34, JP-A-63-63627), silica, alumina,
A method using a catalyst in which ruthenium is supported on a carrier such as silica or zirconia (JP-A-57-130926;
1-404026, JP-A-4-74141, JP-A-7-2
Many proposals have been made.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来公知の方
法は、いずれも何らかの問題点を抱えており、必ずしも
工業的に有利な方法であるとはいえない。金属ルテニウ
ム微粒子をそのまま使用した場合は、反応系において該
微粒子触媒の凝集が発生して、凝集による反応活性点の
減少によるルテニウム単位重量当たりの目的とするシク
ロオレフィンの生産性が低くなる。また、ルテニウム微
粒子に添加剤を加えたものは、反応系が複雑になり触媒
の抜き出しや分離操作に関わる取り扱い性が難しくな
る。However, all of the known methods have some problems and cannot be said to be necessarily industrially advantageous. When the metal ruthenium fine particles are used as they are, the fine particle catalyst agglomerates in the reaction system, and the productivity of the target cycloolefin per unit weight of ruthenium decreases due to the reduction of the reaction active site due to the aggregation. In addition, when the additive is added to the ruthenium fine particles, the reaction system becomes complicated, and the handling property relating to the extraction of the catalyst and the separation operation becomes difficult.
【0005】一方、担体にルテニウムを担持した触媒
は、担持した金属当たりの活性は高いものの、目的とす
るシクロオレフィンの選択性が著しく低い。このため選
択性を向上させるうえで主金属とは別の第二成分や添加
剤を加えるなどの工夫がなされているが、著しく活性を
低下させざるをえなく、必ずしも高い選択性、収率は得
られてない。また、担体にルテニウムを担持した触媒
は、担体に担持する主金属の担持率により、活性、選択
性の他、触媒劣化に影響する。低担持率においては、触
媒が反応器から経時的に溶出してくる金属、例えば、
鉄、ニッケル、クロム、モリブデン等による被毒劣化を
生じやすく、経時的に活性および選択性が低下するなど
工業的に安定な触媒とはなり難い。一方、高担持率であ
ると、担体の表面あるいは担体バルク内で金属の凝集が
生じて、活性および選択性の低下を起こすなどの問題点
を抱えている。[0005] On the other hand, a catalyst in which ruthenium is supported on a carrier has a high activity per supported metal, but the selectivity of a target cycloolefin is extremely low. For this reason, in order to improve the selectivity, measures such as adding a second component and an additive different from the main metal have been devised, but the activity has to be remarkably reduced, and the high selectivity and the yield are not necessarily high. Not obtained. In addition, the catalyst in which ruthenium is supported on the carrier affects the activity, selectivity, and catalyst deterioration depending on the supporting rate of the main metal supported on the carrier. At low loadings, catalysts elute from the reactor over time, such as metals
Poisoning deterioration due to iron, nickel, chromium, molybdenum, etc. is liable to occur, and the activity and selectivity decrease over time, making it difficult to become an industrially stable catalyst. On the other hand, when the loading rate is high, there is a problem that the metal is aggregated on the surface of the carrier or in the bulk of the carrier, and the activity and the selectivity are reduced.
【0006】[0006]
【課題を解決するための手段】本発明者らは、かかる問
題を解決するため鋭意検討を重ねた結果、シリカメソポ
ア分子ふるい担体を用いルテニウムを高分散担持した触
媒が、以下に述べる利点を持つことを見出し本発明に至
った。(1)単環芳香族炭化水素から高い選択率、高収
率で、かつ、ルテニウム単位重量当たりの目的とするシ
クロオレフィンを効率よく取得することができる。
(2)触媒の抜き出しや分離操作に関わる取り扱い性が
簡便である。(3)担持触媒としてルテニウムの高担持
化が可能となり、触媒当たりの活性も高くなり、金属被
毒劣化にも強く工業的安定性に優れたものである。すな
わち、本発明は、ルテニウムを担持したシリカメソポア
分子ふるい触媒を用い単環芳香族炭化水素を水の存在
下、液相にて部分水素化することを特徴とするシクロオ
レフィンの製造方法に関するものである。Means for Solving the Problems The present inventors have made intensive studies in order to solve such a problem. As a result, a catalyst in which ruthenium is highly dispersed and supported using a silica mesopore molecular sieve carrier has the following advantages. This led to the present invention. (1) The desired cycloolefin per unit weight of ruthenium can be efficiently obtained with high selectivity and high yield from monocyclic aromatic hydrocarbons.
(2) Easy handling with respect to extraction and separation of the catalyst. (3) As a supported catalyst, ruthenium can be supported at a high level, the activity per catalyst is increased, the metal poisoning is deteriorated, and the industrial stability is excellent. That is, the present invention relates to a method for producing a cycloolefin, which comprises partially hydrogenating a monocyclic aromatic hydrocarbon in a liquid phase in the presence of water using a silica mesopore molecular sieve catalyst supporting ruthenium. is there.
【0007】以下、本発明を詳細に説明する。本発明に
おいて使用される触媒の担体は、シリカメソポア分子ふ
るいである。本発明の触媒担体に用いるシリカメソポア
分子ふるいとは、酸化ケイ素を主成分とする金属酸化物
骨格を有し、メソ孔領域、特に、径1.5〜10nmの
単分散細孔を有する金属酸化物多孔体である。これらメ
ソポア分子ふるいの合成方法として、米国特許第509
8684号、第5102643号、第5108725
号、特表平5−503499号公報等には、長鎖のアル
キル基を有する4級アンモニウム塩あるいはフォスフォ
ニウム塩をテンプレートとし用い、水熱合成により合成
する方法が知られている。また、特開平4−23881
0号公報には、層状シリカより長鎖のアルキルアンモニ
ウムカチオンを用いイオン交換法により合成する方法が
開示されている。また、有機ハイブリッドメソポア分子
ふるいとして、ケイ素に結合した有機成分をケイ素に対
して1〜60当量%有するもので、有機成分とは炭化水
素基であり、有機成分は触媒中のケイ素原子に対して1
〜60当量%、好ましくは5〜50当量%含まれるもの
も知られている。このような無機有機ハイブリッドメソ
ポア分子ふるいは、特開平10−72212号公報等の
公知の方法に準じて合成することができる。Hereinafter, the present invention will be described in detail. The catalyst support used in the present invention is a silica mesopore molecular sieve. The silica mesopore molecular sieve used for the catalyst support of the present invention is a metal oxide having a metal oxide skeleton containing silicon oxide as a main component, and having a mesopore region, in particular, monodisperse pores having a diameter of 1.5 to 10 nm. It is a porous material. As a method for synthesizing these mesopore molecular sieves, US Pat.
No. 8684, No. 5102643, No. 5108725
And JP-A-5-503499 discloses a method of synthesizing a compound by hydrothermal synthesis using a quaternary ammonium salt or a phosphonium salt having a long-chain alkyl group as a template. In addition, Japanese Patent Application Laid-Open No. Hei 4-23881
No. 0 discloses a method of synthesizing a layered silica by ion exchange using a long-chain alkylammonium cation. In addition, as an organic hybrid mesopore molecular sieve, an organic component bonded to silicon has 1 to 60 equivalent% with respect to silicon. The organic component is a hydrocarbon group, and the organic component is based on silicon atoms in the catalyst. 1
It is also known that they contain 60 equivalent%, preferably 5 to 50 equivalent%. Such an inorganic-organic hybrid mesopore molecular sieve can be synthesized according to a known method such as JP-A-10-72212.
【0008】本発明に用いる触媒としては、このような
疎水性に優れる有機ハイブリッドメソポア分子ふるいも
用いることができる。本発明のメソポア分子ふるいは、
ケイ素以外に、アルミニウム、ホウ素、スズおよび遷移
金属元素、例えば、チタン、鉄、亜鉛、希土類元素、ジ
ルコニウムを含ませて用いることができる。これら金属
酸化物のメソポア分子ふるい中のケイ素に対する割合
は、金族をMで表すと、ケイ素/M原子比が10以上で
あり、10〜100が好ましい。As the catalyst used in the present invention, such an organic hybrid mesopore molecular sieve having excellent hydrophobicity can also be used. The mesopore molecular sieve of the present invention is
In addition to silicon, aluminum, boron, tin and transition metal elements such as titanium, iron, zinc, rare earth elements and zirconium can be used. The ratio of these metal oxides to silicon in the mesopore molecular sieve, when the metal group is represented by M, has a silicon / M atomic ratio of 10 or more, and preferably 10 to 100.
【0009】触媒の調製は、一般に用いられる通常の担
持金属触媒の調製法にしたがって調製できる。すなわ
ち、触媒成分液に担体となるメソポア分子ふるいを浸漬
後、攪拌しながら溶媒を蒸発させ活性成分を固定化する
蒸発乾固法、あるいは触媒活性成分液にメソポア分子ふ
るい担体を浸漬後、濾過する等の公知の含浸担持法が用
いられる。触媒活性成分のルテニウム原料としては、ル
テニウムのハロゲン化物、硝酸塩、水酸化物、さらにル
テニウムカルボニル、ルテニウムアンミン錯体等の錯体
等が用いられる。担持に用いる溶媒としては、水または
アルコール、アセトン、ヘキサン、ベンゼンなどの有機
溶媒が用いられる。The catalyst can be prepared according to a commonly used method for preparing a supported metal catalyst. That is, after the mesopore molecular sieve serving as a carrier is immersed in the catalyst component liquid, the solvent is evaporated while stirring to immobilize the active ingredient, or an evaporation to dryness method, or the mesopore molecular sieve carrier is immersed in the catalyst active ingredient liquid, followed by filtration. A known impregnation-supporting method such as is used. As the ruthenium raw material of the catalytically active component, ruthenium halides, nitrates, hydroxides, and complexes such as ruthenium carbonyl and ruthenium ammine complexes are used. Water or an organic solvent such as alcohol, acetone, hexane, or benzene is used as a solvent for the support.
【0010】触媒の活性成分であるルテニウムは、単独
でも使用できるが、他の金属成分を共担持して用いるこ
とは有効である。ルテニウムと共担持する成分として
は、亜鉛、ニッケル、鉄、銅、コバルト、マンガン、ア
ルカリ土類等が使用されるが、中でも亜鉛が最も好まし
い。共担持成分であるこれらの化合物としては、各金属
のハロゲン化物、硝酸塩、酢酸塩、硫酸塩、各金属を含
む錯体化合物などが用いられる。これら共担持成分はル
テニウムと同時に担体に担持してもよいし、予めルテニ
ウムを担持後、担持してもよく、先にこれらの金属を担
持後、ルテニウムを担持してもよい。このように調製さ
れた触媒は、通常、ルテニウムを気相あるいは液相で還
元活性化して用いる。還元剤としては、水素、ヒドラジ
ン、ホルマリン、水素化ホウ素ナトリウム等、公知の還
元剤が使用できる。好ましくは水素が用いられる。通常
80〜450℃、好ましくは100〜400℃条件で活
性化される。さらに、本発明に用いる触媒は、反応前に
水中で予備還元処理して用いるのが好ましい。[0010] Ruthenium, which is the active component of the catalyst, can be used alone, but it is effective to co-support other metal components. As a component co-supported with ruthenium, zinc, nickel, iron, copper, cobalt, manganese, alkaline earth, and the like are used, and among them, zinc is most preferable. As these compounds which are co-supporting components, halides, nitrates, acetates, sulfates, complex compounds containing the respective metals, etc. of the respective metals are used. These co-supported components may be supported on the carrier at the same time as ruthenium, or may be pre-supported and then supported on ruthenium, or may be supported on these metals first and then on ruthenium. The catalyst thus prepared is usually used by reducing and activating ruthenium in a gas phase or a liquid phase. Known reducing agents such as hydrogen, hydrazine, formalin, and sodium borohydride can be used as the reducing agent. Preferably, hydrogen is used. It is activated usually at 80 to 450 ° C, preferably at 100 to 400 ° C. Further, the catalyst used in the present invention is preferably used after being subjected to a preliminary reduction treatment in water before the reaction.
【0011】ルテニウムの担持量は、メソポア分子ふる
い担体に対して、通常0.1〜40重量%、好ましくは
1〜30重量%である。共担持成分を用いる場合は、ル
テニウムに対する原子比で0.01〜20、好ましくは
0.05〜10程度である。本発明の触媒が部分水素化
触媒として有効な効果を発揮する理由は、メソポア分子
ふるい担体を用いることによって、高担持条件において
さえも均一に高分散されたルテニウム微粒子担持形態の
触媒となっていることが影響していると推定される。従
来用いられている担体と比べ、メソポア分子ふるい担体
は比表面積が非常に大きく(1000m2 /gオーダ
ー)、かつ、細孔がメソポア領域に均一に存在し、適切
な担持、還元によって数nmの微粒状態に分散した担持
触媒とすることが可能である。一方、従来用いられてい
る担体は、メソポア分子ふるいに比べ広い細孔分布もし
くは大きな細孔径を有しており、担持するルテニウム
が、触媒調製時に細孔内で均一に分散されず、選択性の
低い高活性点や凝集した著しく低活性な部分が混在し、
触媒性能低下に起因していると考えている。The loading amount of ruthenium is usually 0.1 to 40% by weight, preferably 1 to 30% by weight, based on the mesopore molecular sieve support. When a co-supporting component is used, the atomic ratio to ruthenium is about 0.01 to 20, preferably about 0.05 to 10. The reason why the catalyst of the present invention exhibits an effective effect as a partial hydrogenation catalyst is that, by using a mesopore molecular sieve carrier, the catalyst is in the form of a ruthenium fine particle supported uniformly and highly dispersed even under a high supported condition. Is presumed to have an effect. Compared with a conventionally used carrier, the mesopore molecular sieve carrier has a very large specific surface area (on the order of 1000 m 2 / g), and the pores are uniformly present in the mesopore region. It is possible to use a supported catalyst dispersed in a fine particle state. On the other hand, conventionally used supports have a wide pore distribution or a large pore size as compared with the mesopore molecular sieve, and the supported ruthenium is not uniformly dispersed in the pores during catalyst preparation, and the selectivity is low. Low high activity sites and aggregating extremely low activity parts are mixed,
It is thought that this is due to a decrease in catalyst performance.
【0012】また、耐金属被毒性が高くなった理由は、
ルテニウムの高担持化が可能となったことによるものと
推察している。低担持率のものは、ルテニウム当たりの
水素化活性点が多く、ルテニウム当たりに被毒作用を及
ぼす金属の影響を受けやすい。一方、高担持化されたも
のは、ルテニウムが均一に分散されるが、それぞれの微
粒子が近接しており、低担持率に比べルテニウム当たり
の水素活性点は少なく、ルテニウム当たりに被毒作用を
及ぼす金属の影響が受けにくくなるものと考えている。The reason why the metal poisoning resistance is increased is as follows.
It is presumed that it was possible to increase the loading of ruthenium. Those with a low loading ratio have many hydrogenation active sites per ruthenium and are susceptible to metals that have a poisoning effect per ruthenium. On the other hand, in the case of high loading, ruthenium is uniformly dispersed, but each fine particle is close to each other, there are fewer hydrogen active sites per ruthenium than in the low loading ratio, and there is a poisoning effect per ruthenium We believe that it will be less affected by metal.
【0013】本発明の触媒使用形態としては、スラリー
懸濁方式あるいは成型触媒として固定層流通方式等、通
常固体触媒を用いる方法が適用できる。また、本発明に
おいては、水を反応系に存在させることが必要であり、
水の存在量は、芳香族炭化水素に対して通常、0.01
〜100重量倍が用いられる。ただし、反応条件下にお
いて、原料および生成物を主成分とする有機相と水を含
む液相が2液相を形成することが好ましく、実質的には
0.5〜20重量倍がより好ましい。As a mode of using the catalyst of the present invention, a method using a solid catalyst, such as a slurry suspension system or a fixed bed flow system as a molded catalyst, can be applied. In the present invention, it is necessary that water is present in the reaction system,
The amount of water is usually 0.01 to 0.01% relative to the aromatic hydrocarbon.
-100 weight times is used. However, under the reaction conditions, it is preferable that the organic phase containing the raw materials and the product as main components and the liquid phase containing water form two liquid phases, and more preferably 0.5 to 20 times by weight.
【0014】さらに、本発明においては、触媒成分以外
に金属化合物を反応系に存在させる方法が用いられる。
この金属化合物としては、リチウム、ナトリウム、カリ
ウムなどの周期律表1族元素、マグネシウム、カルシュ
ウム、ストロンチウムなどの2族元素、およびマンガ
ン、鉄、コバルト、亜鉛、銅等の金属化合物が例示され
る。金属化合物の種類としては、炭酸塩、酢酸塩、塩酸
塩、硫酸塩、硝酸塩、また酸化物、水酸化物が使用でき
る。特に有効な金属化合物としては、硫酸亜鉛、水酸化
亜鉛、酸化亜鉛が好ましく、中でも硫酸亜鉛が存在する
ことが最も好ましい。Further, in the present invention, a method is used in which a metal compound other than the catalyst component is present in the reaction system.
Examples of the metal compound include Group 1 elements of the periodic table such as lithium, sodium, and potassium, Group 2 elements such as magnesium, calcium, and strontium, and metal compounds such as manganese, iron, cobalt, zinc, and copper. As the kind of the metal compound, carbonate, acetate, hydrochloride, sulfate, nitrate, oxide, and hydroxide can be used. As particularly effective metal compounds, zinc sulfate, zinc hydroxide and zinc oxide are preferred, and among them, zinc sulfate is most preferred.
【0015】これらの塩の添加量としては、反応系に存
在する水に対して1X10-5〜1.0重量倍、好ましく
は1X10-4〜0.5重量倍である。なお、使用された
これら化合物は、反応系に共存する水に全量が溶解して
いる必要はない。また、これらの金属化合物は、単独で
用いてもよく、2種以上存在してもよい。本発明におい
ては、共存する水相を中性もしくは酸性条件下に保ち反
応させることが好ましい。水相がアルカリ性となると特
に反応速度が著しく低下するので好ましくない。好まし
くは、水相のPHは0.5ないし7未満、さらに好まし
くは2〜6.5である。The amount of these salts to be added is 1 × 10 −5 to 1.0 times by weight, preferably 1 × 10 −4 to 0.5 times by weight, based on the water present in the reaction system. It is not necessary that all of these compounds used be dissolved in water coexisting in the reaction system. These metal compounds may be used alone or in combination of two or more. In the present invention, it is preferable that the coexisting aqueous phase is reacted under neutral or acidic conditions. When the aqueous phase becomes alkaline, the reaction rate is particularly remarkably reduced, which is not preferable. Preferably, the pH of the aqueous phase is from 0.5 to less than 7, more preferably from 2 to 6.5.
【0016】本発明の原料となる単環芳香族炭化水素と
は、ベンゼン、トルエン、キシレン類、低級アルキルベ
ンゼン類をいう。部分水素化反応の条件は、使用する触
媒や添加物の種類、量によって適宜選択されるが、通
常、水素圧は0.1〜20MPa、好ましくは1〜10
MPaの範囲であり、反応温度は50〜250℃、好ま
しくは100〜200℃の範囲である。また、反応時間
は、目的とするシクロオレフィンの選択率や収率の実質
的な目標を定め、適宜選択すればよく、特に制限はない
が、通常数秒〜数時間程度である。The monocyclic aromatic hydrocarbon used as a raw material in the present invention refers to benzene, toluene, xylenes and lower alkylbenzenes. The conditions for the partial hydrogenation reaction are appropriately selected depending on the type and amount of the catalyst and additives used, but the hydrogen pressure is usually 0.1 to 20 MPa, preferably 1 to 10 MPa.
MPa, and the reaction temperature is in the range of 50 to 250 ° C, preferably 100 to 200 ° C. Further, the reaction time may be selected as appropriate, by setting a substantial target of the selectivity and yield of the target cycloolefin, and is not particularly limited, but is usually about several seconds to several hours.
【0017】[0017]
【発明の実施の形態】以下に実施例と参考例および比較
例を挙げて本発明を具体的に説明するが、本発明は、こ
れら実施例により何ら限定されるものではない。以下の
例において、触媒金属組成は蛍光X線分析によって求め
た。ケイ素ならびにケイ素に結合した有機基の分析には
元素分析法を用いた、メソポア分子ふるいの比表面積、
細孔径は窒素吸着法により測定した。また、粉末X線回
折解析によるルテニウム金属の回折角(2θ)44度近
辺の回折ピークの広がりより、シェラーの式により平均
結晶子径を求めた。反応評価は、オートクレーブを用い
たバッチ方式を採用し、経時的に抜き出した反応液をF
ID検知器付きのガスクロマトグラフ(島津製作所製G
C−14A)にて分析することにより実施した。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to examples, reference examples and comparative examples, but the present invention is not limited to these examples. In the following examples, the catalytic metal composition was determined by X-ray fluorescence analysis. Specific surface area of mesopore molecular sieve using elemental analysis for analysis of silicon and organic groups bonded to silicon,
The pore diameter was measured by a nitrogen adsorption method. The average crystallite diameter was determined from the spread of the diffraction peak of the ruthenium metal diffraction angle (2θ) around 44 degrees by powder X-ray diffraction analysis according to Scherrer's formula. For the reaction evaluation, a batch method using an autoclave was employed, and the reaction solution withdrawn over time was subjected to F
Gas chromatograph with ID detector (G from Shimadzu Corporation)
C-14A).
【0018】なお、以下に記載するベンゼンの転化率お
よびシクロヘキセンの選択率は、実験の濃度分析値をも
とに、次に示す式により算出したものである。 ベンゼン転化率(%)=(反応により消費されたベンゼ
ンのモル数)*100/(反応へ供給したベンゼンのモ
ル数) シクロヘキセン選択率(%)=(反応により生成したシ
クロヘキセンのモル数)*100/P ただし、 P(モル数)=(反応により生成したシクロヘキセンの
モル数)+(反応により生成したシクロヘキサンのモル
数) また、ルテニウム当たりの活性とは、触媒中に含まれる
Ru(g)当たりのベンゼン転化速度(g/Hr)を示
したものであり、転化率50%を基準にして以下の計算
式にて算出したものである。 Ru当たりの活性=使用したベンゼン量(g)*1/2
*1/転化率50%になるまでにかかった時間(Hr)
*1/使用したルテニウムの重量(g) 一方、触媒活性は、使用した触媒当たりの活性を表した
ものである。The conversion of benzene and the selectivity of cyclohexene described below are calculated by the following formulas based on the concentration analysis values of the experiment. Benzene conversion (%) = (moles of benzene consumed by reaction) * 100 / (moles of benzene supplied to reaction) Cyclohexene selectivity (%) = (moles of cyclohexene produced by reaction) * 100 / P where P (mole number) = (mole number of cyclohexene formed by the reaction) + (mole number of cyclohexane formed by the reaction) The activity per ruthenium is defined as per Ru (g) contained in the catalyst. The conversion rate (g / Hr) of the benzene was calculated by the following formula based on the conversion rate of 50%. Activity per Ru = Amount of benzene used (g) * 1/2
* 1 / Time required for conversion to 50% (Hr)
* 1 / weight of ruthenium used (g) On the other hand, the catalytic activity represents the activity per used catalyst.
【0019】[0019]
【参考例1】1.シリカメソポア分子ふるいの合成 1000mlのビーカーを用い、蒸留水200gにエタ
ノール160gおよびドデシルアミン20gを添加、溶
解させ、次いで撹拌下にテトラエチルオルトシリケート
83gを添加し、30分間程度撹拌するとスラリー状に
なる。これを室温下20時間静置反応させた。反応混合
物を濾過、水洗後、110℃、5時間乾燥し、白色粉末
状生成物37.2gを得た。次いで300℃下2時間、
550℃、4時間空気中で仮焼し、テンプレート(アミ
ン)を除去し、シリカメソポア分子ふるい24.4gを
得た。(MP−1とする) 粉末X線回折パターンは、d値=40.3に強いピーク
を示した。窒素吸脱着法による比表面積、細孔分布を測
定した結果、比表面積は950m 2 /g、細孔径は3.
2nmであった。[Reference Example 1] Synthesis of silica mesopore molecular sieve Ethanol was added to 200 g of distilled water using a beaker of 1000 ml.
160 g of ethanol and 20 g of dodecylamine were added and dissolved.
And then, with stirring, tetraethylorthosilicate
Add 83g and stir for about 30 minutes to form a slurry
Become. This was left to react at room temperature for 20 hours. Reaction mixing
The product was filtered, washed with water and dried at 110 ° C for 5 hours to give a white powder.
37.2 g of the product were obtained. Then at 300 ° C for 2 hours,
Calcium in the air at 550 ° C for 4 hours, and the template (Ami
) And remove 24.4 g of silica mesopore molecular sieve.
Obtained. (Referred to as MP-1) The powder X-ray diffraction pattern shows a strong peak at d value = 40.3.
showed that. Measure specific surface area and pore distribution by nitrogen adsorption / desorption method
As a result, the specific surface area was 950 m Two/ G, pore size is 3.
It was 2 nm.
【0020】2.触媒調製 300ccの蒸発皿を用い、塩化ルテニウム塩酸水溶液
(田中貴金属製、Ru8.39wt%含有)15g、塩
化亜鉛0.25gをエタノール5gと水10gの混合溶
液に溶解した調製液にMP−1を5g添加し、攪拌下ウ
ォータバス上で十分に蒸発乾固した。次いでパイレック
ス(登録商標)ガラス管に仕込み、300℃、3時間水
素気流中で還元処理した。次いで0.01Nの苛性ソー
ダ水溶液200cc中に分散し、室温30分攪拌、濾
過、水洗する処理を3回繰り返した。次いで150℃下
真空乾燥し、Ru−Zn担持シリカメソポア分子ふるい
触媒を得た。このようにして得られた触媒のRu含有量
は19.7wt%、Zn/Ru原子比は0.11であっ
た。また、X線回折から求めたRuの平均結晶子径は2
4Åと極めて小さい値であった。2. Catalyst Preparation Using a 300 cc evaporating dish, MP-1 was added to a solution prepared by dissolving 15 g of ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku, containing 8.39 wt% of Ru) and 0.25 g of zinc chloride in a mixed solution of 5 g of ethanol and 10 g of water. 5 g was added, and the mixture was sufficiently evaporated to dryness on a water bath with stirring. Then, the mixture was charged into a Pyrex (registered trademark) glass tube and subjected to a reduction treatment in a hydrogen stream at 300 ° C. for 3 hours. Subsequently, a process of dispersing in 200 cc of a 0.01 N aqueous solution of caustic soda, stirring at room temperature for 30 minutes, filtering and washing with water was repeated three times. Next, vacuum drying was performed at 150 ° C. to obtain a Ru—Zn-supported silica mesopore molecular sieve catalyst. The Ru content of the catalyst thus obtained was 19.7 wt%, and the atomic ratio of Zn / Ru was 0.11. The average crystallite size of Ru determined by X-ray diffraction is 2
It was an extremely small value of 4 °.
【0021】[0021]
【参考例2】1.シリカ・アルミナメソポア分子ふるい
の合成 1000mlのビーカーを用い、蒸留水300gにエタ
ノール240gおよびドデシルアミン30gを添加、溶
解させ、次いで撹拌下にテトラエチルオルトシリケート
125gを添加し、次いでアルミニウムイソプロポキサ
イド8.1gを添加攪拌をつづけるとスラリー状にな
る。これを室温下20時間静置反応させた。反応混合物
を濾過、水洗後、110℃、5時間乾燥し、白色粉末状
生成物61.2gを得た。次いで300℃下2時間、5
50℃、4時間空気中で仮焼し、テンプレート(アミ
ン)を除去し、シリカ・アルミナメソポア分子ふるい3
6.7gを得た。(MP−2とする) 粉末X線回折パターンは、d値=40.5に強いピーク
を示した。窒素吸脱着法による比表面積、細孔分布を測
定した結果、比表面積は900m 2 /g、細孔径は3.
2nmであった。また、Si/Al比は13を示した。[Reference Example 2] Silica / alumina mesopore molecular sieve
Ethanol was added to 300 g of distilled water using a 1000 ml beaker.
And 240 g of ethanol and 30 g of dodecylamine.
And then, with stirring, tetraethylorthosilicate
125 g are added, followed by aluminum isopropoxa
When 8.1 g of amide was added and stirring was continued, a slurry was formed.
You. This was left to react at room temperature for 20 hours. Reaction mixture
Is filtered, washed with water and dried at 110 ° C for 5 hours to give a white powder
61.2 g of the product were obtained. Then at 300 ° C for 2 hours, 5
Calcium in the air at 50 ° C for 4 hours.
) And remove the silica-alumina mesopore molecular sieve 3
6.7 g were obtained. (Referred to as MP-2) The powder X-ray diffraction pattern shows a strong peak at d value = 40.5.
showed that. Measure specific surface area and pore distribution by nitrogen adsorption / desorption method
As a result, the specific surface area was 900m Two/ G, pore size is 3.
It was 2 nm. Further, the Si / Al ratio was 13.
【0022】2.触媒調製 300ccの蒸発皿を用い、塩化ルテニウム塩酸水溶液
(田中貴金属製、Ru8.39wt%含有)30g、塩
化亜鉛0.5gをエタノール15gと水15gの混合溶
液に溶解した調製液にMP−2を10g添加し、攪拌下
ウォータバス上で十分に蒸発乾固した。次いでパイレッ
クスガラス管に仕込み、300℃、3時間水素気流中で
還元処理した。次いで0.01Nの苛性ソーダ水溶液2
00cc中に分散し、室温30分攪拌、濾過、水洗する
処理を3回繰り返した。次いで150℃下真空乾燥し、
Ru−Zn担持シリカ・アルミナメソポア分子ふるい触
媒を得た。このようにして得られた触媒のRu含有量は
19.0wt%、Zn/Ru原子比は0.10であっ
た。また、X線回折から求めたRuの平均結晶子径は2
8Åと極めて小さい値であった。2. Catalyst Preparation Using a 300 cc evaporating dish, MP-2 was dissolved in a solution prepared by dissolving 30 g of ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku, containing 8.39 wt% of Ru) and 0.5 g of zinc chloride in a mixed solution of 15 g of ethanol and 15 g of water. 10 g was added, and the mixture was sufficiently evaporated to dryness on a water bath with stirring. Next, the mixture was charged into a Pyrex glass tube and subjected to a reduction treatment in a hydrogen stream at 300 ° C. for 3 hours. Next, a 0.01N aqueous solution of caustic soda 2
A process of dispersing in 00 cc, stirring at room temperature for 30 minutes, filtering and washing with water was repeated three times. Then, vacuum drying at 150 ° C.
A Ru-Zn supported silica / alumina mesopore molecular sieve catalyst was obtained. The Ru content of the catalyst thus obtained was 19.0% by weight, and the Zn / Ru atomic ratio was 0.10. The average crystallite size of Ru determined by X-ray diffraction is 2
It was an extremely small value of 8 °.
【0023】[0023]
【参考例3】1.シリカ・ジルコニアメソポア分子ふる
いの合成 参考例2と同様に、ただし、テトラエチルオルトシリケ
ート1125gに、アルミニウムプロポキサイドに替え
てジルコニウムプロポキサイドプロパノール溶液(70
%)を添加し、反応させた。参考例2同様に処理し、乾
燥された白色粉末状生成物60.9gを得た。次いで3
00℃下2時間、550℃、4時間空気中で仮焼し、シ
リカ・ジルコニアメソポア分子ふるい39gを得た。
(MP−3と称する) 粉末X線回折パターンは、d値=35.3に強いピーク
を示した。窒素吸脱着法による比表面積、細孔分布を測
定した結果、比表面積は740m 2 /g、細孔径は3.
2nmであった。また、Si/Zr比は10であった。[Reference Example 3] Silica-zirconia mesopore molecular sieve
The synthesis was performed in the same manner as in Reference Example 2 except that tetraethylorthosilicate
Replaced with aluminum propoxide for 1125g
Zirconium propoxide propanol solution (70
%) Was added and reacted. Treated as in Reference Example 2
60.9 g of a dried white powdery product were obtained. Then 3
Calcination in air at 550 ° C for 4 hours at 00 ° C.
39 g of Rica-zirconia mesopore molecular sieve were obtained.
(Referred to as MP-3) The powder X-ray diffraction pattern showed a strong peak at d value = 35.3.
showed that. Measure specific surface area and pore distribution by nitrogen adsorption / desorption method
As a result, the specific surface area was 740 m Two/ G, pore size is 3.
It was 2 nm. Further, the Si / Zr ratio was 10.
【0024】2.触媒調製 参考例2と同様に、ただし、担体としてシリカ・ジルコ
ニアメソポア分子ふるい(MP−3)に替えて触媒を調
製した。このようにして得られた触媒のRu含有量は1
8.6wt%、Zn/Ru原子比は0.15であった。
また、X線回折から求めたRuの平均結晶子径は30Å
と極めて小さい値であった。2. Preparation of Catalyst A catalyst was prepared in the same manner as in Reference Example 2, except that the carrier was changed to a silica-zirconia mesopore molecular sieve (MP-3). The Ru content of the catalyst thus obtained is 1
8.6 wt%, and the Zn / Ru atomic ratio was 0.15.
The average crystallite size of Ru determined by X-ray diffraction was 30 °.
It was an extremely small value.
【0025】[0025]
【実施例1】1リットルのハステロイ製のオートクレー
ブに、10wt%の硫酸亜鉛を含む水溶液280mlお
よび触媒として参考例1で調製したRu−Zn/MP−
1触媒0.5gを仕込み、攪拌下水素で置換し、150
℃に昇温安定後、次いでベンゼン140ccを圧入し、
全圧5MPaで高速攪拌下に反応させた。この反応液を
経時的に抜き出し、ガスクロマトグラフィーにより油相
の組成を分析した。副生物はシクロヘキサンであった。
また、反応後の触媒中のルテニウム平均結晶子径を測定
すると、25Åと結晶径の変化は殆ど認められず安定し
ていることが判った。反応結果を表1に示す。Example 1 In a 1 liter Hastelloy autoclave, 280 ml of an aqueous solution containing 10 wt% of zinc sulfate and Ru-Zn / MP- prepared in Reference Example 1 as a catalyst were used.
One catalyst (0.5 g) was charged and replaced with hydrogen under stirring.
After raising the temperature to ℃, 140 cc of benzene was injected.
The reaction was carried out at a total pressure of 5 MPa under high-speed stirring. The reaction solution was withdrawn over time, and the composition of the oil phase was analyzed by gas chromatography. The by-product was cyclohexane.
Further, when the average crystallite size of ruthenium in the catalyst after the reaction was measured, it was found that there was almost no change in the crystal diameter of 25 ° and the catalyst was stable. Table 1 shows the reaction results.
【0026】[0026]
【比較例1】300ccの蒸発皿を用い、塩化ルテニウ
ム塩酸水溶液(田中貴金属製、Ru8.39wt%含
有)15g、塩化亜鉛0.25gと水5gの混合溶液に
溶解した調製液に市販のシリカゲル(富士シリシア製キ
ャリアクトQ50−細孔径500Å)を5g添加し、攪
拌下ウォータバス上で十分に蒸発乾固した。次いでパイ
レックスガラス管に仕込み、300℃、3時間水素気流
中で還元処理した。次いで0.01Nの苛性ソーダ水溶
液400cc中に分散し、室温30分攪拌、濾過、水洗
する処理を繰り返し3回行った。次いで120℃下で3
時間真空乾燥し、Ru−Zn担持シリカ触媒を得た。こ
のようにして得られた触媒の比表面積は47m2 /g
で、Ru含有量は19.7wt%、Zn/Ru原子比は
0.12であった。また、X線回折から求めたRuの平
均結晶子径は170Åであった。この上記触媒を実施例
1と同様に、ただし、触媒量を1gとしてベンゼンの部
分水素化反応を行った。6時間後の抜き出し反応液を分
析したところベンゼン転化率2.5%で、ほとんど反応
活性がないことがわかり反応を停止した。COMPARATIVE EXAMPLE 1 A 300 cc evaporating dish was used to prepare a solution prepared by dissolving 15 g of a ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku, containing 8.39 wt% of ruthenium), 0.25 g of zinc chloride and 5 g of water into commercially available silica gel ( 5 g of Carrieract Q50 manufactured by Fuji Silysia (pore diameter: 500 °) was added, and the mixture was sufficiently evaporated to dryness on a water bath with stirring. Next, the mixture was charged into a Pyrex glass tube and subjected to a reduction treatment in a hydrogen stream at 300 ° C. for 3 hours. Subsequently, a process of dispersing in 400 cc of a 0.01 N aqueous sodium hydroxide solution, stirring at room temperature for 30 minutes, filtering and washing with water was repeated three times. Then, at 120 ° C, 3
After vacuum drying for an hour, a Ru-Zn supported silica catalyst was obtained. The specific surface area of the catalyst thus obtained is 47 m 2 / g.
The Ru content was 19.7 wt% and the Zn / Ru atomic ratio was 0.12. The average crystallite size of Ru determined from X-ray diffraction was 170 °. This catalyst was subjected to the partial hydrogenation reaction of benzene in the same manner as in Example 1 except that the amount of the catalyst was 1 g. When the withdrawn reaction liquid after 6 hours was analyzed, the benzene conversion was 2.5%, indicating that there was almost no reaction activity, and the reaction was stopped.
【0027】[0027]
【比較例2】比較例1と同様に、ただし、触媒調製時の
触媒還元処理温度を200℃にして、3時間水素気流中
で還元処理しRu−Zn担持シリカ触媒を得た。このよ
うにして得られた触媒の比表面積は48m2 /gで、R
u含有量は20.9wt%、Zn/Ru原子比は0.1
0であった。また、X線回折から求めたRuの平均結晶
子径は86Åであった。この上記触媒を実施例1と同様
に、ただし、触媒量を3.5gとしてベンゼンの部分水
素化反応を行った。反応結果を表1に示す。Comparative Example 2 In the same manner as in Comparative Example 1, except that the catalyst reduction treatment temperature during catalyst preparation was set to 200 ° C., reduction treatment was performed in a hydrogen stream for 3 hours to obtain a Ru—Zn-supported silica catalyst. The specific surface area of the catalyst thus obtained is 48 m 2 / g, and R
The u content is 20.9 wt%, and the Zn / Ru atomic ratio is 0.1
It was 0. The average crystallite size of Ru determined from X-ray diffraction was 86 °. This catalyst was subjected to a partial hydrogenation reaction of benzene in the same manner as in Example 1, except that the amount of the catalyst was 3.5 g. Table 1 shows the reaction results.
【0028】[0028]
【表1】 表1、比較例1より、メソポア分子ふるいを用いないも
のは、選択性、収率およびルテニウム当たりの活性(触
媒活性)が低いことがいえる。[Table 1] From Table 1 and Comparative Example 1, it can be said that those not using the mesopore molecular sieve have low selectivity, yield and activity per ruthenium (catalytic activity).
【0029】[0029]
【実施例2】参考例1と同様に、ただし、触媒調製にお
ける塩化亜鉛の添加量を0.5gとして触媒を同様に調
製した。このようにして得られた触媒の比表面積は49
0m 2 /gで、Ru含有量は19.1wt%、Zn/R
u原子比は0.28であった。また、X線回折から求め
たRuの平均結晶子径は30Åであった。この上記触媒
を実施例1と同様に、ただし、触媒量を1.36gとし
てベンゼンの部分水素化反応を行った。反応結果を表2
に示す。Example 2 As in Reference Example 1, except that the catalyst was prepared.
The amount of zinc chloride added was 0.5 g and the catalyst was adjusted in the same manner.
Made. The specific surface area of the catalyst thus obtained is 49
0m Two/ G, Ru content is 19.1 wt%, Zn / R
The u atomic ratio was 0.28. In addition, we obtain from X-ray diffraction
The average crystallite diameter of the obtained Ru was 30 °. This catalyst
In the same manner as in Example 1, except that the amount of the catalyst was 1.36 g.
To carry out a partial hydrogenation reaction of benzene. Table 2 shows the reaction results.
Shown in
【0030】[0030]
【実施例3】参考例1と同様に、ただし、触媒調製にお
ける塩化亜鉛の添加量を1.66gとして触媒を同様に
調製した。このようにして得られた触媒の比表面積は5
20m2 /gで、Ru含有量は19.2wt%、Zn/
Ru原子比は0.40であった。また、X線回折から求
めたRuの平均結晶子径は31Åであった。この上記触
媒を実施例1と同様に、ただし、触媒量を1gとしてベ
ンゼンの部分水素化反応を行った。反応結果を表2に示
す。Example 3 A catalyst was prepared in the same manner as in Reference Example 1, except that the amount of zinc chloride added in the preparation of the catalyst was 1.66 g. The specific surface area of the catalyst thus obtained is 5
20 m 2 / g, Ru content 19.2 wt%, Zn /
The Ru atomic ratio was 0.40. The average crystallite size of Ru determined by X-ray diffraction was 31 °. This catalyst was subjected to the partial hydrogenation reaction of benzene in the same manner as in Example 1 except that the amount of the catalyst was 1 g. Table 2 shows the reaction results.
【0031】[0031]
【実施例4】参考例1と同様に、ただし、触媒調製にお
ける塩化ルテニウム塩酸水溶液(田中貴金属製、Ru
8.39wt%含有)3.75g、塩化亜鉛の添加量を
0.25gとして触媒を同様に調製した。このようにし
て得られた触媒の比表面積は600m2 /gで、Ru含
有量は6.5wt%、Zn/Ru原子比は0.46であ
った。また、X線回折から求めたRuの平均結晶子径は
24Åであった。この上記触媒を実施例1と同様に、た
だし、触媒量を3gとしてベンゼンの部分水素化反応を
行った。反応結果を表2に示す。Example 4 As in Reference Example 1, except that a ruthenium chloride aqueous solution (Tanaka Kikinzoku, Ru
The catalyst was prepared in the same manner, except that 3.75 g of 8.39 wt%) and 0.25 g of zinc chloride were added. The specific surface area of the catalyst thus obtained was 600 m 2 / g, the Ru content was 6.5 wt%, and the atomic ratio of Zn / Ru was 0.46. The average crystallite size of Ru determined by X-ray diffraction was 24 °. This catalyst was subjected to a partial hydrogenation reaction of benzene in the same manner as in Example 1 except that the amount of the catalyst was 3 g. Table 2 shows the reaction results.
【0032】[0032]
【比較例3】比較例1と同様に触媒調製を実施した。た
だし、塩化ルテニウム塩酸水溶液(田中貴金属製、Ru
8.39wt%含有)3.2g、塩化亜鉛0.15g、
水10g、市販のシリカゲル(富士シリシア製キャリア
クトQ50)5gとし、Ru−Zn担持シリカ触媒を得
た。このようにして得られた触媒の比表面積は60m 2
/gで、Ru含有量は6.1wt%、Zn/Ru原子比
は0.33であった。また、X線回折から求めたRuの
平均結晶子径は140Åであった。この上記触媒を実施
例1と同様に、ただし、触媒量を2gとしてベンゼンの
部分水素化反応を行った。7時間後の抜き出し反応液を
分析したところベンゼン転化率2.5%で、ほとんど反
応活性がないことがわかり反応を停止した。Comparative Example 3 A catalyst was prepared in the same manner as in Comparative Example 1. Was
However, ruthenium chloride aqueous solution (made by Tanaka Kikinzoku, Ru
3.2g, zinc chloride 0.15g,
10 g of water, commercially available silica gel (Fuji Silysia carrier)
To 50 g, to obtain a Ru—Zn-supported silica catalyst.
Was. The specific surface area of the catalyst thus obtained is 60 m Two
/ G, Ru content is 6.1 wt%, Zn / Ru atomic ratio
Was 0.33. In addition, Ru of X-ray diffraction
The average crystallite size was 140 °. Implement this catalyst
As in Example 1, but with a catalyst amount of 2 g and
A partial hydrogenation reaction was performed. After 7 hours, withdraw the reaction solution
Analysis showed that the benzene conversion was 2.5%,
The reaction was found to be inactive and the reaction was stopped.
【0033】[0033]
【比較例4】比較例2と同様に、ただし、触媒調製時の
触媒還元温度を200℃にして、3時間水素気流中で還
元処理しRu−Zn担持シリカ触媒を得た。このように
して得られた触媒の比表面積は63m2 /gで、Ru含
有量は5.5wt%、Zn/Ru原子比は0.34であ
った。また、X線回折から求めたRuの平均結晶子径は
45Åであった。この上記触媒を実施例1と同様に、た
だし、触媒量を3gとしてベンゼンの部分水素化反応を
行った。反応結果を表2に示す。Comparative Example 4 The same procedure as in Comparative Example 2 was carried out except that the catalyst was subjected to a reduction treatment in a hydrogen stream for 3 hours at a catalyst reduction temperature of 200 ° C. during the preparation of the catalyst to obtain a Ru—Zn supported silica catalyst. The specific surface area of the catalyst thus obtained was 63 m 2 / g, the Ru content was 5.5 wt%, and the atomic ratio of Zn / Ru was 0.34. The average crystallite size of Ru determined from X-ray diffraction was 45 °. This catalyst was subjected to a partial hydrogenation reaction of benzene in the same manner as in Example 1 except that the amount of the catalyst was 3 g. Table 2 shows the reaction results.
【0034】[0034]
【比較例5】比較例1の触媒調製操作において塩化亜鉛
を用いない他は同様にして触媒調製を実施した。ただ
し、触媒調製時の還元処理温度を200℃、3時間とし
てRu担持シリカ触媒を得た。このようにして得られた
触媒の比表面積は68m2 /gで、Ru含有量は5.6
wt%であった。また、X線回折から求めたRuの平均
結晶子径は54Åであった。この上記触媒を実施例1と
同様に、ただし、触媒量を3.5gとしてベンゼンの部
分水素化反応を行った。反応結果を表2に示す。Comparative Example 5 A catalyst was prepared in the same manner as in Comparative Example 1, except that zinc chloride was not used. However, a Ru-supported silica catalyst was obtained at a reduction treatment temperature of 200 ° C. for 3 hours during catalyst preparation. The specific surface area of the catalyst thus obtained is 68 m 2 / g, and the Ru content is 5.6.
wt%. The average crystallite diameter of Ru determined from X-ray diffraction was 54 °. This catalyst was subjected to a partial hydrogenation reaction of benzene in the same manner as in Example 1, except that the amount of the catalyst was 3.5 g. Table 2 shows the reaction results.
【0035】[0035]
【比較例6】比較例1と同様に、ただし、塩化ルテニウ
ムと塩化亜鉛の量を変更し、Ru含有量0.53wt
%、Zn/Ru原子比は0.43の触媒を得た。なお、
担体は、あらかじめ1000℃で4時間焼成処理した市
販のシリカゲル(富士シリシア製キャリアクトQ50)
を用いた。この上記触媒を実施例1と同様に、ただし、
触媒量を10.5gとしてベンゼンの部分水素化反応を
行った。反応結果を表2に示す。Comparative Example 6 As in Comparative Example 1, except that the amounts of ruthenium chloride and zinc chloride were changed, and the Ru content was 0.53 wt.
%, And a Zn / Ru atomic ratio of 0.43 was obtained. In addition,
The carrier is a commercially available silica gel (Carrieract Q50, manufactured by Fuji Silysia) previously calcined at 1000 ° C. for 4 hours.
Was used. This catalyst was used as in Example 1, except that
The catalyst was used in an amount of 10.5 g to perform a partial hydrogenation reaction of benzene. Table 2 shows the reaction results.
【0036】[0036]
【表2】 表2ならびに比較例3より、メソポア分子ふるいを用い
ないものは、選択性、収率およびルテニウム当たりの活
性(触媒活性)が低いことがいえる。[Table 2] From Table 2 and Comparative Example 3, it can be said that those without the mesopore molecular sieve have low selectivity, yield and activity per ruthenium (catalytic activity).
【0037】[0037]
【実施例5】実施例3と同様に、ただし、触媒量を5
g、金属被毒物資としてNi(OH) 2 を10mg添加
して、ベンゼンの部分水素化反応を行った。反応結果を
表3に示す。Example 5 As in Example 3, except that the amount of catalyst was 5
g, Ni (OH) as a metal poisoning substance Two10mg
Then, a partial hydrogenation reaction of benzene was performed. The reaction result
It is shown in Table 3.
【比較例7】実施例5と同様に、ただし、比較例6で用
いた触媒と同様なものを用いてベンゼンの部分水素化反
応を行った。反応結果を表3に示す。Comparative Example 7 A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 5, but using the same catalyst as used in Comparative Example 6. Table 3 shows the reaction results.
【0038】[0038]
【表3】 メソポア分子ふるいを用いた触媒は、選択率、収率およ
び活性低下がほとんどみられないのに対して、担体とし
て市販のシリカゲルを使用したものは、選択率、収率お
よび活性が大幅に低下した。[Table 3] Catalysts using mesopore molecular sieves show little decrease in selectivity, yield and activity, whereas those using commercially available silica gel as the support have significantly reduced selectivity, yield and activity. .
【0039】[0039]
【実施例6】実施例1と同様に、ただし、触媒として参
考例2で調製した触媒を0.5g用いてベンゼンの部分
水素化反応を行った。シクロヘキセンの選択率は78.
3%(ベンゼン転化率50%時)、ルテニウム当たりの
活性は1475であった。Example 6 A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that 0.5 g of the catalyst prepared in Reference Example 2 was used as the catalyst. The selectivity of cyclohexene is 78.
The activity per ruthenium was 3475 (at a benzene conversion rate of 50%), and was 1475.
【実施例7】実施例1と同様に、ただし、触媒として参
考例3で調製した触媒を0.5g用いてベンゼンの部分
水素化反応を行った。シクロヘキセン選択率73.1%
(ベンゼン転化率40%時)、ルテニウム当たりの活性
は1845であった。Example 7 A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that 0.5 g of the catalyst prepared in Reference Example 3 was used as the catalyst. Cyclohexene selectivity 73.1%
(At a benzene conversion of 40%), the activity per ruthenium was 1,845.
【0040】[0040]
【発明の効果】本発明の方法によれば、(1)単環芳香
族炭化水素から高い選択率、高収率で、かつ、ルテニウ
ム単位重量当たりの目的とするシクロオレフィンを効率
よく取得することができる。(2)触媒の抜き出しや分
離操作に関わる取り扱い性が簡便である。(3)担持触
媒としてルテニウムの高担持化が可能となり、触媒当た
りの活性も高くなり、金属被毒劣化にも強く工業的安定
性に優れる。という利点を持つ極めて価値の高いもので
ある。According to the method of the present invention, it is possible to (1) efficiently obtain a desired cycloolefin per unit weight of ruthenium from a monocyclic aromatic hydrocarbon with a high selectivity and a high yield. Can be. (2) Easy handling with respect to extraction and separation of the catalyst. (3) High loading of ruthenium as a supported catalyst becomes possible, the activity per catalyst is increased, the metal poisoning is deteriorated, and the industrial stability is excellent. It has the advantage of being extremely valuable.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 (72)発明者 福岡 陽平 埼玉県大宮市佐知川649−6 財団法人野 口研究所内 (72)発明者 福澤 章喜 岡山県倉敷市児島塩生字新浜2767−11 Fターム(参考) 4G069 AA03 AA08 BA02A BA02B BC35A BC35B BC70A BC70B CB02 DA08 EA01Y EC04Y EC13Y EC25 FA02 FB14 ZA35A ZA35B ZA36A ZA36B ZD06 ZE09 4H006 AA02 AC11 BA07 BA23 BA28 BA29 BA55 BA56 BB31 BC14 BE20 4H039 CA40 CB10 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // C07B 61/00 300 C07B 61/00 300 (72) Inventor Yohei Fukuoka 649-6 Sachikawa, Omiya City, Saitama Prefecture Foundation Noguchi Research Laboratories (72) Inventor Aki Fukuzawa 2767-11 Fukuta 2767-11 Shinhama, Kojima Shioike, Kurashiki-shi, Okayama F-term (reference) ZE09 4H006 AA02 AC11 BA07 BA23 BA28 BA29 BA55 BA56 BB31 BC14 BE20 4H039 CA40 CB10
Claims (3)
ロオレフィンを製造するに際して、ルテニウムを担持し
たシリカメソポア分子ふるい触媒を用い単環芳香族炭化
水素を水の存在下、液相にて部分水素化することを特徴
とするシクロオレフィンの製造方法。When producing a cycloolefin by partially hydrogenating a monocyclic aromatic hydrocarbon, the monocyclic aromatic hydrocarbon is partially converted into a liquid phase in the presence of water using a silica mesopore molecular sieve catalyst supporting ruthenium. A method for producing a cycloolefin, comprising hydrogenating.
鉛を共担持したシリカメソポア分子ふるい触媒であるこ
とを特徴とする請求項1記載のシクロオレフィンの製造
方法。2. The method for producing cycloolefin according to claim 1, wherein the hydrogenation catalyst is a silica mesopore molecular sieve catalyst pre-supported with ruthenium and zinc.
特徴とする請求項1または2記載のシクロオレフィンの
製造方法。3. The method for producing a cycloolefin according to claim 1, wherein a zinc compound is present in the liquid phase.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000346559A JP4641615B2 (en) | 2000-11-14 | 2000-11-14 | Method for producing cycloolefin |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000346559A JP4641615B2 (en) | 2000-11-14 | 2000-11-14 | Method for producing cycloolefin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002154990A true JP2002154990A (en) | 2002-05-28 |
| JP4641615B2 JP4641615B2 (en) | 2011-03-02 |
Family
ID=18820409
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000346559A Expired - Lifetime JP4641615B2 (en) | 2000-11-14 | 2000-11-14 | Method for producing cycloolefin |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4641615B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005103411A (en) * | 2003-09-30 | 2005-04-21 | Asahi Kasei Chemicals Corp | Catalyst for producing cycloolefin and method for producing cycloolefin |
| WO2007117221A1 (en) * | 2006-04-11 | 2007-10-18 | Agency For Science, Technology And Research | Catalysts for ring closing metathesis |
| JP2008543737A (en) * | 2005-05-12 | 2008-12-04 | サルティゴ・ゲーエムベーハー | Process for producing vinylene carbonate |
| US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
| JP2012016682A (en) * | 2010-07-09 | 2012-01-26 | Idemitsu Kosan Co Ltd | Catalyst for producing olefin and method for producing olefin |
| US8592336B2 (en) | 2006-04-11 | 2013-11-26 | Agency For Science, Technology And Research | Catalysts for ring-closing metathesis |
| JP2018503713A (en) * | 2014-12-12 | 2018-02-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Organosilica material |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08325171A (en) * | 1995-05-31 | 1996-12-10 | Mitsubishi Chem Corp | Method for producing cycloolefin |
| JPH09118638A (en) * | 1995-10-25 | 1997-05-06 | Mitsubishi Chem Corp | Method for producing cycloolefin |
| JPH1072212A (en) * | 1996-06-07 | 1998-03-17 | Asahi Chem Ind Co Ltd | Mesoporous molecular sieve and its production |
-
2000
- 2000-11-14 JP JP2000346559A patent/JP4641615B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08325171A (en) * | 1995-05-31 | 1996-12-10 | Mitsubishi Chem Corp | Method for producing cycloolefin |
| JPH09118638A (en) * | 1995-10-25 | 1997-05-06 | Mitsubishi Chem Corp | Method for producing cycloolefin |
| JPH1072212A (en) * | 1996-06-07 | 1998-03-17 | Asahi Chem Ind Co Ltd | Mesoporous molecular sieve and its production |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005103411A (en) * | 2003-09-30 | 2005-04-21 | Asahi Kasei Chemicals Corp | Catalyst for producing cycloolefin and method for producing cycloolefin |
| US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
| JP2008543737A (en) * | 2005-05-12 | 2008-12-04 | サルティゴ・ゲーエムベーハー | Process for producing vinylene carbonate |
| WO2007117221A1 (en) * | 2006-04-11 | 2007-10-18 | Agency For Science, Technology And Research | Catalysts for ring closing metathesis |
| JP2009533215A (en) * | 2006-04-11 | 2009-09-17 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | Catalysts for ring-closing metathesis |
| US8592336B2 (en) | 2006-04-11 | 2013-11-26 | Agency For Science, Technology And Research | Catalysts for ring-closing metathesis |
| US8648003B2 (en) | 2006-04-11 | 2014-02-11 | Agency For Science, Technology And Research | Catalysts for ring-closing metathesis |
| JP2015037785A (en) * | 2006-04-11 | 2015-02-26 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | Catalysts for ring-closing metathesis |
| JP2012016682A (en) * | 2010-07-09 | 2012-01-26 | Idemitsu Kosan Co Ltd | Catalyst for producing olefin and method for producing olefin |
| JP2018503713A (en) * | 2014-12-12 | 2018-02-08 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Organosilica material |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4641615B2 (en) | 2011-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0736326B1 (en) | Fischer-Tropsch catalysts containing iron and cobalt | |
| CN107983400B (en) | Reductive amination catalyst and preparation method thereof | |
| CN102941093B (en) | Catalyst for decahydronaphthalene preparation by naphthalene hydrogenation, preparation and application thereof | |
| JP2000061306A (en) | Supported catalysts usable in conversion reactions of organic compounds | |
| WO2023134779A1 (en) | Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol | |
| US20210170370A1 (en) | Shaped Dehydrogenation Catalysts and Process for Converting Paraffins to Corresponding Olefins, Using Same | |
| JP4641615B2 (en) | Method for producing cycloolefin | |
| CN103055906B (en) | A kind of Solid superacid bifunctional catalyst and preparation method thereof | |
| US4764499A (en) | Method for producing dual colloid catalyst composition | |
| CN100518928C (en) | Catalyst for preparing cyclenes and preparing method of cyclenes | |
| US4318829A (en) | Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts | |
| US20230092672A1 (en) | Heteroatom-Doped Zeolites For Bifunctional Catalytic Applications | |
| EP0029675B1 (en) | Non-ferrous group viii aluminium coprecipitated hydrogenation catalysts, process for preparing these catalysts and their use in hydrogenation processes | |
| KR100830726B1 (en) | Catalyst for cycloolefin production and process for production | |
| JP3897830B2 (en) | Process for producing cycloolefin | |
| US6214890B1 (en) | Fischer-Tropsch synthesis process in the presence of a catalyst the metallic particles of which have a controlled size | |
| CN115103720B (en) | Hydrogenation catalyst and precursor thereof and use thereof in the hydrogenation of petrochemical resins | |
| CN109939686B (en) | Catalyst for preparing cis-pinane by hydrogenation | |
| JP4931099B2 (en) | Catalyst for producing cycloolefin and method for producing cycloolefin | |
| CN106423202A (en) | Preparation method of rhodium-ruthenium composite catalyst for preparing ethyl alcohol through acetic acid hydrogenation | |
| JPH0319211B2 (en) | ||
| JPH07106991B2 (en) | Partial hydrogenation method | |
| CN103055912B (en) | Solid superacid bifunctional catalyst and preparation method thereof | |
| CN102233268B (en) | A kind of Fischer-Tropsch synthesis catalyst and its application | |
| EP0171296A2 (en) | Dual colloid catalyst compositions and a method for preparing them |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031006 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031120 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20031120 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031121 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070906 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100712 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101004 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101004 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101005 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101005 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101130 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4641615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |