[go: up one dir, main page]

JP2002198550A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JP2002198550A
JP2002198550A JP2000396716A JP2000396716A JP2002198550A JP 2002198550 A JP2002198550 A JP 2002198550A JP 2000396716 A JP2000396716 A JP 2000396716A JP 2000396716 A JP2000396716 A JP 2000396716A JP 2002198550 A JP2002198550 A JP 2002198550A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion device
insulator
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000396716A
Other languages
Japanese (ja)
Inventor
Takeshi Kyoda
豪 京田
Makoto Sugawara
信 菅原
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396716A priority Critical patent/JP2002198550A/en
Priority to US09/917,140 priority patent/US6437234B1/en
Publication of JP2002198550A publication Critical patent/JP2002198550A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【課題】 低コストで信頼性の高い光電変換装置を提供
することを目的とする。 【解決手段】 一方の電極層を有する基板1上に一導電
形を呈する粒状結晶半導体2を多数配設して基板1と接
合し、この粒状結晶半導体2間に絶縁体3を充填してこ
の粒状結晶半導体2上に逆導電形を呈する半導体層4を
設けるとともに、この逆導電形を呈する半導体層4に他
方の電極を接続して設けた光電変換装置であって、上記
絶縁体3を熱膨張係数が30〜60×10-7/℃で軟化
点が500℃以下の材料を用いて形成することによっ
て、クラック及びボイド等の欠陥の発生を防止した良好
な絶縁体3を形成し、よって信頼性の高い光電変換装置
を提供する。
(57) [Problem] To provide a low-cost and highly reliable photoelectric conversion device. SOLUTION: On a substrate 1 having one electrode layer, a large number of granular crystal semiconductors 2 having one conductivity type are arranged and joined to the substrate 1, and an insulator 3 is filled between the granular crystal semiconductors 2 to fill the same. A photoelectric conversion device in which a semiconductor layer 4 having the opposite conductivity type is provided on the granular crystal semiconductor 2 and the other electrode is connected to the semiconductor layer 4 having the opposite conductivity type. By using a material having an expansion coefficient of 30 to 60 × 10 −7 / ° C. and a softening point of 500 ° C. or less, a good insulator 3 in which defects such as cracks and voids are prevented is formed. Provide a highly reliable photoelectric conversion device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換装置に関
し、特に太陽光発電などに使用される粒状結晶半導体を
用いた光電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device using a granular crystal semiconductor used for photovoltaic power generation.

【0002】[0002]

【従来の技術】従来の粒状結晶半導体を用いた光電変換
装置を図3〜図5に示す。例えば図3に示すように、第
1のアルミニウム箔10に開口を形成し、その開口にp
形の上にn形表皮部9を持つシリコン球2を結合し、球
2の裏側のn形表皮部9を除去し、第1のアルミニウム
箔10の裏面側に酸化物絶縁層3を形成し、シリコン球
2の裏側の酸化物絶縁層3を除去し、シリコン球1と第
2のアルミニウム箔8とを接合する光電変換装置が開示
されている(例えば特開昭61−124179号公報参
照)。
2. Description of the Related Art FIGS. 3 to 5 show a conventional photoelectric conversion device using a granular crystal semiconductor. For example, as shown in FIG. 3, an opening is formed in the first aluminum foil 10, and p is formed in the opening.
A silicon ball 2 having an n-type skin 9 on the shape is bonded, the n-type skin 9 on the back side of the ball 2 is removed, and an oxide insulating layer 3 is formed on the back side of the first aluminum foil 10. There has been disclosed a photoelectric conversion device in which the oxide insulating layer 3 on the back side of the silicon sphere 2 is removed and the silicon sphere 1 and the second aluminum foil 8 are joined (for example, see Japanese Patent Application Laid-Open No. 61-124179). .

【0003】また、図4に示すように、基板1上に低融
点金属層11を形成し、この低融点金属層11上に第1
導電形の粒状結晶半導体2を配設し、この粒状結晶半導
体2上に第2導電形のアモルファス半導体層7を上記低
融点金属層11との間に絶縁層3を介して形成する光電
変換装置が開示されている(例えば特許第264180
0号公報参照)。
As shown in FIG. 4, a low melting point metal layer 11 is formed on a substrate 1 and a first melting point metal layer 11 is formed on the low melting point metal layer 11.
A photoelectric conversion device in which a conductive-type granular crystal semiconductor 2 is provided, and a second conductive-type amorphous semiconductor layer 7 is formed on the granular crystal semiconductor 2 between the low-melting-point metal layer 11 and the insulating layer 3. Is disclosed (for example, Japanese Patent No. 264180).
No. 0).

【0004】また、図5に示すように、基板1上に高融
点金属層12と低融点金属層11と半導体微小結晶粒と
を堆積し、半導体の微小結晶粒を融解させて飽和させた
上で徐々に冷却して半導体を液相エピタキシャル成長さ
せることによって多結晶薄膜13を形成する方法が開示
されている(例えば特公平8−34177号公報参
照)。
Further, as shown in FIG. 5, a high melting point metal layer 12, a low melting point metal layer 11, and semiconductor fine crystal grains are deposited on a substrate 1, and the semiconductor fine crystal grains are melted and saturated. There is disclosed a method of forming a polycrystalline thin film 13 by gradually cooling a semiconductor by liquid phase epitaxy (for example, see Japanese Patent Publication No. 8-34177).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3に
示すような光電変換装置においては、第1のアルミニウ
ム箔10に開口を形成し、その開口にシリコン球2を押
し込んでシリコン球を第1のアルミニウム箔10に接合
させる必要があるため、シリコン球2の球径に均一性が
要求され、高コストになるという問題点があった。ま
た、接合させるときの処理温度がアルミニウムとシリコ
ンの共晶温度である577℃以下であるため、接合が不
安定になるという問題があった。
However, in the photoelectric conversion device as shown in FIG. 3, an opening is formed in the first aluminum foil 10, and the silicon sphere 2 is pushed into the opening to insert the silicon sphere into the first aluminum foil. Since it is necessary to bond to the aluminum foil 10, uniformity of the diameter of the silicon ball 2 is required, and there is a problem that the cost is high. In addition, since the processing temperature at the time of joining is 577 ° C. or lower, which is the eutectic temperature of aluminum and silicon, there is a problem that the joining becomes unstable.

【0006】また、図4に示すような光電変換装置によ
れば、第1導電形の粒状結晶半導体2上に第2導電形の
アモルファス半導体層7を設けるため、安定なpn接合
を形成するにはアモルファス導電層7の形成前に粒状結
晶半導体2の表面を十分にエッチングおよび洗浄する必
要があった。また、アモルファス半導体層7の光吸収が
大きいことに起因して膜厚を薄くしなければならず、ア
モルファス半導体層7の膜厚が薄い場合、欠陥に対する
許容度も小さくなり、洗浄工程や製造環境の管理を厳し
くする必要があり、その結果、高コストになるという問
題があった。
Further, according to the photoelectric conversion device as shown in FIG. 4, since the amorphous semiconductor layer 7 of the second conductivity type is provided on the granular semiconductor 2 of the first conductivity type, it is necessary to form a stable pn junction. Requires that the surface of the granular crystal semiconductor 2 be sufficiently etched and cleaned before the formation of the amorphous conductive layer 7. Further, the film thickness must be reduced due to the large light absorption of the amorphous semiconductor layer 7. If the film thickness of the amorphous semiconductor layer 7 is small, tolerance for defects is reduced, and the cleaning process and the manufacturing environment are reduced. Has to be strictly controlled, resulting in a problem of high cost.

【0007】また、図5に示すような光電変換装置によ
れば、低融点金属層11が第1導電形の液相エピタキシ
ャル多結晶層13中に混入するために性能が落ち、絶縁
体がないために下部電極12との間にリークが発生する
という問題があった。
Further, according to the photoelectric conversion device as shown in FIG. 5, since the low-melting-point metal layer 11 is mixed into the liquid-phase epitaxial polycrystalline layer 13 of the first conductivity type, the performance deteriorates and there is no insulator. Therefore, there is a problem that a leak occurs between the lower electrode 12 and the lower electrode 12.

【0008】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、低コストの光電
変換装置を提供することにある。
[0008] The present invention has been made in view of the above-mentioned problems in the prior art, and an object thereof is to provide a low-cost photoelectric conversion device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る光電変換装置は、一方の電極層を有
する基板上に一導電形を呈する粒状結晶半導体を多数配
設して基板と接合し、この粒状結晶半導体間に絶縁体を
充填してこの粒状結晶半導体上に逆導電形を呈する半導
体層を設けるとともに、この逆導電形を呈する半導体層
に他方の電極を接続して設けた光電変換装置において、
前記絶縁体を熱膨張係数が30〜60×10-7/℃で軟
化点が500℃以下の材料を用いて形成したことを特徴
とする。
According to a first aspect of the present invention, there is provided a photoelectric conversion device comprising a substrate having one electrode layer and a plurality of granular semiconductors having one conductivity type disposed on a substrate having one electrode layer. A semiconductor layer having an opposite conductivity type is provided on the grain crystal semiconductor by filling an insulator between the grain crystal semiconductors, and the other electrode is connected to the semiconductor layer having the opposite conductivity type. In the provided photoelectric conversion device,
The insulator is formed using a material having a coefficient of thermal expansion of 30 to 60 × 10 −7 / ° C. and a softening point of 500 ° C. or less.

【0010】本発明の光電変換装置によれば、基板上に
粒状結晶半導体を多数配置して加熱して両者の溶融した
合金部によって接合し、この多数の粒状結晶半導体の間
に絶縁体を充填した構造において、絶縁体が露出してい
る基板の全面を欠陥なく覆い、なお且つ絶縁体及び粒状
結晶半導体におけるクラック発生を防止することによっ
て、従来の特開昭61−124179号公報、特許第2
641800号公報、特公平8−34177号公報、特
公昭61−59678号公報、特開平10−23351
8号公報で開示されている光電変換装置と比較して製造
マージンが大きく、低コストの製造が可能となる。つま
り、粒状結晶半導体をより低い粒径精度で製造すればよ
く、絶縁体によって正電極と負電極の分離を確実に行う
ことができるため、低コストの製造が可能となる。
According to the photoelectric conversion device of the present invention, a large number of granular crystal semiconductors are arranged on a substrate, heated and joined by a molten alloy portion of both, and an insulator is filled between the plurality of granular crystal semiconductors. In the structure described above, the entire surface of the substrate on which the insulator is exposed is covered without defects, and cracks are prevented from occurring in the insulator and the granular crystal semiconductor.
No. 641800, Japanese Patent Publication No. 8-34177, Japanese Patent Publication No. 61-59678, Japanese Unexamined Patent Publication No. Hei 10-23351.
As compared with the photoelectric conversion device disclosed in Japanese Patent Application Publication No. 8 (1994) -208, the manufacturing margin is large, and low-cost manufacturing is possible. That is, it is only necessary to manufacture the granular crystal semiconductor with lower particle size accuracy, and the positive electrode and the negative electrode can be reliably separated by the insulator, so that low-cost manufacturing is possible.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。図1および図2は、請求項1に係る光電
変換装置の一実施形態を示す図である。図1および図2
において、1は基板、2は粒状結晶半導体、3はガラス
材料から成る絶縁体、4は半導体層、5は保護層、6は
導電層(他方の電極)、15は基板1と粒状結晶半導体
の接合部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIGS. 1 and 2 are views showing an embodiment of the photoelectric conversion device according to claim 1. 1 and 2
, 1 is a substrate, 2 is a granular crystal semiconductor, 3 is an insulator made of a glass material, 4 is a semiconductor layer, 5 is a protective layer, 6 is a conductive layer (the other electrode), and 15 is a substrate 1 and a granular crystal semiconductor. It is a joint.

【0012】基板1は金属、セラミック、樹脂等から成
る。基板1は下部電極を兼ねるため、特性としてアルミ
ニウムから成る導電性を持つものであればよく、基板1
全体がアルミニウムから成る場合は図1に示すような単
層にし、基板1がアルミニウムを含まない場合は図2に
示すようなアルミニウムから成る導電層1’との複層に
する。なお、基板1がセラミックや樹脂などの絶縁体の
場合には、その表面に図2に示すアルミニウムから成る
導電層1’を形成する必要がある。
The substrate 1 is made of metal, ceramic, resin or the like. Since the substrate 1 also serves as a lower electrode, any material having a conductive property of aluminum may be used.
When the whole is made of aluminum, it has a single layer as shown in FIG. 1, and when the substrate 1 does not contain aluminum, it has a multiple layer with a conductive layer 1 ′ made of aluminum as shown in FIG. When the substrate 1 is an insulator such as ceramic or resin, it is necessary to form a conductive layer 1 'made of aluminum shown in FIG. 2 on the surface thereof.

【0013】粒状結晶半導体2は、中心部がSi、Ge
にp形を呈するB、Al、Ga等、又はn形を呈する
P、As等が微量含まれているものである。そして、基
板1と粒状結晶半導体2が接触した状態で基板1の材料
であるAlとSiとの共晶温度である577℃を越える
温度で焼成することによって合金部15を形成するが、
合金部15は基板1の材料であるAlと基板1と接触し
ている部分の粒状結晶半導体2の材料とが共に溶解して
溶融した合金部である。また、合金部15に接触してい
る第1導電形の領域では、基板1の材料であるアルミニ
ウムが拡散してp +層を形成している。しかしながら、
単に導電性拡散領域を形成するのであれば、AlとSi
との共晶温度である577℃以下でもできるが、基板1
と粒状結晶半導体2の接合が弱いために基板1から粒状
結晶半導体2が離脱し、太陽電池としての構造を維持で
きなくなる。
The central part of the granular crystal semiconductor 2 is Si, Ge.
B, Al, Ga, etc. exhibiting a p-type or an n-type
It contains a small amount of P, As, or the like. And the base
In a state where the plate 1 and the granular crystal semiconductor 2 are in contact with each other,
Exceeds 577 ° C., which is the eutectic temperature of Al and Si
The alloy part 15 is formed by firing at a temperature.
The alloy part 15 is in contact with Al, which is the material of the substrate 1, and the substrate 1.
Is melted together with the material of the granular crystal semiconductor 2
It is a molten alloy part. In addition, there is no contact with the alloy part 15
In the region of the first conductivity type, aluminum
Um diffuses and p +Forming a layer. However,
If a conductive diffusion region is simply formed, Al and Si
577 ° C. or less, which is the eutectic temperature of
Is weak from the substrate 1 because the bonding between the
The crystal semiconductor 2 is detached, and the structure as a solar cell can be maintained.
Will not be able to.

【0014】粒状結晶半導体2の粒径分布としては均
一、不均一を問わないが、均一の場合は粒径を揃えるた
めの工程が必要になるため、より安価に製造するために
は不均一な方が有利である。更に粒状結晶半導体2が凸
状曲面を持つことによって光の光線角度の依存性も小さ
くなる。
The grain size distribution of the granular crystal semiconductor 2 may be uniform or non-uniform, but if uniform, a process for adjusting the grain size is required. Is more advantageous. Further, since the granular crystal semiconductor 2 has a convex curved surface, dependence on the light ray angle of light is reduced.

【0015】また、粒子2の直径は10〜500μmが
よく、10μm未満では基板1との接合の際に粒状結晶
半導体2が完全に溶融するために上部の半導体層4との
リークが発生し、また500μmを越えると従来形の平
面板の光電変換装置で使用される半導体原料の使用量と
変わらなくなり、半導体原料の節約の意味で粒子を適用
する利点がなくなる。なお、粒状結晶半導体2は、その
外郭にn形を呈するP、As等、又はp形を呈するB、
Al、Ga等が微量含まれているものでもよい。
The diameter of the particles 2 is preferably 10 to 500 μm, and if the diameter is less than 10 μm, leakage occurs with the upper semiconductor layer 4 because the granular crystal semiconductor 2 is completely melted at the time of bonding with the substrate 1. On the other hand, when the thickness exceeds 500 μm, the amount of the semiconductor material used in the conventional flat plate photoelectric conversion device is not changed, and the advantage of applying particles in terms of saving the semiconductor material is lost. Note that the granular crystal semiconductor 2 has an n-type P, As, or the like, or a p-type B,
It may contain a small amount of Al, Ga, or the like.

【0016】絶縁体3は、正極と負極の分離を行うため
の絶縁材料からなるが、材料の特性として熱膨張係数が
30〜60×10-7/℃で軟化点が500℃以下の材料
を用いる。熱膨張係数においては、30×10-7/℃以
下だとアルミニウムを用いた基板(Alの熱膨張係数:
240×10-7/℃)との熱膨張係数差が大きいために
絶縁体3を形成した後に絶縁体表面にクラックが発生し
てしまい、60×10 -7/℃を越えると粒状結晶半導体
2(例えばSiの熱膨張係数:26×10-7/℃)との
熱膨張係数差が大きくなるために粒状結晶半導体2及び
その周辺の絶縁体3にクラックが発生してしまう。また
軟化点においては、半導体層を形成する際の温度で融解
又は分解しないことが必要であり、且つ軟化点が500
℃を越えると、基板1と粒状結晶半導体2の接合温度で
ある577℃近辺の温度において材料が融解せずにボイ
ド等の欠陥が発生して、露出している基板1の面を覆う
ことができず、絶縁体としての機能が果たせなくなる。
よって軟化点の範囲は非晶質の半導体層を形成する温度
を考慮して200〜500℃、好適には非晶質と結晶質
の混晶から成る半導体層を形成する温度を考慮して35
0〜500℃がよい。絶縁体3の材料は上記の条件を満
たすものであればよく、例えばSiO2、B23、Al2
3、CaO、MgO、P25、Li2O、SnO、Pb
O、ZnO、BaO、TiO2等を任意な成分とする主
材料の低温焼成用ガラス材料単体あるいは上記材料の1
種又は複数から成るフィラーを複合した絶縁体等があ
る。この絶縁体3の形成は基板1上に少なくとも粒状結
晶半導体2を多数配置して基板と接合するときに同時に
形成するか接合後に形成してもよい。また、形成後の表
面にエッチング等の処理をしてもよい。
The insulator 3 is used to separate the positive electrode and the negative electrode.
The material has a thermal expansion coefficient of
30-60 × 10-7Material whose softening point is 500 ° C or less at / ° C
Is used. The thermal expansion coefficient is 30 × 10-7/ ℃ or less
Underneath, a substrate made of aluminum (the coefficient of thermal expansion of Al:
240 × 10-7/ ° C) due to the large difference in thermal expansion coefficient
After the insulator 3 is formed, cracks occur on the insulator surface.
60 × 10 -7/ G over crystalline semiconductor
2 (for example, the coefficient of thermal expansion of Si: 26 × 10-7/ ℃)
Because the difference in thermal expansion coefficient is large, the granular crystal semiconductor 2 and
Cracks occur in the insulator 3 in the vicinity. Also
At the softening point, it melts at the temperature at which the semiconductor layer is formed
Or it must not decompose and has a softening point of 500
C., the bonding temperature of the substrate 1 and the granular crystal semiconductor 2
At a certain temperature around 577 ° C, the material does not melt and
Covers the exposed surface of the substrate 1 due to defects such as
Cannot function as an insulator.
Therefore, the range of the softening point is the temperature at which the amorphous semiconductor layer is formed.
In consideration of 200-500 ° C., preferably amorphous and crystalline
Considering the temperature for forming a semiconductor layer composed of a mixed crystal of
0-500 degreeC is good. The material of the insulator 3 satisfies the above conditions.
Any material can be used, such as SiOTwo, BTwoOThree, AlTwo
OThree, CaO, MgO, PTwoOFive, LiTwoO, SnO, Pb
O, ZnO, BaO, TiOTwoEtc. as an optional component
Glass material for low-temperature firing of a material alone or one of the above materials
Insulators, etc., that combine seeds or multiple kinds of fillers
You. This insulator 3 is formed on the substrate 1 at least by granular bonding.
When a large number of crystal semiconductors 2 are arranged and bonded to a substrate,
It may be formed or formed after joining. Also, the table after formation
The surface may be subjected to processing such as etching.

【0017】半導体層4は例えばSiから成り、気相成
長法等で例えばシラン化合物の気相にn形を呈するリン
系化合物の気相、又はp形を呈するホウ素系化合物の気
相を微量導入して形成する。膜質としては結晶質、非晶
質、結晶質と非晶質とが混在するのどちらでもよいが、
光線透過率を考慮すると結晶質又は結晶質と非晶質とが
混在するものがよく、光線透過率については、粒状結晶
半導体2がない部分で入射光の一部が半導体層4を透過
し、下部の基板1で反射して粒状結晶半導体2に照射さ
れることで、光電変換装置全体に照射される光エネルギ
ーを効率よく粒状結晶半導体2に照射することが可能と
なる。
The semiconductor layer 4 is made of, for example, Si. A small amount of a gaseous phase of a phosphorus-based compound exhibiting an n-type or a gaseous phase of a boron-based compound exhibiting a p-type is introduced into the gaseous phase of a silane compound by a vapor phase growth method or the like. Formed. The film quality may be crystalline, amorphous, or a mixture of crystalline and amorphous,
Considering the light transmittance, it is preferable to use a mixture of crystalline or crystalline and amorphous. Regarding the light transmittance, a part of the incident light passes through the semiconductor layer 4 in a portion where the granular crystal semiconductor 2 is not provided, By being reflected on the lower substrate 1 and irradiating the granular crystal semiconductor 2, it is possible to efficiently irradiate the granular crystal semiconductor 2 with light energy applied to the entire photoelectric conversion device.

【0018】導電性については、層中の微量元素の濃度
は高くてもよく、例えば1×1016〜1021atm/c
3台程度である。
Regarding the conductivity, the concentration of the trace element in the layer may be high, for example, 1 × 10 16 to 10 21 atm / c.
m 3 or so.

【0019】更に、半導体層4は粒状結晶半導体2の表
面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿
って形成することが望ましい。粒状結晶半導体2の凸曲
面状の表面に沿って形成することによってpn接合の面
積を広く稼ぐことができ、粒状結晶半導体2の内部で生
成したキャリアを効率よく収集することが可能となる。
なお、その外郭にn形を呈するP、As等、又はp形を
呈するB、Al、Ga等が微量含まれている粒状結晶半
導体2を用いる場合には、半導体層4はなくてもよく、
その上に下記の導電層6を形成してもよい。
Further, it is desirable that the semiconductor layer 4 is formed along the surface of the granular crystal semiconductor 2 and is formed along the convex curved surface shape of the granular crystal semiconductor 2. By forming the pn junction along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be widened, and the carriers generated inside the granular crystal semiconductor 2 can be efficiently collected.
In the case where a granular crystal semiconductor 2 containing a small amount of n-type P, As, or the like, or p-type B, Al, Ga, or the like is used, the semiconductor layer 4 may not be provided.
The following conductive layer 6 may be formed thereon.

【0020】半導体層4上には導電層(他方の電極層)
6を形成してもよい。導電層6はスパッタリング法や気
相成長法等の成膜方法あるいは塗布焼成等によって形成
し、SnO2、In23、ITO、ZnO、TiO2等か
ら選ばれる1種又は複数の酸化物系膜、又はTi、P
t、Au等から選ばれる1種又は複数の金属系膜を形成
する。透明導電層は膜厚を選べば反射防止膜としての効
果も期待できる。なお、導電層6は透明であることが必
要であり、粒状結晶半導体2がない部分で入射光の一部
が導電層6を透過し、下部の基板1で反射して粒状結晶
半導体2に照射されることで、光電変換装置全体に照射
される光エネルギーを効率よく粒状結晶半導体2に照射
することが可能となる。更に、導電層6は半導体層4あ
るいは粒状結晶半導体2の表面に沿って形成し、粒状結
晶半導体2の凸曲面形状に沿って形成することが望まし
い。粒状結晶半導体2の凸曲面状の表面に沿って形成す
ることによってpn接合の面積を広く稼ぐことができ、
粒状結晶半導体2の内部で生成したキャリアを効率よく
収集することが可能となる。
On the semiconductor layer 4, a conductive layer (the other electrode layer)
6 may be formed. The conductive layer 6 is formed by a film forming method such as a sputtering method or a vapor phase growth method, or by coating and baking, and is composed of one or more oxides selected from SnO 2 , In 2 O 3 , ITO, ZnO, TiO 2 and the like. Film, or Ti, P
One or more metal-based films selected from t, Au and the like are formed. If the thickness of the transparent conductive layer is selected, the effect as an antireflection film can be expected. The conductive layer 6 needs to be transparent, and a part of the incident light passes through the conductive layer 6 in a portion where the granular crystal semiconductor 2 is not present, and is reflected on the lower substrate 1 to irradiate the granular crystal semiconductor 2. By doing so, it becomes possible to efficiently irradiate the granular crystal semiconductor 2 with light energy applied to the entire photoelectric conversion device. Furthermore, it is desirable that the conductive layer 6 be formed along the surface of the semiconductor layer 4 or the granular crystal semiconductor 2 and formed along the convex curved surface shape of the granular crystal semiconductor 2. By forming along the convex curved surface of the granular crystal semiconductor 2, the area of the pn junction can be increased widely,
Carriers generated inside the granular crystal semiconductor 2 can be efficiently collected.

【0021】半導体層4あるいは導電層6上に保護層5
を形成してもよい。このような保護層5としては透明誘
電体の特性を持つものがよく、CVD法やPVD法等で
例えば酸化珪素、酸化セシウム、酸化アルミニウム、窒
化珪素、酸化チタン、SiO 2−TiO2、酸化タンタ
ル、酸化イットリウム等を単一組成又は複数組成で単層
又は組み合わせて半導体層4又は導電層6上に形成す
る。保護層5は、光の入射面に接しているために、透明
性が必要であり、また半導体層4又は導電層6と外部と
の間のリークを防止するために、誘電体であることが必
要である。なお、保護層5の膜厚を最適化すれば反射防
止膜としての機能も期待できる。
The protective layer 5 is formed on the semiconductor layer 4 or the conductive layer 6.
May be formed. Such a protective layer 5 is transparent
It is better to have the properties of an electric conductor, such as CVD or PVD.
For example, silicon oxide, cesium oxide, aluminum oxide, nitrogen
Silicon oxide, titanium oxide, SiO Two-TiOTwo, Tantalum oxide
, Yttrium oxide, etc. in a single layer or in multiple layers
Or a combination of them on the semiconductor layer 4 or the conductive layer 6.
You. The protective layer 5 is transparent because it is in contact with the light incident surface.
And the semiconductor layer 4 or the conductive layer 6 and the outside
Must be dielectric to prevent leakage during
It is important. If the thickness of the protective layer 5 is optimized, the anti-reflection
It can also be expected to function as a barrier film.

【0022】また、直列抵抗値を低くするために、半導
体層4又は導電層6の上に一定間隔のフィンガーやバス
バーといったパターン電極(他方の電極)を設けて直接
又は間接的に半導体層4と接続し、変換効率を向上させ
ることも可能である。
In order to reduce the series resistance, a pattern electrode (the other electrode) such as a finger or a bus bar is provided at regular intervals on the semiconductor layer 4 or the conductive layer 6 to directly or indirectly connect with the semiconductor layer 4. It is also possible to connect and improve the conversion efficiency.

【0023】[0023]

【実施例】次に、本発明の光電変換装置の実施例を説明
する。 〔例1〕実施例として以下のようにして作製した試料1
を用いた。鉄を含む基板1上にアルミニウム層1’を5
0μmの厚みに形成し、その上に絶縁体3を形成するた
めのSiO2、B23、Al23、CaO、MgO、P2
5、Li2O、SnO、PbO、ZnO、BaO、Ti
2等を任意な成分とする主材料の低温焼成用ガラス粒
子単体あるいは上記の材料の1種又は複数から成るフィ
ラーを複合したガラス粒子をペースト化したものを焼成
後の厚みがシリコン粒子2の粒径の半分近くになるよう
に塗布形成した。その上に中心径250μmのp形のシ
リコン粒子2を密に配置して絶縁体3中に押し込みアル
ミニウム層1’に接触させた。次に、絶縁体3の融解と
シリコン粒子2をアルミニウム層1’に接合させるため
に577℃付近の温度で焼成した。以上の方法で絶縁体
3の材料を変えて作製した試料(n=5)のシリコン粒
子2と絶縁体3の応力クラック及び絶縁体3の融解状態
を確認した結果を表1に示す。
Next, an embodiment of the photoelectric conversion device of the present invention will be described.
I do. [Example 1] Sample 1 manufactured as follows as an example
Was used. An aluminum layer 1 ′ is formed on a substrate 1 containing iron by 5
A thickness of 0 μm was formed, and an insulator 3 was formed thereon.
SiO forTwo, BTwoOThree, AlTwoOThree, CaO, MgO, PTwo
O Five, LiTwoO, SnO, PbO, ZnO, BaO, Ti
OTwoGlass particles for low-temperature firing of the main material with optional components
A single element or a filter made of one or more of the above materials
Baked glass paste combined with glass
The thickness afterwards should be close to half the particle size of the silicon particles 2.
Was formed. On top of this, a p-type ceramic with a center diameter of 250 μm
The recon particles 2 are densely arranged and pressed into the insulator 3
It was brought into contact with the minium layer 1 '. Next, the melting of the insulator 3
For bonding silicon particles 2 to aluminum layer 1 '
At about 577 ° C. Insulator by above method
Silicon particles of the sample (n = 5) prepared by changing the material of No. 3
Cracks in element 2 and insulator 3 and melting state of insulator 3
Are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】比較例1、実施例1〜4、比較例2は絶縁
体3の熱膨張係数を変えた例を示す。比較例1は絶縁体
3が溶解するものの絶縁体全面にクラックが発生した。
これは、熱膨張係数が30×10-7/℃未満であるため
に基板に用いているアルミニウムの熱膨張係数(240
×10-7/℃)との熱膨張係数差が大きいために絶縁体
形成後にクラックが発生してしまったものと考えられ、
発生したクラックは信頼性上リークの原因等で問題とな
る。また、比較例2はシリコン粒子2の周辺にクラック
が発生した。これは熱膨張係数が60×10-7/℃を越
えるためにシリコン粒子2の熱膨張係数(26×10-7
/℃)との熱膨張係数差が大きいために絶縁体形成後に
クラックが発生してしまったものと考えられる。一方実
施例1〜4ではクラックは発生せず、ガラス粒子も融解
して絶縁体の膜を形成することができた。以上のことか
ら、絶縁体3の熱膨張係数は30〜60×10-7/℃の
範囲がよいことがわかった。
Comparative Example 1, Examples 1-4 and Comparative Example 2 show examples in which the thermal expansion coefficient of the insulator 3 is changed. In Comparative Example 1, although the insulator 3 was dissolved, cracks occurred on the entire surface of the insulator.
This is because the coefficient of thermal expansion of aluminum used for the substrate is less than 240 × 10 −7 / ° C. (240 ° C./240° C.).
(× 10 −7 / ° C.), it is considered that cracks occurred after the insulator was formed due to a large difference in thermal expansion coefficient between the two.
The generated cracks cause a problem in terms of reliability due to leakage. In Comparative Example 2, cracks occurred around the silicon particles 2. This is because the coefficient of thermal expansion exceeds 60 × 10 −7 / ° C., and the coefficient of thermal expansion of silicon particles 2 (26 × 10 −7 / ° C.)
/ ° C), it is considered that cracks occurred after the insulator was formed due to the large difference in thermal expansion coefficient between the two. On the other hand, in Examples 1 to 4, no crack was generated, and the glass particles were melted to form an insulator film. From the above, it has been found that the thermal expansion coefficient of the insulator 3 is preferably in the range of 30 to 60 × 10 −7 / ° C.

【0026】次に、実施例5〜7、比較例3は絶縁体3
の軟化点を変えた例を示す。比較例3は、シリコン粒子
2をアルミニウム層19に接合させるための577℃付
近の温度ではガラス粒子が完全に融解せず、ボイドが発
生してしまった。これは、絶縁体の軟化点が500℃を
越えて高すぎるためと考えられる。一方、実施例5〜7
では、ガラス粒子が融解してボイドを発生させることな
く絶縁体の膜を形成することができ、クラックも発生し
なかった。以上のことから、絶縁体3の軟化点は500
℃以下の範囲がよいことがわかった。
Next, in Examples 5 to 7 and Comparative Example 3, the insulator 3
Here is an example in which the softening point is changed. In Comparative Example 3, at a temperature around 577 ° C. for bonding the silicon particles 2 to the aluminum layer 19, the glass particles did not completely melt, and voids were generated. It is considered that this is because the softening point of the insulator exceeds 500 ° C. and is too high. On the other hand, Examples 5 to 7
Thus, the insulating film could be formed without melting the glass particles to generate voids, and no cracks were generated. From the above, the softening point of the insulator 3 is 500
It was found that the range of not more than ℃ was good.

【0027】また、実施例8は、鉄を含む基板1上にア
ルミニウム層1’を50μmの厚みに形成し、その上に
中心径250μmのp形のシリコン粒子2を密に配置し
てAlとSiの共晶温度である577℃付近の温度で加
熱して基板1とp形シリコン粒子2を接合させ、その
後、シリコン粒子2間の隙間を熱膨張係数及び軟化点が
上記範囲のガラスの粒子で埋めて基板1とp形シリコン
粒子2の接合温度未満の温度で焼成して絶縁体3を形成
した例を示す。ガラス粒子が融解してボイドを発生させ
ることなく絶縁体の膜を形成することができ、クラック
も発生しなかった。
In the eighth embodiment, an aluminum layer 1 ′ is formed to a thickness of 50 μm on a substrate 1 containing iron, and p-type silicon particles 2 having a center diameter of 250 μm are densely arranged on the aluminum layer 1 ′. The substrate 1 and the p-type silicon particles 2 are joined by heating at a temperature around 577 ° C., which is the eutectic temperature of Si, and then the gap between the silicon particles 2 is filled with glass particles having a thermal expansion coefficient and a softening point in the above range. An example is shown in which an insulator 3 is formed by burying the substrate 1 and firing at a temperature lower than the bonding temperature of the substrate 1 and the p-type silicon particles 2. The insulating film could be formed without melting the glass particles to generate voids, and no cracks were generated.

【0028】以上のことより、本発明の光電変換装置に
よれば、クラック及びボイド等の欠陥の発生を防止した
良好な絶縁体を形成できることが確認できた。
From the above, it was confirmed that the photoelectric conversion device of the present invention can form a good insulator in which defects such as cracks and voids can be prevented.

【0029】[0029]

【発明の効果】以上のように、請求項1に係る光電変換
装置によれば、一方の電極層を有する基板上に一導電形
を呈する粒状結晶半導体を多数配設して基板と接合し、
この粒状結晶半導体間に絶縁体を充填してこの粒状結晶
半導体上に逆導電形を呈する半導体層を設けるととも
に、この逆導電形を呈する半導体層に他方の電極を接続
して設けた光電変換装置において、前記絶縁体を熱膨張
係数が30〜60×10-7/℃で軟化点が500℃以下
の材料を用いて形成したことから、クラック及びボイド
等の欠陥の発生を防止した良好な絶縁体を形成でき、よ
って信頼性の高い光電変換装置を提供することができ
る。
As described above, according to the photoelectric conversion device of the first aspect, a large number of granular semiconductors exhibiting one conductivity type are arranged on a substrate having one electrode layer, and are joined to the substrate.
A photoelectric conversion device in which an insulator is filled between the granular crystal semiconductors, a semiconductor layer having an opposite conductivity type is provided on the granular crystal semiconductor, and the other electrode is connected to the semiconductor layer having the opposite conductivity type. In the above, since the insulator is formed of a material having a coefficient of thermal expansion of 30 to 60 × 10 −7 / ° C. and a softening point of 500 ° C. or less, it is possible to prevent the occurrence of defects such as cracks and voids. A body can be formed, so that a highly reliable photoelectric conversion device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換装置の実施の形態の一例を示
す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a photoelectric conversion device of the present invention.

【図2】本発明の光電変換装置のその他の実施の形態の
一例を示す断面図である。
FIG. 2 is a sectional view showing an example of another embodiment of the photoelectric conversion device of the present invention.

【図3】従来例1の光電変換装置を示す断面図である。FIG. 3 is a cross-sectional view illustrating a photoelectric conversion device of Conventional Example 1.

【図4】従来例2の光電変換装置を示す断面図である。FIG. 4 is a cross-sectional view illustrating a photoelectric conversion device of Conventional Example 2.

【図5】従来例3の光電変換装置を示す断面図である。FIG. 5 is a cross-sectional view illustrating a photoelectric conversion device of Conventional Example 3.

【符号の説明】[Explanation of symbols]

1・・・・基板 1’・・導電層(一方の電極) 2・・・・粒状結晶半導体 3・・・・絶縁体 4・・・・半導体層 5・・・・誘電体保護層 6・・・・透明導電膜 7・・・・アモルファス半導体層 8・・・・第2のアルミニウム箔 9・・・・n形表皮部 10・・第1のアルミニウム箔 11・・低融点金属層 12・・高融点金属層 13・・第一導電形の液相エピタキシャル多結晶層 14・・第二導電形の多結晶あるいはアモルファス層 15・・基板と粒状結晶半導体の合金部 DESCRIPTION OF SYMBOLS 1 ... Substrate 1 '... Conductive layer (one electrode) 2 ... Granular crystal semiconductor 3 ... Insulator 4 ... Semiconductor layer 5 ... Dielectric protective layer 6 ... ··· Transparent conductive film 7 ··· Amorphous semiconductor layer 8 ··· Second aluminum foil 9 ··· n-type skin 10 ··· First aluminum foil 11 ··· Low melting metal layer 12 ···・ High melting point metal layer 13 ・ ・ Liquid phase epitaxial polycrystalline layer of the first conductivity type 14 ・ ・ Polycrystalline or amorphous layer of the second conductivity type 15 ・ ・ Alloy part of substrate and granular crystal semiconductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場八日市ブロック 内 Fターム(参考) 5F051 AA03 AA20 FA06 GA02 GA03 HA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Arimune 1166, Haseno, Jabizo-cho, Yokaichi-shi, Shiga Prefecture F-term (reference) 5F051 AA03 AA20 FA06 GA02 GA03 HA20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極層を有する基板上に一導電形
を呈する粒状結晶半導体を多数配設して基板と接合し、
この粒状結晶半導体間に絶縁体を充填してこの粒状結晶
半導体上に逆導電形を呈する半導体層を設けるととも
に、この逆導電形を呈する半導体層に他方の電極を接続
して設けた光電変換装置において、前記絶縁体を熱膨張
係数が30〜60×10-7/℃で軟化点が500℃以下
の材料を用いて形成したことを特徴とする光電変換装
置。
1. A large number of granular semiconductors having one conductivity type are arranged on a substrate having one electrode layer and joined to the substrate.
A photoelectric conversion device in which an insulator is filled between the granular crystal semiconductors, a semiconductor layer having an opposite conductivity type is provided on the granular crystal semiconductor, and the other electrode is connected to the semiconductor layer having the opposite conductivity type. 3. The photoelectric conversion device according to claim 1, wherein the insulator is formed using a material having a coefficient of thermal expansion of 30 to 60 × 10 −7 / ° C. and a softening point of 500 ° C. or less.
JP2000396716A 2000-07-27 2000-12-27 Photoelectric conversion device Withdrawn JP2002198550A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000396716A JP2002198550A (en) 2000-12-27 2000-12-27 Photoelectric conversion device
US09/917,140 US6437234B1 (en) 2000-07-27 2001-07-26 Photoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396716A JP2002198550A (en) 2000-12-27 2000-12-27 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2002198550A true JP2002198550A (en) 2002-07-12

Family

ID=18861959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396716A Withdrawn JP2002198550A (en) 2000-07-27 2000-12-27 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2002198550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117636A1 (en) * 2015-01-22 2016-07-28 ユニチカ株式会社 Laminate, method for manufacturing same, method for using same, and polyimide precursor solution for glass substrate laminated layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117636A1 (en) * 2015-01-22 2016-07-28 ユニチカ株式会社 Laminate, method for manufacturing same, method for using same, and polyimide precursor solution for glass substrate laminated layer
JPWO2016117636A1 (en) * 2015-01-22 2017-11-02 ユニチカ株式会社 LAMINATE, MANUFACTURING METHOD AND USE METHOD, AND POLYIMIDE PRECURSOR SOLUTION FOR GLASS SUBSTRATE

Similar Documents

Publication Publication Date Title
US6552405B2 (en) Photoelectric conversion device and manufacturing method thereof
US6620996B2 (en) Photoelectric conversion device
US6437234B1 (en) Photoelectric conversion device and manufacturing method thereof
JP2002198550A (en) Photoelectric conversion device
JP4206264B2 (en) Method for manufacturing photoelectric conversion device
JP2001313401A (en) Photoelectric conversion device
JP2002016272A (en) Photoelectric conversion device
JP2004259835A (en) Photoelectric conversion device and method of manufacturing the same
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2002164551A (en) Photoelectric conversion device and method of manufacturing the same
JP2002261304A (en) Method for manufacturing photoelectric conversion device
JP2002076395A (en) Photoelectric conversion device
JP4926101B2 (en) Photoelectric conversion device
JP2002141521A (en) Photoelectric conversion device and method of manufacturing the same
JP4666734B2 (en) Photoelectric conversion device
JP2003017720A (en) Photoelectric conversion device
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP2002076386A (en) Method for manufacturing photoelectric conversion device
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2002043603A (en) Photoelectric conversion device
JP2001345462A (en) Photoelectric conversion device
JP2003318426A (en) Photoelectric conversion device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909