JP2002195789A - Thermal conduction apparatus, boiler, generator and humidifier/cooler - Google Patents
Thermal conduction apparatus, boiler, generator and humidifier/coolerInfo
- Publication number
- JP2002195789A JP2002195789A JP2000398752A JP2000398752A JP2002195789A JP 2002195789 A JP2002195789 A JP 2002195789A JP 2000398752 A JP2000398752 A JP 2000398752A JP 2000398752 A JP2000398752 A JP 2000398752A JP 2002195789 A JP2002195789 A JP 2002195789A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- temperature
- water
- unit
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 289
- 238000010438 heat treatment Methods 0.000 claims abstract description 93
- 239000007788 liquid Substances 0.000 claims abstract description 65
- 238000005338 heat storage Methods 0.000 claims description 77
- 238000012546 transfer Methods 0.000 claims description 34
- 238000001816 cooling Methods 0.000 claims description 20
- 238000010248 power generation Methods 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 7
- 238000009529 body temperature measurement Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 239000008400 supply water Substances 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 claims description 2
- 230000001965 increasing effect Effects 0.000 abstract description 17
- 238000011084 recovery Methods 0.000 abstract description 13
- 230000010355 oscillation Effects 0.000 abstract 4
- 239000007789 gas Substances 0.000 description 48
- 238000002485 combustion reaction Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002349 well water Substances 0.000 description 3
- 235000020681 well water Nutrition 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】高温部と低温部との間に並列
に延在する複数の流路部を備える流路と、該流路内にほ
ぼ満たされた状態で封入される液体と、該液体を流路内
で流路部の延在方向に沿って往き来するように振動させ
る加振手段とを備え、前記流路の隣合う流路部内の液体
同士が壁を隔てて隣接して配置されるとともに、前記加
振手段による振動が隣接する流路部内の液体同士で逆位
相となるように該流路部内の液体を振動させた状態で、
隣接する流路部内の液体同士が壁を介して熱交換を行う
ことにより熱伝導率を高めることが可能な熱伝導部材を
用いた熱伝導装置、ボイラ、発電装置及び加温・冷却装
置に関する。TECHNICAL FIELD The present invention relates to a flow path having a plurality of flow paths extending in parallel between a high-temperature section and a low-temperature section, a liquid substantially filled in the flow path, Vibrating means for vibrating the liquid so as to move back and forth along the extending direction of the flow path in the flow path, wherein the liquids in the flow path adjacent to the flow path are adjacent to each other across a wall. While being arranged, in a state where the liquid in the flow path portion is vibrated such that the vibrations by the vibrating means are in opposite phases between the liquids in the adjacent flow path portions,
The present invention relates to a heat conduction device, a boiler, a power generation device, and a heating / cooling device using a heat conduction member capable of increasing the heat conductivity by performing heat exchange between liquids in adjacent flow paths through a wall.
【0002】[0002]
【従来の技術】従来、例えば、図8に示すような、工場
等における給湯及び暖房のために、湯を貯蔵しておく缶
体13を備え、かつ、排気熱を回収するための排熱回収
熱交換器1を備えたボイラ10がある。該ボイラ10
は、該ボイラ10の主動力としてバーナ11(加熱部)
を備え、該バーナ11の燃焼による排気ガスが通る熱交
換部12(熱交換部)が缶水を貯蔵している缶体13内
に設けられ、該缶体13内の缶水を加熱している。ま
た、該熱交換部12及び排熱回収熱交換器1を通過後の
該排気ガスを外部へ排出させるための煙道14(排気
系)と、前記缶体13内の缶水を該缶体13内部や排熱
回収熱交換器1へ循環させるためのポンプ15、配管1
6と、ボイラ10の熱エネルギーを外部に供給する外部
熱交換部17を備えている。通常は、ボイラ10のバー
ナ11によって生じる排気熱は、煙道14を通ってその
まま外部に捨てられてしまうが、熱交換部12の出口で
ある煙道14に排熱回収熱交換器1を設けることによ
り、この捨てられている排気熱の熱エネルギを該排熱回
収熱交換器1を用いて缶水の加温を行わせ、再利用させ
ている。2. Description of the Related Art Conventionally, for example, as shown in FIG. 8, a can body 13 for storing hot water is provided for hot water supply and heating in a factory or the like, and exhaust heat recovery for recovering exhaust heat. There is a boiler 10 provided with a heat exchanger 1. The boiler 10
Is a burner 11 (heating unit) as a main power of the boiler 10.
A heat exchange unit 12 (heat exchange unit) through which exhaust gas generated by combustion of the burner 11 passes is provided in a can body 13 storing canned water, and heats the canned water in the can body 13. I have. Further, a flue 14 (exhaust system) for discharging the exhaust gas after passing through the heat exchange unit 12 and the exhaust heat recovery heat exchanger 1 to the outside, and the can water in the can 13 to the can body Pump 15 for circulating inside 13 and exhaust heat recovery heat exchanger 1, piping 1
6 and an external heat exchange unit 17 for supplying the heat energy of the boiler 10 to the outside. Normally, the exhaust heat generated by the burner 11 of the boiler 10 is discarded as it is through the flue 14, but the exhaust heat recovery heat exchanger 1 is provided at the flue 14 which is the outlet of the heat exchange unit 12. As a result, the heat energy of the discarded exhaust heat is heated by the waste heat recovery heat exchanger 1 and reused.
【0003】[0003]
【発明が解決しようとする課題】ところで、前記ボイラ
10では、該排熱回収熱交換器1を前記熱交換部12の
出口と煙道14の間に設ける為にボイラのスペース(体
積)が増え、また該排熱回収熱交換器1に缶水を循環さ
せる為の配管を設け、さらに該排熱回収熱交換器1を通
過する水の圧損が加わる為にポンプサイズやその動力に
余計なコストがかかっていた。また、熱伝導装置として
は、例えば、二相の蒸発と凝縮との相変化によるヒート
パイプ等が知られており、この熱伝導装置を用いて排気
熱を缶水側に伝導することが考えられる。しかし、ヒー
トパイプ等の相変化を利用した熱伝導装置は、主に、熱
伝導率を上げるが、高温部の熱が制御されることなく一
方的に低温部に搬送され、従って放熱等の目的でしか使
用されていなかった。In the boiler 10, the space (volume) of the boiler increases because the exhaust heat recovery heat exchanger 1 is provided between the outlet of the heat exchange section 12 and the flue. In addition, a pipe for circulating canned water is provided in the waste heat recovery heat exchanger 1, and a pressure loss of water passing through the waste heat recovery heat exchanger 1 is added. Was hanging. Further, as a heat conducting device, for example, a heat pipe or the like based on a phase change between two-phase evaporation and condensation is known, and it is conceivable to use this heat conducting device to conduct exhaust heat to the can water side. . However, a heat transfer device using a phase change such as a heat pipe mainly raises the heat conductivity, but the heat in the high-temperature portion is unilaterally transferred to the low-temperature portion without being controlled. It was only used in
【0004】すなわち、二相の蒸発と凝縮との相変化に
よる熱伝導装置では流れる熱量を制御する機能がないた
め、受熱部で吸熱した熱を自動的に運び、そのまま放熱
部で放熱するしかない。したがって、上述のボイラの排
気熱の再利用に用いた場合に、従来の熱伝導装置では、
排気熱の缶水への熱伝導を制御することはできず、熱の
消費の負荷がない時は熱伝導装置の缶水への放熱部分で
過熱する恐れもあった。さらに、ボイラが停止し、煙道
14の温度が缶水より下がった時の熱の逆流も制御でき
なかった。一方、排気熱の熱量を貯蓄しておくための蓄
熱槽を備えたボイラでは、従来の熱伝導装置が熱伝導率
を適宜制御できないため、蓄熱槽から使用され、消費さ
れる熱とのバランスにおいて、該蓄熱槽内の熱媒体の温
度を一定に保つことは難しかった。しかし、実際の日常
生活において、熱を利用する暖房や給湯では、絶対的な
熱量も必要であるが、それよりも快適に利用できる温度
レベルを常時保つことが重要であった。[0004] That is, in a heat conduction device based on a phase change between two-phase evaporation and condensation, there is no function of controlling the amount of heat flowing. Therefore, the heat absorbed by the heat receiving portion is automatically carried, and the heat must be radiated by the heat radiating portion. . Therefore, in the case of using the exhaust heat of the boiler described above, in the conventional heat conducting device,
The heat transfer of the exhaust heat to the can water cannot be controlled, and when there is no heat consumption load, there is a possibility that the heat transfer device may overheat at the heat radiating portion to the can water. Further, it was not possible to control the backflow of heat when the boiler was shut down and the temperature of the flue 14 dropped below the can water. On the other hand, in a boiler provided with a heat storage tank for storing the amount of heat of exhaust heat, the conventional heat transfer device cannot control the heat conductivity as appropriate, so that it is used in the heat storage tank to balance the heat consumed. It was difficult to keep the temperature of the heat medium in the heat storage tank constant. However, in actual daily life, heating and hot water supply using heat require an absolute amount of heat, but it is more important to always maintain a comfortable and usable temperature level.
【0005】また、従来の二相式のヒートパイプを用い
て、例えば、ビル等の建築物の冷暖房システムを構築し
ようとした場合に、すなわち、室外機と室内機との間の
熱輸送にヒートパイプを用いた場合に、室外機を屋上に
設置すると以下のような問題が発生する。すなわち、暖
房時に、従来の二相式のヒートパイプを熱輸送に使用す
ると、放熱部が受熱部より下の位置となり、その間の距
離が長くなると、ヒートパイプに封入された液体が蒸発
しても下に降りない為、ヒートパイプの機能は極端に低
下する。本発明の課題は、熱輸送量の制御性が備えら
れ、液体一相の振動流型ヒートパイプを熱伝導部材とし
て用いた熱伝導装置、ボイラ、発電装置及び加温・冷却
装置を提供することである。[0005] Further, when an attempt is made to construct, for example, a cooling and heating system for a building such as a building by using a conventional two-phase heat pipe, that is, a heat transfer between an outdoor unit and an indoor unit is performed. When a pipe is used and the outdoor unit is installed on the roof, the following problems occur. That is, at the time of heating, if a conventional two-phase heat pipe is used for heat transport, the heat radiating portion is located below the heat receiving portion, and if the distance between them becomes long, even if the liquid sealed in the heat pipe evaporates. Since it does not descend, the function of the heat pipe is extremely reduced. An object of the present invention is to provide a heat conduction device, a boiler, a power generation device, and a heating / cooling device which are provided with controllability of a heat transport amount and use a liquid one-phase oscillating flow type heat pipe as a heat conduction member. It is.
【0006】[0006]
【課題を解決するための手段】本発明の請求項1記載の
熱伝導装置は、図1及び図3に示すように、高温部と低
温部との間に並列に延在する複数の流路部(2e)を備
える流路と、該流路内にほぼ満たされた状態で封入され
る液体(2c)と、該液体を流路内で流路部の延在方向
に沿って往き来するように振動させる加振手段(加振器
2d)とを備え、前記流路の隣合う流路部内の液体同士
が壁(流路壁2b)を隔てて隣接して配置されるととも
に、前記加振手段による振動が隣接する流路部内の液体
同士で逆位相となるように該流路部内の液体を振動させ
た状態で、隣接する流路部内の液体同士が壁を介して熱
交換を行うことにより熱伝導率を高めることが可能な熱
伝導部材(対向振動流型ヒートパイプ2)を用いた熱伝
導装置であって、各種センサ・機器等の装置に接続され
て信号を出力する信号出力手段(サーモセンサー6)
と、該信号出力手段から出力された信号に基づいて、前
記加振手段により液体に加えられる振動の開始及び停止
と、振動の振幅と、振動の振動数とのうちの少なくとも
一つを制御するとともに、前記加振手段の作動及び停止
を制御する制御手段(制御ボックス5)とを備えている
ことを特徴とする。According to a first aspect of the present invention, as shown in FIGS. 1 and 3, a plurality of flow passages extending in parallel between a high temperature portion and a low temperature portion are provided. A flow path including a portion (2e), a liquid (2c) sealed in a state substantially filled in the flow path, and the liquid coming and going in the flow path along the extending direction of the flow path portion. (Vibrator 2d) for vibrating the liquid in such a manner that the liquids in the flow path portions adjacent to the flow path are arranged adjacent to each other across a wall (flow path wall 2b), and In a state where the liquids in the adjacent flow paths are vibrated so that the liquids in the adjacent flow paths have the opposite phases, the liquids in the adjacent flow paths exchange heat through the wall. A heat conduction device using a heat conduction member (opposing oscillating flow heat pipe 2) capable of increasing the heat conductivity, Signal output means for outputting the connected signal equipment, such as a seed sensor device (thermosensor 6)
And controlling at least one of the start and stop of the vibration applied to the liquid by the vibrating means, the amplitude of the vibration, and the frequency of the vibration based on the signal output from the signal output means. And a control means (control box 5) for controlling the operation and stop of the vibration means.
【0007】上記構成によれば、例えば、前記信号出力
手段を、温度を計測するセンサを備えるとともに計測さ
れた温度を示す信号を出力する温度計測手段とし、該温
度計測手段が前記低温部に設けられた場合、温度計測手
段は低温部の温度を感知して制御手段に信号を送り、該
信号によって制御手段は、熱伝導部材内部の加振手段の
振動の振幅及び振動数や、該加振手段の作動及び停止を
制御することができる。また、該熱伝導部材は、該熱伝
導部材内部の液体の振動が変化すれば、該熱伝導部材の
熱伝導率も変化する機能を備えているので、前記高温部
から前記低温部へ伝導する熱量、即ち、熱輸送量を前記
低温部の温度によって、適宜制御することができる。従
って、前記熱伝導装置は、前記低温部の温度をほぼ一定
に保つ制御を行うことができる。According to the above arrangement, for example, the signal output means is a temperature measurement means having a sensor for measuring temperature and outputting a signal indicating the measured temperature, and the temperature measurement means is provided in the low-temperature section. When the temperature is measured, the temperature measuring unit senses the temperature of the low-temperature part and sends a signal to the control unit, and the control unit uses the signal to control the amplitude and frequency of the vibration of the vibration unit inside the heat conducting member and the vibration. The activation and deactivation of the means can be controlled. Further, since the heat conductive member has a function of changing the thermal conductivity of the heat conductive member when the vibration of the liquid inside the heat conductive member changes, the heat is transmitted from the high temperature part to the low temperature part. The amount of heat, that is, the amount of heat transport, can be appropriately controlled by the temperature of the low temperature section. Therefore, the heat conduction device can perform control for keeping the temperature of the low-temperature portion substantially constant.
【0008】また、前記温度計測手段が前記高温部に設
けられた場合、該温度計測手段は該高温部の温度を感知
して前記制御手段に信号を送り、該信号によって該制御
手段は、前記熱伝導部材内部の前記加振手段の振動の振
幅及び振動数のうちの少なくとも一つを制御するととも
に、該加振手段の作動及び停止を制御することができ
る。この時、該高温部の温度がある所定の温度を越える
と前記加振手段を停止させ、所定の温度以下であれば該
加振手段を作動させるといった制御を行い、かつ、該所
定の温度を前記熱伝導部材が熱伝導できる限界以下の温
度近傍に設定しておけば、該熱伝導部材の寿命を長持ち
させることができる。また、該高温部の温度がある所定
の温度を越えると前記加振手段を作動させ、所定の温度
以下であれば該加振手段を停止させるといった制御を行
い、かつ、該所定の温度を前記低温部の温度に設定して
おけば、該低温部の温度が前記高温部の温度よりも、高
くなることによって生じる該低温部から該高温部への熱
輸送量の逆流現象を防ぐことができる。なお、信号出力
手段は、上述の温度計測手段に限定されるものではな
く、例えば、高温部側の熱源のオンオフに対応して信号
を出力するものや、本発明の熱伝導装置により熱が伝導
されて温められる媒体の供給の開始と停止とに対応して
信号を出力するものであってもよい。Further, when the temperature measuring means is provided in the high temperature section, the temperature measuring means senses the temperature of the high temperature section and sends a signal to the control means. It is possible to control at least one of the amplitude and the frequency of the vibration of the vibration means inside the heat conducting member, and to control the operation and stop of the vibration means. At this time, when the temperature of the high-temperature section exceeds a predetermined temperature, the vibrating means is stopped, and when the temperature is equal to or lower than the predetermined temperature, the vibrating means is controlled to operate. If the temperature is set near the temperature below the limit at which the heat conducting member can conduct heat, the life of the heat conducting member can be extended. Further, when the temperature of the high-temperature portion exceeds a predetermined temperature, the vibrating means is operated, and when the temperature is equal to or lower than a predetermined temperature, the vibrating means is controlled to stop. If the temperature is set to the low-temperature part, it is possible to prevent the backflow phenomenon of the heat transport amount from the low-temperature part to the high-temperature part caused by the temperature of the low-temperature part being higher than the temperature of the high-temperature part. . The signal output means is not limited to the above-described temperature measurement means. For example, the signal output means outputs a signal in response to the on / off of the heat source on the high temperature part side, and heat is transmitted by the heat conduction device of the present invention. A signal may be output in response to the start and stop of the supply of the heated medium.
【0009】本発明の請求項2記載の高温部と低温部と
の間に並列に延在する複数の流路部を備える流路と、該
流路内にほぼ満たされた状態で封入される液体と、該液
体を流路内で流路部の延在方向に沿って往き来するよう
に振動させる加振手段とを備え、前記流路の隣合う流路
部内の液体同士が壁を隔てて隣接して配置されるととも
に、前記加振手段による振動が隣接する流路部内の液体
同士で逆位相となるように該流路部内の液体を振動させ
た状態で、隣接する流路部内の液体同士が壁を介して熱
交換を行う熱伝導部材を用いた熱伝導装置であって、前
記熱伝導部材の高温部の受熱部及び低温部側の放熱部の
少なくとも一方に、受熱もしくは放熱のために伝熱面を
広くするようにヒートパイプもしくは金属部材を接続し
たことを特徴とする。According to a second aspect of the present invention, there is provided a flow path having a plurality of flow paths extending in parallel between the high temperature section and the low temperature section, and the flow path is sealed in a substantially filled state. A liquid, and vibrating means for vibrating the liquid so as to move back and forth in the flow path along the extending direction of the flow path, wherein the liquids in the flow path adjacent to the flow path are separated by a wall. Are arranged adjacent to each other, and in a state where the liquid in the adjacent flow path portion is vibrated such that the vibrations by the vibrating means have opposite phases between the liquids in the adjacent flow path portions, A heat conducting device using a heat conducting member in which liquids exchange heat through a wall, wherein at least one of a high-temperature portion heat-receiving portion and a low-temperature portion-side heat radiating portion of the heat conducting member receives heat or radiates heat. The heat pipe or metal member is connected so that the heat transfer surface is widened. .
【0010】上記構成によれば、請求項2記載の熱伝導
装置は、上述の熱伝導部材内に封入される液体の沸点を
超えるような高温の熱源から熱を伝導させるような場合
に有効なものとなる。すなわち、例えば、熱源が前記熱
伝導部材に封入させる液体の沸点より高温の熱媒体(例
えば、ボイラやガスタービンの排気等の気体)の場合に
直接熱媒体に前記熱伝導部材の受熱部を接触させると、
封入された液体が気化して内圧が上昇してしまう可能性
があり、熱伝導部材に封入する液体として沸点の高いも
のを用いたり、封入された液体を気化させないために熱
伝導部材の耐圧性を高めたりするなどの対策を講じる必
要がある。According to the above construction, the heat conducting device according to the second aspect is effective when conducting heat from a heat source having a high temperature exceeding the boiling point of the liquid sealed in the heat conducting member. It will be. That is, for example, when the heat source is a heat medium having a temperature higher than the boiling point of the liquid to be sealed in the heat conductive member (for example, a gas such as exhaust gas from a boiler or a gas turbine), the heat receiving portion of the heat conductive member is directly contacted with the heat medium. When you do
The sealed liquid may evaporate and the internal pressure may increase.Use a liquid with a high boiling point as the liquid to be sealed in the heat conducting member, or withstand the pressure of the heat conducting member to prevent the sealed liquid from evaporating. It is necessary to take measures such as raising
【0011】そこで、蒸発と凝縮との二相の相変化によ
るヒートパイプの放熱部を前記熱伝導部材の受熱部に接
合するようにすれば、以下のような作用を得ることがで
きる。すなわち、従来のヒートパイプは、その内部に気
体と液体との二相の状態で媒体が封入されているので、
従来のヒートパイプの流路にもともと蒸発した気体が存
在する構造となっている。そのため、例えば、従来のヒ
ートパイプの受熱部により熱回収される熱源の排気の温
度が封入された液体の沸点をかなり超える温度、仮に封
入液体を水とした場合に300℃になっても問題はほと
んど発生しない。そして、本発明の熱伝導装置の熱伝導
部材の受熱部に従来のヒートパイプの放熱部を接続した
際の接合部において、前記熱伝導部材に封入された液体
の沸点程度まで温度が下がれば本熱伝導装置はそのまま
正常に機能する。Therefore, if the heat radiating portion of the heat pipe is joined to the heat receiving portion of the heat conducting member by the two-phase change of evaporation and condensation, the following effects can be obtained. In other words, in the conventional heat pipe, the medium is sealed in a two-phase state of gas and liquid,
It has a structure in which gas that has evaporated originally exists in the flow path of the conventional heat pipe. Therefore, for example, even if the temperature of the exhaust gas of the heat source recovered by the heat receiving portion of the conventional heat pipe significantly exceeds the boiling point of the sealed liquid, and reaches 300 ° C. if the sealed liquid is water, there is no problem. Rarely occurs. Then, when the temperature of the heat-conducting member of the heat-conducting device of the present invention is reduced to about the boiling point of the liquid sealed in the heat-conducting member at the joint where the heat-dissipating portion of the conventional heat pipe is connected to the heat-receiving member of the heat-conducting member. The heat transfer device functions normally.
【0012】また、前記熱伝導部材の受熱部を例えば熱
源である熱媒体(流体)に単に接触させただけでは、熱
媒体との熱交換に用いられる伝熱面の面積が限られてし
まうが、受熱部に従来のヒートパイプを繋ぐことによ
り、伝熱面を増やすことができるとともに、高い熱伝導
率でヒートパイプで受熱した熱を前記熱伝導部材に伝達
することができる。なお、ヒートパイプの熱媒体との伝
熱面を広くするために、ヒートパイプが蛇行流路を取る
ようにするとともに、蛇行の往復回数を多くすることが
好ましい。Further, simply contacting the heat receiving portion of the heat conducting member with, for example, a heat medium (fluid) as a heat source limits the area of a heat transfer surface used for heat exchange with the heat medium. By connecting a conventional heat pipe to the heat receiving portion, the heat transfer surface can be increased, and the heat received by the heat pipe with high heat conductivity can be transmitted to the heat conductive member. In order to widen the heat transfer surface of the heat pipe with the heat medium, it is preferable that the heat pipe has a meandering flow path and that the number of reciprocating meanders is increased.
【0013】また、前記熱伝導部材の放熱部において
も、ヒートパイプを接続して伝熱面をひろげることによ
り、放熱を効率的に行なうことができる。また、伝熱面
をひろげる上では、必ずしもヒートパイプを用いる必要
がなく、熱伝導率の高い金属を前記熱伝導部材の受熱部
や放熱部に接続するものとしてもよく、コスト的には金
属部材を用いることが好ましく、熱輸送量を考慮した場
合にヒートパイプを用いることが好ましい。Also, in the heat radiating portion of the heat conducting member, the heat can be efficiently radiated by connecting the heat pipe and expanding the heat transfer surface. Further, in expanding the heat transfer surface, it is not always necessary to use a heat pipe, and a metal having a high heat conductivity may be connected to the heat receiving portion or the heat radiating portion of the heat conductive member. It is preferable to use a heat pipe in consideration of the heat transport amount.
【0014】本発明の請求項3記載のボイラは、請求項
1記載の熱伝導装置を用いた図2に示すようなボイラ
(10)であって、缶水を有する缶体(13)と、缶水
を加熱する加熱部(バーナ11)と、該加熱部からの熱
を缶水に伝える熱交換部(12)と、前記加熱部からの
排気を放出する排気系(煙道14)と、該排気系から缶
水に熱を伝導する前記熱伝導部材と、前記缶水の温度を
計測するセンサを備えるとともに計測された温度を示す
信号を出力する前記信号手段となる温度計測手段と、前
記熱伝導部材の加振手段を制御する前記制御手段とを備
え、該制御手段は、前記缶水の温度が所定の温度付近に
達するまでは、前記熱伝導部材が高い熱伝導率で排気系
の熱を缶水に伝導するように加振手段を制御し、缶水の
温度が所定の温度付近に達した場合には、熱伝導部材の
熱伝導率が缶水の温度がほぼ所定の温度を維持するもの
となるように加振手段を制御することを特徴とする。A boiler according to a third aspect of the present invention is a boiler (10) as shown in FIG. 2 using the heat conducting device according to the first aspect, comprising: a can body (13) having water; A heating section (burner 11) for heating the can water, a heat exchange section (12) for transferring heat from the heating section to the can water, and an exhaust system (flue 14) for discharging exhaust gas from the heating section; The heat conducting member that conducts heat from the exhaust system to the can water, and a temperature measuring unit that includes a sensor that measures the temperature of the can water and serves as the signal unit that outputs a signal indicating the measured temperature; and The control means for controlling the vibration means of the heat conduction member, the control means, the heat conduction member has a high heat conductivity of the exhaust system until the temperature of the water reaches near a predetermined temperature The vibrating means is controlled so as to conduct heat to the water, and the temperature of the water is adjusted to a predetermined temperature. When reaching the is characterized in that the thermal conductivity of the heat conductive member controls the vibrating means so as the temperature of the boiler water to maintain a substantially predetermined temperature.
【0015】上記構成によれば、前記缶水の温度が所定
の温度以下の時は、前記熱交換部と高い熱伝導率になっ
ている前記熱伝導部材とによって、該缶水は急速に加熱
される。そして、該缶水の温度が所定の温度に達した
時、該缶水に設置されている前記温度計測手段が該缶水
の温度を感知して温度を示す信号を出力し、該信号が前
記制御手段に入力される。該制御手段は、該熱伝導部材
の熱伝導率を下げて、該缶水の温度をほぼ所定の温度に
維持させるように、前記加振手段を適宜制御する。以上
のことから、前記排気系から前記缶水に熱を伝導する前
記熱伝導部材により、該缶水の加熱を補助することがで
きる。また、前記温度計測手段が該缶水の温度を感知し
て前記制御手段に温度を示す信号を送り、該信号によっ
て該制御手段は、前記加振手段の振幅及び振動数を前記
制御手段が制御することによって、該熱伝導部材の熱伝
導率を制御し、該缶水の温度を一定に維持する制御を行
うことができる。According to the above configuration, when the temperature of the can water is equal to or lower than the predetermined temperature, the can water is rapidly heated by the heat exchange section and the heat conductive member having a high thermal conductivity. Is done. Then, when the temperature of the water reaches a predetermined temperature, the temperature measuring means installed in the water detects the temperature of the water and outputs a signal indicating the temperature, and the signal indicates the temperature. Input to the control means. The control means appropriately controls the vibrating means so as to lower the thermal conductivity of the heat conductive member and maintain the temperature of the canned water at a substantially predetermined temperature. From the above, the heating of the can water can be assisted by the heat conducting member that conducts heat from the exhaust system to the can water. Further, the temperature measuring means senses the temperature of the canned water and sends a signal indicating the temperature to the control means, and the control means controls the amplitude and the frequency of the vibration means by the signal. By doing so, it is possible to control the thermal conductivity of the heat conductive member and control to keep the temperature of the canned water constant.
【0016】なお、ここで言うボイラとは、熱源からの
熱で缶体(容器)内の水を加熱して温水若しくは蒸気を
発生させる装置を定義し、法規上の分類である「ボイラ
ー」や商品名に使われている「温水機」、「給湯器」に
限定されない。そこで、前記ボイラとしては、湯を溜め
ておく缶体として大気に開放した容器を用いたものや、
圧力容器を用いたものや、真空容器を用いて容器内部を
負圧に保ったものなどがあり、一般のボイラ、給湯器及
び温水器に属するものは、どのようなものを用いても良
い。A boiler as used herein is defined as a device that generates water or steam by heating water in a can (container) with heat from a heat source. It is not limited to "water heaters" and "water heaters" used in product names. Therefore, as the boiler, one using a container opened to the atmosphere as a can body for storing hot water,
There are those using a pressure vessel, those using a vacuum vessel to maintain the inside of the vessel at a negative pressure, and any of those belonging to general boilers, water heaters and water heaters.
【0017】本発明の請求項4記載のボイラは、請求項
1記載の熱伝導装置を用いたボイラであって、図3に示
すように、缶水を有する缶体と、缶水を加熱する加熱部
と、該加熱部からの熱を缶水に伝える熱交換部と、前記
加熱部からの排気を放出する排気系と、該排気系から放
出される熱を蓄熱する蓄熱部(蓄熱槽20)と、前記排
気系から前記蓄熱部に熱を伝導する前記熱伝導部材と、
前記蓄熱部の温度を計測するセンサを備えるとともに計
測された温度を示す信号を出力する前記信号手段となる
温度計測手段と、前記熱伝導部材の加振手段を制御する
前記制御手段とを備え、該制御手段は、前記蓄熱部の温
度が所定の温度付近に達するまでは、熱伝導部材が高い
熱伝導率で排気系の熱を前記蓄熱部に伝導するように加
振手段を制御し、缶水の温度が所定の温度付近に達した
場合には、熱伝導部材の熱伝導率が蓄熱部の温度がほぼ
所定の温度を維持するものとなるように加振手段を制御
することを特徴とする。A boiler according to a fourth aspect of the present invention is a boiler using the heat conduction device according to the first aspect, as shown in FIG. A heating unit, a heat exchange unit that transfers heat from the heating unit to the can water, an exhaust system that discharges exhaust gas from the heating unit, and a heat storage unit (heat storage tank 20) that stores heat released from the exhaust system. ) And the heat conducting member that conducts heat from the exhaust system to the heat storage unit;
A temperature measurement unit that includes a sensor that measures the temperature of the heat storage unit and serves as the signal unit that outputs a signal indicating the measured temperature, and the control unit that controls a vibration unit of the heat conduction member, The control means controls the vibrating means so that the heat conducting member conducts the heat of the exhaust system to the heat accumulating section with a high thermal conductivity until the temperature of the heat accumulating section approaches a predetermined temperature. When the temperature of the water reaches the vicinity of the predetermined temperature, the vibrating means is controlled so that the thermal conductivity of the heat conduction member keeps the temperature of the heat storage section substantially at the predetermined temperature. I do.
【0018】上記構成によれば、前記排気系から前記蓄
熱部に熱を伝導する前記熱伝導部材により、該蓄熱部の
加熱をすることができるとともに、前記温度計測手段が
該蓄熱部の温度を感知して前記制御手段に信号を送り、
該信号によって該制御手段は、前記加振手段の振幅及び
振動数を前記制御手段が制御することによって、該熱伝
導部材の熱伝導率を制御し、該蓄熱部の温度を一定に維
持する制御を行うことができる。According to the above construction, the heat storage section can be heated by the heat conducting member that conducts heat from the exhaust system to the heat storage section, and the temperature measuring means can control the temperature of the heat storage section. Sensing and sending a signal to the control means,
The control means controls the thermal conductivity of the heat conducting member by controlling the amplitude and frequency of the vibration means by the signal, and controls the temperature of the heat storage unit to be constant. It can be performed.
【0019】本発明の請求項5記載のボイラは、請求項
3または4記載のボイラにおいて、前記信号出力手段と
して、加熱部による缶水の加熱の開始・停止に際し、加
熱の開始・停止を示す信号を出力する加熱信号出力手段
を備え、前記制御手段が前記加熱部の開始・停止に連動
して加振手段の振動の開始・停止を制御することを特徴
とする。According to a fifth aspect of the present invention, in the boiler according to the third or fourth aspect, the signal output means indicates the start / stop of heating when starting / stopping the heating of the can water by the heating unit. A heating signal output unit for outputting a signal is provided, and the control unit controls the start / stop of the vibration of the vibration unit in conjunction with the start / stop of the heating unit.
【0020】上記構成によれば、前記制御手段に前記ボ
イラによる加熱が停止したという信号が送られることに
よって、該制御手段は前記加振手段の振動を停止させ
る。さらに、該加振手段が停止することによって、前記
熱伝導部材は、熱伝導率が極端に低下する。従って、前
記制御手段が熱伝導の必要がないときに前記加振手段の
振動を停止させることにより総合効率が高くなるととも
に、通常は前記ボイラが停止すると、前記排気系の温度
が前記缶水若しくは前記蓄熱部の温度より下がってしま
い、該缶水等の熱量が排気系に放出されてしまうが、前
記加振手段の停止によって前記熱伝導部材の熱伝導が遮
断されるので、この無駄な熱量損失を防ぐことができ
る。According to the above arrangement, a signal is sent to the control means indicating that heating by the boiler has been stopped, so that the control means stops the vibration of the vibrating means. Further, when the vibration means stops, the heat conductivity of the heat conducting member extremely decreases. Therefore, the control means stops the vibration of the vibration means when there is no need for heat conduction, thereby increasing the overall efficiency, and when the boiler normally stops, the temperature of the exhaust system is reduced to the canned water or water. Although the temperature of the heat storage unit is lowered, and the calorie of the can water and the like is released to the exhaust system, the heat conduction of the heat conducting member is cut off by stopping the vibrating means. Loss can be prevented.
【0021】本発明の請求項6記載のボイラは、例え
ば、図5に示すように、請求項1記載の熱伝導装置を用
いた温水を供給するボイラであって、缶水を有する缶体
と、缶水を加熱する加熱部と、該加熱部からの熱を缶水
に伝える熱交換部と、前記加熱部からの排気を放出する
排気系と、前記缶水を用いて給湯・暖房用等に使用され
る温水を発生させるための回路(外部熱交換部17)、
該回路の給水側配管及び該給水側配管に接続されて前記
回路に給水する給水手段(給水ポンプ18a)と、前記
排気系から前記給水側配管(配管18b)に熱を伝導す
る前記熱伝導部材と、前記給水手段に接続されて給水の
開始・停止を示す信号を出力する前記信号出力手段とし
ての給水信号出力手段と、前記熱伝導部材の加振手段を
制御する前記制御手段とを備え、該制御手段は、前記給
水手段の給水の開始・停止に連動して前記加振手段の振
動の開始・停止を制御することを特徴とする。A boiler according to a sixth aspect of the present invention is, for example, as shown in FIG. 5, a boiler for supplying hot water using the heat conducting device according to the first aspect. A heating section for heating the can water, a heat exchange section for transferring heat from the heating section to the can water, an exhaust system for discharging exhaust gas from the heating section, and a hot water supply / heating system using the can water. Circuit (external heat exchange unit 17) for generating hot water used for
A water supply side pipe of the circuit, a water supply means (water supply pump 18a) connected to the water supply side pipe to supply water to the circuit, and the heat conducting member for conducting heat from the exhaust system to the water supply side pipe (pipe 18b) And a water supply signal output unit as the signal output unit connected to the water supply unit and outputs a signal indicating start / stop of water supply, and the control unit for controlling a vibration unit of the heat conductive member, The control means controls the start and stop of vibration of the vibration means in conjunction with the start and stop of water supply by the water supply means.
【0022】上記構成によれば、加熱された缶水(気化
して蒸気となっていてもよい)を用いて、温水を生成す
る回路を備えたボイラ(温水器)において、温水を生成
する回路に供給される水が、熱伝導部材により伝導され
た排気熱により予め温められることになる。これによ
り、前記回路で必要とされる熱量が減少し、ボイラの効
率を高めることができる。このようなボイラにおいて、
温水が使用されている間は、給水が行なわれ、温水が使
用されていない場合は、給水が止まることになる。一
方、ボイラの加熱部側は、基本的に缶体内の缶水が所定
温度に保たれるように作動する。したがって、加熱部の
加熱の開始及び停止と、給水手段の給水の開始及び停止
とは、必ずしも一致しない。したがって、排気熱を無制
御に給水側配管に伝導した場合に、給水が止まっている
間も配管が加熱されることになり、配管内部でとまった
状態の水が過熱する可能性がある。したがって、このよ
うな構成の場合には、加熱部の制御に、給水配管側の温
度を考慮するなどの変更が必要となるが、給水がとまっ
ている間、加熱部の加熱を停止するような制御をすると
缶体内の缶水の温度が低下して、給水が再開した際の温
水の温度が低下するなどの問題を生じる可能性がある。
しかし、本発明においては、制御手段により給水が止ま
った際には、熱伝導部材の加振手段が制御されて、熱伝
導部材の熱伝導率が極端に低下するので、特に給水側配
管の温度を考慮して加熱部を制御しなくとも、給水停止
時に給水配管が過熱状態となるのを防止することができ
る。According to the above configuration, in a boiler (water heater) provided with a circuit for generating hot water using heated can water (which may be vaporized into steam), a circuit for generating hot water Is preheated by the exhaust heat conducted by the heat conducting member. As a result, the amount of heat required in the circuit is reduced, and the efficiency of the boiler can be increased. In such a boiler,
Water supply is performed while hot water is being used, and water supply is stopped when hot water is not being used. On the other hand, the heating section side of the boiler basically operates such that the water in the can body is maintained at a predetermined temperature. Therefore, the start and stop of heating of the heating unit and the start and stop of water supply by the water supply unit do not always match. Therefore, when the exhaust heat is transmitted to the water supply side pipe without control, the pipe is heated even while the water supply is stopped, and the water stopped inside the pipe may be overheated. Therefore, in the case of such a configuration, it is necessary to change the control of the heating unit, for example, by considering the temperature of the water supply pipe side.However, while the water supply is stopped, the heating of the heating unit is stopped. If the control is performed, there is a possibility that the temperature of the can water in the can body decreases, and a problem such as a decrease in the temperature of the hot water when the water supply is restarted may occur.
However, in the present invention, when the water supply is stopped by the control means, the vibration means of the heat conduction member is controlled, and the heat conductivity of the heat conduction member is extremely reduced. Thus, even if the heating unit is not controlled in consideration of the above, it is possible to prevent the water supply pipe from being overheated when the water supply is stopped.
【0023】本発明の請求項7記載の発電装置は、請求
項1記載の熱伝導装置を用いた図4に示すような発電装
置(30)であって、ガスタービン(タービン32)
と、ガスタービンの回転により発電を行う発電部(発電
機34)と、ガスタービンの排気を放出する排気系(煙
道36)と該排気系から放出される熱を蓄熱する蓄熱部
と、前記排気系から前記蓄熱部に熱を伝導する前記熱伝
導部材と、前記蓄熱部の温度を計測するセンサを備える
とともに計測された温度を示す信号を出力する前記信号
手段となる温度計測手段と、前記熱伝導部材の加振手段
を制御する前記制御手段とを備え、該制御手段は、前記
蓄熱部の温度が所定の温度付近に達するまでは、熱伝導
部材が高い熱伝導率で排気系の熱を前記蓄熱部に伝導す
るように加振手段を制御し、缶水の温度が所定の温度付
近に達した場合には、熱伝導部材の熱伝導率が蓄熱部の
温度がほぼ所定の温度を維持するものとなるように加振
手段を制御することを特徴とする。A power generating device according to a seventh aspect of the present invention is a power generating device (30) using the heat conducting device according to the first aspect as shown in FIG.
A power generation unit (generator 34) for generating power by rotation of the gas turbine, an exhaust system (flue 36) for discharging exhaust gas from the gas turbine, and a heat storage unit for storing heat released from the exhaust system. The heat conducting member that conducts heat from the exhaust system to the heat storage unit, and a temperature measurement unit that includes a sensor that measures the temperature of the heat storage unit and serves as the signal unit that outputs a signal indicating the measured temperature; and The control means for controlling the vibrating means of the heat conducting member, wherein the control means keeps the heat conducting member with a high heat conductivity until the temperature of the heat storage unit reaches a predetermined temperature. The vibrating means is controlled so as to conduct the heat to the heat storage unit, and when the temperature of the canned water reaches a predetermined temperature, the heat conductivity of the heat conductive member increases the temperature of the heat storage unit to approximately the predetermined temperature. Control the vibration means so that it is maintained. The features.
【0024】上記構成によれば、前記排気系から前記蓄
熱部に熱を伝導する前記熱伝導部材により、該蓄熱部の
加熱をすることができるとともに、前記温度計測手段が
該蓄熱部の温度を感知して前記制御手段に信号を送り、
該信号によって該制御手段は、前記加振手段の振幅及び
振動数を前記制御手段が制御することによって、該熱伝
導部材の熱伝導率を制御し、該蓄熱部の温度を一定に維
持する制御を行うことができる。According to the above configuration, the heat storage member can be heated by the heat conducting member that conducts heat from the exhaust system to the heat storage unit, and the temperature measuring means can control the temperature of the heat storage unit. Sensing and sending a signal to the control means,
The control means controls the thermal conductivity of the heat conducting member by controlling the amplitude and frequency of the vibration means by the signal, and controls the temperature of the heat storage unit to be constant. It can be performed.
【0025】本発明の請求項8記載の発電装置は、請求
項7記載の発電装置において、前記信号出力手段とし
て、ガスタービンの作動の開始・停止に際し、作動の開
始・停止を示す信号を出力する作動信号出力手段を備
え、前記制御手段がガスタービンの作動の開始・停止に
連動して前記加振手段の振動の開始・停止を制御するこ
とを特徴とする。According to an eighth aspect of the present invention, in the power generator according to the seventh aspect, when the operation of the gas turbine is started or stopped, a signal indicating the start or stop of the operation is output as the signal output means. Operating signal output means for controlling the start and stop of the vibration of the vibrating means in conjunction with the start and stop of the operation of the gas turbine.
【0026】上記構成によれば、前記制御手段に前記ガ
スタービンによる加熱が停止したという信号が送られる
ことによって、該制御手段は前記加振手段の振動を停止
させる。さらに、該加振手段が停止することによって前
記熱伝導部材は、ほとんど熱を通さない状態になる。従
って、前記制御手段が熱伝導の必要がないとき前記加振
手段の振動を停止させることにより総合効率が高くなる
とともに、通常は前記ガスタービンが停止すると、前記
排気系の温度が前記蓄熱部の温度より下がってしまい、
該蓄熱部の熱量が排気系に放出されてしまうが、前記加
振手段の停止によって前記熱伝導部材の熱伝導が遮断さ
れるので、この無駄な熱量損失を防ぐことができる。According to the above arrangement, a signal is sent to the control means indicating that the heating by the gas turbine has been stopped, so that the control means stops the vibration of the vibration means. Further, when the vibrating means stops, the heat conduction member is in a state where almost no heat is transmitted. Therefore, when the control means does not need to conduct heat, the vibration of the vibrating means is stopped to increase the overall efficiency, and normally, when the gas turbine is stopped, the temperature of the exhaust system is reduced. It drops below the temperature,
Although the calorie of the heat storage section is released to the exhaust system, the heat conduction of the heat conducting member is cut off by stopping the vibrating means, so that this useless calorie loss can be prevented.
【0027】本発明の請求項9記載の発電装置は、請求
項1記載の熱伝導装置を用いた発電装置であって、ガス
タービンと、ガスタービンの回転により発電を行う発電
部と、ガスタービンの排気を放出する排気系と、前記排
気系の余熱を用いて給湯・暖房用等に使用される温水を
発生させるための回路、該回路の給水側配管及び該給水
側配管に接続されて前記回路に給水する給水手段と、前
記排気系から前記給水側配管に熱を伝導する前記熱伝導
部材と、前記給水手段に接続されて給水の開始・停止を
示す信号を出力する前記信号出力手段としての給水信号
出力手段と、前記熱伝導部材の加振手段を制御する前記
制御手段とを備え、該制御手段は、前記給水手段の給水
の開始・停止に連動して加振手段の振動の開始・停止を
制御することを特徴とする。A power generator according to a ninth aspect of the present invention is a power generator using the heat conduction device according to the first aspect, comprising: a gas turbine; a power generator for generating power by rotating the gas turbine; An exhaust system that discharges exhaust gas, a circuit for generating hot water used for hot water supply, heating, and the like using residual heat of the exhaust system, a water supply side pipe of the circuit, and a circuit connected to the water supply side pipe, Water supply means for supplying water to the circuit, the heat conducting member that conducts heat from the exhaust system to the water supply side pipe, and the signal output means that is connected to the water supply means and outputs a signal indicating start / stop of water supply. Water supply signal output means, and the control means for controlling the vibration means of the heat conducting member, wherein the control means starts the vibration of the vibration means in conjunction with the start / stop of water supply by the water supply means.・ Specially controlling stop To.
【0028】上記構成によれば、ガスタービンによる発
電の際の排気熱を利用して温水を供給することが可能な
発電装置において、請求項6記載のボイラと同様の効果
を奏することができる。すなわち、この発電装置におい
ては、排気熱を利用して給湯を行なう際に、予め、温水
を生成する回路に供給される水を熱伝導部材により伝導
された排気熱で予熱して、前記回路における負荷を減少
させることができる構成において、温水が消費されずに
給水が止まっている間、熱伝導部材の熱伝導率を極端に
低下させて給水される水が過熱するのを防止することが
できる。なお、給水される水を温めて温水を生成する回
路の負荷を減少させることで、給湯量が多く、補助的に
バーナを必要とするような場合に、バーナに使用される
エネルギを低減させたり、補助的なバーナを使用せずに
すむような構成とすることができる。According to the above configuration, in a power generator capable of supplying hot water using exhaust heat at the time of power generation by the gas turbine, the same effect as that of the boiler according to claim 6 can be obtained. That is, in this power generation device, when hot water is supplied using exhaust heat, water supplied to a circuit for generating hot water is preheated in advance by the exhaust heat conducted by the heat conducting member, and the heat in the circuit is reduced. In a configuration in which the load can be reduced, while the hot water is not consumed and the water supply is stopped, the heat conductivity of the heat conductive member can be extremely reduced to prevent the supplied water from overheating. . In addition, by reducing the load of a circuit that generates hot water by warming the supplied water, it is possible to reduce the energy used for the burner when the amount of hot water is large and a burner is additionally required. In addition, it is possible to adopt a configuration that does not require the use of an auxiliary burner.
【0029】本発明の請求項10記載の加温装置は、請
求項1または2記載の熱伝導装置を用いた加温・冷却装
置であって、前記熱伝導部材の流路の低温部側が暖房・
融雪等の各種加熱用の放熱手段とされるか、もしくは熱
伝導部材の流路の高温部側が冷房・冷蔵等の各種冷却用
の冷却手段とされていることを特徴とする。A heating device according to a tenth aspect of the present invention is a heating / cooling device using the heat conduction device according to the first or second aspect, wherein the low-temperature side of the flow path of the heat conduction member is heated.・
It is characterized by being a heat radiating means for various kinds of heating such as snow melting, or a cooling means for various kinds of cooling such as cooling and refrigeration on the high temperature side of the flow path of the heat conducting member.
【0030】上記構成によれば、熱源の熱を熱伝導部材
が伝導するとともに、熱伝導部材の流路の低温部側が暖
房、融雪用の放熱板(放熱手段)とされて、該放熱板か
ら輻射、対流により暖房を行なうことが可能となるとと
もに、直接の熱伝導等により融雪が可能となる。また、
融雪や暖房に際し、熱源として、ガス、灯油等の燃焼や
電熱器等だけではなく、温泉や地熱等の自然エネルギを
有効に利用することができる。According to the above construction, the heat from the heat source is conducted by the heat conducting member, and the low-temperature side of the flow path of the heat conducting member is used as a heat radiating plate (heat radiating means) for heating and melting snow. Heating can be performed by radiation and convection, and snow melting can be performed by direct heat conduction and the like. Also,
When melting snow or heating, as a heat source, not only combustion of gas, kerosene and the like, electric heaters, but also natural energy such as hot springs and geothermal can be effectively used.
【0031】また、前記信号出力手段として、温度セン
サに接続されて例えば暖房される部屋の室温を示す信号
を出力するものを配置させれば、熱伝導部材の熱伝導率
を制御することにより、室温を制御することができる。
また、この場合には、室温をコントロールするのに必ず
しも熱源の温度を制御する必要がないので、温泉や地熱
等の基本的に温度を制御できない自然エネルギのような
熱源や、発電やゴミの焼却等に付随する余熱や廃熱のに
ように、室温のコントロール以外の目的で温度が制御さ
れる熱源などの場合に、熱源の温度を制御することな
く、室温のコントロールが可能となる。If the signal output means is connected to a temperature sensor and outputs a signal indicating, for example, the room temperature of the room to be heated, the signal output means can control the thermal conductivity of the heat conductive member. Room temperature can be controlled.
In this case, since it is not always necessary to control the temperature of the heat source to control the room temperature, heat sources such as natural energy, such as hot springs and geothermal, which cannot basically control the temperature, power generation, and incineration of garbage can be used. For example, in the case of a heat source whose temperature is controlled for a purpose other than the control of the room temperature, such as residual heat and waste heat accompanying the temperature control, the room temperature can be controlled without controlling the temperature of the heat source.
【0032】また、この加温装置の熱伝導部材を融雪に
用いる場合には、熱伝導部材の受熱を上述のように幅が
広いものとして、路面もしくは路面の下に配置して、路
面上の積雪を融雪させることになる。この際には、例え
ば、暖房の場合のような温度制御以外に、積雪計や、降
雪・降雨や、路面上の水(氷)を検知する手段に、積雪
量、降雪、降雨、水の存在を示す信号を出力する信号出
力手段を接続し、路面上に雪や氷や水がある場合にだ
け、熱伝導部材の熱伝導率を高めて融雪等を行なわせる
ようにしてもよい。また、融雪の場合には、上述のよう
に熱源として温泉・地熱等の自然エネルギを用いること
により、低コストでの融雪を可能とすることができる。When the heat conducting member of this heating device is used for melting snow, the heat conducting member is assumed to have a wide width as described above, and is arranged on the road surface or below the road surface, and It will melt the snow. In this case, for example, in addition to the temperature control as in the case of heating, a snowfall meter, a means for detecting snowfall / rainfall, or water (ice) on the road surface may be provided with the amount of snowfall, snowfall, rainfall, and presence of water. May be connected, and only when there is snow, ice, or water on the road surface, the heat conductivity of the heat conducting member may be increased to perform snow melting or the like. In the case of snow melting, low-cost snow melting can be achieved by using natural energy such as hot springs and geothermal heat as a heat source as described above.
【0033】なお、流路の放熱板となる部分は、各流路
部が並列した状態で全体を流路部の厚み内で蛇行させる
などして面積を増やすものとすることがこのましく、こ
の際に、蛇行した部分を互いに接した状態として、流路
の幅より広い板状としたり、蛇行した部分の間隔を離し
てストライプ状(屈曲もしくは湾曲した部分を除いた部
分)や波状やジグザグ状や櫛歯状としたりしてもよい。
さらに、蛇行により幅の広い板状等にされた流路部を、
板状とされた部分の面に直交する方向に湾曲もしくは屈
曲するように、さらに蛇行させて流路の幅より広い面積
とされた部分を波状、ジグザグ状、櫛歯状としたりして
もよい。また、本発明は、熱源を冷熱源として冷却装置
とすることもできる。冷却装置とした場合の構成も熱源
の温度が異なる以外は、基本的に加温装置と同様の構成
とすることができる。また、冷熱源としては、コンプレ
ッサを利用したものや、電圧を印加することにより冷却
する素子を利用したものや、湧水、井戸水、氷等を利用
することができる。It is preferable to increase the area of the portion of the flow path serving as the heat radiating plate by, for example, meandering the entire flow path within the thickness of the flow path in a state where the flow paths are arranged in parallel. At this time, the meandering portions are in contact with each other, and are formed in a plate shape wider than the width of the flow path, or in a stripe shape (a portion excluding a bent or curved portion), a wavy shape, or a zigzag shape in which the meandering portions are separated from each other. Shape or comb shape.
Furthermore, the channel portion made into a wide plate shape by meandering,
The portion having an area larger than the width of the flow channel may be further meandered so as to be curved or bent in a direction perpendicular to the surface of the plate-shaped portion, and may be formed in a wavy shape, a zigzag shape, or a comb tooth shape. . Further, in the present invention, a cooling device may be used with the heat source as a cold heat source. The configuration of the cooling device can be basically the same as the configuration of the heating device except that the temperature of the heat source is different. Further, as the cold heat source, one using a compressor, one using an element that cools by applying a voltage, spring water, well water, ice, or the like can be used.
【0034】[0034]
【発明の実施の形態】本発明の熱伝導装置、ボイラ、発
電装置及び加温・冷却装置における実施の形態を以下に
図面を参照して説明する。本発明の熱伝導装置に用いら
れる熱伝導部材には、図1に示す対向振動流型ヒートパ
イプ2を用いている。該対向振動流型ヒートパイプ2
は、全体が薄い板状体2aになっている。該板状体2a
内部は、流路が高温部から低温部を往復するように蛇行
することにより各流路部2eが高温部と低温部との間で
並列に配置された状態とされている。、また、並列に配
置された流路部2e同士は、それぞれ流路壁2bにより
隔てられるとともに、各流路部2eは、それぞれ一方の
端部側において右隣の流路部2eに接続され、他方の端
部側において左隣の流路部2eに接続され、さらに左右
の端部の流路部2が互いに接続されることで、流路は閉
回路循環流路になっている。そして、該閉回路循環流路
内部には熱を伝える媒体となる液体2cが、流路内にほ
ぼ満たされた状態で封入されている。該液体2cは流路
内に設置されている加振器2d(加振手段)によって、
該流路内を高温部(Hot side)へ向う方向と低温部(Cold
side)へ向う方向との間で往き来するように振動する。
また、該液体2cは、蛇行した流路内を振動するため、
流路壁2bを隔てて隣接する液体2c同士は互いに逆位
相になっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a heat conduction device, a boiler, a power generation device, and a heating / cooling device according to the present invention will be described below with reference to the drawings. The counter-oscillating flow heat pipe 2 shown in FIG. 1 is used as a heat conducting member used in the heat conducting device of the present invention. The opposed oscillating flow heat pipe 2
Has a thin plate-like body 2a as a whole. The plate 2a
The interior is in a state where the flow paths meander so as to reciprocate from the high-temperature section to the low-temperature section, and the respective flow path sections 2e are arranged in parallel between the high-temperature section and the low-temperature section. In addition, the flow path portions 2e arranged in parallel are separated from each other by a flow path wall 2b, and each flow path section 2e is connected to a flow path section 2e on the right side on one end side, The flow path is a closed circuit circulation flow path by being connected to the flow path section 2e on the left side on the other end side, and further connected to the flow path sections 2 on the left and right ends. The inside of the closed circuit circulation flow path is filled with a liquid 2c serving as a medium for transmitting heat in a state where the liquid 2c is substantially filled in the flow path. The liquid 2c is moved by a vibrator 2d (vibration means) installed in the flow path.
In the flow path, the direction toward the high temperature part (Hot side) and the low temperature part (Cold
It vibrates so that it moves back and forth with the direction toward side).
In addition, since the liquid 2c vibrates in the meandering flow path,
The liquids 2c adjacent to each other across the flow path wall 2b have phases opposite to each other.
【0035】以下に、前記対向振動流型ヒートパイプ2
の熱を伝達する仕組みについて説明する。まず、振動に
よって高温部に振れた壁温より低い温度の液体2cは、
流路壁2bを隔てて隣接する逆位相の液体2cが高温部
から運んでくる熱量を該流路壁2bを通して吸熱する。
そして該熱量を吸熱した液体2cは、低温部へ該熱量を
運ぶ。その後、低温部に振れた液体2cは壁温より温度
が高いので、流路壁2bを隔てて隣接する高温部に振れ
た液体2cに該熱量を流路壁2bを通して放熱する。こ
れら上記動作の繰り返しにより、高温部から低温部へ熱
が伝達されていく。そのため、流路内で熱媒体を移動さ
せることによって、該熱媒体とともに熱を移動させるも
のに対して、上記本発明のように隣接した流路壁2bを
通して、熱を伝導させるものの方が、より大きな熱輸送
量を運ぶことができる。さらに、前記加振器2dの振動
数を多くすると上記動作が、早く行われるため熱伝導率
が向上し、また、振動数を少なくすると上記動作が、遅
く行われるため熱伝導率が下がる。また、振幅を広くす
ることにより一回の振動による熱の移動距離が延びて熱
伝導率が向上し、振幅を狭くすると逆に熱伝導率が低下
する。このように加振器2dの振動数や振幅を変えるこ
とにより、前記熱伝導率は振動数の平方根から二乗の間
(振動数領域による)に、また、その液体の振動流の振
幅の二乗に比例するので、熱の伝わり方を広い範囲で変
えることができる。The counter-oscillating flow heat pipe 2
The mechanism for transmitting the heat of the first embodiment will be described. First, the liquid 2c whose temperature is lower than the wall temperature shaken by the vibration in the high-temperature portion,
The liquid 2c having the opposite phase adjacent thereto across the flow path wall 2b absorbs the heat carried from the high temperature portion through the flow path wall 2b.
Then, the liquid 2c that has absorbed the heat quantity carries the heat quantity to the low temperature part. Thereafter, since the temperature of the liquid 2c that has been shaken to the low-temperature portion is higher than the wall temperature, the amount of heat is radiated to the liquid 2c that has shaken to the adjacent high-temperature portion across the flow path wall 2b through the flow path wall 2b. By repeating these operations, heat is transferred from the high-temperature portion to the low-temperature portion. Therefore, as compared with the heat medium that moves along with the heat medium by moving the heat medium in the flow path, the heat medium that conducts the heat through the adjacent flow path wall 2b as in the present invention is more preferable. It can carry a large amount of heat transport. Further, when the vibration frequency of the vibrator 2d is increased, the above-described operation is performed earlier, so that the thermal conductivity is improved. On the other hand, when the vibration frequency is reduced, the above-described operation is performed later, so that the thermal conductivity is reduced. Further, by increasing the amplitude, the distance of heat transfer by one vibration is extended and the thermal conductivity is improved, and when the amplitude is reduced, the thermal conductivity is reduced. By changing the frequency and amplitude of the vibrator 2d in this manner, the thermal conductivity is between the square root of the frequency and the square (depending on the frequency range) and the square of the amplitude of the oscillating flow of the liquid. Because it is proportional, the way heat is transmitted can be varied over a wide range.
【0036】次に、本発明の第1例としての熱伝導装置
及びボイラについて、以下に説明する。図2に示すボイ
ラ10は、該ボイラ10の主動力としてバーナ11(加
熱部)を備え、該バーナ11の燃焼による排気ガスが通
る熱交換部12(熱交換部)が缶水を貯蔵している缶体
13内に設けられ、該缶体13内の缶水を加熱してい
る。また、該熱交換部12を通過後の該排気ガスを外部
へ排出させるための煙道14(排気系)と、前記缶体1
3内の缶水を循環させるためのポンプ15、配管16
と、ボイラ10の熱エネルギーを外部に供給する外部熱
交換部17を備えている。なお、このボイラ10は、以
下に説明する本発明の熱伝導装置が備えられ、該熱伝導
装置により排気熱を利用して缶水を加熱する構成とその
制御方法以外は、基本的に周知の開放型の容器を利用し
た温水器とほぼ同様のものである。また熱伝導装置に
は、熱伝導部材として上記対向振動流型ヒートパイプ2
が用いられ、該対向振動流型ヒートパイプ2の高温部
に、該バーナ11の排気ガスから熱を吸熱する受熱部
3、低温部には缶体13内部に該対向振動流型ヒートパ
イプ2より伝達してきた熱を放熱する放熱部4が設けら
れている。そして、該受熱部3は前記煙道14に設置さ
れ、該放熱部4は前記缶体13内に設置される。前記対
向振動流型ヒートパイプ2の内部に設けられる前記加振
器2dには、該加振器2dの振動数、振幅を温度によっ
て制御する制御ボックス5(制御手段)が接続され、該
制御ボックス5は該缶体13外壁に設けられている。ま
た、該缶体13内の缶水の温度を感知するために該缶体
13内にサーモセンサー6(温度計測手段)が設けられ
ている。そして、該サーモセンサー6が感知した温度
が、サーモセンサ6内にある図示しない信号出力手段に
よって温度を示す信号となって、前記制御ボックス5に
出力される。Next, a heat conduction device and a boiler as a first example of the present invention will be described below. The boiler 10 shown in FIG. 2 includes a burner 11 (heating unit) as a main power of the boiler 10, and a heat exchange unit 12 (heat exchange unit) through which exhaust gas generated by combustion of the burner 11 passes stores canned water. Is provided in the can body 13, and heats the can water in the can body 13. A flue 14 (exhaust system) for discharging the exhaust gas after passing through the heat exchange section 12 to the outside;
Pump 15 and piping 16 for circulating the water in 3
And an external heat exchange unit 17 for supplying the heat energy of the boiler 10 to the outside. The boiler 10 is provided with a heat conducting device of the present invention described below, and basically employs a well-known configuration except for a configuration for heating canned water using exhaust heat by the heat conducting device and a control method therefor. It is almost the same as a water heater using an open container. In the heat conduction device, the opposed oscillating flow heat pipe 2 is used as a heat conduction member.
A heat receiving portion 3 for absorbing heat from the exhaust gas of the burner 11 is provided at a high temperature portion of the opposed oscillating flow heat pipe 2, and a can body 13 is provided at a low temperature portion for the heat from the opposed oscillating flow heat pipe 2. A radiator 4 for radiating the transmitted heat is provided. The heat receiving unit 3 is installed in the flue 14, and the heat radiating unit 4 is installed in the can 13. A control box 5 (control means) for controlling the frequency and amplitude of the vibrator 2d by temperature is connected to the vibrator 2d provided inside the opposed vibrating flow heat pipe 2, and the control box 5 is provided on the outer wall of the can 13. In addition, a thermosensor 6 (temperature measuring means) is provided in the can 13 to sense the temperature of the water in the can 13. The temperature detected by the thermosensor 6 is output to the control box 5 as a signal indicating the temperature by a signal output unit (not shown) provided in the thermosensor 6.
【0037】ここで、前記対向振動流型ヒートパイプ2
の高温部に設けられる受熱部3は、図3に示すように、
二相の蒸発と凝縮との相変化による従来型ヒートパイプ
3aと、金属材料等で作られる伝熱板3bとで構成され
る。一方、放熱部4も受熱部3と同様な構成になってい
る。ここで、前記従来型ヒートパイプ3aは、パイプが
蛇行する流路であるため、対向振動流型ヒートパイプ2
のように流路壁2bを隔てて隣接していない。従って、
蛇行の往復回数を多くすることにより、その表面積を容
易に大きくすることができる。次に、受熱部3から対向
振動流型ヒートパイプ2へ熱量を伝達する仕組みについ
て説明する。まず、従来型ヒートパイプ3aが、煙道1
4から熱量を受熱する。従来型ヒートパイプ3aが受熱
する熱量は、該従来型ヒートパイプ3a内を流れて伝熱
板3b側へ伝達される。そして、該熱量は該伝熱板3b
内を流れ、対向振動流型ヒートパイプ2へ伝達される。
一方、放熱部4については、上記とは逆の順序で伝達さ
れる熱量が缶体13内の缶水に放熱される。Here, the opposed oscillating flow type heat pipe 2
As shown in FIG. 3, the heat receiving section 3 provided in the high temperature section of
It is composed of a conventional heat pipe 3a based on a phase change between two-phase evaporation and condensation, and a heat transfer plate 3b made of a metal material or the like. On the other hand, the heat radiating section 4 has the same configuration as the heat receiving section 3. Here, since the conventional heat pipe 3a has a meandering flow path, the opposed oscillating flow heat pipe 2a
Are not adjacent to each other across the flow path wall 2b. Therefore,
By increasing the number of reciprocating meanders, the surface area can be easily increased. Next, a mechanism for transmitting heat from the heat receiving unit 3 to the opposed oscillating flow heat pipe 2 will be described. First, the conventional heat pipe 3a is connected to the flue 1
4 receives heat. The amount of heat received by the conventional heat pipe 3a flows through the conventional heat pipe 3a and is transmitted to the heat transfer plate 3b. And the heat quantity is the heat transfer plate 3b
And flows to the opposed oscillating flow heat pipe 2.
On the other hand, in the heat radiating portion 4, the amount of heat transmitted in the reverse order to the above is radiated to the water in the can 13.
【0038】以上のように、受熱部3を設けることによ
り、従来型ヒートパイプ3aの表面積が対向振動流型ヒ
ートパイプ2の表面積より大きくなるため、煙道14か
らの熱量を受熱する効率が上がるとともに、放熱部4も
上記と同様な作用で、缶体13内への熱量を放熱する効
率が上がるため、熱伝導装置の総合伝熱効率を高めるこ
とができる。また、対向振動流型ヒートパイプ2は、液
体2cが流路内にほぼ満たされた状態で封入されている
ので、排熱をその高温部で直接受熱させると、排熱温度
が液体2cの沸点温度以上になった場合に正常に機能し
ない可能性がでてくる。一方、従来型ヒートパイプ3a
内には既に蒸発した気体が存在する。そのため、排熱温
度が従来型ヒートパイプ3a内に封入された液体の沸点
温度を大幅に越えた場合、仮に封入される液体が水であ
ったとしても、該従来型ヒートパイプ3aは300℃程
度まで耐えうる構造になっている。従って、排熱を該従
来型ヒートパイプ3aで直接受熱させることができる。
さらに、従来型ヒートパイプ3a及び伝熱板3bにおけ
る熱損失を利用して、対向振動流型ヒートパイプ2に到
達する熱の温度を液体2cの沸点温度に達しないように
設定すれば、該対向振動流型ヒートパイプ2を適正な条
件で使用できる。なお、煙道14及び缶体13の熱量を
受熱及び放熱させる部材としては、前記従来型ヒートパ
イプ3aに限定されず、例えば、金属板を幾層にも重ね
たもの等でも良く、ヒートパイプ以外に、その表面積が
大きく伝熱可能な金属部材であればどのようなものでも
良い。また、なお外部熱交換部17は、加熱された缶水
の熱で、外部熱交換部17に給水される水を温めて温水
を生成して給湯するためのものである。As described above, by providing the heat receiving section 3, the surface area of the conventional heat pipe 3a becomes larger than the surface area of the opposed oscillating flow heat pipe 2, so that the efficiency of receiving heat from the flue 14 increases. At the same time, the heat dissipating portion 4 also has the same operation as described above, so that the efficiency of dissipating the amount of heat into the can 13 increases, so that the overall heat transfer efficiency of the heat conduction device can be increased. Further, since the opposed oscillating flow type heat pipe 2 is sealed in a state where the liquid 2c is almost completely filled in the flow path, if the exhaust heat is directly received by the high temperature portion, the exhaust heat temperature becomes the boiling point of the liquid 2c. If the temperature becomes higher than the temperature, it may not function properly. On the other hand, the conventional heat pipe 3a
There is already evaporated gas inside. Therefore, when the exhaust heat temperature greatly exceeds the boiling point temperature of the liquid sealed in the conventional heat pipe 3a, even if the sealed liquid is water, the conventional heat pipe 3a has a temperature of about 300 ° C. It has a structure that can withstand up to. Therefore, the exhaust heat can be directly received by the conventional heat pipe 3a.
Furthermore, if the temperature of heat reaching the opposed oscillating flow heat pipe 2 is set so as not to reach the boiling point of the liquid 2c by utilizing the heat loss in the conventional heat pipe 3a and the heat transfer plate 3b, The oscillating flow heat pipe 2 can be used under appropriate conditions. The member for receiving and radiating the heat of the flue 14 and the can 13 is not limited to the conventional heat pipe 3a, and may be, for example, a multi-layered metal plate. In addition, any metal member having a large surface area and capable of conducting heat may be used. Further, the external heat exchange section 17 is for heating the water supplied to the external heat exchange section 17 with the heat of the heated canned water to generate hot water and supply hot water.
【0039】次に、第1例におけるボイラ10が稼働し
ている時の、熱伝導装置の動作について説明する。ま
ず、缶体13内の缶水を加熱するために、バーナ11の
主電源を入れると、前記加振器2d及び前記サーモセン
サー6の電源、制御ボックス5も連動してオンになる。
そして、前記缶体13内の缶水の温度をサーモセンサー
6が感知し、前記制御ボックス5に情報が伝達される。
ここで、該缶体13内の缶水温度がまだ常温(例えば2
0℃)であり、該缶水温度が該缶体13内のあらかじめ
設定された缶水設定温度の下限値(例えば67℃)に達
していないとすると、該制御ボックス5は、前記加振器
2dに対し、該加振器2dをHiモードとさせる指令を
与え、該加振器2dを高速で振動させる。該加振器2d
が高速で振動することにより、前記対向振動流型ヒート
パイプ2の熱伝導率は高くなり、多くの熱量を該缶体1
3内の缶水に伝導する。多量の該熱量が放熱部4から放
熱されるため、該缶体13内の缶水の温度は急激に上が
っていく。Next, the operation of the heat conduction device when the boiler 10 in the first example is operating will be described. First, when the main power of the burner 11 is turned on to heat the water in the can 13, the power of the vibrator 2 d, the power of the thermosensor 6, and the control box 5 are also turned on.
Then, the temperature of the water in the can 13 is detected by the thermo sensor 6, and the information is transmitted to the control box 5.
Here, the can water temperature in the can body 13 is still room temperature (for example, 2
0 ° C.), and if the can water temperature does not reach the lower limit (for example, 67 ° C.) of a preset can water set temperature in the can 13, the control box 5 An instruction is given to 2d to set the vibrator 2d to the Hi mode, and the vibrator 2d is vibrated at a high speed. The shaker 2d
Vibrates at a high speed, the heat conductivity of the opposed oscillating flow heat pipe 2 increases, and a large amount of heat is
Conducts to the can water in 3. Since a large amount of the heat is radiated from the radiator 4, the temperature of the water in the can 13 rises rapidly.
【0040】やがて、該缶水の温度が前記缶水設定温度
の下限値に達すると、該制御ボックス5は前記加振器2
dに対し、該加振器2dをLowモードにさせる指令を
与え、該加振器2dを低速で振動させる。該加振器2d
が低速で振動することにより、前記対向振動流型ヒート
パイプ2の熱伝導率が低くなり、比較的少ない熱量を該
缶体13内の缶水に伝導する。少量の該熱量は放熱部4
より放熱されるため、該缶体13内の缶水の温度上昇
は、前記加振器2dがHiモードの時と比べ、緩やかな
ものとなる。該缶水の温度は緩やかに上がっていき、や
がて前記缶水設定温度の上限値(例えば73℃)を越え
ると、前記制御ボックス5は、前記加振器2dに対し、
該加振器2dを強制的に停止させる指令を与え、該加振
器2dを停止させる。該加振器2dが停止することによ
って、前記対向振動流型ヒートパイプ2は、受熱部3か
らの熱伝導をほぼ遮断してしまう。When the temperature of the water reaches the lower limit of the set temperature of the water, the control box 5 turns on the vibrator 2.
An instruction is given to the controller d to set the vibrator 2d to the low mode, and the vibrator 2d is vibrated at a low speed. The shaker 2d
Vibrates at a low speed, the thermal conductivity of the opposed oscillating flow heat pipe 2 becomes low, and a relatively small amount of heat is conducted to the water in the can 13. The small amount of the heat is
Since the heat is further dissipated, the temperature rise of the can water in the can 13 becomes gentler than when the vibrator 2d is in the Hi mode. When the temperature of the can water gradually rises, and eventually exceeds the upper limit of the set can water temperature (for example, 73 ° C.), the control box 5 causes the vibrator 2 d to
A command to forcibly stop the vibrator 2d is given to stop the vibrator 2d. When the vibrator 2d stops, the opposed oscillating flow heat pipe 2 substantially blocks the heat conduction from the heat receiving unit 3.
【0041】該熱伝導が遮断されてしまった前記缶体1
3内の缶水の温度は上昇しなくなり、やがて緩やかに下
降し始める。該缶水の温度がどんどん下降し、前記缶水
設定温度の範囲内のある決められた温度(例えば68.
5℃)に達すると、前記制御ボックス5は前記加振器2
dに対し、該加振器2dを再びLowモードで始動させ
る指令を出し、該加振器2dは低速で振動を始める。該
加振器2dが始動することにより、前記対向振動流型ヒ
ートパイプ2の伝熱機能も復活し、少量の熱量を受熱部
3から放熱部4へ伝導する。そして、前記缶体13内の
缶水の温度も再び、緩やかに上昇を始める。但し、使用
負荷が大きく缶水温度が更に降下し、前記缶水設定温度
の下限値(例えば67℃)を下まわり、例えば60℃以
下になった時はHiモードとする指令を再び与え、運転
のスタート時と同様な動作を行う。以上の動作を繰り返
すことによって、該缶体13内のあらかじめ設定された
前記缶水設定温度上限から下限までの領域で、缶水に熱
を供給する前記熱交換部12の補助的役割を果たし、該
領域間での缶水加熱の微調整を行うことができる。The can body 1 whose heat conduction has been cut off
The temperature of the canned water in 3 no longer rises, but slowly begins to fall. The temperature of the can water decreases rapidly, and reaches a predetermined temperature within the range of the can water set temperature (for example, 68.
5 ° C.), the control box 5
d, a command to start the vibrator 2d again in the low mode is issued, and the vibrator 2d starts vibrating at a low speed. By starting the vibrator 2d, the heat transfer function of the opposed oscillating flow heat pipe 2 is also restored, and a small amount of heat is transmitted from the heat receiving unit 3 to the heat radiating unit 4. Then, the temperature of the can water in the can 13 also starts to gradually rise again. However, when the working load is large and the water temperature further drops and falls below the lower limit of the above-mentioned water setting temperature (for example, 67 ° C.), for example, becomes 60 ° C. or less, a command to set the Hi mode is given again, and the operation is started. The same operation as that at the time of start is performed. By repeating the above operation, in the region from the upper limit to the lower limit of the preset canned water temperature in the can 13, plays an auxiliary role of the heat exchange unit 12 that supplies heat to the canned water, Fine adjustment of canned water heating between the regions can be performed.
【0042】従って、上記本発明の第1例によれば、前
記対向振動流型ヒートパイプ2を使用することによっ
て、バーナ11による排気ガスの熱量を再利用できると
ともに、前記対向振動流型ヒートパイプ2が、缶水を補
助的に加熱する必要がなくなると、前記加振器2dが停
止するため、省エネの効果を上げることができる。さら
に、缶体13内の缶水を微調整しながら加熱することが
できる。また、該対向振動流型ヒートパイプ2は、受熱
部と放熱部とを繋ぐだけで良く、図5に示すような従来
の熱伝導装置として利用されてきた排気回収熱交換器1
のように、熱媒体である缶水を該排気回収熱交換器1内
部の配管へ循環させて缶体13に熱伝達させるような大
掛かりな設備とは違い、熱のみを伝達するため設置スペ
ースが必要なく、ボイラ設備のコンパクト化が実現す
る。さらに、従来の排気回収熱交換器1のようにポンプ
15によって、缶水を該排気回収熱交換器1内に循環さ
せる必要がないので、ポンプ15の容量を大きくした
り、数を増やしたりする必要がなくなり、コストも安く
なる。さらに、他のポンプを備えた熱伝導装置と比べる
と、対向振動流型ヒートパイプ2の方が構成部品が少な
いため、製造コストが安くなる。また、缶水を循環させ
る動力に比べ振動を発生させる動力は10分の1程度で
すみ、省エネルギーを実現できる。Therefore, according to the first embodiment of the present invention, the use of the opposed oscillating flow heat pipe 2 makes it possible to reuse the heat of the exhaust gas by the burner 11 and to use the opposed oscillating flow heat pipe. When there is no need to supplementally heat the canned water, the vibrator 2d stops, so that the effect of energy saving can be improved. Further, the can water can be heated while finely adjusting the can water in the can body 13. Further, the opposed oscillating flow heat pipe 2 only needs to connect the heat receiving section and the heat radiating section, and the exhaust recovery heat exchanger 1 used as a conventional heat conducting device as shown in FIG.
Unlike large-scale equipment that circulates canned water as a heat medium to pipes inside the exhaust heat recovery heat exchanger 1 and transfers heat to the can 13, the installation space for transferring only heat is small. There is no need to make the boiler equipment compact. Further, since there is no need to circulate can water in the exhaust heat recovery exchanger 1 by the pump 15 as in the conventional exhaust heat recovery exchanger 1, the capacity of the pump 15 is increased or the number thereof is increased. This eliminates the need and reduces costs. Furthermore, as compared with a heat transfer device provided with another pump, the opposed oscillating flow type heat pipe 2 has fewer components, so that the manufacturing cost is reduced. In addition, the power for generating vibration is only about one-tenth of the power for circulating can water, and energy can be saved.
【0043】本発明の第2例としての熱伝導装置及びボ
イラについて、以下に説明する。図4に示すボイラ10
は、蓄熱槽20(蓄熱部)を備え缶体13内の缶水とは
別に蓄熱槽20の熱を利用可能な構成とされ、かつ、本
発明の熱伝導装置が、第1例のように排気熱を缶体13
内に伝導するのではなく、蓄熱槽20に伝導するように
なっている以外は、第1例のボイラ10とほぼ同様な構
成となっており、第1例と同様の構成要素には、同じ符
号を付してその説明を省略する。なお、蓄熱槽20内に
水等の熱媒体21が充填されており、温水等を供給でき
るようになっている。A heat conduction device and a boiler as a second example of the present invention will be described below. Boiler 10 shown in FIG.
Is provided with a heat storage tank 20 (heat storage unit) and is configured to be able to use the heat of the heat storage tank 20 separately from the water in the can body 13, and the heat conduction device of the present invention is configured as in the first example. Exhaust heat can 13
The configuration is substantially the same as that of the boiler 10 of the first example, except that the heat is not conducted to the inside, but to the heat storage tank 20. The description is omitted by attaching the reference numerals. The heat storage tank 20 is filled with a heat medium 21 such as water so that hot water or the like can be supplied.
【0044】また熱伝導装置には、熱伝導部材として上
記対向振動流型ヒートパイプ2が用いられ、該対向振動
流型ヒートパイプ2の高温部に、該バーナ11の排気ガ
スから熱を吸熱する受熱部3、低温部には該蓄熱槽20
内の熱媒体21に該対向振動流型ヒートパイプ2より伝
達してきた熱を放熱する放熱部4が設けられている。そ
して、該受熱部3は前記煙道14に設置され、該放熱部
4は前記蓄熱槽20内に設置される。前記対向振動流型
ヒートパイプ2の内部に設けられる前記加振器2dに
は、該加振器2dの振動数、振幅を温度によって制御す
る制御ボックス5が接続され、該制御ボックス5は該蓄
熱槽20外壁に設けられている。また、該蓄熱槽20内
の熱媒体21の温度を感知するために該蓄熱槽20内に
サーモセンサー6が設けられている。そして、該サーモ
センサー6が感知した情報が信号となって、前記制御ボ
ックス5に送信される。In the heat conducting device, the above-mentioned counter-oscillating flow type heat pipe 2 is used as a heat conducting member, and heat is absorbed from the exhaust gas of the burner 11 into a high temperature portion of the counter-oscillating flow type heat pipe 2. The heat receiving section 3 and the heat storage tank 20 in the low temperature section.
A heat radiating section 4 for radiating heat transmitted from the opposed oscillating flow heat pipe 2 to a heat medium 21 in the inside is provided. The heat receiving section 3 is installed in the flue 14, and the heat radiating section 4 is installed in the heat storage tank 20. A control box 5 for controlling the frequency and amplitude of the vibrator 2d by temperature is connected to the vibrator 2d provided inside the opposed vibrating flow heat pipe 2, and the control box 5 It is provided on the outer wall of the tank 20. Further, a thermosensor 6 is provided in the heat storage tank 20 to detect the temperature of the heat medium 21 in the heat storage tank 20. Then, information detected by the thermosensor 6 is transmitted to the control box 5 as a signal.
【0045】次に、第2例におけるボイラ10が稼働し
ている時の、熱伝導装置の動作について説明する。ま
ず、缶体13内の缶水を加熱するために、バーナ11の
主電源を入れると、前記加振器2d及び前記サーモセン
サー6、制御ボックス5の電源も連動してオンになる。
そして、蓄熱槽20内の熱媒体21の温度をサーモセン
サー6が感知し、前記制御ボックス5に情報が伝達され
る。ここで、該蓄熱槽20内の熱媒体21の温度がまだ
常温(例えば20℃)であり、該熱媒体21の温度が蓄
熱槽20内のあらかじめ設定された熱媒体設定温度の下
限値(例えば67℃)に達していないとすると、該制御
ボックス5は、前記加振器2dに対し、該加振器2dを
Hiモードとさせる指令を与え、該加振器2dを高速で
振動させる。該加振器2dが高速で振動することによ
り、前記対向振動流型ヒートパイプ2の熱伝導率は高く
なり、多くの熱量を該蓄熱槽20内の熱媒体21に伝達
する。この時、多量の熱量が放熱部4から放熱されるた
め、該蓄熱槽20内の熱媒体21の温度は急激に上がっ
ていく。やがて、該熱媒体21の温度が前記熱媒体設定
温度の下限値に達すると、該制御ボックス5は前記加振
器2dに対し、該加振器2dをLowモードにさせる指
令を与え、該加振器2dを低速で振動させる。Next, the operation of the heat conduction device when the boiler 10 in the second example is operating will be described. First, when the main power of the burner 11 is turned on to heat the water in the can 13, the power of the vibrator 2 d, the thermosensor 6, and the control box 5 is also turned on.
Then, the temperature of the heat medium 21 in the heat storage tank 20 is detected by the thermosensor 6, and information is transmitted to the control box 5. Here, the temperature of the heat medium 21 in the heat storage tank 20 is still normal temperature (for example, 20 ° C.), and the temperature of the heat medium 21 is lower than the preset heat medium set temperature in the heat storage tank 20 (for example, (67 ° C.), the control box 5 gives a command to the vibrator 2d to set the vibrator 2d to the Hi mode, and vibrates the vibrator 2d at high speed. When the vibrator 2d vibrates at a high speed, the heat conductivity of the opposed oscillating flow heat pipe 2 increases, and a large amount of heat is transmitted to the heat medium 21 in the heat storage tank 20. At this time, since a large amount of heat is radiated from the heat radiating section 4, the temperature of the heat medium 21 in the heat storage tank 20 rapidly rises. Eventually, when the temperature of the heat medium 21 reaches the lower limit of the heat medium set temperature, the control box 5 gives a command to the vibrator 2d to set the vibrator 2d to a low mode, and The vibrator 2d is vibrated at a low speed.
【0046】該加振器2dが低速で振動することによ
り、前記対向振動流型ヒートパイプ2の熱伝導率が低く
なり、比較的少ない熱量を該蓄熱槽20内の熱媒体21
に伝導する。少量の熱量が放熱部4より放熱されるた
め、該蓄熱槽20内の熱媒体21の温度上昇は、前記加
振器2dがHiモードの時と比べ、緩やかなものとな
る。その後、該熱媒体21の温度は緩やかに上がってい
き、やがて熱媒体設定温度の上限値(例えば73℃)を
越えると、前記制御ボックス5は前記加振器2dに対
し、該加振器2dを強制的に停止させる指令を与え、該
加振器2dを停止させる。該加振器2dが停止すること
によって、前記対向振動流型ヒートパイプ2は、受熱部
3からの熱伝導をほぼ遮断してしまう。When the vibrator 2d vibrates at a low speed, the heat conductivity of the opposed oscillating flow heat pipe 2 decreases, and a relatively small amount of heat is transferred to the heat medium 21 in the heat storage tank 20.
To conduct. Since a small amount of heat is radiated from the radiator 4, the temperature of the heat medium 21 in the heat storage tank 20 rises more slowly than when the vibrator 2d is in the Hi mode. Thereafter, the temperature of the heat medium 21 gradually rises, and when the temperature exceeds the upper limit of the heat medium set temperature (for example, 73 ° C.), the control box 5 causes the vibrator 2d to move toward the vibrator 2d. Is forcibly stopped, and the vibrator 2d is stopped. When the vibrator 2d stops, the opposed oscillating flow heat pipe 2 substantially blocks the heat conduction from the heat receiving unit 3.
【0047】該熱伝導が遮断されてしまった前記蓄熱槽
20内の熱媒体21の温度は上昇しなくなり、やがて緩
やかに下降し始める。該熱媒体21の温度がどんどん下
降し、前記熱媒体設定温度の範囲内のある決められた温
度(例えば68.5℃)以下になると、前記制御ボック
ス5は前記加振器2dに対し、該加振器2dを再びLo
wモードで始動させる指令を出し、該加振器2dは低速
で振動を始める。該加振器2dが始動することにより、
前記対向振動流型ヒートパイプ2の伝熱機能も復活し、
少量の熱量を受熱部3から放熱部4へ伝達する。そし
て、前記蓄熱槽20内の熱媒体21の温度も再び、緩や
かに上昇を始める。但し、使用負荷が大きく熱媒体温度
が更に降下し、前記熱媒体設定温度の下限値(例えば6
7℃)を下まわり、例えば60℃以下になった時はHi
モードとする指令を再び与え、運転のスタート時と同様
な動作を行う。以上の動作を繰り返すことによって、該
蓄熱槽20内の熱媒体21の温度をほぼ一定に保つこと
ができる。The temperature of the heat medium 21 in the heat storage tank 20 in which the heat conduction has been cut off does not rise, but gradually starts to fall. When the temperature of the heat medium 21 decreases rapidly and falls below a certain temperature (for example, 68.5 ° C.) within the range of the heat medium set temperature, the control box 5 sends the vibration to the vibrator 2d. When the vibrator 2d is Lo again
A command to start in the w mode is issued, and the vibrator 2d starts vibrating at a low speed. By starting the vibrator 2d,
The heat transfer function of the opposed oscillating flow heat pipe 2 is also restored,
A small amount of heat is transmitted from the heat receiving section 3 to the heat radiating section 4. Then, the temperature of the heat medium 21 in the heat storage tank 20 also starts to gradually rise again. However, the use load is large and the heat medium temperature further drops, and the lower limit of the heat medium set temperature (for example, 6
7 ° C), for example, when the temperature falls below 60 ° C, Hi
A command to set the mode is given again, and the same operation as when starting the operation is performed. By repeating the above operation, the temperature of the heat medium 21 in the heat storage tank 20 can be kept almost constant.
【0048】従って、上記本発明の第2例によれば、前
記対向振動流型ヒートパイプ2を使用することによっ
て、バーナ11による排気ガスの熱量を再利用できると
ともに、蓄熱槽20内の熱媒体21の温度をほぼ一定に
保つことができる。また、従来のようにバーナ11を直
接制御することがないので、缶体13内で缶水を加熱し
続けながら蓄熱槽20内温度を制御することができる。
従って、総合効率も従来に比べ高いものとなる。なお、
第1、2例では、制御ボックス5の制御対象は加振器2
dに限定したが、例えば、バーナ11の排気ガスの温度
が高くなりすぎないように、煙道14内にサーモセンサ
ー6を設け、該排気ガスの温度を感知させ、該制御ボッ
クス5を介して該バーナ11を制御させても良い。Therefore, according to the second embodiment of the present invention, by using the opposed oscillating flow type heat pipe 2, the calorie of the exhaust gas by the burner 11 can be reused, and the heat medium in the heat storage tank 20 can be reused. The temperature of 21 can be kept almost constant. Further, since the burner 11 is not directly controlled as in the related art, the temperature in the heat storage tank 20 can be controlled while the can water is continuously heated in the can 13.
Therefore, the overall efficiency is higher than before. In addition,
In the first and second examples, the control target of the control box 5 is the vibrator 2
However, for example, a thermo sensor 6 is provided in the flue 14 to detect the temperature of the exhaust gas so that the temperature of the exhaust gas of the burner 11 does not become too high, and the temperature of the exhaust gas is sensed. The burner 11 may be controlled.
【0049】また、前記制御ボックス5に前記ボイラ1
0による加熱が停止したという信号が送られることによ
って、該制御ボックス5が前記加振器2dの振動を停止
させても良い。該加振器2dが停止することによって、
前記対向振動流型ヒートパイプ2は、ほとんど熱を通さ
ない状態になり、前記制御ボックス5が前記加振器2d
の振動を停止させることにより総合効率が高くなるとと
もに、通常は前記ボイラ10が停止すると、前記煙道1
4の温度が前記缶水若しくは前記蓄熱槽20の温度より
下がってしまい、該缶水等の熱量が煙道14に放出され
てしまうが、前記加振器2dの停止によって前記対向振
動流型ヒートパイプ2の熱伝導が遮断されるので、この
無駄な熱量損失を防ぐことができる。さらに、受熱部3
及び放熱部4の構成は、第1例と同様な構成であっても
良い。The control box 5 has the boiler 1
The control box 5 may stop the vibration of the vibrator 2d by sending a signal indicating that the heating by 0 has stopped. By stopping the vibrator 2d,
The opposed oscillating flow type heat pipe 2 is in a state of hardly transmitting heat, and the control box 5 is connected to the vibrator 2d.
By stopping the vibration of the flue gas, the overall efficiency is increased, and normally, when the boiler 10 stops, the flue 1
4 is lower than the temperature of the can water or the heat storage tank 20, and the heat of the can water or the like is released to the flue 14. However, the stop of the vibrator 2d causes the counter-oscillating flow heat Since the heat conduction of the pipe 2 is cut off, this wasteful heat loss can be prevented. Further, the heat receiving unit 3
The configuration of the heat radiating section 4 may be the same as that of the first example.
【0050】次に、本発明の第3例としての熱伝導装置
及びボイラ10について、以下に説明する。図5に示す
ボイラ10は、本発明の熱伝導装置が、第1例のように
排気熱を缶体13内に伝導するのではなく、給湯を行な
うための外部熱交換部17への給水側の配管18bに伝
導するようになっている以外は、第1例のボイラ10と
ほぼ同様な構成となっており、第1例と同様の構成要素
には、同じ符号を付してその説明を省略する。外部熱交
換部17を備えた給湯設備18は、そのほかに、図示し
ない給水タンクから水を外部熱交換部17に送る給水ポ
ンプ18aと、給水ポンプ18aから送られる水が通る
配管18bと、外部熱交換部17で温められた水を使用
するために給湯配管18d及びその先に設置される温水
を消費する機器(例えば、暖房機器や蛇口18c等を含
む)から構成される。Next, a heat conduction device and a boiler 10 as a third example of the present invention will be described below. In the boiler 10 shown in FIG. 5, the heat conduction device of the present invention does not conduct the exhaust heat into the can 13 as in the first example, but supplies water to the external heat exchange unit 17 for supplying hot water. The configuration is substantially the same as that of the boiler 10 of the first example except that the power is transmitted to the pipe 18b of the first example, and the same components as those of the first example are denoted by the same reference numerals and the description thereof will be omitted. Omitted. The hot water supply equipment 18 having the external heat exchange unit 17 includes a water supply pump 18a that sends water from a water supply tank (not shown) to the external heat exchange unit 17, a pipe 18b through which water sent from the water supply pump 18a passes, and an external heat source. The hot water supply pipe 18d is used to use the water warmed by the exchange unit 17, and a device (for example, including a heating device and a faucet 18c) that consumes hot water is installed at the tip thereof.
【0051】また熱伝導装置には、熱伝導部材として上
記対向振動流型ヒートパイプ2が用いられ、該対向振動
流型ヒートパイプ2の高温部には、バーナ11の排気ガ
スから熱を吸収する受熱部3、低温部には前記配管18
b内の水に熱を放熱する放熱部4が設けられている。そ
して、該受熱部3は煙道14に設置され、該放熱部4は
前記配管18b内に設置される。前記対向振動流型ヒー
トパイプ2の内部に設けられる加振器2dには、該加振
器2dの振動数、振幅を温度によって制御する制御ボッ
クス5が接続される。また、前記給湯配管18d内の湯
の温度を感知するために該給湯配管18d内に図示しな
いサーモセンサーが設けられている。そして、該サーモ
センサーが感知した温度が図示しない信号出力手段によ
り温度を示す信号となって、前記制御ボックス5に出力
される。In the heat conduction device, the above-mentioned opposed oscillating flow type heat pipe 2 is used as a heat conducting member. The high temperature portion of the opposed oscillating flow type heat pipe 2 absorbs heat from the exhaust gas of the burner 11. The pipe 18 is connected to the heat receiving section 3 and the low temperature section.
A heat radiating section 4 for radiating heat to the water in b is provided. The heat receiving section 3 is installed in the flue 14, and the heat radiating section 4 is installed in the pipe 18b. A control box 5 for controlling the frequency and amplitude of the vibrator 2d by temperature is connected to the vibrator 2d provided inside the opposed vibrating flow heat pipe 2. In addition, a thermo sensor (not shown) is provided in the hot water supply pipe 18d to detect the temperature of hot water in the hot water supply pipe 18d. Then, the temperature detected by the thermo sensor is output to the control box 5 as a signal indicating the temperature by a signal output means (not shown).
【0052】また、給水ポンプ18aには、給水ポンプ
18aの給水の開始・停止を示す信号を出力する信号出
力手段が備えられている。なお、給水の開始と停止とを
示す信号は、例えば、給水開始時や給水停止時にパルス
状の信号を出力するものであってもよいし、給水中及び
給水停止中のうちの一方の場合にハイレベルの信号を継
続して出力し、他方の場合にローレベルの信号を継続し
て出力するものであってもよい。また、制御ボックス5
は、演算処理装置としてのCPU、CPUにバスにより
接続されたRAM・ROM等のメモリを備えた記憶装
置、CPUと外部機器との間で信号の入出力を行なうイ
ンタフェースなどを備えた周知の制御装置であるまた、
制御ボックス5は、給水ポンプ18aにおける給水の開
始・停止に連動して、熱伝導装置の加振器2dの加振の
開始・停止を制御するとともに、給湯配管18d内の水
温に基づいて、加振器2dの振動数(振幅)を制御す
る。The water supply pump 18a is provided with signal output means for outputting a signal indicating start / stop of water supply of the water supply pump 18a. The signal indicating the start and stop of water supply may be, for example, a signal that outputs a pulse signal at the start of water supply or at the time of water supply stop, or may be one of water supply and water supply stop. A high level signal may be continuously output, and in the other case, a low level signal may be continuously output. Control box 5
Is a well-known control having a CPU as an arithmetic processing unit, a storage device having a memory such as a RAM and a ROM connected to the CPU by a bus, and an interface for inputting and outputting signals between the CPU and an external device. The device is also
The control box 5 controls the start and stop of the vibration of the vibrator 2d of the heat conduction device in conjunction with the start and stop of the water supply in the water supply pump 18a, and also controls the heating based on the water temperature in the hot water supply pipe 18d. The frequency (amplitude) of the vibrator 2d is controlled.
【0053】次に、第3例におけるボイラ10が稼働し
ている時の、熱伝導装置の動作について説明する。ま
ず、給湯が開始される(例えば、温水を消費する機器で
温水用のバルブがあけられ給水ポンプ18a部分で水圧
が低下したのがセンサ等で検知される)と給水ポンプ1
8aが作動する。そして、給水ポンプ18aが作動する
と給水ポンプ18aに接続された信号出力手段から給水
開始を示す信号が出力される。この信号が入力された制
御ボックス5は、給水開始に連動して、対向振動流型ヒ
ートパイプ2の加振器2dを高い振動数のHiモードで
作動させ、対向振動流型ヒートパイプ2がほとんど熱伝
導しない状態から高い熱伝導率で熱伝導する状態とし、
排気熱により外部熱交換部17に給水される水を予熱す
る。Next, the operation of the heat conduction device when the boiler 10 in the third example is operating will be described. First, when hot water supply is started (for example, a valve for hot water is opened in a device that consumes hot water and a decrease in water pressure at the water supply pump 18a is detected by a sensor or the like), the water supply pump 1 is started.
8a operates. When the water supply pump 18a operates, a signal indicating the start of water supply is output from a signal output unit connected to the water supply pump 18a. The control box 5 to which this signal is input operates the vibrator 2d of the opposed oscillating flow heat pipe 2 in a high frequency Hi mode in synchronization with the start of water supply, and the opposed oscillating flow heat pipe 2 is almost From a state that does not conduct heat to a state that conducts heat with high thermal conductivity,
The water supplied to the external heat exchange unit 17 is preheated by the exhaust heat.
【0054】また、給水ポンプ18aが作動している給
湯中は、対向振動流型ヒートパイプ2の加振器2dを基
本的に常に作動させ、ボイラ10の排気熱を再利用す
る。一方、給湯は移管18c内の湯の温度が予め設定さ
れた設定温度基準値(例えば、70℃)に達していない
場合は、ボイラ10のバーナ11を高燃焼状態とし、前
記湯の温度が予め設定された設定温度基準値に達してい
る場合は、ボイラ10のバーナ11を低燃焼状態とす
る。これにより、給湯中は、排気熱により常に、外部熱
交換部17に給水される配管18bの水を予熱した状態
となるとともに、温度の制御はバーナ11側で行なわれ
るので、水を予熱することにより、設定温度基準値を保
つための缶水からの熱量は少なくて済む。すなわち、バ
ーナ11は、相対的に低燃焼状態の時間が長くなり、省
エネルギが実現される。During the hot water supply in which the water supply pump 18a is operating, the vibrator 2d of the opposed oscillating flow heat pipe 2 is basically always operated to reuse the exhaust heat of the boiler 10. On the other hand, when the temperature of the hot water in the transfer pipe 18c does not reach a preset temperature reference value (for example, 70 ° C.), the burner 11 of the boiler 10 is set to a high combustion state, and the temperature of the hot water is previously set. If the set temperature reference value has been reached, the burner 11 of the boiler 10 is set to a low combustion state. Thus, during hot water supply, the water in the pipe 18b supplied to the external heat exchange unit 17 is always preheated by the exhaust heat, and the temperature is controlled on the burner 11 side. Accordingly, the amount of heat from the can water for maintaining the set temperature reference value can be reduced. That is, the burner 11 has a relatively low combustion state for a long time, and energy saving is realized.
【0055】また、給湯が停止される(例えば、温水を
消費する全ての機器で温水用のバルブが閉じられ給水ポ
ンプ18a部分で水圧が上昇したのがセンサ等により検
知される)と給水ポンプ18aも停止する。そして、給
水ポンプ18aが停止すると給水ポンプ18aに接続さ
れた信号出力手段から給水停止を示す信号が出力され
る。そして、前記給湯配管18d内の湯の温度が設定温
度基準値に達している場合は、制御ボックス5におい
て、給湯配管18d内のサーモセンサから湯の温度が設
定温度基準値より高いことを示す信号と、給水ポンプ1
8aの信号出力手段からの給水ポンプ18aが停止したこ
とを示す信号が入力された際に、制御ボックス5は、給
水停止に連動して、対向振動流型ヒートパイプ2の加振
器2dを停止させ、対向振動流型ヒートパイプ2がほと
んど熱伝導しない状態とし、外部熱交換部17に給水さ
れる水の予熱を停止する。Further, when the hot water supply is stopped (for example, when a valve for hot water is closed in all devices consuming hot water and an increase in water pressure is detected by a sensor or the like in the water supply pump 18a), the water supply pump 18a is stopped. Also stop. When the water supply pump 18a stops, a signal indicating water supply stop is output from the signal output means connected to the water supply pump 18a. When the temperature of the hot water in the hot water supply pipe 18d has reached the set temperature reference value, the control box 5 sends a signal from the thermo sensor in the hot water supply pipe 18d indicating that the temperature of the hot water is higher than the set temperature reference value. And water supply pump 1
When a signal indicating that the water supply pump 18a has stopped is input from the signal output means 8a, the control box 5 stops the vibrator 2d of the opposed oscillating flow heat pipe 2 in conjunction with the stop of water supply. Then, the counter-oscillating flow heat pipe 2 is hardly heat-conductive, and the preheating of the water supplied to the external heat exchange unit 17 is stopped.
【0056】一方、給水ポンプ18aの信号出力手段か
ら給水ポンプ18aの停止を示す信号が出力された場合
でも、給湯配管18d内のサーモセンサから湯の温度が
設定温度基準値より低いことを示す信号が出力されてい
る場合は、対向振動流型ヒートパイプ2の加振器2dを
停止せずに、振動数を下げたLOWモードで加振器2d
を振動させる。これにより、配管18b内の水が温めら
れるとともにこの配管18bに連続する給湯配管18d
の水も温められ、給湯配管18d内の湯の温度が緩やか
に上昇し、設定温度基準値に達する。そして、設定温度
基準値に達したことを示す信号がサーモセンサから出力
された際に、制御ボックス5が対向振動流型ヒートパイ
プ2の加振器2dを停止させる。また、上述のように対
向振動流型ヒートパイプ2の加振器2dが停止した状態
もしくはLOWモードで振動している状態の場合に、給
水ポンプ18aが作動した際には、前記信号出力手段か
ら制御ボックス5に給水ポンプ18aが作動したことを
示す信号が出力され、制御ボックス5が対向振動流型ヒ
ートパイプ2の加振器2dをHiモードで作動させる。On the other hand, even when a signal indicating the stop of the water supply pump 18a is output from the signal output means of the water supply pump 18a, a signal indicating that the temperature of the hot water is lower than the set temperature reference value from the thermo sensor in the hot water supply pipe 18d. Is output, the exciter 2d of the opposed oscillatory flow heat pipe 2 is not stopped, and the exciter 2d
Vibrates. Thereby, the water in the pipe 18b is heated, and the hot water supply pipe 18d connected to the pipe 18b is heated.
Is also warmed, the temperature of the hot water in the hot water supply pipe 18d gradually rises, and reaches the set temperature reference value. Then, when a signal indicating that the temperature has reached the set temperature reference value is output from the thermosensor, the control box 5 stops the vibrator 2d of the opposed oscillating flow heat pipe 2. Further, when the water pump 18a is operated in a state where the vibrator 2d of the opposed oscillating flow type heat pipe 2 is stopped or vibrates in the LOW mode as described above, the signal output unit outputs the signal. A signal indicating that the water supply pump 18a has been operated is output to the control box 5, and the control box 5 operates the vibrator 2d of the opposed oscillating flow heat pipe 2 in the Hi mode.
【0057】従って、上記本発明の第3例によれば、前
記対向振動流型ヒートパイプ2を使用することによっ
て、バーナ11による排気ガスの熱量を再利用できると
ともに、給湯設備18の熱源としての外部熱交換部17
の補助的な役割を果たし、総合伝熱効率の高い給湯設備
18を実現可能にする。また、給湯が停止して外部熱交
換部17への給水が停止している間は、外部熱交換部1
7に給水される水が加熱されることがなく、給水停止時
に外部交換部17の手前で水が必要以上に加熱されるの
を防止することができる。なお、受熱部3及び放熱部4
の構成は、第1例と同様な構成であっても良い。Therefore, according to the third embodiment of the present invention, by using the opposed oscillating flow type heat pipe 2, the calorific value of the exhaust gas by the burner 11 can be reused and the heat source of the hot water supply equipment 18 can be used. External heat exchange section 17
And a hot water supply system 18 with high overall heat transfer efficiency can be realized. While the hot water supply is stopped and the water supply to the external heat exchange unit 17 is stopped, the external heat exchange unit 1
The water supplied to the water 7 is not heated, and it is possible to prevent the water from being heated more than necessary before the external exchange unit 17 when the water supply is stopped. The heat receiving section 3 and the heat radiating section 4
May be the same as that of the first example.
【0058】次に、本発明の第4例としての熱伝導装置
及び発電装置について、以下に説明する。図6に示す発
電装置30は、燃料ガスと圧縮された空気を混合させ、
燃焼させるための燃焼室31と、該燃焼室31から放出
される燃焼エネルギーから回転力を得るタービン32
(ガスタービン)と、該タービン32の回転力によっ
て、空気を圧縮する圧縮機33及び電気を発生させる発
電機34(発電部)と、該圧縮機33によって圧縮され
た空気を排気ガスの熱によって加熱するための熱交換器
であるレキュペレータ35と、該排気ガスを誘導し外部
へ放出するための煙道36(排気系)と、該圧縮機33
内に取り入れる空気を浄化するための高性能フィルタ3
7とを備えている。さらに、該発電装置30には、燃料
全体の約3分の1を占める放射・排ガス損失を回収すべ
く、前記燃焼室31から放出される排気ガスの熱エネル
ギを貯蓄しておくための蓄熱槽20(蓄熱部)が設けら
れ、また、該排気ガスの熱エネルギを該蓄熱槽20に伝
達させる前記熱伝達装置が設けられている。そして、前
記発電機34から得られた電力は、AC/DCコンバータ4
0を介して、蓄電池41に充電されたり、AC/DCコンバ
ータ40及びAC/DCインバータ42、変圧器43を介し
て、商用電源44として利用される。また、蓄電池4
1、商用電源44にそれぞれ切り換えるための遮断器4
5を備えている。さらに前記蓄熱槽20の熱エネルギ
は、温水供給や暖房等の熱供給装置50として利用され
る。Next, a heat conduction device and a power generation device as a fourth example of the present invention will be described below. The power generator 30 shown in FIG. 6 mixes fuel gas and compressed air,
A combustion chamber 31 for combustion, and a turbine 32 for obtaining a rotational force from combustion energy released from the combustion chamber 31
(Gas turbine), a compressor 33 for compressing air by a rotational force of the turbine 32, and a generator 34 (power generation unit) for generating electricity, and the air compressed by the compressor 33 is generated by heat of exhaust gas. A recuperator 35 as a heat exchanger for heating, a flue 36 (exhaust system) for inducing and discharging the exhaust gas to the outside, and a compressor 33
High-performance filter 3 for purifying air taken in
7 is provided. Further, the power generator 30 has a heat storage tank for storing heat energy of exhaust gas discharged from the combustion chamber 31 in order to recover radiation and exhaust gas loss that accounts for about one third of the entire fuel. 20 (a heat storage unit) is provided, and the heat transfer device for transmitting the heat energy of the exhaust gas to the heat storage tank 20 is provided. The electric power obtained from the generator 34 is supplied to the AC / DC converter 4.
0, the storage battery 41 is charged, or is used as a commercial power supply 44 via an AC / DC converter 40, an AC / DC inverter 42, and a transformer 43. In addition, storage battery 4
1. Circuit breaker 4 for switching to commercial power supply 44
5 is provided. Further, the heat energy of the heat storage tank 20 is used as a heat supply device 50 for supplying hot water or heating.
【0059】次に、第4例における発電装置30が稼働
している時の、熱伝導装置の動作について説明する。ま
ず最初に、前記燃料ガスが通る配管のバルブを開け、該
燃料ガスを前記燃焼室31に流入させる。該燃料ガス
は、該燃焼室31内の図示しない点火プラグ等で点火さ
れることによって、燃焼を開始し、排気ガスを該燃焼室
31外に放出する。該排気ガスは、タービン32の羽根
を回し、レキュペレータ35及び煙道36を通って外部
へ放出される。ここで、前記点火プラグ等のスタータが
オンになると、前記加振器2d及び前記サーモセンサー
6、制御ボックス5の電源も連動してオンになる。そし
て、蓄熱槽20内の熱媒体21の温度を該サーモセンサ
ー6が感知し、該サーモセンサー6に設けられる送信部
から、前記制御ボックス5の受信部に情報が伝達され
る。ここで、該蓄熱槽20内の熱媒体21の温度がまだ
常温(例えば20℃)であり、該熱媒体21の温度が蓄
熱槽20内のあらかじめ設定された熱媒体設定温度の下
限値(例えば67℃)に達していないとすると、該制御
ボックス5は、前記加振器2dに対し、該加振器2dを
Hiモードとさせる指令を与え、該加振器2dを高速で
振動させる。Next, the operation of the heat conduction device when the power generation device 30 in the fourth example is operating will be described. First, a valve of a pipe through which the fuel gas passes is opened, and the fuel gas flows into the combustion chamber 31. The fuel gas is ignited by an unillustrated ignition plug or the like in the combustion chamber 31 to start combustion and discharge exhaust gas to the outside of the combustion chamber 31. The exhaust gas turns the blades of the turbine 32 and is discharged outside through the recuperator 35 and the flue 36. Here, when the starter such as the ignition plug or the like is turned on, the power sources of the vibrator 2d, the thermosensor 6, and the control box 5 are also turned on. Then, the temperature of the heat medium 21 in the heat storage tank 20 is sensed by the thermosensor 6, and information is transmitted from a transmission unit provided in the thermosensor 6 to a reception unit of the control box 5. Here, the temperature of the heat medium 21 in the heat storage tank 20 is still normal temperature (for example, 20 ° C.), and the temperature of the heat medium 21 is lower than the preset heat medium set temperature in the heat storage tank 20 (for example, (67 ° C.), the control box 5 gives a command to the vibrator 2d to set the vibrator 2d to the Hi mode, and vibrates the vibrator 2d at high speed.
【0060】該加振器2dが高速で振動することによ
り、前記対向振動流型ヒートパイプ2の熱伝導率は高く
なり、多くの熱量を該蓄熱槽20内の熱媒体21に伝導
する。この時、多量の熱量が放熱部4から放熱されるた
め、該蓄熱槽20内の熱媒体21の温度は急激に上がっ
ていく。やがて、該熱媒体21の温度が熱媒体設定温度
の下限値に達すると、該制御ボックス5は前記加振器2
dに対し、該加振器2dをLowモードにさせる指令を
与え、該加振器2dを低速で振動させる。該加振器2d
が低速で振動することにより、前記対向振動流型ヒート
パイプ2の熱伝導率が低くなり、比較的少ない熱量を該
蓄熱槽20内の熱媒体21に伝導する。少量の熱量が放
熱部4より放熱されるため、該蓄熱槽20内の熱媒体2
1の温度上昇は、前記加振器2dがHiモードの時と比
べ、緩やかなものとなる。As the vibrator 2d vibrates at a high speed, the heat conductivity of the opposed oscillating flow heat pipe 2 increases, and a large amount of heat is transmitted to the heat medium 21 in the heat storage tank 20. At this time, since a large amount of heat is radiated from the heat radiating section 4, the temperature of the heat medium 21 in the heat storage tank 20 rapidly rises. Eventually, when the temperature of the heat medium 21 reaches the lower limit of the heat medium set temperature, the control box 5
An instruction is given to the controller d to set the vibrator 2d to the low mode, and the vibrator 2d is vibrated at a low speed. The shaker 2d
Vibrates at a low speed, the thermal conductivity of the opposed oscillating flow heat pipe 2 decreases, and a relatively small amount of heat is conducted to the heat medium 21 in the heat storage tank 20. Since a small amount of heat is radiated from the heat radiating section 4, the heat medium 2 in the heat storage tank 20
The temperature rise of 1 becomes gentler than when the vibrator 2d is in the Hi mode.
【0061】その後、該熱媒体21の温度は緩やかに上
がっていき、やがて熱媒体設定温度の上限値(例えば7
3℃)を越えると、前記制御ボックス5は前記加振器2
dに対し、該加振器2dを強制的に停止させる指令を与
え、該加振器2dを停止させる。該加振器2dが停止す
ることによって、前記対向振動流型ヒートパイプ2は、
受熱部3からの熱伝導をほぼ遮断してしまう。該熱伝導
が遮断されてしまった前記蓄熱槽20内の熱媒体21の
温度は上昇しなくなり、やがて緩やかに下降し始める。
該熱媒体21の温度がどんどん下降し、前記熱媒体設定
温度の範囲内のある決められた温度(例えば68.5
℃)以下になると、前記制御ボックス5は前記加振器2
dに対し、該加振器2dを再びLowモードで始動させ
る指令を出し、該加振器2dは低速で振動を始める。該
加振器2dが始動することにより、前記対向振動流型ヒ
ートパイプ2の伝熱機能も復活し、少量の熱量を受熱部
3から放熱部4へ伝導する。そして、前記蓄熱槽20内
の熱媒体21の温度も再び、緩やかに上昇を始める。但
し、使用負荷が大きく熱媒体温度が更に降下し、前記熱
媒体設定温度の下限値(例えば67℃)を下まわり、例
えば60℃以下になった時はHiモードとする指令を再
び与え、運転のスタート時と同様な動作を行う。以上の
動作を繰り返すことによって、該蓄熱槽20内の熱媒体
21の温度をほぼ一定に保つことができる。Thereafter, the temperature of the heat medium 21 gradually rises, and eventually the upper limit value of the heat medium set temperature (for example, 7.
When the temperature exceeds 3 ° C.), the control box 5
An instruction is given to d to forcibly stop the vibrator 2d, and the vibrator 2d is stopped. When the vibrator 2d stops, the opposed oscillating flow type heat pipe 2 becomes
The heat conduction from the heat receiving section 3 is almost cut off. The temperature of the heat medium 21 in the heat storage tank 20 in which the heat conduction has been cut off does not rise, and then gradually starts to fall.
The temperature of the heat medium 21 decreases rapidly, and reaches a predetermined temperature within the range of the heat medium set temperature (for example, 68.5).
C) or less, the control box 5
d, a command to start the vibrator 2d again in the low mode is issued, and the vibrator 2d starts vibrating at a low speed. By starting the vibrator 2d, the heat transfer function of the opposed oscillating flow heat pipe 2 is also restored, and a small amount of heat is transmitted from the heat receiving unit 3 to the heat radiating unit 4. Then, the temperature of the heat medium 21 in the heat storage tank 20 also starts to gradually rise again. However, when the operating load is large and the temperature of the heat medium further drops and falls below the lower limit value (for example, 67 ° C.) of the heat medium set temperature, for example, becomes 60 ° C. or less, a command to set the Hi mode is given again, and The same operation as that at the time of start is performed. By repeating the above operation, the temperature of the heat medium 21 in the heat storage tank 20 can be kept almost constant.
【0062】従って、上記本発明の第4例によれば、前
記対向振動流型ヒートパイプ2を使用することによっ
て、前記ガスタービンの前記燃焼室31から放出される
燃焼エネルギーを再利用できるとともに、蓄熱槽20内
の熱媒体21の温度をほぼ一定に保つことができる。な
お、第4例では、制御ボックス5の制御対象は加振器2
dに限定したが、例えば、燃焼室31から噴出する排気
ガスの温度が高くなりすぎないように、煙道36内にサ
ーモセンサーを設け、該排気ガスの温度を感知させ、該
制御ボックス5を介して発電装置30の燃料供給バルブ
の開閉を制御させても良い。また、受熱部3及び放熱部
4の構成は、第1例と同様な構成であっても良い。さら
に、放熱部4の設置個所を蓄熱槽20内に限らずに、例
えば、第3例のような外部熱交換部の代わりに蓄熱層も
しくは貯湯式ボイラを備えた給湯設備の配管内等にして
も良い。この場合には、対向振動流型ヒートパイプ2を
用いてタービン32の排気熱により給水される水を加熱
して温水を生成するものとし(必要に応じて補助バーナ
を用いるものとしてもよい)、第三例のように給湯設備
への給水の開始・停止に連動して熱伝導部材の加振器の
加振の開始・停止を制御するようにしてもよい。Therefore, according to the fourth embodiment of the present invention, by using the opposed oscillating flow heat pipe 2, the combustion energy released from the combustion chamber 31 of the gas turbine can be reused. The temperature of the heat medium 21 in the heat storage tank 20 can be kept almost constant. In the fourth example, the control target of the control box 5 is the vibrator 2
However, for example, a thermo sensor is provided in the flue 36 to detect the temperature of the exhaust gas so that the temperature of the exhaust gas ejected from the combustion chamber 31 does not become too high. The opening and closing of the fuel supply valve of the power generator 30 may be controlled via the power generator 30. Further, the configuration of the heat receiving unit 3 and the heat radiating unit 4 may be the same as that of the first example. Further, the place where the heat radiating unit 4 is installed is not limited to the inside of the heat storage tank 20. For example, instead of the external heat exchanging unit as in the third example, the heat radiating unit 4 may be installed in a pipe of a hot water supply facility having a heat storage layer or a hot water storage type boiler. Is also good. In this case, the water supplied by the exhaust heat of the turbine 32 is heated by using the opposed oscillating flow heat pipe 2 to generate hot water (an auxiliary burner may be used if necessary). As in the third example, the start / stop of the vibration of the vibrator of the heat conducting member may be controlled in conjunction with the start / stop of the water supply to the hot water supply equipment.
【0063】本発明の第5例としての熱伝導装置を用い
た加温装置としての床暖房60について、以下に説明す
る。図7に示す床暖房60は、所定の大きさの床材61
と、該床材61内部に蛇行して張り巡らされている上記
対向振動流型ヒートパイプ2と、該対向振動流型ヒート
パイプ2内部の加振器2dを制御する制御ボックス5
と、前記床材61の室内側に設置される図示しないサー
モセンサーと、該対向振動流型ヒートパイプ2に熱を供
給する熱源62から構成される。次に、熱源62から床
材61へ熱を伝達する仕組みについて説明する。まず、
床暖房60の主電源を入れると、前記熱源62の電源及
び前記加振器2d、前記サーモセンサー及び制御ボック
ス5の電源も連動してオンになる。そして、室内温度を
前記サーモセンサーが感知し、該サーモセンサーに設け
られる送信部から、前記制御ボックス5の受信部に情報
が伝達される。A floor heater 60 as a heating device using a heat conducting device according to a fifth embodiment of the present invention will be described below. The floor heating 60 shown in FIG.
And the counter-oscillating flow heat pipe 2 extending in a meandering manner inside the floor material 61, and a control box 5 for controlling a vibrator 2 d inside the counter-oscillating flow heat pipe 2.
And a thermo sensor (not shown) installed on the indoor side of the floor material 61 and a heat source 62 for supplying heat to the opposed oscillating flow heat pipe 2. Next, a mechanism for transmitting heat from the heat source 62 to the floor material 61 will be described. First,
When the main power of the floor heating 60 is turned on, the power of the heat source 62 and the power of the vibrator 2d, the thermosensor, and the control box 5 are also turned on in conjunction with each other. Then, the indoor temperature is sensed by the thermo sensor, and information is transmitted from a transmitting unit provided in the thermo sensor to a receiving unit of the control box 5.
【0064】ここで、室内温度がまだ常温(例えば15
℃)であり、室内温度があらかじめ設定された設定温度
の下限値(例えば24℃)に達していないとすると、該
制御ボックス5は、前記加振器2dに対し、該加振器2
dをHiモードとさせる指令を与え、該加振器2dを高
速で振動させる。該加振器2dが高速で振動することに
より、前記対向振動流型ヒートパイプ2の熱伝導率は高
くなり、多くの熱量を床材61に伝導する。この時、多
量の熱量が床材61から放熱されるため、室内温度は急
激に上がっていく。やがて、室内温度が設定温度の下限
値に達すると、該制御ボックス5は前記加振器2dに対
し、該加振器2dをLowモードにさせる指令を与え、
該加振器2dを低速で振動させる。該加振器2dが低速
で振動することにより、前記対向振動流型ヒートパイプ
2の熱伝導率が低くなり、比較的少ない熱量を床材61
に伝導する。少量の熱量が床材61より放熱されるた
め、室内温度上昇は、前記加振器2dがHiモードの時
と比べ、緩やかなものとなる。Here, the room temperature is still room temperature (for example, 15
° C), and assuming that the room temperature does not reach the lower limit of the preset temperature (for example, 24 ° C), the control box 5 sends the vibrator 2d to the vibrator 2d.
A command to set d to the Hi mode is given, and the vibrator 2d is vibrated at a high speed. When the vibrator 2d vibrates at a high speed, the thermal conductivity of the counter-oscillating flow heat pipe 2 increases, and a large amount of heat is transmitted to the floor material 61. At this time, since a large amount of heat is radiated from the floor material 61, the room temperature rapidly rises. Eventually, when the room temperature reaches the lower limit of the set temperature, the control box 5 gives a command to the vibrator 2d to set the vibrator 2d to the low mode,
The vibrator 2d is vibrated at a low speed. When the vibrator 2d vibrates at a low speed, the heat conductivity of the opposed oscillating flow heat pipe 2 becomes low, and a relatively small amount of heat is released from the floor material 61.
To conduct. Since a small amount of heat is radiated from the floor material 61, the room temperature rise becomes gentler than when the vibrator 2d is in the Hi mode.
【0065】その後、室内温度は緩やかに上がってい
き、やがて設定温度の上限値(例えば26℃)を越える
と、前記制御ボックス5は前記加振器2dに対し、該加
振器2dを強制的に停止させる指令を与え、該加振器2
dを停止させる。該加振器2dが停止することによっ
て、前記対向振動流型ヒートパイプ2は、熱源62から
の熱伝導をほぼ遮断してしまう。熱伝導が遮断される
と、室内温度は上昇しなくなり、やがて緩やかに下降し
始める。室内温度がどんどん下降し、設定温度の範囲内
のある決められた温度(例えば24.5℃)以下になる
と、前記制御ボックス5は前記加振器2dに対し、該加
振器2dを再びLowモードで始動させる指令を出し、
該加振器2dは低速で振動を始める。該加振器2dが始
動することにより、前記対向振動流型ヒートパイプ2の
伝熱機能も再開し、少量の熱量を熱源62から床材61
へ伝導する。そして、室内温度も再び、緩やかに上昇を
始める。但し、気温が相当低く、室内温度が更に降下
し、前記室内設定温度の下限値(例えば24℃)を下ま
わり、例えば20℃以下になった時はHiモードとする
指令を再び与え、運転のスタート時と同様な動作を行
う。以上の動作を繰り返すことによって、室内温度をほ
ぼ一定に保つことができる。Thereafter, the room temperature gradually rises, and when the room temperature exceeds the upper limit of the set temperature (for example, 26 ° C.), the control box 5 forces the vibrator 2d to the vibrator 2d. Is given to the exciter 2
Stop d. When the vibrator 2d stops, the opposed oscillating flow heat pipe 2 substantially blocks heat conduction from the heat source 62. When the heat conduction is interrupted, the room temperature does not rise, but gradually starts to fall. When the room temperature falls and falls below a predetermined temperature (for example, 24.5 ° C.) within the set temperature range, the control box 5 instructs the vibrator 2d to lower the vibrator 2d again. Command to start in mode,
The vibrator 2d starts vibrating at a low speed. By starting the vibrator 2d, the heat transfer function of the counter-oscillating flow heat pipe 2 is also restarted, and a small amount of heat is supplied from the heat source 62 to the floor material 61.
Conducted to. Then, the room temperature also starts to rise gradually again. However, when the air temperature is considerably low, the indoor temperature further falls, and falls below the lower limit value of the indoor set temperature (for example, 24 ° C.), for example, becomes 20 ° C. or less, a command to set the Hi mode is given again, and the operation is started. The same operation as at the start is performed. By repeating the above operation, the room temperature can be kept substantially constant.
【0066】従って、上記本発明の第5例によれば、前
記対向振動流型ヒートパイプ2を使用することによっ
て、室内温度をほぼ一定に保つことができる。なお、前
記対向振動流型ヒートパイプ2の利用方法は、上記床暖
房に限定されず、各種暖房装置や、豪雪地域等の道路に
埋設して道路上に積もった雪を融かす融雪装置として利
用しても良い。床暖房以外の場合には、例えば、対向振
動流型ヒートパイプ2の放熱部をパネルヒータ状にした
り、オイルヒータ状にしたりしてもよい。さらに、受熱
部3の構成は、第1例と同様な構成であっても良い。ま
た、第5例の室内温度の設定温度を手動によって自由に
選択させても良い。設定温度が変化しても上記の作用は
再現されるため、室内温度をその設定温度にほぼ一定に
保つことができる。Therefore, according to the fifth embodiment of the present invention, the use of the opposed oscillating flow heat pipe 2 makes it possible to keep the room temperature substantially constant. The method of using the opposed oscillating flow type heat pipe 2 is not limited to the floor heating described above, and is used as a various heating device or a snow melting device embedded in a road such as a heavy snowfall area to melt snow accumulated on the road. You may. In cases other than floor heating, for example, the heat radiating portion of the opposed oscillating flow heat pipe 2 may be formed into a panel heater or an oil heater. Further, the configuration of the heat receiving unit 3 may be the same as that of the first example. Further, the set temperature of the room temperature in the fifth example may be freely selected manually. Even if the set temperature changes, the above operation is reproduced, so that the room temperature can be kept almost constant at the set temperature.
【0067】また、図7で、熱源62の温度を床材61
の温度より低くする、例えば、温度制御しない場合の室
温が30℃で、例えば5℃程度の冷水もしくは井戸水を
冷熱源62として用いれば、上述の床暖房のシステムを
用いて冷房を行なうことができる。また、冷暖房システ
ムにおいて、室外機と室内機との間の熱輸送に対向振動
流型ヒートパイプ2を用いるものとしてもよい。すなわ
ち、室外機と室内機との間を対向振動流型ヒートパイプ
2を用いて接続し、室外機を熱源もしくは冷熱源とし、
室内機側に対向振動流型ヒートパイプ2を用いて熱を輸
送する構成としてもよい。このような構成とした場合
に、従来の二相式のヒートパイプをビルの冷暖房システ
ムに応用した際のように、上下方向で熱の輸送に支障が
生じるようなことがない。例えば、従来のヒートパイプ
により、ビルの上側に室外機を設置して、ビルの下階側
に暖房を行なうような場合には、ヒートパイプ中の温め
られて気化した気体が下方に降りないことにより、熱輸
送に支障が生じたり、逆にビルの下側に室外機を設置し
て、ビルの上階側に冷房を行なうような場合にヒートパ
イプ中で冷やされて凝縮した液体が上方に登らないこと
により、熱輸送に支障が生じたりする。それに対して、
対向振動流型ヒートパイプ2では、その内部が常時液体
によりほぼ満たされた状態となっているので、上下方向
にほとんど関係なく熱を輸送することができる。したが
って、上述のような冷暖房システムを中高層のビルに好
適に応用することができる。また、熱源(冷熱源)は、
一般的な室外機に限られるものではなく、各種蓄熱槽
(冷熱源として氷を作るものでもよい)や、湧き水、井
戸水、各種排気熱、地熱、温泉を用いるものとしてもよ
い。そして、熱源側で温度コントロールが不可能なもの
でも、上述のように対向振動流型ヒートパイプ2の加振
の状態により熱輸送量を制御して温度を制御することが
できる。また、温度コントロールが可能な熱源を用いる
ものとした際も、熱源のオンオフに対応して対向振動流
型ヒートパイプ2の加振を制御することで、エネルギロ
スを低減することができる。In FIG. 7, the temperature of the heat source 62 is
If, for example, the room temperature when temperature control is not performed is 30 ° C. and, for example, cold water or well water of about 5 ° C. is used as the cold heat source 62, the above-described floor heating system can be used for cooling. . Further, in the cooling and heating system, the opposed oscillating flow type heat pipe 2 may be used for heat transfer between the outdoor unit and the indoor unit. That is, the outdoor unit and the indoor unit are connected using the opposed oscillating flow heat pipe 2 and the outdoor unit is used as a heat source or a cold heat source,
The heat may be transported to the indoor unit by using the opposed oscillating flow heat pipe 2. In the case of such a configuration, there is no problem in heat transfer in the vertical direction as in the case where a conventional two-phase heat pipe is applied to a cooling and heating system of a building. For example, when an outdoor unit is installed on the upper side of a building using a conventional heat pipe and heating is performed on the lower floor side of the building, the heated and vaporized gas in the heat pipe must not fall down. As a result, heat transfer may be hindered, or conversely, if an outdoor unit is installed below the building and cooling is performed on the upper floor of the building, the liquid that has been cooled and condensed in the heat pipe rises upward. Not climbing may hinder heat transport. On the other hand,
In the opposed oscillating flow type heat pipe 2, since the inside thereof is almost always filled with the liquid, heat can be transported almost independently of the vertical direction. Therefore, the above-described cooling and heating system can be suitably applied to a middle-to-high-rise building. The heat source (cold heat source)
The present invention is not limited to a general outdoor unit, and various types of heat storage tanks (a type that produces ice as a cold heat source), spring water, well water, various types of exhaust heat, geothermal heat, and hot springs may be used. Then, even if the temperature cannot be controlled on the heat source side, the temperature can be controlled by controlling the amount of heat transported according to the state of vibration of the opposed oscillating flow heat pipe 2 as described above. In addition, even when a heat source capable of controlling the temperature is used, energy loss can be reduced by controlling the vibration of the opposed oscillating flow heat pipe 2 in accordance with the turning on and off of the heat source.
【0068】また、第1〜5例では、加振器2dの制御
をHiモード、Lowモード、停止の3パターンに限定
したが、該対向振動流型ヒートパイプ2の熱伝導率は振
動に対応して変化するものなので制御の段階を増加さ
せ、給湯や、暖房の負荷に応じたり、温度に合わせて適
宜制御することも可能である。In the first to fifth examples, the control of the vibrator 2d is limited to the three patterns of the Hi mode, the Low mode, and the stop. However, the thermal conductivity of the opposed oscillating flow heat pipe 2 corresponds to the vibration. Therefore, it is also possible to increase the number of control steps and control according to the load of hot water supply or heating, or appropriately according to the temperature.
【0069】[0069]
【発明の効果】以上のように、本発明に係る熱伝導装置
によれば、前記温度計測手段は前記低温部の温度を感知
して前記制御手段に信号を送り、該信号によって該制御
手段が、前記熱伝導部材内部の前記加振手段の振動の振
幅及び振動数のうちの少なくとも一つを制御するととも
に、該加振手段の作動及び停止を制御するため、前記高
温部から前記低温部へ移動する熱量、即ち、熱輸送量を
前記低温部の温度によって、適宜制御することができ
る。従って、前記熱伝導装置は、前記低温部側の温度を
ほぼ一定に保つ制御を行うことができる。また、前記熱
伝導装置を備えたボイラ10及び発電装置によれば、ボ
イラ10の前記缶体13、または、前記蓄熱槽20に前
記熱伝導部材の低温部及び前記温度計測手段を設置する
ことにより、該ボイラ10の缶体13内の缶水や、該蓄
熱槽20内の熱媒体21の温度を常時、ほぼ一定に保つ
ことができる。また、蒸気熱伝導装置を備えた加熱・冷
却装置によれば、熱源(冷熱源)からの熱輸送量を調整
して温度制御したり、エネルギロスを低減したりするこ
とができる。As described above, according to the heat conduction device of the present invention, the temperature measuring means senses the temperature of the low temperature section and sends a signal to the control means, and the control means responds to the signal. Controlling at least one of the amplitude and frequency of the vibration of the vibrating means inside the heat conducting member, and controlling the operation and stop of the vibrating means from the high temperature section to the low temperature section. The amount of heat transferred, that is, the amount of heat transport can be appropriately controlled by the temperature of the low-temperature section. Therefore, the heat conduction device can perform control to keep the temperature on the low temperature part side substantially constant. Further, according to the boiler 10 and the power generator equipped with the heat conducting device, by installing the low temperature part of the heat conducting member and the temperature measuring means in the can 13 or the heat storage tank 20 of the boiler 10. The temperature of the can water in the can 13 of the boiler 10 and the temperature of the heat medium 21 in the heat storage tank 20 can always be kept substantially constant. Further, according to the heating / cooling device provided with the steam heat conducting device, it is possible to control the temperature by adjusting the amount of heat transported from the heat source (cold heat source) and to reduce the energy loss.
【図1】本発明の実施の形態例の第1例の熱交換装置を
示す平面及び側面図である。FIG. 1 is a plan view and a side view showing a first example of a heat exchange device according to an embodiment of the present invention.
【図2】本発明の実施の形態例の第2例のボイラを示す
概略図である。FIG. 2 is a schematic view showing a second example of the boiler according to the embodiment of the present invention.
【図3】前記ボイラに用いられる熱交換装置の受熱部を
示す概略図である。FIG. 3 is a schematic diagram showing a heat receiving unit of a heat exchange device used in the boiler.
【図4】本発明の実施の形態例の第3例のボイラを示す
概略図である。FIG. 4 is a schematic view showing a third example of the boiler according to the embodiment of the present invention.
【図5】本発明の実施の形態例の第4例のボイラを示す
概略図である。FIG. 5 is a schematic diagram showing a fourth example of a boiler according to an embodiment of the present invention.
【図6】本発明の実施の形態例の第5例の発電装置を示
す概略図である。FIG. 6 is a schematic diagram showing a fifth example of the power generation device according to the embodiment of the present invention.
【図7】本発明の実施の形態例の第6例の加温装置とし
ての床暖房装置を示す概略図である。FIG. 7 is a schematic diagram showing a floor heating device as a heating device according to a sixth example of the embodiment of the present invention.
【図8】従来例である熱交換器を備えたボイラを示す概
略図である。FIG. 8 is a schematic diagram showing a conventional boiler provided with a heat exchanger.
1 熱交換器 2 対向振動流型ヒートパイプ(熱伝導部材) 2b 流路壁(壁) 2c 液体(液体) 2d 加振器(加振手段) 2e 流路部(流路部) 5 制御ボックス(制御手段) 6 サーモセンサー(温度計測手段) 10 ボイラ 11 バーナ(加熱部) 12 煙管群(熱交換部) 13 缶体 14 煙道(排気系) 20 蓄熱槽(蓄熱部) 32 タービン(ガスタービン) 34 発電機(発電部) 36 煙道(排気系) REFERENCE SIGNS LIST 1 heat exchanger 2 opposed oscillating flow heat pipe (heat conducting member) 2 b flow path wall (wall) 2 c liquid (liquid) 2 d vibrator (vibration means) 2 e flow path section (flow path section) 5 control box ( Control means) 6 Thermosensor (Temperature measuring means) 10 Boiler 11 Burner (Heating section) 12 Smoke tube group (Heat exchange section) 13 Can body 14 Flue (exhaust system) 20 Heat storage tank (Heat storage section) 32 Turbine (Gas turbine) 34 Generator (power generation unit) 36 Flue (exhaust system)
Claims (10)
複数の流路部を備える流路と、該流路内にほぼ満たされ
た状態で封入される液体と、該液体を流路内で流路部の
延在方向に沿って往き来するように振動させる加振手段
とを備え、前記流路の隣合う流路部内の液体同士が壁を
隔てて隣接して配置されるとともに、前記加振手段によ
る振動が隣接する流路部内の液体同士で逆位相となるよ
うに該流路部内の液体を振動させた状態で、隣接する流
路部内の液体同士が壁を介して熱交換を行う熱伝導部材
を用いた熱伝導装置であって、 各種センサ・機器等の装置に接続されて信号を出力する
信号出力手段と、 該信号出力手段から出力された信号に基づいて、前記加
振手段により液体に加えられる振動の開始及び停止と、
振動の振幅と、振動の振動数とのうちの少なくとも一つ
を制御するとともに、前記加振手段の作動及び停止を制
御する制御手段とを備えていることを特徴とする熱伝導
装置。1. A flow path having a plurality of flow path sections extending in parallel between a high temperature section and a low temperature section, a liquid sealed in a substantially filled state in the flow path, and Vibrating means for vibrating so as to move back and forth along the extending direction of the flow path in the flow path, wherein the liquids in the flow path adjacent to the flow path are arranged adjacent to each other with a wall therebetween. In addition, in a state where the liquids in the adjacent flow passages are vibrated so that the liquids in the adjacent flow passages have the opposite phases, the liquids in the adjacent flow passages pass through the wall. A heat conduction device using a heat conduction member that performs heat exchange by using a signal output device that is connected to devices such as various sensors and devices and outputs a signal, and based on a signal output from the signal output device. Starting and stopping the vibration applied to the liquid by the vibration means,
A heat conduction device, comprising: a control unit that controls at least one of an amplitude of a vibration and a frequency of the vibration, and controls operation and stop of the vibration unit.
複数の流路部を備える流路と、該流路内にほぼ満たされ
た状態で封入される液体と、該液体を流路内で流路部の
延在方向に沿って往き来するように振動させる加振手段
とを備え、前記流路の隣合う流路部内の液体同士が壁を
隔てて隣接して配置されるとともに、前記加振手段によ
る振動が隣接する流路部内の液体同士で逆位相となるよ
うに該流路部内の液体を振動させた状態で、隣接する流
路部内の液体同士が壁を介して熱交換を行う熱伝導部材
を用いた熱伝導装置であって、 前記熱伝導部材の高温部側の受熱部及び低温部側の放熱
部の少なくとも一方に、受熱もしくは放熱のために伝熱
面を広くするようにヒートパイプもしくは金属部材を接
続したことを特徴とする熱伝導装置。2. A flow path having a plurality of flow paths extending in parallel between a high temperature section and a low temperature section, a liquid sealed substantially in the flow path, and Vibrating means for vibrating so as to move back and forth along the extending direction of the flow path in the flow path, wherein the liquids in the flow path adjacent to the flow path are arranged adjacent to each other with a wall therebetween. In addition, in a state where the liquids in the adjacent flow passages are vibrated so that the liquids in the adjacent flow passages have the opposite phases, the liquids in the adjacent flow passages pass through the wall. A heat transfer device using a heat transfer member that performs heat exchange by using a heat transfer surface for receiving or radiating heat to at least one of a heat receiving portion on a high temperature portion side and a heat radiating portion on a low temperature portion side of the heat conductive member. A heat pipe or a metal member connected so as to widen the heat conduction device.
ラであって、 缶水を有する缶体と、 缶水を加熱する加熱部と、 該加熱部からの熱を缶水に伝える熱交換部と、 前記加熱部からの排気を放出する排気系と、 該排気系から缶水に熱を伝導する前記熱伝導部材と、 前記缶水の温度を計測するセンサを備えるとともに計測
された温度を示す信号を出力する前記信号手段となる温
度計測手段と、 前記熱伝導部材の加振手段を制御する前記制御手段とを
備え、 該制御手段は、前記缶水の温度が所定の温度付近に達す
るまでは、前記熱伝導部材が高い熱伝導率で排気系の熱
を缶水に伝導するように加振手段を制御し、缶水の温度
が所定の温度付近に達した場合には、熱伝導部材の熱伝
導率が缶水の温度がほぼ所定の温度を維持するものとな
るように加振手段を制御することを特徴とするボイラ。3. A boiler using the heat conducting device according to claim 1, wherein: a can body having can water; a heating section for heating the can water; and heat for transferring heat from the heating section to the can water. An exchange unit, an exhaust system that emits exhaust air from the heating unit, the heat conduction member that conducts heat from the exhaust system to the can water, and a temperature that includes a sensor that measures the temperature of the can water. Temperature measuring means serving as the signal means for outputting a signal indicating the following, and the control means for controlling the vibration means of the heat conducting member, the control means, the temperature of the canned water near the predetermined temperature Until the heat conduction member reaches the predetermined temperature, the vibrating means is controlled so that the heat conduction member conducts heat of the exhaust system to the water with a high thermal conductivity. The thermal conductivity of the conductive member should be such that the temperature of the can water is maintained at a substantially predetermined temperature. Boiler and controlling the vibrating means.
ラであって、 缶水を有する缶体と、 缶水を加熱する加熱部と、 該加熱部からの熱を缶水に伝える熱交換部と、 前記加熱部からの排気を放出する排気系と、 該排気系から放出される熱を蓄熱する蓄熱部と、 前記排気系から前記蓄熱部に熱を伝導する前記熱伝導部
材と、 前記蓄熱部の温度を計測するセンサを備えるとともに計
測された温度を示す信号を出力する前記信号手段となる
温度計測手段と、 前記熱伝導部材の加振手段を制御する前記制御手段とを
備え、 該制御手段は、前記蓄熱部の温度が所定の温度付近に達
するまでは、熱伝導部材が高い熱伝導率で排気系の熱を
前記蓄熱部に伝導するように加振手段を制御し、缶水の
温度が所定の温度付近に達した場合には、熱伝導部材の
熱伝導率が蓄熱部の温度がほぼ所定の温度を維持するも
のとなるように加振手段を制御することを特徴とするボ
イラ。4. A boiler using the heat conducting device according to claim 1, wherein the boiler has can water, a heating section for heating the can water, and heat for transferring heat from the heating section to the can water. An exchange unit, an exhaust system that emits exhaust gas from the heating unit, a heat storage unit that stores heat released from the exhaust system, and the heat conduction member that conducts heat from the exhaust system to the heat storage unit. A temperature measurement unit that includes a sensor that measures the temperature of the heat storage unit and serves as the signal unit that outputs a signal indicating the measured temperature; andthe control unit that controls a vibration unit of the heat conduction member. The control means controls the vibrating means so that the heat conducting member conducts the heat of the exhaust system to the heat accumulating section with a high thermal conductivity until the temperature of the heat accumulating section approaches a predetermined temperature. When the temperature of the water reaches a predetermined temperature, the heat conduction member A boiler characterized in that the vibrating means is controlled so that the conductivity keeps the temperature of the heat storage unit at a substantially predetermined temperature.
て、 前記信号出力手段として、加熱部による缶水の加熱の開
始・停止に際し、加熱の開始・停止を示す信号を出力す
る加熱信号出力手段を備え、前記制御手段が前記加熱部
の開始・停止に連動して加振手段の振動の開始・停止を
制御することを特徴とするボイラ。5. The boiler according to claim 3, wherein the signal output unit includes a heating signal output unit that outputs a signal indicating start / stop of heating when starting / stopping heating of the can water by the heating unit. A boiler, wherein the control means controls start / stop of vibration of the vibrating means in conjunction with start / stop of the heating section.
を供給するボイラであって、 缶水を有する缶体と、 缶水を加熱する加熱部と、 該加熱部からの熱を缶水に伝える熱交換部と、 前記加熱部からの排気を放出する排気系と、 前記缶水を用いて給湯・暖房用等に使用される温水を発
生させるための回路、該回路の給水側配管及び該給水側
配管に接続されて前記回路に給水する給水手段と、 前記排気系から前記給水側配管に熱を伝導する前記熱伝
導部材と、 前記給水手段に接続されて給水の開始・停止を示す信号
を出力する前記信号出力手段としての給水信号出力手段
と、 前記熱伝導部材の加振手段を制御する前記制御手段とを
備え、 該制御手段は、前記給水手段の給水の開始・停止に連動
して前記加振手段の振動の開始・停止を制御することを
特徴とするボイラ。6. A boiler for supplying hot water using the heat conduction device according to claim 1, comprising: a can body having can water; a heating section for heating the can water; and a can from the heat from the heating section. A heat exchange unit for transferring water, an exhaust system for discharging exhaust gas from the heating unit, a circuit for generating hot water used for hot water supply and heating using the canned water, and a water supply side pipe of the circuit And a water supply unit connected to the water supply side pipe to supply water to the circuit; a heat conduction member that conducts heat from the exhaust system to the water supply side pipe; and a start / stop of water supply connected to the water supply unit. A water supply signal output unit serving as the signal output unit that outputs a signal to be displayed, and the control unit that controls a vibrating unit of the heat conducting member, wherein the control unit starts and stops water supply of the water supply unit. Control the start / stop of vibration of the vibration means in conjunction with A boiler characterized in that:
装置であって、 ガスタービンと、 ガスタービンの回転により発電を行う発電部と、 ガスタービンの排気を放出する排気系と該排気系から放
出される熱を蓄熱する蓄熱部と、 前記排気系から前記蓄熱部に熱を伝導する前記熱伝導部
材と、 前記蓄熱部の温度を計測するセンサを備えるとともに計
測された温度を示す信号を出力する前記信号手段となる
温度計測手段と、 前記熱伝導部材の加振手段を制御する前記制御手段とを
備え、 該制御手段は、前記蓄熱部の温度が所定の温度付近に達
するまでは、熱伝導部材が高い熱伝導率で排気系の熱を
前記蓄熱部に伝導するように加振手段を制御し、缶水の
温度が所定の温度付近に達した場合には、熱伝導部材の
熱伝導率が蓄熱部の温度がほぼ所定の温度を維持するも
のとなるように加振手段を制御することを特徴とする発
電装置。7. A power generation device using the heat conduction device according to claim 1, wherein the gas turbine, a power generation unit that generates power by rotating the gas turbine, an exhaust system that discharges exhaust gas from the gas turbine, and the exhaust gas A heat storage unit that stores heat released from the system, the heat conduction member that conducts heat from the exhaust system to the heat storage unit, and a signal indicating the measured temperature, including a sensor that measures the temperature of the heat storage unit. Temperature control means for controlling the vibration means of the heat conducting member, and the control means controls the vibrating means of the heat conducting member until the temperature of the heat storage unit reaches a predetermined temperature. The heat conducting member controls the vibrating means so as to conduct the heat of the exhaust system to the heat storage unit with a high heat conductivity, and when the temperature of the canned water reaches a predetermined temperature, the heat conducting member When the thermal conductivity is almost Power generator and controls the vibrating means so as to maintain the temperature.
停止に際し、作動の開始・停止を示す信号を出力する作
動信号出力手段を備え、前記制御手段がガスタービンの
作動の開始・停止に連動して前記加振手段の振動の開始
・停止を制御することを特徴とする発電装置。8. The power generating apparatus according to claim 7, wherein the signal output means starts the operation of a gas turbine.
An operation signal output unit that outputs a signal indicating the start / stop of operation when stopping is provided, and the control unit controls start / stop of vibration of the vibration unit in conjunction with start / stop of operation of the gas turbine. A power generator characterized by the above-mentioned.
装置であって、 ガスタービンと、 ガスタービンの回転により発電を行う発電部と、 ガスタービンの排気を放出する排気系と、 前記排気系の余熱を用いて給湯・暖房用等に使用される
温水を発生させるための回路、該回路の給水側配管及び
該給水側配管に接続されて前記回路に給水する給水手段
と、 前記排気系から前記給水側配管に熱を伝導する前記熱伝
導部材と、 前記給水手段に接続されて給水の開始・停止を示す信号
を出力する前記信号出力手段としての給水信号出力手段
と、 前記熱伝導部材の加振手段を制御する前記制御手段とを
備え、 該制御手段は、前記給水手段の給水の開始・停止に連動
して加振手段の振動の開始・停止を制御することを特徴
とする発電装置。9. A power generation device using the heat conduction device according to claim 1, wherein: a gas turbine; a power generation unit that generates power by rotating the gas turbine; an exhaust system that discharges exhaust gas from the gas turbine; A circuit for generating hot water used for hot water supply and heating using the residual heat of the exhaust system, a water supply side pipe of the circuit, and a water supply means connected to the water supply side pipe to supply water to the circuit; A heat conduction member that conducts heat from the system to the water supply side pipe; a water supply signal output means serving as the signal output means connected to the water supply means for outputting a signal indicating start / stop of water supply; The control means for controlling the vibration means of the member, wherein the control means controls the start / stop of vibration of the vibration means in conjunction with the start / stop of water supply of the water supply means. Power generator.
いた加温・冷却装置であって、 前記熱伝導部材の流路の低温部側が暖房・融雪等の各種
加熱用の放熱手段とされるか、もしくは熱伝導部材の流
路の高温部側が冷房・冷蔵等の各種冷却用の冷却手段と
されていることを特徴とする加温・冷却装置。10. A heating / cooling device using the heat conduction device according to claim 1 or 2, wherein a low-temperature side of the flow path of the heat conduction member is provided with a heat radiating means for various kinds of heating such as heating and snow melting. Or a high-temperature portion of the flow path of the heat conducting member is used as a cooling means for various types of cooling such as cooling and refrigeration.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000398752A JP4416316B2 (en) | 2000-12-27 | 2000-12-27 | Boiler and power generator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000398752A JP4416316B2 (en) | 2000-12-27 | 2000-12-27 | Boiler and power generator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002195789A true JP2002195789A (en) | 2002-07-10 |
| JP4416316B2 JP4416316B2 (en) | 2010-02-17 |
Family
ID=18863652
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000398752A Expired - Fee Related JP4416316B2 (en) | 2000-12-27 | 2000-12-27 | Boiler and power generator |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4416316B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1324292C (en) * | 2002-08-07 | 2007-07-04 | 株式会社电装 | Counter-strecam mode oscillating-flow heat transport apparatus |
| JP2009068836A (en) * | 2002-08-07 | 2009-04-02 | Denso Corp | Counter-stream-mode oscillating-flow heat transport apparatus and cooling device |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11051428B2 (en) * | 2019-10-31 | 2021-06-29 | Hamilton Sunstrand Corporation | Oscillating heat pipe integrated thermal management system for power electronics |
-
2000
- 2000-12-27 JP JP2000398752A patent/JP4416316B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1324292C (en) * | 2002-08-07 | 2007-07-04 | 株式会社电装 | Counter-strecam mode oscillating-flow heat transport apparatus |
| JP2009068836A (en) * | 2002-08-07 | 2009-04-02 | Denso Corp | Counter-stream-mode oscillating-flow heat transport apparatus and cooling device |
| US7958934B2 (en) | 2002-08-07 | 2011-06-14 | Denso Corporation | Counter-stream-mode oscillating-flow heat transport apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4416316B2 (en) | 2010-02-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1251261B1 (en) | Engine exhaust heat recovering apparatus | |
| EP1094214B1 (en) | Engine waste heat recovering apparatus | |
| EP1096120B1 (en) | Engine waste heat recovering apparatus | |
| KR950023833A (en) | Cogeneration System | |
| US20120047888A1 (en) | Dual hybrid fluid heating apparatus and methods of assembly and operation | |
| CN101793421A (en) | Liquid circulation heating system | |
| JP2007255775A (en) | Hybrid type hot water supply apparatus | |
| HU231149B1 (en) | Solid charge heat storage equipment | |
| JP3758074B2 (en) | Electronic equipment cooling system | |
| CN107769617B (en) | Thermoelectric power generation system and gas stove | |
| JP2007263010A (en) | Co-generation system | |
| JP2002195789A (en) | Thermal conduction apparatus, boiler, generator and humidifier/cooler | |
| JPH11118247A (en) | Heat pump type solar hot water supply system | |
| US20240271878A1 (en) | Thermal battery and electricity generation system | |
| JPH10238972A (en) | Heat transfer device | |
| KR200430734Y1 (en) | Heating medium heating fan | |
| JP4057034B2 (en) | Regenerative heat supply device and regenerative heat supply system using the same | |
| US11971221B2 (en) | Thermal battery and electricity generation system | |
| JP2008008527A (en) | Operation method of absorption type water cooler and operation system of absorption type water cooler | |
| JP2004069123A (en) | Crushed stone heat storage device | |
| JPH07209841A (en) | Device for concentrating waste developing solution | |
| JP6477415B2 (en) | Heat pump type steam generator and method for starting heat pump type steam generator | |
| EP0058259A1 (en) | Energy conserving heat exchange apparatus for refrigerating machines, and refrigerating machine equipped therewith | |
| JP2010267565A (en) | Fuel cell system | |
| KR200386268Y1 (en) | The wind warming apparatus using heat medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071214 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090722 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090928 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091124 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4416316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |