JP2002158529A - Surface-mounted antenna structure and communications equipment provided with the same - Google Patents
Surface-mounted antenna structure and communications equipment provided with the sameInfo
- Publication number
- JP2002158529A JP2002158529A JP2000353129A JP2000353129A JP2002158529A JP 2002158529 A JP2002158529 A JP 2002158529A JP 2000353129 A JP2000353129 A JP 2000353129A JP 2000353129 A JP2000353129 A JP 2000353129A JP 2002158529 A JP2002158529 A JP 2002158529A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- power supply
- antenna
- loop
- radiation electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、異なる複数の周波
数帯域を持つ表面実装型アンテナ構造およびそれを備え
た通信機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface mount antenna having a plurality of different frequency bands and a communication device having the same.
【0002】[0002]
【従来の技術】図15には表面実装型のアンテナの一例
が模式的な斜視図により示されている。この表面実装型
のアンテナ1は、基体2と、この基体2の表面に形成さ
れる放射電極3と給電電極4と第1のグランド電極5と
第2のグランド電極6とを有して構成されている。2. Description of the Related Art FIG. 15 is a schematic perspective view showing an example of a surface mount antenna. The surface-mount type antenna 1 includes a base 2, a radiation electrode 3, a feed electrode 4, a first ground electrode 5, and a second ground electrode 6 formed on the surface of the base 2. ing.
【0003】図15に示されるように、基体2には給電
電極4が底面2cから側面2bを介し上面2aに形成さ
れると共に、第1と第2の各グランド電極5,6がそれ
ぞれ、上記給電電極4を挟み込むように、上記給電電極
4と同様に、底面2cから側面2bを介し上面2aに形
成されている。さらに、上記基体2の上面2aには、放
射電極3が、その一端側を上記第1のグランド電極5に
連通接続させ、他端側の開放端3aを上記第2のグラン
ド電極6に間隔を介して対向配置させる略コ字形状に形
成されている。As shown in FIG. 15, a power supply electrode 4 is formed on a base 2 from a bottom surface 2c to a top surface 2a via a side surface 2b, and first and second ground electrodes 5 and 6 are formed on the base 2 respectively. Like the power supply electrode 4, the power supply electrode 4 is formed on the upper surface 2 a from the bottom surface 2 c to the side surface 2 b so as to sandwich the power supply electrode 4. Further, on the upper surface 2a of the base 2, a radiation electrode 3 is connected at one end thereof to the first ground electrode 5, and an open end 3a at the other end is spaced from the second ground electrode 6. It is formed in a substantially U-shape that is arranged to face each other.
【0004】上記図15に示すアンテナ1は、基体2の
底面2cを実装面として、例えば携帯型電話機等の通信
機の回路基板の非グランド領域(つまり、グランド電極
が形成されていない領域)に搭載される。上記回路基板
には、上記給電電極4に信号を供給するための信号供給
源8が設けられている。また、該回路基板には、上記ア
ンテナ1が設定の実装領域に実装された際に、上記第1
と第2の各グランド電極5,6をそれぞれグランドに接
地させるためのグランド接続手段と、給電電極4を上記
信号供給源8に信号接続させるための接続手段とが形成
されている。The antenna 1 shown in FIG. 15 has a bottom surface 2c of a base 2 as a mounting surface, for example, in a non-ground area (that is, an area where a ground electrode is not formed) of a circuit board of a communication device such as a portable telephone. Will be installed. A signal supply source 8 for supplying a signal to the power supply electrode 4 is provided on the circuit board. Further, when the antenna 1 is mounted on a set mounting area, the first
And a ground connection means for grounding each of the first and second ground electrodes 5 and 6 to the ground, and a connection means for connecting the power supply electrode 4 to the signal supply source 8 by a signal.
【0005】このため、上記アンテナ1を回路基板にお
ける設定の実装領域に実装することによって、上記第1
と第2の各グランド電極5,6はそれぞれ上記グランド
接続手段によりグランドに接地され、また、上記給電電
極4は上記信号供給源8に接続される構成と成してい
る。[0005] For this reason, the first antenna is mounted on a mounting area set on the circuit board, thereby providing the first antenna.
And the second ground electrodes 5 and 6 are grounded to the ground by the ground connection means, respectively, and the power supply electrode 4 is connected to the signal supply source 8.
【0006】例えば、上記信号供給源8から給電電極4
に信号が供給されると、その信号は容量結合によって給
電電極4から上記放射電極3に伝達され、その信号供給
に起因して上記放射電極3がアンテナ動作を行う。For example, from the signal supply source 8 to the power supply electrode 4
Is supplied from the feed electrode 4 to the radiation electrode 3 by capacitive coupling, and the radiation electrode 3 performs an antenna operation due to the signal supply.
【0007】[0007]
【発明が解決しようとする課題】上記図15に示すアン
テナ1は上記の如く実装基板(回路基板)の非グランド
領域に実装されるために、周波数帯域の広帯域化および
小型化が容易であるという利点や、整合回路が不要であ
るので実装基板に整合回路を形成しなくて済むという利
点を持つものである。しかしながら、近年、1つの端末
で、GSM(Global System for Mobile communication
systems)とDCS(Digital Cellular system)、P
DC(Personal Digital Cellular telecommunication
system)とPHS(Personal Handyphone System)等の
ように、複数のアプリケーションに対応が可能なマルチ
バンド対応のアンテナが市場的に要求されているが、上
記図15に示すアンテナ1の構成では、実用的には1つ
の周波数帯域の電波の送信あるいは受信しか行うことが
できず、上記マルチバンド化の要求に応えることができ
ないという問題がある。Since the antenna 1 shown in FIG. 15 is mounted on the non-ground area of the mounting board (circuit board) as described above, it is easy to widen the frequency band and reduce the size. There is an advantage and an advantage that no matching circuit is required on the mounting substrate because no matching circuit is required. However, in recent years, one terminal has been using GSM (Global System for Mobile communication).
systems) and DCS (Digital Cellular system), P
DC (Personal Digital Cellular telecommunication
A multi-band compatible antenna capable of supporting a plurality of applications, such as a PHS (Personal Handyphone System) and a PHS (Personal Handyphone System), is required in the market. However, in the configuration of the antenna 1 shown in FIG. Has a problem in that it can only transmit or receive radio waves in one frequency band, and cannot meet the above-mentioned requirement for multi-band.
【0008】それというのは、上記放射電極3は互いに
異なる複数の共振周波数を持つが、それら複数の共振周
波数のうち、最低の共振周波数(基本の共振周波数)
と、それよりも高い高次の共振周波数とをそれぞれ独立
的に可変制御することができない。このため、上記基本
の共振周波数と高次の共振周波数とが両方共に、要求の
周波数となるように設計することが非常に困難である。That is, the radiation electrode 3 has a plurality of resonance frequencies different from each other, and the lowest resonance frequency (basic resonance frequency) among the plurality of resonance frequencies.
And higher higher-order resonance frequencies cannot be independently variably controlled. For this reason, it is very difficult to design both the basic resonance frequency and the higher-order resonance frequency to be the required frequencies.
【0009】このことから、図15に示すアンテナ1で
は、例えば、上記放射電極3における基本の共振周波数
を持つ共振モード(この明細書では、これを基本モード
という)は利用するが、上記高次の共振周波数を持つ共
振モード(この明細書では、これを高次モードという)
は使用しない構成にせざるを得ず、これにより、上記の
如く、実用的には1つの周波数帯域の電波の送信あるい
は受信を行うことしかできず、上記マルチバンド化の要
求に応えることができない。For this reason, in the antenna 1 shown in FIG. 15, for example, a resonance mode having a fundamental resonance frequency in the radiation electrode 3 (this is referred to as a fundamental mode in this specification) is used. Resonance mode (in this specification, this is called higher-order mode)
Is inevitably used, and as a result, as described above, only the transmission or reception of radio waves in one frequency band can be performed practically, and it is not possible to respond to the above-mentioned requirement for multi-band.
【0010】ところで、上記図15に示す構成とは異な
る図16に示すような表面実装型のアンテナ1も提案さ
れている。この図16に示すアンテナ1では、基体2
に、複数の放射電極3(3A,3B)がそれら各一端側
を共通の給電電極4に連通接続させて設けられており、
上記複数の放射電極3によって、互いに異なる複数の周
波数帯域での電波の送信あるいは受信を可能にしてい
る。この図16に示すアンテナ1は、例えば通信機の回
路基板10のグランド電極11上に、実装される。Meanwhile, a surface-mounted antenna 1 as shown in FIG. 16, which is different from the structure shown in FIG. 15, has also been proposed. In the antenna 1 shown in FIG.
A plurality of radiation electrodes 3 (3A, 3B) are provided such that one ends thereof are connected to a common power supply electrode 4, respectively.
The plurality of radiation electrodes 3 enable transmission or reception of radio waves in a plurality of different frequency bands. The antenna 1 shown in FIG. 16 is mounted, for example, on a ground electrode 11 of a circuit board 10 of a communication device.
【0011】このように、図16に示すアンテナ1は、
グランド電極11上に実装されるために、このグランド
電極11と上記放射電極3(3A,3B)との間に大き
な容量が生じ、この容量に起因して周波数帯域幅が狭く
なるという問題がある。この問題を回避するためには、
基体2を厚くして上記放射電極3とグランド間の容量を
小さくしなければならず、アンテナ1が大型化してしま
うという問題がある。このように、この図16に示すア
ンテナ1では、広帯域化と小型化を共に達成することが
困難である。As described above, the antenna 1 shown in FIG.
Since it is mounted on the ground electrode 11, a large capacitance is generated between the ground electrode 11 and the radiation electrodes 3 (3A, 3B), and there is a problem that the frequency bandwidth is narrowed due to the capacitance. . To avoid this problem,
The thickness of the base 2 must be increased to reduce the capacitance between the radiation electrode 3 and the ground, and there is a problem that the antenna 1 becomes large. Thus, it is difficult for the antenna 1 shown in FIG. 16 to achieve both a wide band and a small size.
【0012】上記以外にも、様々な形態の表面実装型の
アンテナが提案されているが、何れの提案のアンテナに
おいても、周波数帯域の広帯域化と、アンテナの小型化
と、マルチバンド化との要求を全て満足いくように満た
すことができない。In addition to the above, various types of surface-mount antennas have been proposed. In any of the proposed antennas, a wide frequency band, a small antenna, and a multi-band antenna have been proposed. Not all requirements can be met satisfactorily.
【0013】本発明は上記課題を解決するために成され
たものであり、その目的は、周波数帯域の広帯域化と、
アンテナの小型化と、マルチバンド化との全ての要求を
容易に満たすことが可能な表面実装型アンテナ構造およ
びそれを備えた通信機を提供することにある。The present invention has been made in order to solve the above-mentioned problems, and an object thereof is to broaden a frequency band,
An object of the present invention is to provide a surface-mounted antenna structure capable of easily satisfying all requirements for miniaturization and multi-band antennas, and a communication device including the same.
【0014】[0014]
【課題を解決するための手段】上記目的を達成するため
に、この発明は次に示す構成をもって前記課題を解決す
る手段としている。すなわち、第1の発明は、基体に放
射電極と、該放射電極の一端側に信号を供給する給電電
極とが形成されて成るアンテナが、実装基板に搭載され
て構成されており、給電電極から供給される信号に応じ
て上記放射電極の基本モードのアンテナ動作と高次モー
ドのアンテナ動作が可能と成し、互いに異なる複数の周
波数帯域を持つ表面実装型アンテナ構造であって、上記
放射電極はその一端側が上記給電電極に連通接続する給
電端部と成し、他端側が開放端と成し、該放射電極は上
記開放端と給電端部側電極部位間に、高次モードの共振
周波数を制御するための容量が形成された外回りのルー
プ状放射電極と成しており、また、上記実装基板には非
グランド領域が形成されており、上記アンテナは上記実
装基板の非グランド領域に実装されている構成をもって
前記課題を解決する手段としている。Means for Solving the Problems In order to achieve the above object, the present invention has the following structure to solve the above problems. That is, in the first invention, an antenna in which a radiation electrode is formed on a base and a power supply electrode for supplying a signal to one end of the radiation electrode is mounted on a mounting substrate, and the antenna is formed from a power supply electrode. A fundamental mode antenna operation and a higher mode antenna operation of the radiation electrode can be performed according to the supplied signal, and the surface radiation type antenna structure has a plurality of different frequency bands from each other. One end of the radiation electrode forms a power supply end connected to the power supply electrode, the other end forms an open end, and the radiation electrode has a higher mode resonance frequency between the open end and the power supply end side electrode portion. An outer loop-shaped radiating electrode having a capacitance for controlling is formed, a non-ground area is formed on the mounting board, and the antenna is mounted on a non-ground area of the mounting board. hand And a means for solving the problem with a configuration that.
【0015】第2の発明は、上記第1の発明の構成を備
え、ループ状放射電極にはその電流分布大側領域にイン
ダクタンスを付与するミアンダ電極部が介設されている
ことを特徴として構成されている。According to a second aspect of the present invention, there is provided the configuration according to the first aspect of the present invention, wherein the loop-shaped radiation electrode is provided with a meander electrode portion for providing an inductance to a large current distribution region. Have been.
【0016】第3の発明は、上記第1又は第2の発明の
構成を備え、給電電極は基体の側面に形成され、ループ
状放射電極は、上記給電電極から基体の上面に形成さ
れ、さらに、基体の上面から側面と実装底面と側面を順
に通して上面に戻るループ経路でもって形成されて開放
端と給電端部側電極部位間に容量を形成して配置されて
いる形態と成していることを特徴として構成されてい
る。According to a third aspect of the present invention, there is provided the configuration of the first or second aspect, wherein a power supply electrode is formed on a side surface of the base, a loop-shaped radiation electrode is formed on the upper surface of the base from the power supply electrode, and In this configuration, a loop path is formed to return to the top surface by sequentially passing the side surface, the mounting bottom surface, and the side surface from the top surface of the base body and returning to the top surface, forming a capacitance between the open end and the power supply end side electrode portion. The feature is that it is.
【0017】第4の発明は、上記第1又は第2又は第3
の発明の構成を備え、アンテナの基体には、ループ状放
射電極を含む複数の放射電極がそれら各給電端部を共通
の給電電極に連通接続させて設けられていることを特徴
として構成されている。According to a fourth aspect of the present invention, there is provided the first, second or third aspect.
The antenna base is provided with a plurality of radiating electrodes including a loop-shaped radiating electrode provided by connecting their respective feeding ends to a common feeding electrode. I have.
【0018】第5の発明は、上記第1〜第4の発明の何
れか1つの発明の構成を備え、実装基板にはアンテナの
給電電極に連通接続する給電用配線パターンが形成され
ると共に、共振周波数調整用のインダクタンスを持つサ
ブ給電用配線パターンが上記給電用配線パターンから分
岐して基体に向けて形成されており、アンテナの基体に
は、上記給電用配線パターンに給電電極を介して連通接
続される放射電極が形成されると共に、上記サブ給電用
配線パターンに連通接続される別の放射電極が形成され
ていることを特徴として構成されている。According to a fifth aspect of the present invention, there is provided the configuration of any one of the first to fourth aspects of the present invention, wherein a power supply wiring pattern connected to a power supply electrode of the antenna is formed on the mounting board. A sub-feeding wiring pattern having an inductance for adjusting a resonance frequency is formed toward the base by branching off from the feeding wiring pattern, and communicates with the base of the antenna via the feeding electrode to the feeding wiring pattern. A radiation electrode to be connected is formed, and another radiation electrode connected to the sub-feeding wiring pattern is formed.
【0019】第6の発明は、上記第1〜第5の発明の何
れか1つの発明の構成を備え、アンテナの基体には、ル
ープ状放射電極における高次モードの電界最強側領域と
グランドとの間に容量を持たせるためのグランド電極が
形成されていることを特徴として構成されている。According to a sixth aspect of the present invention, there is provided the structure of any one of the first to fifth aspects of the present invention, wherein the base of the antenna includes a region of the loop-shaped radiating electrode where the higher-order mode electric field is strongest, the ground, and the ground. And a ground electrode for providing a capacitance between them.
【0020】第7の発明は、上記第1〜第6の発明の何
れか1つの発明の構成を備え、アンテナは半田により実
装基板に実装される構成と成し、基体には上記半田を当
該基体に接合させるための半田固定専用の電極が形成さ
れていることを特徴として構成されている。According to a seventh aspect of the present invention, there is provided the configuration according to any one of the first to sixth aspects, wherein the antenna is mounted on a mounting substrate by soldering, and the base is provided with the solder. It is characterized in that an electrode dedicated to solder fixing for bonding to a base is formed.
【0021】第8の発明は、上記第1〜第7の発明の何
れか1つの発明の構成を備え、実装基板にはアンテナの
給電電極に連通接続する給電用配線パターンが形成され
ており、この給電用配線パターンにインダクタンスを付
与するインダクタ部が設けられていることを特徴として
構成されている。According to an eighth aspect of the present invention, there is provided the configuration according to any one of the first to seventh aspects of the present invention, wherein a power supply wiring pattern is formed on the mounting board so as to communicate with a power supply electrode of the antenna. The power supply wiring pattern is provided with an inductor portion for providing an inductance.
【0022】第9の発明は、上記第1〜第8の発明の何
れか1つの発明の構成を備え、アンテナの基体は直方体
状と成し、ループ状放射電極を含む複数の放射電極が上
記基体の表面に形成される構成と成し、上記複数の放射
電極はそれぞれ互いに基体の形成面を異にして設けられ
ていることを特徴として構成されている。According to a ninth aspect of the present invention, the antenna according to any one of the first to eighth aspects is provided, wherein the base of the antenna has a rectangular parallelepiped shape, and a plurality of radiation electrodes including a loop-shaped radiation electrode are provided. It is configured to be formed on the surface of the base, and the plurality of radiation electrodes are provided so that the formation surface of the base is different from each other.
【0023】第10の発明の通信機は、上記第1〜第9
の発明の何れか1つの発明の表面実装型アンテナ構造を
備え、該表面実装型アンテナ構造の実装基板は通信機の
回路基板によって構成されており、アンテナは上記回路
基板の角領域に、放射電極を流れる電流と回路基板のグ
ランド領域に流れる電流とが強め合い指向性を持つ条件
を満たして配設されていることを特徴として構成されて
いる。The communication device according to a tenth aspect of the present invention is the communication device according to the first to ninth aspects.
The surface-mounted antenna structure according to any one of the inventions, wherein the mounting substrate of the surface-mounted antenna structure is constituted by a circuit board of a communication device, and the antenna is provided at a corner area of the circuit board with a radiation electrode. And the current flowing in the ground region of the circuit board are strengthened and arranged so as to satisfy the condition of having directivity.
【0024】上記構成の発明において、アンテナは実装
基板の非グランド領域に実装され、このアンテナの放射
電極は、その開放端が給電端部側電極部位に間隔を介し
て対向配置されるループ状放射電極と成している。上記
のように、この発明では、アンテナは実装基板の非グラ
ンド領域に実装されるために、周波数帯域の広帯域化、
および、アンテナの小型化が容易となる。In the invention having the above structure, the antenna is mounted on the non-ground area of the mounting board, and the radiation electrode of this antenna has a loop-shaped radiation electrode whose open end is opposed to the feeding end side electrode portion with a space therebetween. And an electrode. As described above, in the present invention, since the antenna is mounted on the non-ground area of the mounting board, the frequency band can be broadened,
Further, miniaturization of the antenna is facilitated.
【0025】また、上記のように、上記ループ状放射電
極の開放端はその放射電極の給電端部側電極部位(つま
り、基本モードの電流分布が最も多い領域)に間隔を介
して対向配置されるもので、上記開放端と給電端部側電
極部位との間に大きな容量を持つ。この容量を可変する
ことによって、ループ状放射電極の基本モードの共振周
波数を大きく変化させることなく、この基本モードの共
振周波数と高次モードの共振周波数との間隔を可変制御
することができる。As described above, the open end of the loop-shaped radiation electrode is opposed to the power supply end side electrode portion of the radiation electrode (that is, the region where the current distribution in the fundamental mode is the largest) with an interval therebetween. And has a large capacitance between the open end and the power supply end side electrode portion. By changing the capacitance, the interval between the resonance frequency of the fundamental mode and the resonance frequency of the higher-order mode can be variably controlled without greatly changing the resonance frequency of the fundamental mode of the loop-shaped radiation electrode.
【0026】これにより、上記基本モードと高次モード
の各共振周波数が共に要求の周波数となるように設計す
ることが容易となり、ループ状放射電極の基本モードと
高次モードを両方共に利用することができることとな
る。このため、上記ループ状放射電極を設けることによ
って、広帯域化と小型化を図りつつ、互いに異なる複数
の周波数帯域での電波の送信あるいは受信が可能とな
り、マルチバンド化に対応することができる。Thus, it is easy to design so that each of the resonance frequencies of the fundamental mode and the higher-order mode becomes the required frequency, and it is possible to use both the fundamental mode and the higher-order mode of the loop-shaped radiation electrode. Can be done. For this reason, by providing the loop-shaped radiation electrode, transmission or reception of radio waves in a plurality of different frequency bands can be performed while achieving a wider band and a smaller size, and it is possible to cope with multi-band.
【0027】上記のように、この発明において特有な構
成を備えることにより、広帯域化と小型化とマルチバン
ド化の全ての要望を満たすことが容易となる。As described above, the provision of a unique configuration in the present invention makes it easy to satisfy all the demands for broadband, miniaturization, and multiband.
【0028】[0028]
【発明の実施の形態】以下に、この発明に係る実施形態
例を図面に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0029】図1には第1実施形態例の通信機において
特有な表面実装型アンテナ構造が抜き出されて模式的に
示され、また、図2には第1実施形態例の通信機におけ
るアンテナの配置形態が模式的に示されている。FIG. 1 schematically shows a specific surface-mounted antenna structure extracted from the communication device of the first embodiment, and FIG. 2 shows an antenna of the communication device of the first embodiment. Are schematically shown.
【0030】この第1実施形態例において特徴的なこと
は、図1に示すように表面実装型のアンテナ1の放射電
極3が外回りのループ状の形態と成し、かつ、図2に示
すように通信機の回路基板15の角領域に非グランド領
域16(つまり、グランド電極17が形成されていない
領域)が形成され、この非グランド領域16にアンテナ
1が搭載されていることである。なお、通信機の構成に
は様々な構成があり、この第1実施形態例において特徴
的な上記構成以外の構成は何れの構成をも採用してよ
く、ここでは、その説明は省略する。A characteristic of the first embodiment is that the radiation electrode 3 of the surface-mount type antenna 1 is formed in an outer loop shape as shown in FIG. 1, and as shown in FIG. A non-ground area 16 (that is, an area where the ground electrode 17 is not formed) is formed in a corner area of the circuit board 15 of the communication device, and the antenna 1 is mounted in the non-ground area 16. There are various configurations of the communication device, and any configuration other than the above-described configuration characteristic in the first embodiment may be adopted, and the description thereof will be omitted here.
【0031】すなわち、この第1実施形態例に示す表面
実装型アンテナ構造は、図1に示すように、表面実装型
のアンテナ1と、このアンテナ1が実装する通信機の回
路基板(実装基板)15とを有して構成され、上記アン
テナ1は、誘電体あるいは磁性体から成る直方体状の基
体2と、該基体2に形成されるループ状放射電極3およ
び給電電極4とを有して構成されている。That is, as shown in FIG. 1, the surface-mounted antenna structure shown in the first embodiment includes a surface-mounted antenna 1 and a circuit board (mounting board) of a communication device on which the antenna 1 is mounted. The antenna 1 includes a rectangular parallelepiped base 2 made of a dielectric or magnetic substance, and a loop-shaped radiation electrode 3 and a feed electrode 4 formed on the base 2. Have been.
【0032】上記給電電極4は基体2の底面2cから側
面2bに形成され、その側面2bの横側端縁領域を通っ
て上面2aに向けて形成されている。上記ループ状放射
電極3は、上記給電電極4から長方形状の上面2aの各
辺の近傍領域を当該各辺に沿ってループ状に形成されて
おり、このループ状放射電極3の開放端3aは給電端部
側電極部位に間隔を介して対向配置され、該開放端3a
と給電端部側電極部位との間には容量が生じている。The power supply electrode 4 is formed from the bottom surface 2c to the side surface 2b of the base 2, and is formed toward the upper surface 2a through a lateral edge region of the side surface 2b. The loop-shaped radiation electrode 3 is formed such that a region near each side of the rectangular upper surface 2a from the power supply electrode 4 is formed in a loop along each side, and the open end 3a of the loop-shaped radiation electrode 3 is The open end 3a is opposed to the power supply end side electrode portion with a space therebetween.
A capacitance is generated between the power supply end side electrode portion and the power supply end side electrode portion.
【0033】なお、図1に示す例では、上記開放端3a
に間隔を介して対向する給電端部側電極部位には張り出
し電極部18が形成されている。In the example shown in FIG. 1, the open end 3a
An overhanging electrode portion 18 is formed at the power supply end side electrode portion opposed to the electrode at an interval.
【0034】この第1実施形態例では、前述のように、
回路基板15には、図2に示すように、角領域に非グラ
ンド領域16が形成されており、この非グランド領域1
6に上記アンテナ1が基体2の底面2cを実装底面とし
て、例えば半田等の固定手段によって、実装される。こ
の際、上記アンテナ1は、上記放射電極3の図1に示す
部位A(つまり、上記基体2の長方形状の上面2aの長
辺aに沿って形成されている部位)の長手方向と、回路
基板15の長手方向とをほぼ一致させ、かつ、図1に示
すような放射電極3を流れる電流Imと、回路基板15
のグランド電極17を流れる電流Igとが強め合う条件
を満たして、回路基板15の非グランド領域16に実装
される。これにより、非グランド領域16の下部側に、
スピーカー等の部品が配置されても、その部品の影響を
少なくできる。また、この第1実施形態例では、上記ア
ンテナ1は給電電極4を回路基板15の図2に示す上部
端縁側にして配設されており、これにより、矢印αの方
向に強い指向性を持たせることができる。In the first embodiment, as described above,
As shown in FIG. 2, the circuit board 15 has a non-ground area 16 formed in a corner area.
The antenna 1 is mounted on the base 6 by a fixing means such as solder, using the bottom surface 2c of the base 2 as a mounting bottom surface. At this time, the antenna 1 is arranged such that a longitudinal direction of a portion A of the radiation electrode 3 shown in FIG. 1 (that is, a portion formed along the long side a of the rectangular upper surface 2a of the base 2) and a circuit The current Im flowing through the radiation electrode 3 as shown in FIG.
Is mounted on the non-ground area 16 of the circuit board 15 under the condition that the current Ig flowing through the ground electrode 17 strengthens. Thereby, on the lower side of the non-ground area 16,
Even if parts such as speakers are arranged, the influence of the parts can be reduced. Further, in the first embodiment, the antenna 1 has the power supply electrode 4 disposed on the upper edge side of the circuit board 15 shown in FIG. 2, thereby having a strong directivity in the direction of the arrow α. Can be made.
【0035】上記のように、アンテナ1が回路基板15
の非グランド領域16に実装されることによって、アン
テナ1の給電電極4は、上記回路基板15に形成されて
いる信号供給源8に信号接続される構成と成している。
この信号供給源8から給電電極4に信号が供給される
と、この信号は給電電極4から放射電極3に伝達され、
その信号に応じて、放射電極3は基本モードと高次モー
ドの各アンテナ動作を行う。なお、図2に示す符号L
1,L2は、アンテナ1を信号供給源8に整合するため
に用いる整合回路用インダクタンスをそれぞれ表してい
る。As described above, the antenna 1 is connected to the circuit board 15
, The power supply electrode 4 of the antenna 1 is connected to the signal supply source 8 formed on the circuit board 15 by a signal.
When a signal is supplied from the signal supply source 8 to the power supply electrode 4, the signal is transmitted from the power supply electrode 4 to the radiation electrode 3,
In accordance with the signal, the radiation electrode 3 performs each antenna operation in the fundamental mode and the higher order mode. Note that the reference symbol L shown in FIG.
Reference numerals 1 and L2 denote matching circuit inductances used to match the antenna 1 to the signal supply source 8, respectively.
【0036】この第1実施形態例によれば、アンテナ1
を回路基板15の非グランド領域16に実装する構成と
したので、アンテナ1の小型化および広帯域化を両方共
に図ることが容易となる。つまり、アンテナ1が、仮
に、回路基板15のグランド電極17上に実装されてい
ると仮定した場合には、放射電極3とグランド電極17
間の間隔が狭いために、該放射電極3とグランド電極1
7間の容量が周波数帯域幅に大きく関与して、当該周波
数帯域幅が狭くなるという問題が発生する。これを回避
するためには、基体2を厚くして上記放射電極3とグラ
ンド電極17間の間隔を広げ、これにより、その放射電
極3とグランド電極17間の容量を小さくして、周波数
帯域への上記放射電極3とグランド電極17間の容量の
影響を小さくすることが考えられるが、上記のように基
体2を厚くするので、アンテナ1が大型化してしまうと
いう問題が発生する。このように、アンテナ1をグラン
ド電極17上に実装する場合には、アンテナ1の小型化
と広帯域化を両方共に向上させることは困難である。According to the first embodiment, the antenna 1
Is mounted on the non-ground area 16 of the circuit board 15, so that it is easy to achieve both miniaturization and broadband of the antenna 1. That is, if it is assumed that the antenna 1 is mounted on the ground electrode 17 of the circuit board 15, the radiation electrode 3 and the ground electrode 17
Because the distance between them is narrow, the radiation electrode 3 and the ground electrode 1
There is a problem that the capacity between the capacitors 7 greatly affects the frequency bandwidth and the frequency bandwidth becomes narrow. In order to avoid this, the base 2 is made thick to increase the distance between the radiation electrode 3 and the ground electrode 17, thereby reducing the capacitance between the radiation electrode 3 and the ground electrode 17 so as to reduce the frequency band. It is conceivable to reduce the effect of the capacitance between the radiation electrode 3 and the ground electrode 17 described above. However, since the thickness of the base 2 is increased as described above, there is a problem that the antenna 1 becomes large. As described above, when the antenna 1 is mounted on the ground electrode 17, it is difficult to improve both the miniaturization and the broadband of the antenna 1.
【0037】これに対して、この第1実施形態例では、
上記のように、アンテナ1は回路基板15の非グランド
領域16に形成されるために、放射電極3とグランド電
極17間の間隔が広くなるので、放射電極3とグランド
電極17間の容量が小さくなって周波数帯域幅に対して
与える影響を小さく抑制することができることとなり、
アンテナ1の小型化と広帯域化を両方共に向上させるこ
とが容易となる。On the other hand, in the first embodiment,
As described above, since the antenna 1 is formed in the non-ground area 16 of the circuit board 15, the distance between the radiation electrode 3 and the ground electrode 17 is widened, so that the capacitance between the radiation electrode 3 and the ground electrode 17 is small. As a result, the influence on the frequency bandwidth can be suppressed small,
It is easy to improve both the miniaturization and the broadband of the antenna 1.
【0038】また、この第1実施形態例によれば、放射
電極3はループ状と成し、その開放端3aを給電端部側
電極部位に間隔を介して対向配置させ容量を形成する特
有な形状と成しているので、基体2を大きくすることな
く、放射電極3の経路長を長くすることができて、基本
モードの共振周波数を下げることができる。その上、上
記放射電極3の給電端部側電極部位は電流分布が多い領
域であることから、その給電端部側電極部位と上記開放
端3a間の容量は強く、この給電端部側電極部位と開放
端3a間の容量を可変することによって、基本モードの
共振周波数f1を大きく変化させることなく、基本モー
ドの共振周波数f1と高次モードの共振周波数f2との
間隔Δfを大きく可変制御することができる。Further, according to the first embodiment, the radiation electrode 3 is formed in a loop shape, and its open end 3a is opposed to the power supply end side electrode portion at an interval to form a capacitor. Because of the shape, the path length of the radiation electrode 3 can be increased without increasing the size of the base 2, and the resonance frequency of the fundamental mode can be reduced. In addition, since the power supply end side electrode portion of the radiation electrode 3 has a large current distribution, the capacity between the power supply end side electrode portion and the open end 3a is strong, and the power supply end side electrode portion is large. The distance Δf between the resonance frequency f1 of the fundamental mode and the resonance frequency f2 of the higher-order mode is largely variably controlled without changing the resonance frequency f1 of the fundamental mode largely by varying the capacitance between the resonance frequency f1 and the open end 3a. Can be.
【0039】このことは、本発明者の実験によって確認
されている。その実験の結果が図3(a)〜(c)に示
されている。この実験の結果によって次に示すようなこ
とが分かる。例えば、図3(a)に示すような周波数特
性を持つように上記ループ状放射電極3が構成されてい
る場合よりも、上記ループ状放射電極3の開放端3aを
給電端部側電極部位に近付けて、上記開放端3aと給電
端部側電極部位との間の容量を大きくした場合には、図
3(b)に示されるように、ループ状放射電極3の基本
モードの共振周波数f1と高次モードの共振周波数f2
間の間隔Δf’は、上記図3(a)に示す状態(Δf)
よりも狭くなる。This has been confirmed by experiments performed by the present inventors. The results of the experiment are shown in FIGS. The following can be seen from the results of this experiment. For example, the open end 3a of the loop-shaped radiation electrode 3 is located closer to the power supply end side electrode portion than in the case where the loop-shaped radiation electrode 3 is configured to have a frequency characteristic as shown in FIG. When the capacitance between the open end 3a and the power supply end side electrode portion is increased by approaching, as shown in FIG. Higher order mode resonance frequency f2
The interval Δf ′ is the state (Δf) shown in FIG.
Narrower than.
【0040】また、上記とは反対に、上記図3(a)に
示す周波数特性を持つループ状放射電極3よりも、上記
開放端3aを給電端部側電極部位から遠ざけて、上記開
放端3aと給電端部側電極部位との間の容量を小さくし
た場合には、図3(c)に示されるように、そのループ
状放射電極3の基本モードの共振周波数f1と高次モー
ドの共振周波数f2間の間隔Δf''は、上記図3(a)
に示す状態(Δf)よりも広くなる。Contrary to the above, the open end 3a is farther from the power supply end side electrode portion than the loop-shaped radiation electrode 3 having the frequency characteristic shown in FIG. In the case where the capacitance between the loop-shaped radiating electrode 3 and the power feeding end side electrode portion is reduced, as shown in FIG. The interval Δf ″ between f2 is the same as that in FIG.
Is wider than the state (Δf) shown in FIG.
【0041】上記図3(a)〜(c)に示されるよう
に、ループ状放射電極3の開放端3aと給電端部側電極
部位との間の容量を可変することによって、放射電極3
の基本モードの共振周波数f1を大きく変化させること
なく、高次モードの共振周波数f2を大きく可変制御す
ることができることとなる。換言すれば、上記放射電極
3の開放端3aと給電端部側電極部位との間の容量の可
変制御によって、高次モードの共振周波数f2を基本モ
ードの共振周波数f1とほぼ独立させた状態で可変制御
することが可能となる。As shown in FIGS. 3A to 3C, by changing the capacitance between the open end 3a of the loop-shaped radiation electrode 3 and the power supply end side electrode portion, the radiation electrode 3 is formed.
The resonance frequency f2 of the higher-order mode can be largely variably controlled without greatly changing the resonance frequency f1 of the fundamental mode. In other words, the variable frequency control between the open end 3a of the radiation electrode 3 and the power supply end side electrode portion allows the higher mode resonance frequency f2 to be substantially independent of the fundamental mode resonance frequency f1. Variable control becomes possible.
【0042】これにより、基本モードの共振周波数f1
と高次モードの共振周波数f2が両方共に要求の周波数
となるように設計することが容易となる。このために、
ループ状放射電極3に基本モードと高次モードの各アン
テナ動作を行わせて、要望される複数の周波数帯域での
電波の送信あるいは受信を行わせることができる。従来
例に示した図16に示す構成では、アンテナ1に複数の
互いに異なる周波数帯域を持たせるために、基体2の上
面に複数の放射電極3A,3Bを形成していた。これに
より、基体2を大きく形成する必要があり、アンテナ1
の小型化が難しかったが、この第1実施形態例の構成で
は、ループ状放射電極3を1つ形成するだけで、上記の
ように、そのループ状放射電極3の基本モードと高次モ
ードの各アンテナ動作によって、複数の互いに異なる周
波数帯域を持たせることができる。これにより、アンテ
ナ1の大型化を抑制することができる。Thus, the resonance frequency f1 of the fundamental mode
And the resonance frequency f2 of the high-order mode can be easily designed to be the required frequency. For this,
By causing the loop-shaped radiation electrode 3 to perform each of the antenna operations in the fundamental mode and the higher-order mode, it is possible to transmit or receive radio waves in a plurality of desired frequency bands. In the configuration shown in FIG. 16 shown in the conventional example, a plurality of radiation electrodes 3A and 3B are formed on the upper surface of the base 2 so that the antenna 1 has a plurality of different frequency bands. Accordingly, it is necessary to form the base 2 large, and the antenna 1
However, in the configuration of the first embodiment, only one loop-shaped radiation electrode 3 is formed, and as described above, the basic mode and the higher-order mode of the loop-shaped radiation electrode 3 can be reduced. A plurality of mutually different frequency bands can be provided by each antenna operation. This can suppress an increase in the size of the antenna 1.
【0043】上記のように、この第1実施形態例におい
て特有な構成を備えることによって、広帯域化と小型化
を図りつつ、マルチバンド化に対応することができるア
ンテナ1およびこのアンテナ1を備えた通信機を提供す
ることが可能になるという画期的な効果を奏することが
できる。As described above, by providing the specific configuration in the first embodiment, the antenna 1 which can cope with the multi-band operation while achieving a wider band and a smaller size, and the antenna 1 are provided. An epoch-making effect that a communication device can be provided can be achieved.
【0044】なお、上記実験では、放射電極3の開放端
3aと給電端部側電極部位間の間隔を変化することによ
って、その開放端3aと給電端部側電極部位間の容量を
変化させているが、上記開放端3aの幅を可変すること
で、上記開放端3aと給電端部側電極部位間の容量を可
変制御してもよいし、また、上記開放端3aと給電端部
側電極部位間の間隔と、上記開放端3aの幅とを共に可
変することで、開放端3aと給電端部側電極部位間の容
量を可変制御してもよい。なお、この第1実施形態例で
は、上記開放端3aに間隔を介して対向する給電端部側
電極部位に張り出し電極部18が形成されているので、
その張り出し電極18によって、上記開放端3aと給電
端部側電極部位間の容量を強くすることができて、基本
モードの共振周波数と高次モードの共振周波数を近付け
ることができる。In the above experiment, by changing the distance between the open end 3a of the radiation electrode 3 and the power supply end side electrode portion, the capacitance between the open end 3a and the power supply end side electrode portion was changed. However, by changing the width of the open end 3a, the capacitance between the open end 3a and the power supply end side electrode portion may be variably controlled, or the open end 3a and the power supply end side electrode may be variably controlled. The capacitance between the open end 3a and the power supply end side electrode part may be variably controlled by changing both the interval between the parts and the width of the open end 3a. In the first embodiment, the overhanging electrode portion 18 is formed at the power supply end side electrode portion facing the open end 3a with a space therebetween.
The overhanging electrode 18 can increase the capacity between the open end 3a and the power supply end side electrode portion, and can approach the resonance frequency in the fundamental mode to the resonance frequency in the higher order mode.
【0045】さらに、この第1実施形態例では、アンテ
ナ1を回路基板15の角領域に実装し、しかも、ループ
状放射電極3の図1に示す部位A(つまり、開放端3a
側の領域に比べて電流分布が大きい電流分布大側領域)
の長手方向と、回路基板15のグランド電極17の長手
方向とを一致させ、かつ、放射電極3の電流Imと、グ
ランド電極17を流れる電流Igとが強め合うように、
アンテナ1を上記回路基板15の角領域に実装している
ことから、上記グランド電極17がアンテナ1の指向性
に大きく関与して、図2に示される矢印αに示される向
き(つまり、回路基板15の長手方向に直交する幅方
向)の強い指向性をアンテナ1に持たせることが可能と
なる。Further, in the first embodiment, the antenna 1 is mounted in a corner area of the circuit board 15, and the portion A of the loop-shaped radiation electrode 3 shown in FIG.
The current distribution is larger than the side region.
And the longitudinal direction of the ground electrode 17 of the circuit board 15 are matched, and the current Im of the radiation electrode 3 and the current Ig flowing through the ground electrode 17 are strengthened.
Since the antenna 1 is mounted in a corner area of the circuit board 15, the ground electrode 17 greatly contributes to the directivity of the antenna 1, and the direction shown by the arrow α shown in FIG. 15 (a width direction orthogonal to the longitudinal direction) can be provided to the antenna 1.
【0046】無指向性のアンテナでは、例えば、グラン
ドと見なせる物体がアンテナに対して相対的に遠近移動
すると、その物体の移動の影響を受けて、アンテナ特性
が変化してしまうために、通信機のアンテナの信頼性を
低下させてしまうという問題が発生する。これに対し
て、この第1実施形態例では、上記のように、アンテナ
1に強い指向性を持たせることができるので、その強い
指向性に起因して、グランドと見なせる物体の移動によ
るアンテナ特性の変化を抑制することができて、アンテ
ナ1および該アンテナ1を備えた通信機のアンテナ特性
の信頼性を高めることができる。In an omnidirectional antenna, for example, when an object that can be regarded as ground moves relatively near or far from the antenna, the antenna characteristic changes due to the movement of the object. This causes a problem that the reliability of the antenna is reduced. On the other hand, in the first embodiment, as described above, the antenna 1 can be provided with a strong directivity. Therefore, the antenna characteristic due to the movement of an object that can be regarded as ground due to the strong directivity is obtained. Can be suppressed, and the reliability of the antenna characteristics of the antenna 1 and the communication device including the antenna 1 can be improved.
【0047】さらに、この第1実施形態例では、前記の
如く、上記ループ状放射電極3の開放端3aと給電端部
側電極部位との間の容量の可変制御によって、ループ状
放射電極3の基本モードの共振周波数f1を大きく変化
させることなく、高次モードの共振周波数f2を可変制
御することができるので、例えば、上記高次モードの共
振周波数f2が設定の周波数よりも低い方向にずれてい
る場合には、例えば、放射電極3の開放端3aをトリミ
ングして該開放端3aと給電端部側電極部位間の容量を
小さくして上記高次モードの共振周波数f2を高めて設
定の周波数に合わせることが可能である。このことか
ら、高次モードの共振周波数f2が設定の周波数よりも
僅かに低くなるように予め形成しておき、上記のよう
に、製造工程において、トリミング等によって共振周波
数f2の調整を行うようにすれば、製造精度の悪影響を
殆ど受けずに、設定の高次モードの共振周波数f2を持
つアンテナ1を得ることができる。Further, in the first embodiment, as described above, the variable control of the capacitance between the open end 3a of the loop-shaped radiation electrode 3 and the power supply end side electrode portion allows the loop-shaped radiation electrode 3 to be controlled. Since the resonance frequency f2 of the higher-order mode can be variably controlled without greatly changing the resonance frequency f1 of the fundamental mode, for example, the resonance frequency f2 of the higher-order mode is shifted in a direction lower than the set frequency. In this case, for example, the open end 3a of the radiation electrode 3 is trimmed to reduce the capacitance between the open end 3a and the power supply end side electrode portion, and the resonance frequency f2 of the higher mode is increased to set the frequency. It is possible to match. For this reason, the resonance frequency f2 of the higher-order mode is formed in advance so as to be slightly lower than the set frequency, and the resonance frequency f2 is adjusted by trimming or the like in the manufacturing process as described above. Then, the antenna 1 having the set higher-order mode resonance frequency f2 can be obtained with almost no adverse effect on manufacturing accuracy.
【0048】また、この第1実施形態例では、上記放射
電極3の開放端3aは基体2の上面2aに形成されてい
るので、上記のようなトリミングによる共振周波数f2
の調整を行う場合には、その周波数調整の作業が容易と
なる。In the first embodiment, since the open end 3a of the radiation electrode 3 is formed on the upper surface 2a of the base 2, the resonance frequency f2 due to the above-described trimming is obtained.
In the case of adjusting the frequency, the work of the frequency adjustment becomes easy.
【0049】以下に、第2実施形態例を説明する。Hereinafter, a second embodiment will be described.
【0050】この第2実施形態例において特徴的なこと
は、図4に示すように、ループ状放射電極3における電
流分布大側領域Aにミアンダ電極部20を介設したこと
である。それ以外の構成は前記第1実施形態例とほぼ同
様であり、この第2実施形態例の説明では、前記第1実
施形態例と同一構成部分には同一符号を付し、その共通
部分の重複説明は省略する。The characteristic feature of the second embodiment is that a meander electrode section 20 is provided in the large current distribution area A of the loop-shaped radiation electrode 3 as shown in FIG. The other configuration is almost the same as that of the first embodiment. In the description of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the overlapping portions of the common portions will be described. Description is omitted.
【0051】この第2実施形態例では、上記のように、
ループ状放射電極3には電流分布大側領域Aにミアンダ
電極部20が介設されており、このミアンダ電極部20
によって、上記電流分布大側領域Aにインダクタンスを
付与することができる。これにより、その電流分布大側
領域Aでの電気長を長くすることができて、ループ状放
射電極3の基本モードの共振周波数を下げることができ
る。上記のようなミアンダ電極部20を設けずに上記ル
ープ状放射電極3の基本モードの共振周波数を下げよう
とする場合には、ループ状放射電極3の経路長を長くす
るために、例えば基体2を大きくする必要があり、アン
テナ1が大型化してしまうという問題が発生する。これ
に対して、この第2実施形態例に示すように、ループ状
放射電極3にミアンダ電極部20を介設することによっ
て、基体2を大きくすることなく、ループ状放射電極3
の基本モードの共振周波数を下げることが可能となる。In the second embodiment, as described above,
A meandering electrode portion 20 is provided in the loop-shaped radiation electrode 3 in the large current distribution region A, and the meandering electrode portion 20 is provided.
Thereby, an inductance can be provided to the large current distribution side region A. Thereby, the electric length in the large current distribution region A can be increased, and the resonance frequency of the fundamental mode of the loop-shaped radiation electrode 3 can be reduced. When the resonance frequency of the fundamental mode of the loop-shaped radiation electrode 3 is to be reduced without providing the meander electrode portion 20 as described above, for example, in order to increase the path length of the loop-shaped radiation electrode 3, Needs to be increased, which causes a problem that the antenna 1 is increased in size. On the other hand, as shown in the second embodiment, by providing the meander electrode portion 20 in the loop-shaped radiation electrode 3, the loop-shaped radiation electrode 3 can be formed without increasing the size of the base 2.
It is possible to lower the resonance frequency of the fundamental mode.
【0052】特に、この第2実施形態例では、上記のよ
うに、上記ミアンダ電極部20をループ状放射電極3の
電流分布大側領域Aに設けている。その電流分布大側領
域の電気長の変化に対するループ状放射電極3の基本モ
ードの共振周波数の変化は、他の領域の電気長を変化さ
せる場合に比べて、大きいことから、この第2実施形態
例に示す如く、ループ状放射電極3の電流分布大側領域
Aに上記ミアンダ電極部20を設けることによって、ル
ープ状放射電極3の共振周波数を効果的に低下させるこ
とができる。In particular, in the second embodiment, as described above, the meander electrode portion 20 is provided in the large current distribution region A of the loop-shaped radiation electrode 3. Since the change in the resonance frequency of the fundamental mode of the loop-shaped radiation electrode 3 with respect to the change in the electric length in the large current distribution region is larger than when changing the electric length in the other regions, the second embodiment is used. As shown in the example, the resonance frequency of the loop-shaped radiation electrode 3 can be effectively reduced by providing the meander electrode portion 20 in the large current distribution region A of the loop-shaped radiation electrode 3.
【0053】なお、上記ミアンダ電極部20の電極幅
や、迂曲の数や、ピッチ等は、要求される共振周波数等
の様々な条件に応じて可変設定されるものであり、図4
に示す形態に限定されるものではない。The electrode width, the number of detours, the pitch, and the like of the meander electrode section 20 are variably set in accordance with various conditions such as a required resonance frequency.
However, the present invention is not limited to the form shown in FIG.
【0054】以下に、第3実施形態例を説明する。この
第3実施形態例において特徴的なことは、ループ状放射
電極3を図5に示すような形態としたことである。それ
以外の構成は前記各実施形態例とほぼ同様であり、この
第3実施形態例の説明では、上記各実施形態例と同一構
成部分には同一符号を付し、その共通部分の重複説明は
省略する。Hereinafter, a third embodiment will be described. The characteristic feature of the third embodiment is that the loop-shaped radiation electrode 3 is formed as shown in FIG. Other configurations are substantially the same as those of the above-described embodiments. In the description of the third embodiment, the same components as those of the above-described embodiments are denoted by the same reference numerals, and the description of the common portions will not be repeated. Omitted.
【0055】図5に示されるように、この第3実施形態
例では、直方体状の基体2の側面2bに給電電極4が形
成されており、ループ状放射電極3は上記給電電極4か
ら基体2の上面2aに形成され、さらに、基体2の上面
2aから側面2eと実装底面2cと側面2fを順に通っ
て上面2aに戻るループ経路でもって形成されており、
該ループ状放射電極3の開放端3aは給電端部側電極部
位に間隔を介して対向配置されている。As shown in FIG. 5, in the third embodiment, the power supply electrode 4 is formed on the side surface 2b of the rectangular parallelepiped base 2, and the loop-shaped radiation electrode 3 is separated from the power supply electrode 4 by the base 2 Formed on the upper surface 2a of the base 2, and further formed with a loop path returning to the upper surface 2a from the upper surface 2a of the base 2 through the side surface 2e, the mounting bottom surface 2c, and the side surface 2f in order.
The open end 3a of the loop-shaped radiation electrode 3 is opposed to the power supply end side electrode portion with an interval.
【0056】なお、図5に示される例では、ループ状放
射電極3における開放端3a側の基体上面2aに形成さ
れている電極部位の幅Hは他の領域よりも広幅と成して
いる。このため、ループ状放射電極3が全長に渡って等
幅である場合よりも、上記開放端3aと給電端部側電極
部位間の容量を大きくすることができる構成と成してい
る。In the example shown in FIG. 5, the width H of the electrode portion formed on the base upper surface 2a on the open end 3a side of the loop-shaped radiation electrode 3 is wider than other regions. For this reason, the configuration is such that the capacitance between the open end 3a and the power supply end side electrode portion can be increased as compared with the case where the loop-shaped radiation electrode 3 has the same width over the entire length.
【0057】この第3実施形態例によれば、ループ状放
射電極3は図5に示すようなループ状の形態と成してい
るので、回路基板15の基板面に直交する方向に、グラ
ンドと見なす物体が回路基板15に対して相対的に遠近
移動しても、その物体の移動によるアンテナ特性の変化
を抑制することができる。According to the third embodiment, since the loop-shaped radiating electrode 3 has a loop-shaped configuration as shown in FIG. Even if the object to be considered moves relatively far and near with respect to the circuit board 15, a change in antenna characteristics due to the movement of the object can be suppressed.
【0058】それというのは、ループ状放射電極3が図
5に示すようなループ状の形態と成すことによって、つ
まり、ループ状放射電極3が回路基板15の基板面に直
交する面に沿うようにループ状に形成された形態と成す
ことによって、そのループ状放射電極3に流れる電流に
基づいた電界Eは図5に示すように回路基板15の基板
面に対して垂直な向きとなる。グランドと見なす物体が
上記電界Eの方向に回路基板15に対して相対的に遠近
移動しても、この物体の移動に対する上記電界Eの変化
は非常に小さくて済む。上記電界Eが変化すると、ルー
プ状放射電極3の電流に変化が生じてアンテナ特性が変
化してしまうが、この第3実施形態例では、上記のよう
に、上記電界Eの方向に上記物体が回路基板15に対し
て相対的に遠近移動しても、電界Eの変化は殆ど無くて
ループ状放射電極3の電流分布は大きく変化せず、これ
により、上記物体の移動に起因したアンテナ特性の変化
を小さく抑制することができる。このため、上記物体移
動に起因したアンテナ効率の劣化を防止することができ
る。This is because the loop-shaped radiating electrode 3 has a loop-like form as shown in FIG. 5, that is, the loop-shaped radiating electrode 3 extends along a plane orthogonal to the substrate surface of the circuit board 15. The electric field E based on the current flowing through the loop-shaped radiation electrode 3 is oriented perpendicular to the substrate surface of the circuit board 15 as shown in FIG. Even if the object regarded as ground moves relatively far and near with respect to the circuit board 15 in the direction of the electric field E, the change of the electric field E with respect to the movement of the object can be very small. When the electric field E changes, the current of the loop-shaped radiation electrode 3 changes, and the antenna characteristics change. In the third embodiment, the object moves in the direction of the electric field E as described above. Even if the object moves relatively to or away from the circuit board 15, the electric field E hardly changes, and the current distribution of the loop-shaped radiation electrode 3 does not change much. The change can be suppressed small. Therefore, it is possible to prevent the antenna efficiency from deteriorating due to the movement of the object.
【0059】なお、この第3実施形態例において特徴的
な構成と、前記第2実施形態例において特有な構成とを
組み合わせる場合には、例えば、図5に示すループ状放
射電極3において、基体2の実装底面2cに形成されて
いる放射電極部位(電流分布大側領域)を前記第2実施
形態例に示したようなミアンダ電極部とする。このよう
な構成とすることによって、前記第2実施形態例に示し
たような効果(つまり、アンテナ1のより一層の小型化
を図ることが可能であるという効果)と、この第3実施
形態例に示したような効果(つまり、グランドと見なせ
る物体の遠近移動に起因したアンテナ特性の変化を抑制
することができるという効果)とを両方共に奏すること
ができる。When the characteristic configuration of the third embodiment is combined with the specific configuration of the second embodiment, for example, in the loop-shaped radiation electrode 3 shown in FIG. The radiating electrode portion (current distribution large side region) formed on the mounting bottom surface 2c is a meander electrode portion as shown in the second embodiment. With such a configuration, the effect shown in the second embodiment (that is, the effect that the antenna 1 can be further downsized) and the third embodiment can be obtained. (I.e., the effect of suppressing a change in antenna characteristics due to the distance movement of an object regarded as ground) can be achieved.
【0060】以下に、第4実施形態例を説明する。この
第4実施形態例において特徴的なことは、図6や図7や
図8に示すように、ループ状放射電極3に加えて、該ル
ープ状放射電極3とは異なる放射電極22を基体2に設
けたことである。それ以外の構成は前記各実施形態例と
ほぼ同様であり、この第4実施形態例の説明において、
前記各実施形態例と同一構成部分には同一符号を付し、
その共通部分の重複説明は省略する。Hereinafter, a fourth embodiment will be described. The characteristic feature of the fourth embodiment is that, as shown in FIGS. 6, 7 and 8, in addition to the loop-shaped radiation electrode 3, a radiation electrode 22 different from the loop-shaped radiation electrode 3 is provided on the base 2 It is provided in. Other configurations are almost the same as those of the above embodiments, and in the description of the fourth embodiment,
The same reference numerals are given to the same components as those in the above embodiments,
A duplicate description of the common part is omitted.
【0061】図6に示す例では、ループ状放射電極3は
前記第1実施形態例に示した形態を有し、基体2の上面
2aに形成されており、上記放射電極22は、基体2の
側面2bの給電電極4から側面2eを介して側面2dに
形成されている。このように、上記放射電極22は基体
2のループ状放射電極形成面2aとは異なる基体2の面
2e,2dに形成されている。In the example shown in FIG. 6, the loop-shaped radiation electrode 3 has the form shown in the first embodiment, is formed on the upper surface 2a of the base 2, and the radiation electrode 22 is The power supply electrode 4 on the side surface 2b is formed on the side surface 2d via the side surface 2e. As described above, the radiation electrode 22 is formed on the surfaces 2 e and 2 d of the base 2 different from the loop-shaped radiation electrode formation surface 2 a of the base 2.
【0062】図7に示す例では、ループ状放射電極3は
前記第3実施形態例に示した形態を有している。上記放
射電極22は上記ループ状放射電極3の開放端3a側と
間隔を介し平行にループ状放射電極3の給電端部から形
成されており、この放射電極22の給電端部は上記ルー
プ状放射電極3の給電端部を介して給電電極4に連通接
続されている。In the example shown in FIG. 7, the loop-shaped radiation electrode 3 has the form shown in the third embodiment. The radiation electrode 22 is formed from the feeding end of the loop-shaped radiation electrode 3 in parallel with the open end 3a side of the loop-shaped radiation electrode 3 with an interval therebetween. The electrode 3 is connected to the power supply electrode 4 via the power supply end.
【0063】図8に示す例では、基体2には、前記第1
実施形態例に示したものと同様のループ状放射電極3が
形成されると共に、別の放射電極22が形成されてお
り、この図8に示す放射電極22は、上記図6や図7の
放射電極22とは異なり、その給電端部が給電電極4に
連通接続されていない。この図8に示す例では、回路基
板15には、給電電極4に連通接続する給電用配線パタ
ーン25が形成されると共に、上記放射電極22に連通
接続するサブ給電用配線パターン26が上記給電用配線
パターン25から分岐し位相回路(位相コントロール用
チップ部品28)を介して形成されており、上記ループ
状放射電極3は給電電極4を介して、また、放射電極2
2は、サブ給電用配線パターン26を介して、それぞ
れ、共通の給電用配線パターン25に連通接続されてい
る。なお、図8の符号27は整合用チップコイル部品を
示し、また、符号29は位相コントロール用チップ部品
を示している。In the example shown in FIG. 8, the first
A loop-shaped radiation electrode 3 similar to that shown in the embodiment is formed, and another radiation electrode 22 is formed. The radiation electrode 22 shown in FIG. Unlike the electrode 22, the power supply end is not connected to the power supply electrode 4. In the example shown in FIG. 8, a power supply wiring pattern 25 connected to the power supply electrode 4 is formed on the circuit board 15, and a sub power supply wiring pattern 26 connected to the radiation electrode 22 is provided on the circuit board 15. The loop-shaped radiation electrode 3 branches off from the wiring pattern 25 and is formed via a phase circuit (phase control chip component 28).
Numerals 2 are each connected to a common power supply wiring pattern 25 via a sub power supply wiring pattern 26. Reference numeral 27 in FIG. 8 indicates a matching chip coil component, and reference numeral 29 indicates a phase control chip component.
【0064】なお、図8に示すサブ給電用配線パターン
26はインダクタンスを持ち、そのインダクタンスの大
きさを可変することによって、放射電極22の共振周波
数を可変調整することが可能である。また、サブ給電用
配線パターン26に接続された位相回路(図8に示す例
では、位相コントロール用チップ部品28,29)の定
数を変えることにより、ループ状放射電極3と放射電極
22の互いの影響を少なくできる。The sub-feeding wiring pattern 26 shown in FIG. 8 has an inductance, and the resonance frequency of the radiation electrode 22 can be variably adjusted by changing the magnitude of the inductance. Further, by changing the constant of the phase circuit (the phase control chip components 28 and 29 in the example shown in FIG. 8) connected to the sub-feeding wiring pattern 26, the mutual connection between the loop-shaped radiation electrode 3 and the radiation electrode 22 can be achieved. The effect can be reduced.
【0065】この第4実施形態例によれば、ループ状放
射電極3とは異なる放射電極22を基体2に設けたの
で、上記ループ状放射電極3における基本モードのアン
テナ動作と高次モードのアンテナ動作に加えて、放射電
極22によるアンテナ動作が行われることとなり、より
多くの周波数帯域での電波の送信あるいは受信が可能と
なる。これにより、1つのチップ状のアンテナ1を設け
るだけで、3つ以上の異なるアプリケーションに対応す
ることが可能となり、よりマルチバンド化を促進させる
ことができる。According to the fourth embodiment, since the radiating electrode 22 different from the loop-shaped radiating electrode 3 is provided on the base 2, the antenna operation of the loop-shaped radiating electrode 3 in the basic mode and the antenna of the higher-order mode are performed. In addition to the operation, the antenna operation by the radiation electrode 22 is performed, so that transmission or reception of radio waves in more frequency bands becomes possible. Accordingly, it is possible to cope with three or more different applications only by providing one chip-shaped antenna 1, and it is possible to further promote multiband.
【0066】また、図6や図8に示すように、ループ状
放射電極3と放射電極22とをそれぞれ基体2の互いに
異なる面に形成することによって、それらループ状放射
電極3と放射電極22の相互干渉を更に抑制することが
できる。このため、例えばループ状放射電極3と放射電
極22間の相互干渉を防止するために、基体2を大きく
してループ状放射電極3と放射電極22の間隔を広げる
というような手段を施す必要が無く、アンテナ1の小型
化を図ることができる。As shown in FIG. 6 and FIG. 8, the loop-shaped radiation electrode 3 and the radiation electrode 22 are formed on different surfaces of the base 2 respectively, so that the loop-shaped radiation electrode 3 and the radiation electrode 22 are formed. Mutual interference can be further suppressed. Therefore, for example, in order to prevent mutual interference between the loop-shaped radiation electrode 3 and the radiation electrode 22, it is necessary to take a measure such as enlarging the base 2 to increase the interval between the loop-shaped radiation electrode 3 and the radiation electrode 22. Therefore, the size of the antenna 1 can be reduced.
【0067】なお、上記ループ状放射電極3と放射電極
22の各々の形態は、上記図6〜図8に図示の各例に限
定されるものではなく、例えば、上記図6〜図8の各例
に示したループ状放射電極3における電流分布大側領域
に、前記第2実施形態例に示したものと同様のミアンダ
電極部を設けてもよいものである。The form of each of the loop-shaped radiation electrode 3 and the radiation electrode 22 is not limited to the examples shown in FIGS. 6 to 8. A meander electrode unit similar to that shown in the second embodiment may be provided in the large current distribution side region of the loop-shaped radiation electrode 3 shown in the example.
【0068】以下に、第5実施形態例を説明する。この
第5実施形態例において特徴的なことは、ループ状放射
電極3の高次モードの共振周波数f2をより一層可変制
御し易くするための特有な構成を備えたことである。つ
まり、この第5実施形態例では、図9に示すように、ア
ンテナ1の基体2にグランド電極30が形成されてい
る。それ以外の構成は前記各実施形態例とほぼ同様であ
り、この第5実施形態例の説明では、前記各実施形態例
と同一構成部分には同一符号を付し、その共通部分の重
複説明は省略する。なお、図9の符号32は整合用チッ
プコイル部品を示している。Hereinafter, a fifth embodiment will be described. What is characteristic in the fifth embodiment is that the fifth embodiment is provided with a specific configuration for making it easier to variably control the resonance frequency f2 of the higher order mode of the loop-shaped radiation electrode 3. That is, in the fifth embodiment, the ground electrode 30 is formed on the base 2 of the antenna 1 as shown in FIG. The other configuration is almost the same as that of each of the above-described embodiments. In the description of the fifth embodiment, the same components as those of the above-described embodiments are denoted by the same reference numerals, and the description of the common portions will not be repeated. Omitted. Reference numeral 32 in FIG. 9 indicates a matching chip coil component.
【0069】ところで、放射電極の開放端とグランドと
の間に容量を形成し、この開放端とグランド間の容量を
可変することによって、放射電極の共振周波数を可変制
御することができる。また、前記各実施形態例に示した
ように、放射電極がループ状放射電極3と成している場
合には、ループ状放射電極3における高次モードの電界
最強部位は例えば図9の破線Bにより囲まれている放射
電極部位(つまり、図9に示す例では、基体2の上面2
aの短辺cに沿って形成されている放射電極部位)であ
り、高次モードにおけるループ状放射電極3の開放端
は、見かけ上、上記電界最強部位Bとなり、この高次モ
ードにおけるループ状放射電極3の開放端は、基本モー
ドにおけるループ状放射電極3の開放端3aとは異なる
位置となる。The resonance frequency of the radiation electrode can be variably controlled by forming a capacitance between the open end of the radiation electrode and the ground and varying the capacitance between the open end and the ground. Further, as described in the above embodiments, when the radiation electrode is formed as the loop radiation electrode 3, the strongest electric field portion of the higher order mode in the loop radiation electrode 3 is, for example, a broken line B in FIG. (That is, in the example shown in FIG. 9, the upper surface 2 of the base 2)
a, the open end of the loop-shaped radiation electrode 3 in the higher-order mode is apparently the electric field strongest part B, and the loop-shaped portion in the higher-order mode. The open end of the radiation electrode 3 is located at a position different from the open end 3a of the loop-shaped radiation electrode 3 in the basic mode.
【0070】このことに本発明者は着目し、上記高次モ
ードにおけるループ状放射電極3の開放端とグランドと
の間に容量を形成し、この容量を可変することによっ
て、ループ状放射電極3の基本モードの共振周波数f1
を殆ど変化させずに、高次モードの共振周波数f2を可
変制御することができる構成を考え出した。The present inventor pays attention to this, and forms a capacitance between the open end of the loop-shaped radiation electrode 3 and the ground in the higher-order mode, and varies the capacitance to thereby form the loop-shaped radiation electrode 3. Resonance frequency f1 of the fundamental mode
Have been devised so that the resonance frequency f2 of the higher-order mode can be variably controlled without substantially changing.
【0071】すなわち、この第5実施形態例では、ルー
プ状放射電極3における高次モードの電界最強部位(高
次モードの開放端)との間に容量を形成することができ
るグランド電極30が基体2に形成されている。That is, in the fifth embodiment, the ground electrode 30 capable of forming a capacitance between the highest-order mode electric field portion (open end of the higher-order mode) of the loop-shaped radiation electrode 3 and the base electrode 30 is provided. 2 is formed.
【0072】具体的には、例えば、図9に示す例では、
上記グランド電極30は、基体2の側面2fと、側面2
bの底面側右角部との2箇所に配設されている。また、
この図9に示す例では、基体2の側面2bの底面側中央
部にも、つまり、上記ループ状放射電極3における高次
モードの電界最強部位Bの近傍領域との間に容量を形成
することができる位置にも、上記グランド電極30が配
設されている。Specifically, for example, in the example shown in FIG.
The ground electrode 30 includes a side surface 2f of the base 2 and a side surface 2f.
b at the right corner of the bottom side. Also,
In the example shown in FIG. 9, a capacitance is formed also at the center of the bottom surface side of the side surface 2 b of the base 2, that is, with the region in the vicinity of the strongest electric field portion B of the higher order mode in the loop radiation electrode 3. The ground electrode 30 is also provided at a position where the power supply can be performed.
【0073】換言すれば、この図9に示す例では、ルー
プ状放射電極3における上記高次モードの電界最強部位
Bを含む図9の鎖線Zにより囲まれている電界最強側領
域との間に容量が形成されるように上記グランド電極3
0が形成されている。In other words, in the example shown in FIG. 9, between the loop-shaped radiation electrode 3 and the electric field strongest region surrounded by the chain line Z in FIG. The ground electrode 3 is formed so that a capacitance is formed.
0 is formed.
【0074】回路基板15には、グランド電極17と上
記グランド電極30を連通接続させるためのグランド配
線パターン33が形成されており、上記グランド電極3
0は上記グランド配線パターン33を介してグランド電
極17に導通接続し、グランドに接地される。このた
め、このグランド電極30により、上記ループ状放射電
極3における高次モードの電界最強側領域Zはグランド
との間に容量が形成される構成と成す。The circuit board 15 is formed with a ground wiring pattern 33 for connecting and connecting the ground electrode 17 and the ground electrode 30 to each other.
0 is electrically connected to the ground electrode 17 via the ground wiring pattern 33 and is grounded to the ground. For this reason, the ground electrode 30 has a configuration in which a capacitance is formed between the high-order mode electric field strongest region Z in the loop-shaped radiation electrode 3 and the ground.
【0075】ところで、この第5実施形態例では、グラ
ンド電極30を半田を介してグランド配線パターン33
に導通接続させる構成と成しており、上記半田によって
基体2を回路基板15に固定させることができる。つま
り、上記グランド電極30は、前記の如く、ループ状放
射電極3における高次モードの電界最強側領域Zとグラ
ンドとの間に容量を形成するという機能だけでなく、基
体2を半田により回路基板15に固定させるための固定
用の電極としても機能するものである。In the fifth embodiment, the ground electrode 30 is connected to the ground wiring pattern 33 via solder.
The base 2 can be fixed to the circuit board 15 by the above-mentioned solder. That is, as described above, the ground electrode 30 not only has a function of forming a capacitance between the electric field strongest side region Z of the higher-order mode in the loop-shaped radiation electrode 3 and the ground, but also has a function of soldering the base 2 to the circuit board by soldering. It also functions as a fixing electrode for fixing to 15.
【0076】上記のように、グランド電極30とグラン
ド配線パターン33間の半田によって基体2を回路基板
15に固定させることができるが、この第5実施形態例
では、上記アンテナ1の基体2をより強固に回路基板1
5に固定させるために、例えば、図9に示すように、半
田固定専用の電極である固定用電極31を設けている。
この固定用電極31は、回路基板15のグランド電極1
7や、基体2上のループ状放射電極3等の他の導体部と
接続されていない電極である。As described above, the base 2 can be fixed to the circuit board 15 by the solder between the ground electrode 30 and the ground wiring pattern 33. In the fifth embodiment, the base 2 of the antenna 1 is Strongly circuit board 1
For example, as shown in FIG. 9, a fixing electrode 31, which is an electrode dedicated to solder fixing, is provided to fix the fixing electrode 5 to the fixing electrode 5.
The fixing electrode 31 is connected to the ground electrode 1 of the circuit board 15.
7 and electrodes not connected to other conductors such as the loop-shaped radiation electrode 3 on the base 2.
【0077】図9に示す例では、上記固定用電極31は
複数箇所に配設され、それら固定用電極31は何れも上
記基体2における前記固定用電極31の形成面とは異な
る面(つまり、側面2dの左右の底面側角部の2箇所)
に設けられている。In the example shown in FIG. 9, the fixing electrodes 31 are provided at a plurality of positions, and each of the fixing electrodes 31 is different from the surface of the base 2 on which the fixing electrodes 31 are formed (that is, the surface is different from the surface on which the fixing electrodes 31 are formed). (2 places on the left and right bottom side corners of the side 2d)
It is provided in.
【0078】上記のように、固定用電極31を設けて、
該固定用電極31と前記グランド電極30を利用して、
基体2を半田により回路基板15に固定することによっ
て、例えば通信機の落下等に起因して通信機に衝撃が加
えられたときに、回路基板15からアンテナ1が剥がれ
落ちるという事態発生をより確実に抑制することができ
ることとなり、通信機の耐久性の信頼を高めることがで
きる。As described above, the fixing electrode 31 is provided.
Using the fixing electrode 31 and the ground electrode 30,
By fixing the base 2 to the circuit board 15 by soldering, it is possible to more reliably prevent the antenna 1 from peeling off the circuit board 15 when an impact is applied to the communication device due to, for example, a drop of the communication device. And the reliability of the durability of the communication device can be increased.
【0079】この第5実施形態例によれば、ループ状放
射電極3における高次モードの電界最強側領域Zとグラ
ンドとの間に容量を持たせるためのグランド電極30を
設ける構成とした。このため、上記ループ状放射電極3
における高次モードの電界最強側領域(つまり、高次モ
ードの開放端側)と上記グランド電極30(つまり、グ
ランド)との間の容量を大きくする方向に可変すること
によって、ループ状放射電極3の基本モードの共振周波
数f1を殆ど変化させずに、高次モードの共振周波数f
2を下げる方向に可変制御することができる。また、反
対に、上記ループ状放射電極3の高次モードの電界最強
側領域とグランド電極30との間の容量を小さくする方
向に可変することによって、ループ状放射電極3の基本
モードの共振周波数f1を殆ど変化させずに、高次モー
ドの共振周波数f2を高くする方向に可変制御すること
ができる。According to the fifth embodiment, the ground electrode 30 for providing a capacitance between the high-order mode electric field strongest region Z in the loop-shaped radiation electrode 3 and the ground is provided. Therefore, the loop-shaped radiation electrode 3
, The capacitance between the strongest electric field region of the higher-order mode (that is, the open end side of the higher-order mode) and the ground electrode 30 (that is, the ground) is changed in a direction in which the capacitance is increased. Of the higher-order mode without substantially changing the resonance frequency f1 of the fundamental mode.
2 can be variably controlled in a downward direction. Conversely, by changing the capacitance between the region of the loop-shaped radiation electrode 3 in the higher-order mode electric field strongest region and the ground electrode 30 in a direction to decrease the resonance frequency of the loop-shaped radiation electrode 3 in the fundamental mode. It is possible to variably control the resonance frequency f2 of the higher-order mode to be higher without changing f1 almost.
【0080】このように、上記グランド電極30を設
け、上記ループ状放射電極3の高次モードの電界最強側
領域とそのグランド電極30との間の容量を可変するこ
とによって、ループ状放射電極3の基本モードの共振周
波数f1を殆ど変化させずに、高次モードの共振周波数
f2を可変制御することができることとなり、ループ状
放射電極3の基本モードと高次モードの各共振周波数f
1,f2が要求の周波数となるように設計することがよ
り一層容易にできることとなる。As described above, by providing the ground electrode 30 and changing the capacitance between the region of the loop-shaped radiation electrode 3 where the higher-order mode electric field is strongest and the ground electrode 30, the loop-shaped radiation electrode 3 is formed. The resonance frequency f2 of the higher-order mode can be variably controlled without substantially changing the resonance frequency f1 of the fundamental mode.
It becomes much easier to design so that 1 and f2 are the required frequencies.
【0081】なお、図9に示す例では、ループ状放射電
極3は前記第1実施形態例に示した形態であったが、上
記ループ状放射電極3が前記第2実施形態例に示した図
4のような形態である場合にも、グランド電極30を基
体2の上記同様な位置に設けることによって、上記同様
な効果を奏することができる。In the example shown in FIG. 9, the loop-shaped radiation electrode 3 has the form shown in the first embodiment, but the loop-shaped radiation electrode 3 has the form shown in the second embodiment. Even in the case of the embodiment 4, the same effect as described above can be obtained by providing the ground electrode 30 at the same position as the above on the base 2.
【0082】また、ループ状放射電極3が前記第3実施
形態例に示した図5のような形態である場合には、ルー
プ状放射電極3における高次モードの電界最強側領域
(高次モードの開放端側)は図5の破線Zによって囲ま
れる電極部位であることから、この電界最強側領域Zと
の間に容量を形成することができる位置に、上記グラン
ド電極30を配設することによって、上記同様の効果を
奏することができる。When the loop-shaped radiation electrode 3 has the form as shown in FIG. 5 shown in the third embodiment, the region where the electric field of the higher-order mode in the loop-shaped radiation electrode 3 is the strongest (the higher-order mode) (Open end side) is an electrode portion surrounded by a broken line Z in FIG. 5, so that the ground electrode 30 is disposed at a position where a capacitance can be formed between the electrode portion and the strongest electric field side region Z. Thereby, the same effect as described above can be obtained.
【0083】さらに、前記第4実施形態例に示したよう
に、基体2にループ状放射電極3が形成されると共に、
別の放射電極22が形成される場合にも、上記同様に、
上記ループ状放射電極3における高次モードの電界最強
側領域との間に容量を形成することができる位置に、上
記グランド電極30を配設することによって、上記同様
の効果を奏することができる。Further, as shown in the fourth embodiment, while the loop-shaped radiation electrode 3 is formed on the base 2,
When another radiation electrode 22 is formed, similarly to the above,
By arranging the ground electrode 30 at a position where a capacitance can be formed between the loop-shaped radiation electrode 3 and the higher-order mode electric field strongest region, the same effect as described above can be obtained.
【0084】以下に、第6実施形態例を説明する。この
第6実施形態例において特徴的なことは、図10に示す
ように、回路基板15に形成された給電用配線パターン
25にインダクタ部であるチップコイル部品34,35
が接続されていることである。それ以外の構成は前記各
実施形態例と同様であり、この第6実施形態例の説明に
おいて、前記各実施形態例と同一構成部分には同一符号
を付し、その共通部分の重複説明は省略する。Hereinafter, a sixth embodiment will be described. The feature of the sixth embodiment is that, as shown in FIG. 10, the power supply wiring pattern 25 formed on the circuit board 15 includes chip coil components 34 and 35 as inductor portions.
Is connected. Other configurations are the same as those of the above-described embodiments. In the description of the sixth embodiment, the same components as those of the above-described embodiments are denoted by the same reference numerals, and the overlapping description of the common portions will be omitted. I do.
【0085】この第6実施形態例では、図10に示すよ
うに、回路基板15には給電電極4と信号供給源8を導
通接続させるための給電用配線パターン25が形成され
ており、この給電用配線パターン25には間隙による分
断部25aが形成されている。この分断部25の両端の
給電用配線パターン部位は上記チップコイル部品34に
よって導通接続されている。また、上記給電用配線パタ
ーン25には上記チップコイル部品34の搭載位置より
も先端側の部位にチップコイル部品35の一端側が接続
され、このチップコイル部品35の他端側はグランド電
極17に導通接続されている。In the sixth embodiment, as shown in FIG. 10, a power supply wiring pattern 25 for electrically connecting the power supply electrode 4 and the signal supply source 8 is formed on the circuit board 15. In the wiring pattern 25 for use, a dividing portion 25a is formed by a gap. The power supply wiring pattern portions at both ends of the dividing portion 25 are conductively connected by the chip coil component 34. One end of the chip coil component 35 is connected to the power supply wiring pattern 25 at a position on the tip side of the mounting position of the chip coil component 34, and the other end of the chip coil component 35 is electrically connected to the ground electrode 17. It is connected.
【0086】この第6実施形態例によれば、給電用配線
パターン25にチップコイル部品34,35を接続した
ので、それらチップコイル部品34,35によって上記
給電用配線パターン25にインダクタンスを付与するこ
とができて該給電用配線パターン25の電気長を長くす
ることができる。給電用配線パターン25を通電する電
流量はループ状放射電極3の通電電流量に比べて多く、
この電流量が大である給電用配線パターン25にインダ
クタンスを付与して電気長を長くすることによって、基
体2の大きさを変化させずに、ループ状放射電極3の基
本モードの共振周波数f1を効果的に下げることができ
る。このことにより、アンテナ1の小型化を図ることが
容易となる。According to the sixth embodiment, since the chip coil components 34 and 35 are connected to the power supply wiring pattern 25, the chip coil components 34 and 35 provide inductance to the power supply wiring pattern 25. As a result, the electrical length of the power supply wiring pattern 25 can be increased. The amount of current flowing through the power supply wiring pattern 25 is larger than the amount of current flowing through the loop-shaped radiation electrode 3.
By providing an inductance to the power supply wiring pattern 25 having a large amount of current to increase the electrical length, the resonance frequency f1 of the fundamental mode of the loop radiation electrode 3 can be reduced without changing the size of the base 2. Can be lowered effectively. This facilitates downsizing of the antenna 1.
【0087】また、上記チップコイル部品34,35に
よって上記給電用配線パターン25に付与するインダク
タンスの大きさを簡単に可変することができ、そのよう
に給電用配線パターン25に付与するインダクタンスの
大きさを可変することにより、ループ状放射電極3の基
本モードの共振周波数f1を可変制御することができる
ことから、基本モードの共振周波数f1を設定の周波数
とすることが容易となる。Further, the magnitude of the inductance applied to the power supply wiring pattern 25 can be easily varied by the chip coil components 34 and 35, and the magnitude of the inductance applied to the power supply wiring pattern 25 as described above. , The resonance frequency f1 of the fundamental mode of the loop-shaped radiation electrode 3 can be variably controlled, so that the resonance frequency f1 of the fundamental mode can be easily set to the set frequency.
【0088】なお、図10に示す例では、基体2は誘電
体により構成され、該基体2には、前記第5実施形態例
に示したようなグランド電極30や固定用電極31が形
成されると共に、空孔36,37が形成されている。こ
のように、基体2に空孔36,37を形成することによ
って、基体2の実効誘電率が下がって、アンテナ特性の
向上を図ることができる。In the example shown in FIG. 10, the base 2 is made of a dielectric, and the ground electrode 30 and the fixing electrode 31 as shown in the fifth embodiment are formed on the base 2. At the same time, holes 36 and 37 are formed. As described above, by forming the holes 36 and 37 in the base 2, the effective dielectric constant of the base 2 is reduced, and the antenna characteristics can be improved.
【0089】なお、この発明は上記各実施形態例に限定
されるものではなく、様々な実施の形態を採り得る。例
えば、アンテナ1の基体2を図11(a)、(b)に示
すように積層体により構成してもよい。なお、図11
(b)は図11(a)に示す基体2を分解状態により示
した図である。また、図11に示す例では、基体2は2
枚のシート部40,41の積層体であったが、2枚以上
のシート部を積層一体化させて基体2を構成してもよ
い。The present invention is not limited to the above embodiments, but may take various embodiments. For example, the base 2 of the antenna 1 may be constituted by a laminate as shown in FIGS. Note that FIG.
FIG. 12B is a diagram showing the base 2 shown in FIG. 11A in an exploded state. Further, in the example shown in FIG.
Although the laminated body of the sheet portions 40 and 41 has been described, the base 2 may be configured by laminating and integrating two or more sheet portions.
【0090】また、上記各実施形態例では、ループ状放
射電極3は全長に渡って基体2の表面に形成されていた
が、上記のように基体2が積層体により構成されている
場合には、例えば図11(a)、(b)に示されるよう
に、ループ状放射電極3の一部分が基体2の内部に形成
される構成としてもよい。また、ループ状放射電極3を
全長に渡って基体2の内部に形成してもよい。そのよう
に、ループ状放射電極3の一部分あるいは全部を基体2
の内部に形成する場合にも、該ループ状放射電極3の開
放端3aが給電端部側電極部位に間隔を介して対向配置
して容量を形成するように構成することによって、上記
各実施形態例に示したと同様の効果を奏することができ
る。In each of the above embodiments, the loop-shaped radiation electrode 3 is formed on the surface of the base 2 over the entire length. However, in the case where the base 2 is formed of a laminate as described above, For example, as shown in FIGS. 11A and 11B, a configuration in which a part of the loop-shaped radiation electrode 3 is formed inside the base 2 may be adopted. Further, the loop-shaped radiation electrode 3 may be formed inside the base 2 over the entire length. Thus, a part or all of the loop-shaped radiation electrode 3 is
In the above embodiments, the loop-shaped radiating electrode 3 may be formed in such a manner that the open end 3a of the looped radiating electrode 3 is opposed to the power supply end side electrode portion with an interval therebetween to form a capacitor. The same effect as the example can be obtained.
【0091】さらに、上記各実施形態例に示した構成に
加えて、図12に示すように、ループ状放射電極3の給
電端部側電極部位から開放端3aに向けて突起放射電極
部44を形成してもよい。この突起放射電極部44は給
電電極4から供給される信号に応じて共振することが可
能に構成されており、この突起放射電極部44の伸長先
端が上記開放端3aと間隔を介して対向配置して容量を
生じさせている。Further, in addition to the configuration shown in each of the above embodiments, as shown in FIG. 12, a projecting radiation electrode portion 44 is formed from the feeding end side electrode portion of the loop radiation electrode 3 toward the open end 3a. It may be formed. The protruding radiation electrode portion 44 is configured to be capable of resonating in response to a signal supplied from the power supply electrode 4, and the extended distal end of the protruding radiation electrode portion 44 faces the open end 3 a with an interval therebetween. To produce the capacity.
【0092】このように、ループ状放射電極3の給電端
部側電極部位に突起放射電極部44を設けることによっ
て、ループ状放射電極3は、その突起放射電極部44が
無い場合には見られなかった共振モードを持つこととな
り、より多くの周波数帯域を備えることが可能となる。
しかも、上記各実施形態例に示したと同様に、ループ状
放射電極3の開放端3aと突起放射電極部44間の容量
を可変することによって、ループ状放射電極3における
基本モードの共振周波数f1を大きく変化させずに、そ
の共振周波数f1と高次モードの共振周波数f2間の間
隔を変化させることができるので、共振周波数f2の可
変制御が容易となる。As described above, by providing the projection radiation electrode portion 44 at the power supply end side electrode portion of the loop radiation electrode 3, the loop radiation electrode 3 can be seen when the projection radiation electrode portion 44 is not provided. It has a resonance mode that did not exist, and it is possible to provide more frequency bands.
In addition, similarly to the above-described embodiments, the capacitance between the open end 3a of the loop-shaped radiation electrode 3 and the projection radiation electrode portion 44 can be varied to reduce the fundamental mode resonance frequency f1 of the loop-shaped radiation electrode 3. Since the interval between the resonance frequency f1 and the higher-order mode resonance frequency f2 can be changed without largely changing, the variable control of the resonance frequency f2 is facilitated.
【0093】さらに、上記各実施形態例では、ループ状
放射電極3の開放端3aは基体2の上面2aに配置され
ていたが、例えば、その開放端3aの配置位置は、基体
2の上面2aに限定されるものではなく、給電電極4の
配置位置や、ループ状放射電極3のループの引き回し経
路に応じて、例えば、基体2の側面や底面に配置しても
よい。Further, in each of the above embodiments, the open end 3a of the loop-shaped radiation electrode 3 is disposed on the upper surface 2a of the base 2. For example, the position of the open end 3a is determined by the upper surface 2a of the base 2. However, the present invention is not limited to this, and may be disposed on, for example, the side surface or the bottom surface of the base 2 in accordance with the arrangement position of the power supply electrode 4 or the route of the loop of the loop-shaped radiation electrode 3.
【0094】さらに、図1、図4、図6、図8、図9、
図10に示す例では、ループ状放射電極3の給電端部側
電極部位には開放端3aと間隔を介して対向する張り出
し電極部18が形成されていたが、この張り出し電極部
18は必ずしも形成しなければならないものではなく、
この張り出し電極部18は設けなくともよい。Further, FIG. 1, FIG. 4, FIG. 6, FIG. 8, FIG.
In the example shown in FIG. 10, the protruding electrode portion 18 facing the open end 3 a with a space therebetween is formed at the power supply end side electrode portion of the loop-shaped radiation electrode 3. However, the protruding electrode portion 18 is not necessarily formed. Not something you have to do,
The overhanging electrode section 18 may not be provided.
【0095】さらに、上記各実施形態例では、基体2は
直方体状であったが、例えば、基体2は直方体状以外の
例えば円柱状であってもよい。Further, in each of the above embodiments, the base 2 is a rectangular parallelepiped. However, for example, the base 2 may be a column other than a rectangular parallelepiped.
【0096】さらに、上記第4実施形態例に示した図6
あるいは図7のループ状放射電極を含む複数の放射電極
の構成と、図8に示したループ状放射電極を含む複数の
放射電極の構成とを組み合わせてもよい。さらに、上記
第4実施形態例に示した図6〜図8の各々の例では、基
体2にはループ状放射電極3とは異なる放射電極が1つ
設けられていたが、ループ状放射電極3とは異なる放射
電極を複数設けてもよい。例えば、その具体例が図13
(a)、(b)にそれぞれ示されている。図13(a)
に示す例では、ループ状放射電極3とは異なる放射電極
22,44が形成されており、これら放射電極22,4
4はループ状放射電極3と共に共通の給電電極4に連通
接続されている。Further, FIG. 6 shown in the fourth embodiment example
Alternatively, the configuration of the plurality of radiation electrodes including the loop-shaped radiation electrode of FIG. 7 and the configuration of the plurality of radiation electrodes including the loop-shaped radiation electrode illustrated in FIG. 8 may be combined. Further, in each of the examples of FIGS. 6 to 8 shown in the fourth embodiment, one radiation electrode different from the loop-shaped radiation electrode 3 is provided on the base 2. A plurality of radiation electrodes different from the above may be provided. For example, FIG.
(A) and (b) respectively. FIG. 13 (a)
In the example shown in FIG. 3, radiation electrodes 22 and 44 different from the loop radiation electrode 3 are formed, and these radiation electrodes 22 and 4 are formed.
Numeral 4 is connected to the common feeding electrode 4 together with the loop-shaped radiation electrode 3.
【0097】また、図13(b)に示す例では、上記図
13(a)に示す例と同様にループ状放射電極3とは異
なる放射電極22,44が形成されているが、それら放
射電極22,44は、上記図13(a)に示す例とは異
なって給電電極4に連通接続されておらず、それぞれ、
回路基板15に形成されたサブ給電用配線パターン26
(26a,26b)を介して、回路基板15の給電用配
線パターン25に連通接続されている。なお、もちろ
ん、ループ状放射電極3とは異なる放射電極を3つ以上
形成してもよい。また、図13(b)の符号45は整合
用チップコイル部品を示している。In the example shown in FIG. 13B, the radiation electrodes 22 and 44 different from the loop-shaped radiation electrode 3 are formed as in the example shown in FIG. Unlike the example shown in FIG. 13A, the reference numerals 22 and 44 are not connected to the power supply electrode 4.
Sub-feeding wiring pattern 26 formed on circuit board 15
Via (26a, 26b), it is communicatively connected to the power supply wiring pattern 25 of the circuit board 15. Of course, three or more radiation electrodes different from the loop radiation electrode 3 may be formed. Reference numeral 45 in FIG. 13B indicates a matching chip coil component.
【0098】さらに、上記各実施形態例では、ループ状
放射電極3は1つだけ設けられていたが、図14に示す
ように、メインのループ状放射電極3を設けると共に、
サブのループ状放射電極3’を少なくとも1つ設ける構
成としてもよい。このように、メインのループ状放射電
極3とサブのループ状放射電極3’を設ける場合には、
それら各ループ状放射電極3,3’の給電端部をそれぞ
れ共通に給電電極4に連通接続させる構成としてもよい
し、回路基板15に図8に示すような給電用配線パター
ン25とサブ給電用配線パターン26を形成して、メイ
ンのループ状放射電極3は給電電極4を介して給電用配
線パターン25に連通接続され、サブのループ状放射電
極3’はサブ給電用配線パターン26を介して上記給電
用配線パターン25に連通接続する構成としてもよい。Further, in each of the above embodiments, only one loop-shaped radiation electrode 3 is provided. However, as shown in FIG.
It is good also as a structure provided with at least one sub loop radiation electrode 3 '. Thus, when the main loop-shaped radiation electrode 3 and the sub-loop-shaped radiation electrode 3 'are provided,
The power supply end of each of the loop-shaped radiation electrodes 3 and 3 ′ may be commonly connected to the power supply electrode 4, or the power supply wiring pattern 25 and the sub power supply as shown in FIG. The wiring pattern 26 is formed, and the main loop-shaped radiation electrode 3 is connected to the power supply wiring pattern 25 via the power supply electrode 4, and the sub loop-shaped radiation electrode 3 ′ is connected via the sub power supply wiring pattern 26. It may be configured to be connected to the power supply wiring pattern 25.
【0099】このように、ループ状放射電極を複数配設
することによって、各ループ状放射電極の基本モードと
高次モードを両方共に利用することが可能となり、より
多くの周波数帯域での電波の送信あるいは受信が可能と
なる。As described above, by disposing a plurality of loop-shaped radiation electrodes, it is possible to use both the fundamental mode and the higher-order mode of each loop-shaped radiation electrode, and to transmit radio waves in more frequency bands. Transmission or reception becomes possible.
【0100】さらに、上記第2実施形態例では、ミアン
ダ電極部20がループ状放射電極3の電流分布大側領域
Aに介設されていたが、例えば、その応用例として、そ
のループ状放射電極3の電流分布大側領域Aの一部分を
局部的に細くして該電流分布大側領域Aにインダクタン
スを付与する構成のインダクタ電極部を設けてもよい。Further, in the second embodiment, the meandering electrode portion 20 is interposed in the large current distribution region A of the loop-shaped radiation electrode 3. For example, as an application example thereof, the loop-shaped radiation electrode 3 may be provided with an inductor electrode portion configured to locally narrow a part of the large current distribution side region A to provide an inductance to the large current distribution side region A.
【0101】さらに、上記第5実施形態例では、グラン
ド電極30は3箇所に配設されていたが、グランド電極
30の配設数は数に限定されるものではない。Further, in the fifth embodiment, the ground electrodes 30 are provided at three places, but the number of the ground electrodes 30 is not limited to the number.
【0102】さらに、上記第6実施形態例では、チップ
コイル部品を利用して、給電用配線パターン25にイン
ダクタンスを付与する構成と成していたが、例えば、上
記チップコイル部品に代えて、ミアンダパターン(イン
ダクタ部)を利用して、給電用配線パターン25にイン
ダクタンスを付与する構成としてもよい。また、チップ
コイル部品とミアンダパターンを組み合わせて、給電用
配線パターン25にインダクタンスを付与する構成とし
てもよい。Further, in the sixth embodiment, a configuration is adopted in which an inductance is imparted to the power supply wiring pattern 25 by using a chip coil component. For example, instead of the chip coil component, a meander A configuration may be used in which an inductance is given to the power supply wiring pattern 25 using a pattern (inductor portion). Further, a configuration may be adopted in which an inductance is given to the power supply wiring pattern 25 by combining a chip coil component and a meander pattern.
【0103】さらに、上記第6実施形態例では、給電用
配線パターン25にインダクタンスを付与するインダク
タ部が設けられていたが、例えば、サブ給電用配線パタ
ーン26が形成される場合には、このサブ給電用配線パ
ターン26にも上記同様のインダクタ部を介設してもよ
い。Further, in the sixth embodiment, the inductor portion for providing the inductance is provided to the power supply wiring pattern 25. For example, when the sub power supply wiring pattern 26 is formed, The power supply wiring pattern 26 may be provided with an inductor portion similar to the above.
【0104】[0104]
【発明の効果】この発明によれば、アンテナを実装基板
の非グランド領域に実装する構成としたので、アンテナ
の放射電極は実装基板のグランドから離れて配置される
こととなり、これにより、放射電極とグランド間の容量
が小さくなって、基体を大きくすることなく、周波数帯
域の広帯域化を図ることができることとなり、周波数帯
域の広帯域化とアンテナの小型化を共に向上させること
が容易となる。According to the present invention, since the antenna is mounted on the non-ground area of the mounting board, the radiating electrode of the antenna is disposed at a distance from the ground of the mounting board. The capacitance between the ground and the ground is reduced, so that the frequency band can be widened without increasing the size of the base, and it is easy to improve both the widening of the frequency band and the miniaturization of the antenna.
【0105】しかも、この発明では、放射電極は開放端
が給電端部側電極部位に間隔を介して対向配置されるル
ープ状放射電極と成していることから、上記開放端と給
電端部側電極部位間に容量が生じ、該容量を可変するこ
とによって、ループ状放射電極の基本モードの共振周波
数を大きく変化させずに、その基本モードの共振周波数
と高次モードの共振周波数との間の間隔を容易に可変制
御することができる。つまり、高次モードの共振周波数
の可変制御をほぼ基本モードと独立させた状態で行うこ
とが可能となる。これにより、基本モードと高次モード
の各共振周波数がそれぞれ要求の周波数となるように設
計することが容易となるため、ループ状放射電極におけ
る基本モードと高次モードの両方の共振モードを利用し
た電波の送信あるいは受信が可能となる。Further, according to the present invention, since the open end of the radiating electrode is formed as a loop-shaped radiating electrode opposed to the power supply end side electrode portion with a space therebetween, the open end and the power supply end side A capacitance is generated between the electrode portions, and by varying the capacitance, the resonance frequency of the fundamental mode of the loop-shaped radiation electrode is not largely changed, and the resonance frequency of the fundamental mode and the resonance frequency of the higher-order mode are not changed. The interval can easily be variably controlled. That is, the variable control of the resonance frequency of the higher-order mode can be performed almost independently of the fundamental mode. This makes it easy to design the resonance frequencies of the fundamental mode and the higher-order mode to be the required frequencies, respectively. Therefore, both the fundamental mode and the higher-order mode of the loop-shaped radiation electrode are used. Transmission or reception of radio waves becomes possible.
【0106】この結果、1つのループ状放射電極を設け
るだけで、マルチバンド化に対応することができること
となり、上記効果と相俟って、周波数帯域の広帯域化と
アンテナの小型化とマルチバンド化の全ての要求を満た
すことが可能な表面実装型アンテナ構造を提供すること
ができる。As a result, it is possible to cope with multi-banding simply by providing one loop-shaped radiating electrode, and in combination with the above-described effects, the frequency band can be widened, the antenna can be downsized, and the multi-banding can be realized. Can be provided.
【0107】また、この発明において特有な構成を持つ
表面実装型アンテナ構造を備えた通信機にあっては、周
波数帯域が広く、しかも、小型で、複数の周波数帯域を
持つ通信機を提供することができる。Also, in the present invention, a communication device having a surface-mounted antenna structure having a unique configuration has a wide frequency band, is small, and has a plurality of frequency bands. Can be.
【0108】ループ状放射電極の電流分布大側領域にイ
ンダクタンスを付与するミアンダ電極部が介設されてい
るものにあっては、ミアンダ電極部によって上記ループ
状放射電極の電流分布大側領域にインダクタンスが付与
されるので、その電流分布大側領域の電気長が長くな
り、これにより、アンテナの基体を大きくすることな
く、ループ状放射電極の共振周波数を下げることができ
る。このため、アンテナのより一層の小型化を図ること
ができる。In the case where a meander electrode portion for providing an inductance is provided on the large current distribution region of the loop-shaped radiation electrode, the meander electrode portion provides an inductance in the large current distribution region of the loop-shaped radiation electrode. Is given, the electric length of the large current distribution side region is lengthened, whereby the resonance frequency of the loop-shaped radiation electrode can be reduced without increasing the size of the antenna base. Therefore, the size of the antenna can be further reduced.
【0109】ループ状放射電極が基体の上面から側面と
実装底面と側面を順に通って上面に戻るループ経路でも
って形成されている発明にあっては、グランドと見なせ
る物体が、例えば、実装基板のアンテナ実装面に直交す
る方向にアンテナに対して相対的に遠近移動しても、上
記ループ状放射電極は、その物体の移動による悪影響を
殆ど受けずに、アンテナ動作を安定的に行うことができ
る。このことから、上記物体の移動に起因したアンテナ
特性の変化をほぼ抑制できる。これにより、アンテナ特
性の信頼性を向上させることができる。In the invention in which the loop-shaped radiation electrode is formed with a loop path returning from the top surface of the base to the side surface, the mounting bottom surface, and the side surface to return to the top surface, the object that can be regarded as ground is, for example, the mounting substrate. Even if the antenna moves relatively far and near to the antenna in a direction orthogonal to the antenna mounting surface, the loop-shaped radiation electrode can perform the antenna operation stably without being substantially affected by the movement of the object. . Thus, a change in antenna characteristics due to the movement of the object can be substantially suppressed. Thereby, the reliability of the antenna characteristics can be improved.
【0110】ループ状放射電極を含む複数の放射電極が
それら各給電端部を共通の給電電極に連通接続させて設
けられているものや、実装基板には給電用配線パターン
とサブ給電用配線パターンが形成されており、アンテナ
の基体には上記給電用配線パターンに連通接続する放射
電極と、上記サブ給電用配線パターンに連通接続する放
射電極とが形成されているものにあっては、ループ状放
射電極を含む複数の放射電極が形成されているので、よ
り多くの周波数帯域での電波の送信あるいは受信が可能
となり、1つのチップ状のアンテナを設けるだけで、3
つ以上のアプリケーションに対応することが可能とな
り、マルチバンド化をさらに促進させることができる。A plurality of radiating electrodes including a loop-shaped radiating electrode are provided by connecting their respective power supply ends to a common power supply electrode, and a power supply wiring pattern and a sub power supply wiring pattern are provided on a mounting substrate. Are formed on the base of the antenna, and a radiation electrode connected to the wiring pattern for power supply and a radiation electrode connected to the wiring pattern for sub-power supply are formed in a loop shape. Since a plurality of radiating electrodes including the radiating electrode are formed, transmission or reception of a radio wave in a wider frequency band becomes possible.
It is possible to cope with one or more applications, and it is possible to further promote multiband.
【0111】グランド電極が設けられており、このグラ
ンド電極によって、ループ状放射電極における高次モー
ドの電界最強側領域とグランドとの間に容量を持たせる
ことが可能な構成を備えたものにあっては、そのループ
状放射電極における高次モードの電界最強側領域とグラ
ンド間の容量を可変することによって、基本モードの共
振周波数を殆ど変化させずに、高次モードの共振周波数
を可変制御することが可能である。このため、このルー
プ状放射電極における高次モードの電界最強側領域とグ
ランド間の容量の可変制御と、前記したようなループ状
放射電極の開放端と給電端部側電極部位との間の容量の
可変制御とを両方共に利用することによって、より高次
モードの共振周波数の可変制御が容易となって、基本モ
ードと高次モードの各共振周波数をそれぞれ要求の周波
数に精度良く設定することが可能となる。これにより、
アンテナ特性の信頼性をより高めることができる。A ground electrode is provided, and the ground electrode has a structure capable of providing a capacitance between the region of the loop-shaped radiation electrode where the higher-order mode electric field is strongest and the ground. By varying the capacitance between the high-order mode electric field strongest region of the loop-shaped radiation electrode and the ground, the resonance frequency of the higher-order mode is variably controlled without substantially changing the resonance frequency of the fundamental mode. It is possible. For this reason, the variable control of the capacitance between the electric field strongest region of the higher order mode and the ground in the loop-shaped radiation electrode, and the capacitance between the open end of the loop-shaped radiation electrode and the power supply end side electrode portion as described above. By using both the variable control of the first mode and the variable control of the higher mode, the variable control of the resonance frequency of the higher-order mode becomes easier, and the respective resonance frequencies of the fundamental mode and the higher-order mode can be set to the required frequencies with high accuracy. It becomes possible. This allows
The reliability of the antenna characteristics can be further improved.
【0112】基体に半田固定専用の電極が形成されてい
るものにあっては、アンテナの基体を強固に実装基板に
固定することができて、耐久性の信頼性を高めることが
できる。In the case where the electrode dedicated to solder fixing is formed on the base, the base of the antenna can be firmly fixed to the mounting substrate, and the reliability of durability can be improved.
【0113】実装基板の給電用配線パターンにインダク
タンスを付与するインダクタ部が設けられているものに
あっては、基体を大きくして上記給電用配線パターンに
連通接続されている放射電極の経路長を長くすることな
く、上記給電用配線パターンにインダクタンスを付与す
ることによって、上記給電用配線パターンに連通接続す
る放射電極の基本モードの共振周波数を下げることがで
きる。このため、アンテナのより小型化を図ることがで
きる。In the case where the inductor portion for providing inductance to the power supply wiring pattern of the mounting board is provided, the size of the base is increased and the path length of the radiation electrode connected to the power supply wiring pattern is reduced. By giving inductance to the power supply wiring pattern without increasing the length, it is possible to reduce the fundamental mode resonance frequency of the radiation electrode connected to the power supply wiring pattern. For this reason, the size of the antenna can be further reduced.
【0114】ループ状放射電極を含む複数の放射電極が
それぞれ互いに基体の形成面を異にして配設されている
構成を備えたものにあっては、基体を大きくして各放射
電極間の間隔を広げることなく、各放射電極間の相互干
渉を抑制することができるので、アンテナの小型化を図
ることができる。In the case where the plurality of radiating electrodes including the loop-shaped radiating electrodes are arranged on different base forming surfaces, the base is enlarged and the interval between the radiating electrodes is increased. Since the mutual interference between the radiation electrodes can be suppressed without expanding the size of the antenna, the size of the antenna can be reduced.
【0115】アンテナが、通信機の回路基板の角領域
に、放射電極を流れる電流と回路基板のグランド領域を
流れる電流とが強め合う条件を満たして配設されている
通信機にあっては、上記グランド領域を流れる電流が大
きくアンテナの指向性に関与して、アンテナに強い指向
性を持たせることができる。このため、例えば、グラン
ドと見なせる物体がアンテナに対して相対的に遠近移動
した際のアンテナ特性の変化を小さく抑制することが可
能となり、アンテナ特性の信頼性を高めることができ
る。In a communication device in which an antenna is provided in a corner region of a circuit board of the communication device so as to satisfy a condition that a current flowing through a radiation electrode and a current flowing through a ground region of the circuit board are strengthened, The current flowing through the ground region is large and contributes to the directivity of the antenna, so that the antenna can have strong directivity. For this reason, for example, it is possible to suppress a change in antenna characteristics when an object that can be regarded as ground relatively moves toward and away from the antenna, thereby improving the reliability of the antenna characteristics.
【図1】第1実施形態例において特徴的な表面実装型ア
ンテナ構造を模式的に示したモデル図である。FIG. 1 is a model diagram schematically showing a characteristic surface mount antenna structure in a first embodiment.
【図2】第1実施形態例において特徴的なアンテナの実
装形態例を模式的に示した説明図である。FIG. 2 is an explanatory diagram schematically showing a mounting example of a characteristic antenna according to the first embodiment.
【図3】ループ状放射電極の開放端と給電端部側電極部
位との間の容量の変化によるループ状放射電極の周波数
特性の変化を示すグラフである。FIG. 3 is a graph showing a change in frequency characteristics of the loop-shaped radiation electrode due to a change in capacitance between an open end of the loop-shaped radiation electrode and a power supply end side electrode portion.
【図4】第2実施形態例において特徴的なアンテナを抜
き出して模式的に示したモデル図である。FIG. 4 is a model diagram schematically showing a characteristic antenna extracted in the second embodiment.
【図5】第3実施形態例において特徴的な表面実装型ア
ンテナ構造を模式的に示したモデル図である。FIG. 5 is a model diagram schematically showing a characteristic surface mount antenna structure in the third embodiment.
【図6】第4実施形態例において特徴的なアンテナの構
成の一例を模式的に示したモデル図である。FIG. 6 is a model diagram schematically showing an example of a characteristic antenna configuration in the fourth embodiment.
【図7】第4実施形態例において特徴的なアンテナのそ
の他の構成例を模式的に示したモデル図である。FIG. 7 is a model diagram schematically showing another configuration example of a characteristic antenna in the fourth embodiment.
【図8】さらに、第4実施形態例において特徴的なアン
テナのその他の構成例を模式的に示したモデル図であ
る。FIG. 8 is a model diagram schematically showing another configuration example of a characteristic antenna according to the fourth embodiment.
【図9】第5実施形態例において特徴的な表面実装型ア
ンテナ構造を模式的に示した説明図である。FIG. 9 is an explanatory view schematically showing a characteristic surface mount antenna structure in the fifth embodiment.
【図10】第6実施形態例において特徴的な表面実装型
アンテナ構造を模式的に示した説明図である。FIG. 10 is an explanatory diagram schematically showing a characteristic surface mount antenna structure in the sixth embodiment.
【図11】基体のその他の形態およびループ状放射電極
のその他の形態例を説明するための図である。FIG. 11 is a diagram for explaining another embodiment of the base and another embodiment of the loop-shaped radiation electrode.
【図12】さらに、ループ状放射電極のその他の形態例
を示したモデル図である。FIG. 12 is a model diagram showing still another embodiment of the loop-shaped radiation electrode.
【図13】ループ状放射電極とは異なる放射電極を複数
設けた場合の形態例を示すモデル図である。FIG. 13 is a model diagram showing an example of a case where a plurality of radiation electrodes different from the loop radiation electrodes are provided.
【図14】ループ状放射電極を複数設けた場合の形態例
を示すモデル図である。FIG. 14 is a model diagram showing an example of a case where a plurality of loop-shaped radiation electrodes are provided.
【図15】表面実装型アンテナの従来例を示す説明図で
ある。FIG. 15 is an explanatory view showing a conventional example of a surface mount antenna.
【図16】さらに、表面実装型アンテナの従来例を示す
説明図である。FIG. 16 is an explanatory view showing a conventional example of a surface mount antenna.
1 アンテナ 2 基体 3 ループ状放射電極 4 給電電極 15 回路基板 16 非グランド領域 17 グランド電極 20 ミアンダ状電極部 22,44 放射電極 25 給電用配線パターン 26 サブ給電用配線パターン 30 グランド電極 31 固定用電極 34,35 チップコイル部品 DESCRIPTION OF SYMBOLS 1 Antenna 2 Substrate 3 Loop radiation electrode 4 Feed electrode 15 Circuit board 16 Non-ground area 17 Ground electrode 20 Meander-shaped electrode part 22, 44 Radiation electrode 25 Feeding wiring pattern 26 Sub feeding wiring pattern 30 Ground electrode 31 Fixing electrode 34,35 Chip coil parts
Claims (10)
に信号を供給する給電電極とが形成されて成るアンテナ
が、実装基板に搭載されて構成されており、給電電極か
ら供給される信号に応じて上記放射電極の基本モードの
アンテナ動作と高次モードのアンテナ動作が可能と成
し、互いに異なる複数の周波数帯域を持つ表面実装型ア
ンテナ構造であって、上記放射電極はその一端側が上記
給電電極に連通接続する給電端部と成し、他端側が開放
端と成し、該放射電極は上記開放端と給電端部側電極部
位間に、高次モードの共振周波数を制御するための容量
が形成された外回りのループ状放射電極と成しており、
また、上記実装基板には非グランド領域が形成されてお
り、上記アンテナは上記実装基板の非グランド領域に実
装されていることを特徴とした表面実装型アンテナ構
造。An antenna having a radiation electrode formed on a base and a power supply electrode for supplying a signal to one end of the radiation electrode is mounted on a mounting substrate and supplied from the power supply electrode. A fundamental mode antenna operation and a higher order mode antenna operation of the radiation electrode can be performed according to a signal, and a surface mount antenna structure having a plurality of frequency bands different from each other. The power supply electrode is connected to the power supply electrode, and the other end is an open end. The radiation electrode is provided between the open end and the power supply end side electrode portion to control a resonance frequency of a higher-order mode. The outer loop-shaped radiating electrode with the capacitance of
Also, a non-ground area is formed on the mounting board, and the antenna is mounted on the non-ground area of the mounting board.
領域にインダクタンスを付与するミアンダ電極部が介設
されていることを特徴とした請求項1記載の表面実装型
アンテナ構造。2. The surface-mounted antenna structure according to claim 1, wherein the loop-shaped radiation electrode is provided with a meander electrode portion for providing an inductance to a large current distribution region.
プ状放射電極は、上記給電電極から基体の上面に形成さ
れ、さらに、基体の上面から側面と実装底面と側面を順
に通して上面に戻るループ経路でもって形成されて開放
端と給電端部側電極部位間に容量を形成して配置されて
いる形態と成していることを特徴とした請求項1又は請
求項2記載の表面実装型アンテナ構造。3. The power supply electrode is formed on the side surface of the base, and the loop-shaped radiation electrode is formed on the upper surface of the base from the power supply electrode. 3. The surface mounting device according to claim 1, wherein the surface mounting device is formed with a return loop path, and is arranged so as to form a capacitor between the open end and the power supply end side electrode portion. Type antenna structure.
を含む複数の放射電極がそれら各給電端部を共通の給電
電極に連通接続させて設けられていることを特徴とした
請求項1又は請求項2又は請求項3記載の表面実装型ア
ンテナ構造。4. The antenna according to claim 1, wherein a plurality of radiation electrodes including a loop-shaped radiation electrode are provided on the base of the antenna such that each of the power supply ends is connected to a common power supply electrode. The surface-mounted antenna structure according to claim 2 or 3.
接続する給電用配線パターンが形成されると共に、共振
周波数調整用のインダクタンス成分を持つサブ給電用配
線パターンが上記給電用配線パターンから分岐して基体
に向けて形成されており、アンテナの基体には、上記給
電用配線パターンに給電電極を介して連通接続される放
射電極が形成されると共に、上記サブ給電用配線パター
ンに連通接続される別の放射電極が形成されていること
を特徴とした請求項1乃至請求項4の何れか1つに記載
の表面実装型アンテナ構造。5. A power supply wiring pattern connected to a power supply electrode of an antenna is formed on a mounting board, and a sub power supply wiring pattern having an inductance component for adjusting a resonance frequency is branched from the power supply wiring pattern. A radiation electrode is formed on the base of the antenna so as to be connected to the power supply wiring pattern via a power supply electrode, and is connected to the sub power supply wiring pattern. 5. The surface-mounted antenna structure according to claim 1, wherein another radiation electrode is formed.
における高次モードの電界最強側領域とグランドとの間
に容量を持たせるためのグランド電極が形成されている
ことを特徴とした請求項1乃至請求項5の何れか1つに
記載の表面実装型アンテナ構造。6. The antenna according to claim 1, wherein a ground electrode is provided on the base of the antenna for providing a capacitance between the high-order mode electric field strongest region of the loop-shaped radiation electrode and the ground. A surface-mounted antenna structure according to any one of claims 1 to 5.
れる構成と成し、基体には上記半田を当該基体に接合さ
せるための半田固定専用の電極が形成されていることを
特徴とした請求項1乃至請求項6の何れか1つに記載の
表面実装型アンテナ構造。7. The antenna according to claim 1, wherein the antenna is configured to be mounted on a mounting board by solder, and an electrode dedicated to solder fixing for bonding the solder to the base is formed on the base. The surface-mounted antenna structure according to any one of claims 1 to 6.
接続する給電用配線パターンが形成されており、この給
電用配線パターンにインダクタンスを付与するインダク
タ部が設けられていることを特徴とした請求項1乃至請
求項7の何れか1つに記載の表面実装型アンテナ構造。8. The power supply wiring pattern connected to the power supply electrode of the antenna is formed on the mounting board, and the power supply wiring pattern is provided with an inductor portion for providing an inductance. The surface-mounted antenna structure according to any one of claims 1 to 7.
プ状放射電極を含む複数の放射電極が上記基体の表面に
形成される構成と成し、上記複数の放射電極はそれぞれ
互いに基体の形成面を異にして設けられていることを特
徴とした請求項1乃至請求項8の何れか1つに記載の表
面実装型アンテナ構造。9. A base of the antenna is formed in a rectangular parallelepiped shape, and a plurality of radiating electrodes including a loop-shaped radiating electrode are formed on a surface of the base. The surface-mounted antenna structure according to any one of claims 1 to 8, wherein the surface-mounted antenna structure is provided on a different surface.
記載の表面実装型アンテナ構造を備え、該表面実装型ア
ンテナ構造の実装基板は通信機の回路基板によって構成
されており、アンテナは上記回路基板の角領域に、放射
電極を流れる電流と回路基板のグランド領域に流れる電
流とが強め合い指向性を持つ条件を満たして配設されて
いることを特徴とした通信機。10. A surface-mounted antenna structure according to claim 1, wherein a mounting board of the surface-mounted antenna structure is constituted by a circuit board of a communication device. A communication device characterized in that a current flowing through a radiation electrode and a current flowing through a ground region of a circuit board are arranged in a corner area of the circuit board so as to satisfy a condition having directivity.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000353129A JP4432254B2 (en) | 2000-11-20 | 2000-11-20 | Surface mount antenna structure and communication device including the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000353129A JP4432254B2 (en) | 2000-11-20 | 2000-11-20 | Surface mount antenna structure and communication device including the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002158529A true JP2002158529A (en) | 2002-05-31 |
| JP4432254B2 JP4432254B2 (en) | 2010-03-17 |
Family
ID=18825930
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000353129A Expired - Lifetime JP4432254B2 (en) | 2000-11-20 | 2000-11-20 | Surface mount antenna structure and communication device including the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4432254B2 (en) |
Cited By (147)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002089249A1 (en) * | 2001-04-23 | 2002-11-07 | Yokowo Co., Ltd. | Broad-band antenna for mobile communication |
| WO2003067703A1 (en) * | 2001-12-20 | 2003-08-14 | Perlos Ab | Antenna device |
| WO2004006385A1 (en) * | 2002-07-05 | 2004-01-15 | Taiyo Yuden Co.,Ldt. | Dielectric antenna, antenna-mounted substrate, and mobile communication machine having them therein |
| EP1414108A3 (en) * | 2002-10-23 | 2004-10-06 | Murata Manufacturing Co., Ltd. | Surface mount antenna, antenna device and communication device using the same |
| WO2004097980A1 (en) * | 2003-04-25 | 2004-11-11 | Sumitomo Electric Industries, Ltd. | Wideband flat antenna |
| EP1394897A3 (en) * | 2002-08-23 | 2005-01-26 | Murata Manufacturing Co., Ltd. | Antenna unit and communication device including same |
| EP1517400A3 (en) * | 2003-09-11 | 2005-03-30 | Kyocera Corporation | SMD antenna |
| EP1538701A1 (en) * | 2003-12-04 | 2005-06-08 | YOKOWO Co., Ltd | Dielectric antenna and communication device incorporating the same |
| JP2005303637A (en) * | 2004-04-09 | 2005-10-27 | Furukawa Electric Co Ltd:The | Multi-frequency antenna and small antenna |
| EP1579530A4 (en) * | 2002-10-28 | 2005-12-28 | Agency Science Tech & Res | BUILT-IN MINIATURE MULTI-FREQUENCY ANGLE ANTENNA |
| US6995720B2 (en) | 2003-09-05 | 2006-02-07 | Alps Electric Co., Ltd. | Dual-band antenna with easily and finely adjustable resonant frequency, and method for adjusting resonant frequency |
| US7026994B2 (en) | 2002-12-13 | 2006-04-11 | Kyocera Corporation | Surface-mount type antenna and antenna apparatus |
| JP2006140589A (en) * | 2004-11-10 | 2006-06-01 | Casio Hitachi Mobile Communications Co Ltd | Antenna structure |
| JP2006157290A (en) * | 2004-11-26 | 2006-06-15 | Kyocera Corp | Surface mount antenna, antenna device using the same, and radio communication device |
| WO2006080141A1 (en) | 2005-01-27 | 2006-08-03 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| JP2006270916A (en) * | 2004-11-24 | 2006-10-05 | Mitsubishi Materials Corp | Antenna assembly |
| US7119749B2 (en) | 2004-04-28 | 2006-10-10 | Murata Manufacturing Co., Ltd. | Antenna and radio communication apparatus |
| US7126541B2 (en) | 2002-11-19 | 2006-10-24 | Farrokh Mohamadi | Beam forming phased array system in a transparent substrate |
| WO2006134701A1 (en) * | 2005-06-17 | 2006-12-21 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication device |
| JP2007502050A (en) * | 2003-08-07 | 2007-02-01 | ソニー エリクソン モバイル コミュニケーションズ, エービー | Tunable parasitic resonator |
| KR100693218B1 (en) * | 2005-10-25 | 2007-03-13 | (주)에이스안테나 | Stub Short Circuit Broadband Antenna |
| WO2007046285A1 (en) * | 2005-10-17 | 2007-04-26 | Nec Corporation | Antenna unit and communication device |
| KR100740314B1 (en) * | 2005-11-09 | 2007-07-18 | 주식회사 오토전자 | Small Chip Type Pattern Antenna |
| EP1761973A4 (en) * | 2004-06-26 | 2007-08-15 | Emw Antenna Co Ltd | Multi-band built-in antenna for independently adjusting resonant frequencies and method for adjusting resonant frequencies |
| WO2008007489A1 (en) * | 2006-07-13 | 2008-01-17 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| JP2008167467A (en) * | 2008-01-25 | 2008-07-17 | Furukawa Electric Co Ltd:The | Small antenna |
| WO2008087780A1 (en) * | 2007-01-19 | 2008-07-24 | Murata Manufacturing Co., Ltd. | Antenna unit and wireless communication apparatus |
| KR100849810B1 (en) | 2006-02-10 | 2008-07-31 | 가시오 히타치 모바일 커뮤니케이션즈 컴퍼니 리미티드 | Antenna device |
| CN100418268C (en) * | 2003-06-26 | 2008-09-10 | 京瓷株式会社 | Surface mount antennas, antenna equipment and radio communication equipment |
| WO2008117558A1 (en) * | 2007-03-23 | 2008-10-02 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| KR100867527B1 (en) | 2007-05-30 | 2008-11-06 | 삼성전기주식회사 | Tunable Loop Antenna |
| WO2008136244A1 (en) * | 2007-05-02 | 2008-11-13 | Murata Manufacturing Co., Ltd. | Antenna structure and wireless communication apparatus comprising the same |
| WO2009028251A1 (en) | 2007-08-24 | 2009-03-05 | Murata Manufacturing Co., Ltd. | Antenna apparatus and radio communication device |
| US7505007B2 (en) | 1999-09-20 | 2009-03-17 | Fractus, S.A. | Multi-level antennae |
| US7541979B2 (en) | 2004-10-20 | 2009-06-02 | Hitachi Cable, Ltd. | Small size thin type antenna, multilayered substrate, high frequency module, and radio terminal mounting them |
| KR100907319B1 (en) | 2007-03-20 | 2009-07-13 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Antenna for radio frequency identification rfid tags |
| US7573424B2 (en) | 2005-06-10 | 2009-08-11 | Hon Hai Precision Industry Co., Ltd. | Dual-band antenna for radiating electromagnetic signals of different frequencies |
| US7630685B2 (en) | 2006-01-19 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US7629942B2 (en) | 2006-04-14 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Antenna |
| KR100954879B1 (en) * | 2007-12-04 | 2010-04-28 | 삼성전기주식회사 | Antenna-embedded printed circuit board |
| US7791539B2 (en) | 2002-11-07 | 2010-09-07 | Fractus, S.A. | Radio-frequency system in package including antenna |
| WO2010110517A1 (en) * | 2009-03-23 | 2010-09-30 | Industry-University Cooperation Foundation Hanyang University | Antenna using a reactive element |
| US7857230B2 (en) | 2007-07-18 | 2010-12-28 | Murata Manufacturing Co., Ltd. | Wireless IC device and manufacturing method thereof |
| EP2323217A1 (en) | 2009-11-13 | 2011-05-18 | Research In Motion Limited | Antenna for multi mode mimo communication in handheld devices |
| US20110115677A1 (en) * | 2009-11-13 | 2011-05-19 | Research In Motion Limited | Antenna for multi mode mimo communication in handheld devices |
| WO2011062274A1 (en) * | 2009-11-20 | 2011-05-26 | 日立金属株式会社 | Antenna |
| JP2011124878A (en) * | 2009-12-11 | 2011-06-23 | Samsung Electronics Co Ltd | Antenna device |
| US7967216B2 (en) | 2008-05-22 | 2011-06-28 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| EP2333901A3 (en) * | 2009-12-11 | 2011-07-13 | Samsung Electronics Co., Ltd. | Antenna device |
| US7997501B2 (en) | 2007-07-17 | 2011-08-16 | Murata Manufacturing Co., Ltd. | Wireless IC device and electronic apparatus |
| JP2011160368A (en) * | 2010-02-04 | 2011-08-18 | Murata Mfg Co Ltd | Dielectric antenna and wireless communication device |
| WO2011102017A1 (en) * | 2010-02-16 | 2011-08-25 | 株式会社村田製作所 | Antenna and wireless communication device |
| US8011589B2 (en) | 2008-06-25 | 2011-09-06 | Murata Manufacturing Co., Ltd. | Wireless IC device and manufacturing method thereof |
| KR101097950B1 (en) * | 2003-10-09 | 2011-12-22 | 후루카와 덴키 고교 가부시키가이샤 | A small antenna and a multiband antenna |
| JP2012019281A (en) * | 2010-07-06 | 2012-01-26 | Toshiba Corp | Antenna device, and wireless device |
| WO2012032975A1 (en) * | 2010-09-08 | 2012-03-15 | 株式会社村田製作所 | Antenna and mobile communication apparatus |
| JP2012085215A (en) * | 2010-10-14 | 2012-04-26 | Panasonic Corp | Antenna device and electronic apparatus |
| US8177138B2 (en) | 2008-10-29 | 2012-05-15 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US8179329B2 (en) | 2008-03-03 | 2012-05-15 | Murata Manufacturing Co., Ltd. | Composite antenna |
| JP2012114579A (en) * | 2010-11-22 | 2012-06-14 | Tdk Corp | Antenna device and frequency adjustment method therefor |
| US8228765B2 (en) | 2006-06-30 | 2012-07-24 | Murata Manufacturing Co., Ltd. | Optical disc |
| CN102664304A (en) * | 2012-04-27 | 2012-09-12 | 深圳光启创新技术有限公司 | Portable electronic device with internally-arranged Bluetooth antenna |
| US8299968B2 (en) | 2007-02-06 | 2012-10-30 | Murata Manufacturing Co., Ltd. | Packaging material with electromagnetic coupling module |
| US8299929B2 (en) | 2006-09-26 | 2012-10-30 | Murata Manufacturing Co., Ltd. | Inductively coupled module and item with inductively coupled module |
| US8330259B2 (en) | 2004-07-23 | 2012-12-11 | Fractus, S.A. | Antenna in package with reduced electromagnetic interaction with on chip elements |
| US8336786B2 (en) | 2010-03-12 | 2012-12-25 | Murata Manufacturing Co., Ltd. | Wireless communication device and metal article |
| US8342416B2 (en) | 2009-01-09 | 2013-01-01 | Murata Manufacturing Co., Ltd. | Wireless IC device, wireless IC module and method of manufacturing wireless IC module |
| US8360330B2 (en) | 2007-12-26 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Antenna device and radio frequency IC device |
| US8360325B2 (en) | 2008-04-14 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device |
| US8360324B2 (en) | 2007-04-09 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8381997B2 (en) | 2009-06-03 | 2013-02-26 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and method of manufacturing the same |
| US8390459B2 (en) | 2007-04-06 | 2013-03-05 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8400307B2 (en) | 2007-07-18 | 2013-03-19 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and electronic apparatus |
| US8400365B2 (en) | 2009-11-20 | 2013-03-19 | Murata Manufacturing Co., Ltd. | Antenna device and mobile communication terminal |
| US8418928B2 (en) | 2009-04-14 | 2013-04-16 | Murata Manufacturing Co., Ltd. | Wireless IC device component and wireless IC device |
| US8424769B2 (en) | 2010-07-08 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Antenna and RFID device |
| US8424762B2 (en) | 2007-04-14 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8474725B2 (en) | 2007-04-27 | 2013-07-02 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| CN103201904A (en) * | 2011-10-06 | 2013-07-10 | 松下电器产业株式会社 | Antenna device and wireless communication device |
| US8531346B2 (en) | 2007-04-26 | 2013-09-10 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| CN103299483A (en) * | 2010-12-28 | 2013-09-11 | 三菱综合材料株式会社 | Substrate for antenna device and antenna device |
| US8546927B2 (en) | 2010-09-03 | 2013-10-01 | Murata Manufacturing Co., Ltd. | RFIC chip mounting structure |
| US8552870B2 (en) | 2007-07-09 | 2013-10-08 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8583043B2 (en) | 2009-01-16 | 2013-11-12 | Murata Manufacturing Co., Ltd. | High-frequency device and wireless IC device |
| US8590797B2 (en) | 2008-05-21 | 2013-11-26 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8596545B2 (en) | 2008-05-28 | 2013-12-03 | Murata Manufacturing Co., Ltd. | Component of wireless IC device and wireless IC device |
| US8602310B2 (en) | 2010-03-03 | 2013-12-10 | Murata Manufacturing Co., Ltd. | Radio communication device and radio communication terminal |
| US8610636B2 (en) | 2007-12-20 | 2013-12-17 | Murata Manufacturing Co., Ltd. | Radio frequency IC device |
| US8613395B2 (en) | 2011-02-28 | 2013-12-24 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8632014B2 (en) | 2007-04-27 | 2014-01-21 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8668151B2 (en) | 2008-03-26 | 2014-03-11 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8680971B2 (en) | 2009-09-28 | 2014-03-25 | Murata Manufacturing Co., Ltd. | Wireless IC device and method of detecting environmental state using the device |
| US8692718B2 (en) | 2008-11-17 | 2014-04-08 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US8718727B2 (en) | 2009-12-24 | 2014-05-06 | Murata Manufacturing Co., Ltd. | Antenna having structure for multi-angled reception and mobile terminal including the antenna |
| US8720789B2 (en) | 2012-01-30 | 2014-05-13 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8740093B2 (en) | 2011-04-13 | 2014-06-03 | Murata Manufacturing Co., Ltd. | Radio IC device and radio communication terminal |
| US8757500B2 (en) | 2007-05-11 | 2014-06-24 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8770489B2 (en) | 2011-07-15 | 2014-07-08 | Murata Manufacturing Co., Ltd. | Radio communication device |
| US8797148B2 (en) | 2008-03-03 | 2014-08-05 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and radio communication system |
| US8797225B2 (en) | 2011-03-08 | 2014-08-05 | Murata Manufacturing Co., Ltd. | Antenna device and communication terminal apparatus |
| US8810456B2 (en) | 2009-06-19 | 2014-08-19 | Murata Manufacturing Co., Ltd. | Wireless IC device and coupling method for power feeding circuit and radiation plate |
| US8814056B2 (en) | 2011-07-19 | 2014-08-26 | Murata Manufacturing Co., Ltd. | Antenna device, RFID tag, and communication terminal apparatus |
| US8853549B2 (en) | 2009-09-30 | 2014-10-07 | Murata Manufacturing Co., Ltd. | Circuit substrate and method of manufacturing same |
| US8870077B2 (en) | 2008-08-19 | 2014-10-28 | Murata Manufacturing Co., Ltd. | Wireless IC device and method for manufacturing same |
| US8878739B2 (en) | 2011-07-14 | 2014-11-04 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8905316B2 (en) | 2010-05-14 | 2014-12-09 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8905296B2 (en) | 2011-12-01 | 2014-12-09 | Murata Manufacturing Co., Ltd. | Wireless integrated circuit device and method of manufacturing the same |
| JP2014233032A (en) * | 2013-05-30 | 2014-12-11 | 三菱マテリアル株式会社 | Antenna device |
| US8937576B2 (en) | 2011-04-05 | 2015-01-20 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8944335B2 (en) | 2010-09-30 | 2015-02-03 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8976075B2 (en) | 2009-04-21 | 2015-03-10 | Murata Manufacturing Co., Ltd. | Antenna device and method of setting resonant frequency of antenna device |
| US8981906B2 (en) | 2010-08-10 | 2015-03-17 | Murata Manufacturing Co., Ltd. | Printed wiring board and wireless communication system |
| JP2015053548A (en) * | 2013-09-05 | 2015-03-19 | 富士通株式会社 | Antenna device |
| US8994605B2 (en) | 2009-10-02 | 2015-03-31 | Murata Manufacturing Co., Ltd. | Wireless IC device and electromagnetic coupling module |
| US8991713B2 (en) | 2011-01-14 | 2015-03-31 | Murata Manufacturing Co., Ltd. | RFID chip package and RFID tag |
| US9024725B2 (en) | 2009-11-04 | 2015-05-05 | Murata Manufacturing Co., Ltd. | Communication terminal and information processing system |
| US9024837B2 (en) | 2010-03-31 | 2015-05-05 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| US9070980B2 (en) | 2011-10-06 | 2015-06-30 | Panasonic Intellectual Property Corporation Of America | Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency |
| US9077067B2 (en) | 2008-07-04 | 2015-07-07 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US9104950B2 (en) | 2009-01-30 | 2015-08-11 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US9123996B2 (en) | 2010-05-14 | 2015-09-01 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9165239B2 (en) | 2006-04-26 | 2015-10-20 | Murata Manufacturing Co., Ltd. | Electromagnetic-coupling-module-attached article |
| US9166291B2 (en) | 2010-10-12 | 2015-10-20 | Murata Manufacturing Co., Ltd. | Antenna device and communication terminal apparatus |
| US9178279B2 (en) | 2009-11-04 | 2015-11-03 | Murata Manufacturing Co., Ltd. | Wireless IC tag, reader-writer, and information processing system |
| US9231305B2 (en) | 2008-10-24 | 2016-01-05 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| WO2016003237A1 (en) * | 2014-07-04 | 2016-01-07 | 삼성전자주식회사 | Antenna apparatus in wireless communication device |
| US9236651B2 (en) | 2010-10-21 | 2016-01-12 | Murata Manufacturing Co., Ltd. | Communication terminal device |
| US9281873B2 (en) | 2008-05-26 | 2016-03-08 | Murata Manufacturing Co., Ltd. | Wireless IC device system and method of determining authenticity of wireless IC device |
| US9378452B2 (en) | 2011-05-16 | 2016-06-28 | Murata Manufacturing Co., Ltd. | Radio IC device |
| JP2016519525A (en) * | 2013-04-22 | 2016-06-30 | ノキア テクノロジーズ オーユー | Wireless communication apparatus and method |
| US9444143B2 (en) | 2009-10-16 | 2016-09-13 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US9460320B2 (en) | 2009-10-27 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Transceiver and radio frequency identification tag reader |
| US9460376B2 (en) | 2007-07-18 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US9461363B2 (en) | 2009-11-04 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Communication terminal and information processing system |
| US9543642B2 (en) | 2011-09-09 | 2017-01-10 | Murata Manufacturing Co., Ltd. | Antenna device and wireless device |
| US9558384B2 (en) | 2010-07-28 | 2017-01-31 | Murata Manufacturing Co., Ltd. | Antenna apparatus and communication terminal instrument |
| US9692128B2 (en) | 2012-02-24 | 2017-06-27 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication device |
| US9727765B2 (en) | 2010-03-24 | 2017-08-08 | Murata Manufacturing Co., Ltd. | RFID system including a reader/writer and RFID tag |
| US9761923B2 (en) | 2011-01-05 | 2017-09-12 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US10013650B2 (en) | 2010-03-03 | 2018-07-03 | Murata Manufacturing Co., Ltd. | Wireless communication module and wireless communication device |
| JP2018129769A (en) * | 2017-02-10 | 2018-08-16 | 株式会社フジクラ | Antenna device |
| US10235544B2 (en) | 2012-04-13 | 2019-03-19 | Murata Manufacturing Co., Ltd. | Inspection method and inspection device for RFID tag |
| CN112106253A (en) * | 2017-12-19 | 2020-12-18 | Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 | Configurable multi-band wire antenna apparatus and method of designing same |
| WO2021065296A1 (en) * | 2019-10-03 | 2021-04-08 | 株式会社村田製作所 | Antenna device and wireless communication device including same |
| CN112751203A (en) * | 2020-12-29 | 2021-05-04 | Oppo广东移动通信有限公司 | Antenna assembly and electronic equipment |
| CN114667642A (en) * | 2019-10-30 | 2022-06-24 | 株式会社村田制作所 | Antenna device and wireless communication device provided with same |
| US11811153B2 (en) | 2020-12-08 | 2023-11-07 | LAPIS Technology Co., Ltd. | Wireless module |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9019163B2 (en) | 2011-10-27 | 2015-04-28 | Panasonic Intellectual Property Corporation Of America | Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth |
| JP2017532886A (en) * | 2014-09-25 | 2017-11-02 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Multiband antenna and communication terminal |
-
2000
- 2000-11-20 JP JP2000353129A patent/JP4432254B2/en not_active Expired - Lifetime
Cited By (235)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8941541B2 (en) | 1999-09-20 | 2015-01-27 | Fractus, S.A. | Multilevel antennae |
| US8330659B2 (en) | 1999-09-20 | 2012-12-11 | Fractus, S.A. | Multilevel antennae |
| US8154463B2 (en) | 1999-09-20 | 2012-04-10 | Fractus, S.A. | Multilevel antennae |
| US8976069B2 (en) | 1999-09-20 | 2015-03-10 | Fractus, S.A. | Multilevel antennae |
| US9761934B2 (en) | 1999-09-20 | 2017-09-12 | Fractus, S.A. | Multilevel antennae |
| US9362617B2 (en) | 1999-09-20 | 2016-06-07 | Fractus, S.A. | Multilevel antennae |
| US8154462B2 (en) | 1999-09-20 | 2012-04-10 | Fractus, S.A. | Multilevel antennae |
| US9240632B2 (en) | 1999-09-20 | 2016-01-19 | Fractus, S.A. | Multilevel antennae |
| US10056682B2 (en) | 1999-09-20 | 2018-08-21 | Fractus, S.A. | Multilevel antennae |
| US9000985B2 (en) | 1999-09-20 | 2015-04-07 | Fractus, S.A. | Multilevel antennae |
| US7528782B2 (en) | 1999-09-20 | 2009-05-05 | Fractus, S.A. | Multilevel antennae |
| US8009111B2 (en) | 1999-09-20 | 2011-08-30 | Fractus, S.A. | Multilevel antennae |
| US7505007B2 (en) | 1999-09-20 | 2009-03-17 | Fractus, S.A. | Multi-level antennae |
| US9054421B2 (en) | 1999-09-20 | 2015-06-09 | Fractus, S.A. | Multilevel antennae |
| US6922172B2 (en) | 2001-04-23 | 2005-07-26 | Yokowo Co., Ltd. | Broad-band antenna for mobile communication |
| WO2002089249A1 (en) * | 2001-04-23 | 2002-11-07 | Yokowo Co., Ltd. | Broad-band antenna for mobile communication |
| CN1620739B (en) * | 2001-12-20 | 2010-04-07 | 珀洛斯股份有限公司 | An antenna device |
| WO2003067703A1 (en) * | 2001-12-20 | 2003-08-14 | Perlos Ab | Antenna device |
| US7046197B2 (en) | 2002-07-05 | 2006-05-16 | Taiyo Yuden Co., Ltd. | Dielectric antenna, antenna-mounted substrate, and mobile communication machine having them therein |
| CN100384014C (en) * | 2002-07-05 | 2008-04-23 | 太阳诱电株式会社 | Dielectric antenna and mobile communication device |
| KR100733679B1 (en) * | 2002-07-05 | 2007-06-28 | 다이요 유덴 가부시키가이샤 | Dielectric antenna |
| WO2004006385A1 (en) * | 2002-07-05 | 2004-01-15 | Taiyo Yuden Co.,Ldt. | Dielectric antenna, antenna-mounted substrate, and mobile communication machine having them therein |
| EP1394897A3 (en) * | 2002-08-23 | 2005-01-26 | Murata Manufacturing Co., Ltd. | Antenna unit and communication device including same |
| US6950072B2 (en) | 2002-10-23 | 2005-09-27 | Murata Manufacturing Co., Ltd. | Surface mount antenna, antenna device using the same, and communication device |
| EP1414108A3 (en) * | 2002-10-23 | 2004-10-06 | Murata Manufacturing Co., Ltd. | Surface mount antenna, antenna device and communication device using the same |
| EP1579530A4 (en) * | 2002-10-28 | 2005-12-28 | Agency Science Tech & Res | BUILT-IN MINIATURE MULTI-FREQUENCY ANGLE ANTENNA |
| US8421686B2 (en) | 2002-11-07 | 2013-04-16 | Fractus, S.A. | Radio-frequency system in package including antenna |
| US10320079B2 (en) | 2002-11-07 | 2019-06-11 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US10056691B2 (en) | 2002-11-07 | 2018-08-21 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US7791539B2 (en) | 2002-11-07 | 2010-09-07 | Fractus, S.A. | Radio-frequency system in package including antenna |
| US9077073B2 (en) | 2002-11-07 | 2015-07-07 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US8203488B2 (en) | 2002-11-07 | 2012-06-19 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US10644405B2 (en) | 2002-11-07 | 2020-05-05 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US9761948B2 (en) | 2002-11-07 | 2017-09-12 | Fractus, S.A. | Integrated circuit package including miniature antenna |
| US7126541B2 (en) | 2002-11-19 | 2006-10-24 | Farrokh Mohamadi | Beam forming phased array system in a transparent substrate |
| US7026994B2 (en) | 2002-12-13 | 2006-04-11 | Kyocera Corporation | Surface-mount type antenna and antenna apparatus |
| WO2004097980A1 (en) * | 2003-04-25 | 2004-11-11 | Sumitomo Electric Industries, Ltd. | Wideband flat antenna |
| CN100418268C (en) * | 2003-06-26 | 2008-09-10 | 京瓷株式会社 | Surface mount antennas, antenna equipment and radio communication equipment |
| JP2007502050A (en) * | 2003-08-07 | 2007-02-01 | ソニー エリクソン モバイル コミュニケーションズ, エービー | Tunable parasitic resonator |
| US6995720B2 (en) | 2003-09-05 | 2006-02-07 | Alps Electric Co., Ltd. | Dual-band antenna with easily and finely adjustable resonant frequency, and method for adjusting resonant frequency |
| US7142160B2 (en) | 2003-09-11 | 2006-11-28 | Kyocera Corporation | Small size antenna, surface mounting type antenna and antenna device as well as radio communication device |
| EP1517400A3 (en) * | 2003-09-11 | 2005-03-30 | Kyocera Corporation | SMD antenna |
| KR101097950B1 (en) * | 2003-10-09 | 2011-12-22 | 후루카와 덴키 고교 가부시키가이샤 | A small antenna and a multiband antenna |
| US7196664B2 (en) | 2003-12-04 | 2007-03-27 | Yokowo Co., Ltd. | Dielectric antenna and communication device incorporating the same |
| EP1538701A1 (en) * | 2003-12-04 | 2005-06-08 | YOKOWO Co., Ltd | Dielectric antenna and communication device incorporating the same |
| KR100800100B1 (en) * | 2004-04-09 | 2008-01-31 | 후루카와 덴키 고교 가부시키가이샤 | Multi-Frequency Antenna |
| JP2005303637A (en) * | 2004-04-09 | 2005-10-27 | Furukawa Electric Co Ltd:The | Multi-frequency antenna and small antenna |
| US7277055B2 (en) | 2004-04-09 | 2007-10-02 | The Furukawa Electric Co., Ltd. | Compact antenna |
| US7119749B2 (en) | 2004-04-28 | 2006-10-10 | Murata Manufacturing Co., Ltd. | Antenna and radio communication apparatus |
| EP1761973A4 (en) * | 2004-06-26 | 2007-08-15 | Emw Antenna Co Ltd | Multi-band built-in antenna for independently adjusting resonant frequencies and method for adjusting resonant frequencies |
| US8330259B2 (en) | 2004-07-23 | 2012-12-11 | Fractus, S.A. | Antenna in package with reduced electromagnetic interaction with on chip elements |
| US7541979B2 (en) | 2004-10-20 | 2009-06-02 | Hitachi Cable, Ltd. | Small size thin type antenna, multilayered substrate, high frequency module, and radio terminal mounting them |
| JP2006140589A (en) * | 2004-11-10 | 2006-06-01 | Casio Hitachi Mobile Communications Co Ltd | Antenna structure |
| JP2006270916A (en) * | 2004-11-24 | 2006-10-05 | Mitsubishi Materials Corp | Antenna assembly |
| JP2006157290A (en) * | 2004-11-26 | 2006-06-15 | Kyocera Corp | Surface mount antenna, antenna device using the same, and radio communication device |
| JPWO2006080141A1 (en) * | 2005-01-27 | 2008-06-19 | 株式会社村田製作所 | Antenna and wireless communication device |
| WO2006080141A1 (en) | 2005-01-27 | 2006-08-03 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| JP4508190B2 (en) * | 2005-01-27 | 2010-07-21 | 株式会社村田製作所 | Antenna and wireless communication device |
| CN103022704B (en) * | 2005-01-27 | 2015-09-02 | 株式会社村田制作所 | Antenna and Wireless Telecom Equipment |
| US7375695B2 (en) | 2005-01-27 | 2008-05-20 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| CN101111972B (en) * | 2005-01-27 | 2015-03-11 | 株式会社村田制作所 | Antenna and wireless communication device |
| US7573424B2 (en) | 2005-06-10 | 2009-08-11 | Hon Hai Precision Industry Co., Ltd. | Dual-band antenna for radiating electromagnetic signals of different frequencies |
| US7466277B2 (en) | 2005-06-17 | 2008-12-16 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| WO2006134701A1 (en) * | 2005-06-17 | 2006-12-21 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication device |
| WO2007046285A1 (en) * | 2005-10-17 | 2007-04-26 | Nec Corporation | Antenna unit and communication device |
| KR100693218B1 (en) * | 2005-10-25 | 2007-03-13 | (주)에이스안테나 | Stub Short Circuit Broadband Antenna |
| KR100740314B1 (en) * | 2005-11-09 | 2007-07-18 | 주식회사 오토전자 | Small Chip Type Pattern Antenna |
| US8676117B2 (en) | 2006-01-19 | 2014-03-18 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8078106B2 (en) | 2006-01-19 | 2011-12-13 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8725071B2 (en) | 2006-01-19 | 2014-05-13 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US7630685B2 (en) | 2006-01-19 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8326223B2 (en) | 2006-01-19 | 2012-12-04 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| KR100849810B1 (en) | 2006-02-10 | 2008-07-31 | 가시오 히타치 모바일 커뮤니케이션즈 컴퍼니 리미티드 | Antenna device |
| US7554495B2 (en) | 2006-02-10 | 2009-06-30 | Casio Hitachi Mobile Communications Co., Ltd. | Antenna apparatus |
| US7629942B2 (en) | 2006-04-14 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Antenna |
| US9165239B2 (en) | 2006-04-26 | 2015-10-20 | Murata Manufacturing Co., Ltd. | Electromagnetic-coupling-module-attached article |
| US8228765B2 (en) | 2006-06-30 | 2012-07-24 | Murata Manufacturing Co., Ltd. | Optical disc |
| WO2008007489A1 (en) * | 2006-07-13 | 2008-01-17 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| CN101490901B (en) * | 2006-07-13 | 2012-10-10 | 株式会社村田制作所 | Antenna device and wireless communication apparatus |
| US8508420B2 (en) | 2006-07-13 | 2013-08-13 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| US8299929B2 (en) | 2006-09-26 | 2012-10-30 | Murata Manufacturing Co., Ltd. | Inductively coupled module and item with inductively coupled module |
| JPWO2008087780A1 (en) * | 2007-01-19 | 2010-05-06 | 株式会社村田製作所 | ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE |
| US8279121B2 (en) | 2007-01-19 | 2012-10-02 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| WO2008087780A1 (en) * | 2007-01-19 | 2008-07-24 | Murata Manufacturing Co., Ltd. | Antenna unit and wireless communication apparatus |
| US8299968B2 (en) | 2007-02-06 | 2012-10-30 | Murata Manufacturing Co., Ltd. | Packaging material with electromagnetic coupling module |
| KR100907319B1 (en) | 2007-03-20 | 2009-07-13 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Antenna for radio frequency identification rfid tags |
| WO2008117558A1 (en) * | 2007-03-23 | 2008-10-02 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication apparatus |
| JPWO2008117558A1 (en) * | 2007-03-23 | 2010-07-15 | 株式会社村田製作所 | ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE |
| JP4688071B2 (en) * | 2007-03-23 | 2011-05-25 | 株式会社村田製作所 | ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE |
| US8390459B2 (en) | 2007-04-06 | 2013-03-05 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8360324B2 (en) | 2007-04-09 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8424762B2 (en) | 2007-04-14 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8531346B2 (en) | 2007-04-26 | 2013-09-10 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8474725B2 (en) | 2007-04-27 | 2013-07-02 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8632014B2 (en) | 2007-04-27 | 2014-01-21 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| JPWO2008136244A1 (en) * | 2007-05-02 | 2010-07-29 | 株式会社村田製作所 | Antenna structure and wireless communication apparatus including the same |
| US8264411B2 (en) | 2007-05-02 | 2012-09-11 | Murata Manufacturing Co., Ltd. | Antenna structure and wireless communication device having the same |
| WO2008136244A1 (en) * | 2007-05-02 | 2008-11-13 | Murata Manufacturing Co., Ltd. | Antenna structure and wireless communication apparatus comprising the same |
| CN101675557B (en) * | 2007-05-02 | 2013-03-13 | 株式会社村田制作所 | Antenna structure and wireless communication device with same |
| JP4692677B2 (en) * | 2007-05-02 | 2011-06-01 | 株式会社村田製作所 | Antenna structure and wireless communication apparatus including the same |
| US8757500B2 (en) | 2007-05-11 | 2014-06-24 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| KR100867527B1 (en) | 2007-05-30 | 2008-11-06 | 삼성전기주식회사 | Tunable Loop Antenna |
| US8662403B2 (en) | 2007-07-04 | 2014-03-04 | Murata Manufacturing Co., Ltd. | Wireless IC device and component for wireless IC device |
| US8552870B2 (en) | 2007-07-09 | 2013-10-08 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8191791B2 (en) | 2007-07-17 | 2012-06-05 | Murata Manufacturing Co., Ltd. | Wireless IC device and electronic apparatus |
| US7997501B2 (en) | 2007-07-17 | 2011-08-16 | Murata Manufacturing Co., Ltd. | Wireless IC device and electronic apparatus |
| US8413907B2 (en) | 2007-07-17 | 2013-04-09 | Murata Manufacturing Co., Ltd. | Wireless IC device and electronic apparatus |
| US9830552B2 (en) | 2007-07-18 | 2017-11-28 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US9460376B2 (en) | 2007-07-18 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US8400307B2 (en) | 2007-07-18 | 2013-03-19 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and electronic apparatus |
| US7857230B2 (en) | 2007-07-18 | 2010-12-28 | Murata Manufacturing Co., Ltd. | Wireless IC device and manufacturing method thereof |
| US8643557B2 (en) | 2007-08-24 | 2014-02-04 | Murata Manufacturing Co., Ltd. | Antenna apparatus and radio communication apparatus |
| WO2009028251A1 (en) | 2007-08-24 | 2009-03-05 | Murata Manufacturing Co., Ltd. | Antenna apparatus and radio communication device |
| KR100954879B1 (en) * | 2007-12-04 | 2010-04-28 | 삼성전기주식회사 | Antenna-embedded printed circuit board |
| US7999746B2 (en) | 2007-12-04 | 2011-08-16 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board having built-in antenna |
| US8610636B2 (en) | 2007-12-20 | 2013-12-17 | Murata Manufacturing Co., Ltd. | Radio frequency IC device |
| US8360330B2 (en) | 2007-12-26 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Antenna device and radio frequency IC device |
| US8915448B2 (en) | 2007-12-26 | 2014-12-23 | Murata Manufacturing Co., Ltd. | Antenna device and radio frequency IC device |
| JP2008167467A (en) * | 2008-01-25 | 2008-07-17 | Furukawa Electric Co Ltd:The | Small antenna |
| US8179329B2 (en) | 2008-03-03 | 2012-05-15 | Murata Manufacturing Co., Ltd. | Composite antenna |
| US8797148B2 (en) | 2008-03-03 | 2014-08-05 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and radio communication system |
| US8668151B2 (en) | 2008-03-26 | 2014-03-11 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8360325B2 (en) | 2008-04-14 | 2013-01-29 | Murata Manufacturing Co., Ltd. | Wireless IC device, electronic apparatus, and method for adjusting resonant frequency of wireless IC device |
| US8960557B2 (en) | 2008-05-21 | 2015-02-24 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9022295B2 (en) | 2008-05-21 | 2015-05-05 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8590797B2 (en) | 2008-05-21 | 2013-11-26 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8973841B2 (en) | 2008-05-21 | 2015-03-10 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8047445B2 (en) | 2008-05-22 | 2011-11-01 | Murata Manufacturing Co., Ltd. | Wireless IC device and method of manufacturing the same |
| US7967216B2 (en) | 2008-05-22 | 2011-06-28 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9281873B2 (en) | 2008-05-26 | 2016-03-08 | Murata Manufacturing Co., Ltd. | Wireless IC device system and method of determining authenticity of wireless IC device |
| US8596545B2 (en) | 2008-05-28 | 2013-12-03 | Murata Manufacturing Co., Ltd. | Component of wireless IC device and wireless IC device |
| US8011589B2 (en) | 2008-06-25 | 2011-09-06 | Murata Manufacturing Co., Ltd. | Wireless IC device and manufacturing method thereof |
| US9077067B2 (en) | 2008-07-04 | 2015-07-07 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US8870077B2 (en) | 2008-08-19 | 2014-10-28 | Murata Manufacturing Co., Ltd. | Wireless IC device and method for manufacturing same |
| US9231305B2 (en) | 2008-10-24 | 2016-01-05 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US8177138B2 (en) | 2008-10-29 | 2012-05-15 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US8692718B2 (en) | 2008-11-17 | 2014-04-08 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US8917211B2 (en) | 2008-11-17 | 2014-12-23 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US8342416B2 (en) | 2009-01-09 | 2013-01-01 | Murata Manufacturing Co., Ltd. | Wireless IC device, wireless IC module and method of manufacturing wireless IC module |
| US8544759B2 (en) | 2009-01-09 | 2013-10-01 | Murata Manufacturing., Ltd. | Wireless IC device, wireless IC module and method of manufacturing wireless IC module |
| US8583043B2 (en) | 2009-01-16 | 2013-11-12 | Murata Manufacturing Co., Ltd. | High-frequency device and wireless IC device |
| US9104950B2 (en) | 2009-01-30 | 2015-08-11 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| WO2010110517A1 (en) * | 2009-03-23 | 2010-09-30 | Industry-University Cooperation Foundation Hanyang University | Antenna using a reactive element |
| US8690070B2 (en) | 2009-04-14 | 2014-04-08 | Murata Manufacturing Co., Ltd. | Wireless IC device component and wireless IC device |
| US8418928B2 (en) | 2009-04-14 | 2013-04-16 | Murata Manufacturing Co., Ltd. | Wireless IC device component and wireless IC device |
| US8876010B2 (en) | 2009-04-14 | 2014-11-04 | Murata Manufacturing Co., Ltd | Wireless IC device component and wireless IC device |
| US9564678B2 (en) | 2009-04-21 | 2017-02-07 | Murata Manufacturing Co., Ltd. | Antenna device and method of setting resonant frequency of antenna device |
| US9203157B2 (en) | 2009-04-21 | 2015-12-01 | Murata Manufacturing Co., Ltd. | Antenna device and method of setting resonant frequency of antenna device |
| US8976075B2 (en) | 2009-04-21 | 2015-03-10 | Murata Manufacturing Co., Ltd. | Antenna device and method of setting resonant frequency of antenna device |
| US8381997B2 (en) | 2009-06-03 | 2013-02-26 | Murata Manufacturing Co., Ltd. | Radio frequency IC device and method of manufacturing the same |
| US8810456B2 (en) | 2009-06-19 | 2014-08-19 | Murata Manufacturing Co., Ltd. | Wireless IC device and coupling method for power feeding circuit and radiation plate |
| US8680971B2 (en) | 2009-09-28 | 2014-03-25 | Murata Manufacturing Co., Ltd. | Wireless IC device and method of detecting environmental state using the device |
| US8853549B2 (en) | 2009-09-30 | 2014-10-07 | Murata Manufacturing Co., Ltd. | Circuit substrate and method of manufacturing same |
| US9117157B2 (en) | 2009-10-02 | 2015-08-25 | Murata Manufacturing Co., Ltd. | Wireless IC device and electromagnetic coupling module |
| US8994605B2 (en) | 2009-10-02 | 2015-03-31 | Murata Manufacturing Co., Ltd. | Wireless IC device and electromagnetic coupling module |
| US9444143B2 (en) | 2009-10-16 | 2016-09-13 | Murata Manufacturing Co., Ltd. | Antenna and wireless IC device |
| US9460320B2 (en) | 2009-10-27 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Transceiver and radio frequency identification tag reader |
| US9024725B2 (en) | 2009-11-04 | 2015-05-05 | Murata Manufacturing Co., Ltd. | Communication terminal and information processing system |
| US9178279B2 (en) | 2009-11-04 | 2015-11-03 | Murata Manufacturing Co., Ltd. | Wireless IC tag, reader-writer, and information processing system |
| US9461363B2 (en) | 2009-11-04 | 2016-10-04 | Murata Manufacturing Co., Ltd. | Communication terminal and information processing system |
| US8754814B2 (en) | 2009-11-13 | 2014-06-17 | Blackberry Limited | Antenna for multi mode MIMO communication in handheld devices |
| EP2323217A1 (en) | 2009-11-13 | 2011-05-18 | Research In Motion Limited | Antenna for multi mode mimo communication in handheld devices |
| US20110115677A1 (en) * | 2009-11-13 | 2011-05-19 | Research In Motion Limited | Antenna for multi mode mimo communication in handheld devices |
| US8400365B2 (en) | 2009-11-20 | 2013-03-19 | Murata Manufacturing Co., Ltd. | Antenna device and mobile communication terminal |
| JP5640992B2 (en) * | 2009-11-20 | 2014-12-17 | 日立金属株式会社 | antenna |
| KR101705742B1 (en) * | 2009-11-20 | 2017-02-10 | 히타치 긴조쿠 가부시키가이샤 | Antenna |
| KR20120105004A (en) * | 2009-11-20 | 2012-09-24 | 히타치 긴조쿠 가부시키가이샤 | Antenna |
| US9088072B2 (en) | 2009-11-20 | 2015-07-21 | Hitachi Metals, Ltd. | Antenna |
| WO2011062274A1 (en) * | 2009-11-20 | 2011-05-26 | 日立金属株式会社 | Antenna |
| US20120229345A1 (en) * | 2009-11-20 | 2012-09-13 | Hitachi Metals, Ltd. | Antenna |
| US8704716B2 (en) | 2009-11-20 | 2014-04-22 | Murata Manufacturing Co., Ltd. | Antenna device and mobile communication terminal |
| JP2011124878A (en) * | 2009-12-11 | 2011-06-23 | Samsung Electronics Co Ltd | Antenna device |
| EP2333901A3 (en) * | 2009-12-11 | 2011-07-13 | Samsung Electronics Co., Ltd. | Antenna device |
| US8718727B2 (en) | 2009-12-24 | 2014-05-06 | Murata Manufacturing Co., Ltd. | Antenna having structure for multi-angled reception and mobile terminal including the antenna |
| JP2011160368A (en) * | 2010-02-04 | 2011-08-18 | Murata Mfg Co Ltd | Dielectric antenna and wireless communication device |
| JP5516716B2 (en) * | 2010-02-16 | 2014-06-11 | 株式会社村田製作所 | Antenna and wireless communication device |
| WO2011102017A1 (en) * | 2010-02-16 | 2011-08-25 | 株式会社村田製作所 | Antenna and wireless communication device |
| CN102763276A (en) * | 2010-02-16 | 2012-10-31 | 株式会社村田制作所 | Antenna and wireless communication device |
| US9780441B2 (en) | 2010-02-16 | 2017-10-03 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| CN102763276B (en) * | 2010-02-16 | 2017-07-21 | 株式会社村田制作所 | Antenna and radio communication device |
| US10013650B2 (en) | 2010-03-03 | 2018-07-03 | Murata Manufacturing Co., Ltd. | Wireless communication module and wireless communication device |
| US8602310B2 (en) | 2010-03-03 | 2013-12-10 | Murata Manufacturing Co., Ltd. | Radio communication device and radio communication terminal |
| US8336786B2 (en) | 2010-03-12 | 2012-12-25 | Murata Manufacturing Co., Ltd. | Wireless communication device and metal article |
| US8528829B2 (en) | 2010-03-12 | 2013-09-10 | Murata Manufacturing Co., Ltd. | Wireless communication device and metal article |
| US9727765B2 (en) | 2010-03-24 | 2017-08-08 | Murata Manufacturing Co., Ltd. | RFID system including a reader/writer and RFID tag |
| US9024837B2 (en) | 2010-03-31 | 2015-05-05 | Murata Manufacturing Co., Ltd. | Antenna and wireless communication device |
| US8905316B2 (en) | 2010-05-14 | 2014-12-09 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9123996B2 (en) | 2010-05-14 | 2015-09-01 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| JP2012019281A (en) * | 2010-07-06 | 2012-01-26 | Toshiba Corp | Antenna device, and wireless device |
| US8424769B2 (en) | 2010-07-08 | 2013-04-23 | Murata Manufacturing Co., Ltd. | Antenna and RFID device |
| US9558384B2 (en) | 2010-07-28 | 2017-01-31 | Murata Manufacturing Co., Ltd. | Antenna apparatus and communication terminal instrument |
| US8981906B2 (en) | 2010-08-10 | 2015-03-17 | Murata Manufacturing Co., Ltd. | Printed wiring board and wireless communication system |
| US8546927B2 (en) | 2010-09-03 | 2013-10-01 | Murata Manufacturing Co., Ltd. | RFIC chip mounting structure |
| WO2012032975A1 (en) * | 2010-09-08 | 2012-03-15 | 株式会社村田製作所 | Antenna and mobile communication apparatus |
| US8944335B2 (en) | 2010-09-30 | 2015-02-03 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9166291B2 (en) | 2010-10-12 | 2015-10-20 | Murata Manufacturing Co., Ltd. | Antenna device and communication terminal apparatus |
| JP2012085215A (en) * | 2010-10-14 | 2012-04-26 | Panasonic Corp | Antenna device and electronic apparatus |
| US9236651B2 (en) | 2010-10-21 | 2016-01-12 | Murata Manufacturing Co., Ltd. | Communication terminal device |
| JP2012114579A (en) * | 2010-11-22 | 2012-06-14 | Tdk Corp | Antenna device and frequency adjustment method therefor |
| CN103299483A (en) * | 2010-12-28 | 2013-09-11 | 三菱综合材料株式会社 | Substrate for antenna device and antenna device |
| CN103299483B (en) * | 2010-12-28 | 2015-05-20 | 三菱综合材料株式会社 | Substrate for antenna device and antenna device |
| US9203145B2 (en) | 2010-12-28 | 2015-12-01 | Mitsubishi Materials Corporation | Antenna-device substrate and antenna device |
| US9761923B2 (en) | 2011-01-05 | 2017-09-12 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8991713B2 (en) | 2011-01-14 | 2015-03-31 | Murata Manufacturing Co., Ltd. | RFID chip package and RFID tag |
| US8613395B2 (en) | 2011-02-28 | 2013-12-24 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8757502B2 (en) | 2011-02-28 | 2014-06-24 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8960561B2 (en) | 2011-02-28 | 2015-02-24 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8797225B2 (en) | 2011-03-08 | 2014-08-05 | Murata Manufacturing Co., Ltd. | Antenna device and communication terminal apparatus |
| US8937576B2 (en) | 2011-04-05 | 2015-01-20 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8740093B2 (en) | 2011-04-13 | 2014-06-03 | Murata Manufacturing Co., Ltd. | Radio IC device and radio communication terminal |
| US9378452B2 (en) | 2011-05-16 | 2016-06-28 | Murata Manufacturing Co., Ltd. | Radio IC device |
| US8878739B2 (en) | 2011-07-14 | 2014-11-04 | Murata Manufacturing Co., Ltd. | Wireless communication device |
| US8770489B2 (en) | 2011-07-15 | 2014-07-08 | Murata Manufacturing Co., Ltd. | Radio communication device |
| US8814056B2 (en) | 2011-07-19 | 2014-08-26 | Murata Manufacturing Co., Ltd. | Antenna device, RFID tag, and communication terminal apparatus |
| US9543642B2 (en) | 2011-09-09 | 2017-01-10 | Murata Manufacturing Co., Ltd. | Antenna device and wireless device |
| US9070980B2 (en) | 2011-10-06 | 2015-06-30 | Panasonic Intellectual Property Corporation Of America | Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency |
| CN103201904A (en) * | 2011-10-06 | 2013-07-10 | 松下电器产业株式会社 | Antenna device and wireless communication device |
| US8905296B2 (en) | 2011-12-01 | 2014-12-09 | Murata Manufacturing Co., Ltd. | Wireless integrated circuit device and method of manufacturing the same |
| US8720789B2 (en) | 2012-01-30 | 2014-05-13 | Murata Manufacturing Co., Ltd. | Wireless IC device |
| US9692128B2 (en) | 2012-02-24 | 2017-06-27 | Murata Manufacturing Co., Ltd. | Antenna device and wireless communication device |
| US10235544B2 (en) | 2012-04-13 | 2019-03-19 | Murata Manufacturing Co., Ltd. | Inspection method and inspection device for RFID tag |
| CN102664304A (en) * | 2012-04-27 | 2012-09-12 | 深圳光启创新技术有限公司 | Portable electronic device with internally-arranged Bluetooth antenna |
| JP2016519525A (en) * | 2013-04-22 | 2016-06-30 | ノキア テクノロジーズ オーユー | Wireless communication apparatus and method |
| JP2014233032A (en) * | 2013-05-30 | 2014-12-11 | 三菱マテリアル株式会社 | Antenna device |
| JP2015053548A (en) * | 2013-09-05 | 2015-03-19 | 富士通株式会社 | Antenna device |
| WO2016003237A1 (en) * | 2014-07-04 | 2016-01-07 | 삼성전자주식회사 | Antenna apparatus in wireless communication device |
| US11018408B2 (en) | 2014-07-04 | 2021-05-25 | Samsung Electronics Co., Ltd. | Antenna apparatus in wireless communication device |
| JP2018129769A (en) * | 2017-02-10 | 2018-08-16 | 株式会社フジクラ | Antenna device |
| CN112106253A (en) * | 2017-12-19 | 2020-12-18 | Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 | Configurable multi-band wire antenna apparatus and method of designing same |
| CN112106253B (en) * | 2017-12-19 | 2024-01-02 | Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 | Configurable multi-band linear antenna device and design method thereof |
| WO2021065296A1 (en) * | 2019-10-03 | 2021-04-08 | 株式会社村田製作所 | Antenna device and wireless communication device including same |
| US11929560B2 (en) | 2019-10-03 | 2024-03-12 | Murata Manufacturing Co., Ltd. | Antenna device and radio communication device including the same |
| CN114667642A (en) * | 2019-10-30 | 2022-06-24 | 株式会社村田制作所 | Antenna device and wireless communication device provided with same |
| US11811153B2 (en) | 2020-12-08 | 2023-11-07 | LAPIS Technology Co., Ltd. | Wireless module |
| CN112751203A (en) * | 2020-12-29 | 2021-05-04 | Oppo广东移动通信有限公司 | Antenna assembly and electronic equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4432254B2 (en) | 2010-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2002158529A (en) | Surface-mounted antenna structure and communications equipment provided with the same | |
| JP3503556B2 (en) | Surface mount antenna and communication device equipped with the antenna | |
| US7119749B2 (en) | Antenna and radio communication apparatus | |
| US8212731B2 (en) | Antenna device and communication apparatus | |
| US9793597B2 (en) | Antenna with active elements | |
| JP3658639B2 (en) | Surface mount type antenna and radio equipped with the antenna | |
| KR100785748B1 (en) | Surface-mount type antenna and antenna apparatus employing the same, and wireless communication apparatus | |
| JP4858860B2 (en) | Multiband antenna | |
| JP3468201B2 (en) | Surface mount antenna, frequency adjustment setting method of multiple resonance thereof, and communication device equipped with surface mount antenna | |
| WO2001024316A1 (en) | Surface-mount antenna and communication device with surface-mount antenna | |
| KR20020040591A (en) | Antenna and wireless device incorporating the same | |
| JP2005094360A (en) | ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE | |
| KR100483044B1 (en) | Surface mount type chip antenna for improving signal exclusion | |
| US7170456B2 (en) | Dielectric chip antenna structure | |
| JP4720720B2 (en) | Antenna structure and wireless communication apparatus including the same | |
| US7167132B2 (en) | Small antenna and a multiband antenna | |
| JP2005020266A (en) | Multiple frequency antenna system | |
| JP4645603B2 (en) | Antenna structure and wireless communication apparatus including the same | |
| JP2001251128A (en) | Multi-frequency antenna | |
| JP3467164B2 (en) | Inverted F antenna | |
| JP2006287986A (en) | ANTENNA AND RADIO DEVICE USING THE SAME | |
| KR20050007464A (en) | Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna | |
| JPH09232854A (en) | Small planar antenna device for mobile radio | |
| CN113597710B (en) | Antenna device | |
| JP6489153B2 (en) | Antenna device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071016 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090812 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091214 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4432254 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
| EXPY | Cancellation because of completion of term |