JP2002100399A - Non-aqueous electrolyte and lithium secondary battery using the same - Google Patents
Non-aqueous electrolyte and lithium secondary battery using the sameInfo
- Publication number
- JP2002100399A JP2002100399A JP2000284790A JP2000284790A JP2002100399A JP 2002100399 A JP2002100399 A JP 2002100399A JP 2000284790 A JP2000284790 A JP 2000284790A JP 2000284790 A JP2000284790 A JP 2000284790A JP 2002100399 A JP2002100399 A JP 2002100399A
- Authority
- JP
- Japan
- Prior art keywords
- twenty
- group
- carbon atoms
- cor
- methyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】 広い温度範囲でのサイクル特性や電気容量、
保存特性などの電池特性に優れたリチウム二次電池を提
供するものである。
【解決手段】 非水溶媒に電解質が溶解されている電解
液において、該電解液中に下記一般式(I)
【化1】
(式中、R1は、炭素数1〜12のアルキル基、炭素数
3〜6のシクロアルキル基、アリール基、または水素原
子を示す。式中、R2およびR3は、それぞれ独立して炭
素数1〜12のアルキル基、炭素数3〜6のシクロアル
キル基、アリール基を示す。また、R2とR3は、互いに
結合して炭素数3〜6のシクロアルキル基を形成してい
ても良い。式中、Y1は、−COOR18、−COR18ま
たは−SO2R18を示し、前記R18は、それぞれ独立し
て炭素数1〜12のアルキル基、炭素数3〜6のシクロ
アルキル基、アリール基を示す。ただし、nは1または
2の整数を示す。)で表されるアルキン誘導体のうち少
なくとも1種が含有されていることを特徴とするリチウ
ム二次電池用電解液、およびそれを用いたリチウム二次
電池に関する。(57) [Abstract] [Problem] Cycle characteristics and electric capacity in a wide temperature range,
An object of the present invention is to provide a lithium secondary battery having excellent battery characteristics such as storage characteristics. SOLUTION: In an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the following general formula (I) is contained in the electrolytic solution. (Wherein, R 1 represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group, or a hydrogen atom. In the formula, R 2 and R 3 each independently represent It represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group, and R 2 and R 3 are bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms. In the formula, Y 1 represents —COOR 18 , —COR 18 or —SO 2 R 18 , wherein each R 18 is independently an alkyl group having 1 to 12 carbon atoms, and 3 to 6 carbon atoms. Wherein n represents an integer of 1 or 2), wherein at least one of the alkyne derivatives represented by the formula (1) is contained. The present invention relates to a liquid and a lithium secondary battery using the same.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる新規なリチウム二
次電池用電解液、およびそれを用いたリチウム二次電池
に関する。The present invention relates to a novel electrolyte for a lithium secondary battery which can provide a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of the battery, and The present invention relates to a lithium secondary battery using the same.
【0002】[0002]
【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液および負極から構成
されており、特に、LiCoO2などのリチウム複合酸
化物を正極とし、炭素材料又はリチウム金属を負極とし
たリチウム二次電池が好適に使用されている。そして、
そのリチウム二次電池用の電解液としては、エチレンカ
ーボネート(EC)、プロピレンカーボネート(PC)
などのカーボネート類が好適に使用されている。2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is used. It is preferably used. And
Examples of the electrolyte for the lithium secondary battery include ethylene carbonate (EC) and propylene carbonate (PC).
Such carbonates are preferably used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
正極活物質として、例えば、LiCoO2、LiMn2O
4、LiNiO2などを用いたリチウム二次電池は、充電
時に非水電解液中の溶媒が局部的に一部酸化分解し、該
分解物が電池の望ましい電気化学的反応を阻害するため
に電池性能の低下を生じる。これは、正極材料と非水電
解液との界面における溶媒の電気化学的酸化に起因する
ものと思われる。また、負極活物質として例えば天然黒
鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチ
ウム二次電池は、炭素負極材料の剥離が観察され、現象
の程度によって容量が不可逆となることがある。この剥
離は、電解液中の溶媒が充電時に分解することにより起
こるものであり、炭素負極材料と電解液との界面におけ
る溶媒の電気化学的還元に起因するものである。中で
も、融点が低くて誘電率の高いPCを用いた電解液は低
温においても高い電気伝導を有するが、黒鉛負極を用い
る場合にはPCの分解が起こって、リチウム二次電池用
には使用できないという問題点があった。また、ECも
充放電を繰り返す間に一部分解が起こり、電池性能の低
下が起こる。このため、電池のサイクル特性および電気
容量などの電池特性は必ずしも満足なものではないのが
現状である。However, regarding the battery characteristics such as the cycle characteristics and the electric capacity of the battery,
There is a demand for a secondary battery having more excellent characteristics.
As the positive electrode active material, for example, LiCoO 2 , LiMn 2 O
4. Lithium secondary batteries using LiNiO 2 and the like have a problem in that the solvent in the non-aqueous electrolyte partially oxidizes and decomposes at the time of charging, and the decomposition products hinder the desired electrochemical reaction of the battery. This results in reduced performance. This is thought to be due to electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. Further, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode active material, peeling of the carbon negative electrode material is observed, and the capacity may be irreversible depending on the degree of the phenomenon. . This peeling is caused by the decomposition of the solvent in the electrolytic solution at the time of charging, and is caused by the electrochemical reduction of the solvent at the interface between the carbon anode material and the electrolytic solution. Among them, an electrolytic solution using a PC having a low melting point and a high dielectric constant has high electric conductivity even at a low temperature, but when a graphite negative electrode is used, the decomposition of the PC occurs and cannot be used for a lithium secondary battery. There was a problem. Also, EC is partially decomposed during repeated charge and discharge, and the battery performance is reduced. Therefore, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the battery are not always satisfactory.
【0004】本発明は、前記のようなリチウム二次電池
用電解液に関する課題を解決し、電池のサイクル特性に
優れ、さらに電気容量や充電状態での保存特性などの電
池特性にも優れたリチウム二次電池を構成することがで
きるリチウム二次電池用の電解液、およびそれを用いた
リチウム二次電池を提供することを目的とする。The present invention solves the above-mentioned problems relating to the electrolyte solution for a lithium secondary battery, and provides a lithium battery having excellent cycle characteristics of a battery, and excellent battery characteristics such as electric capacity and storage characteristics in a charged state. An object of the present invention is to provide an electrolyte for a lithium secondary battery that can constitute a secondary battery, and a lithium secondary battery using the same.
【0005】[0005]
【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている電解液において、該電解液中に下
記一般式(I)、(II)、(III)、(IV)、According to the present invention, there is provided an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolytic solution has the following general formula (I), (II), (III) or (IV): ,
【0006】[0006]
【化9】 Embedded image
【0007】[0007]
【化10】 Embedded image
【0008】[0008]
【化11】 Embedded image
【0009】[0009]
【化12】 Embedded image
【0010】(式中、R1、R4、R5、R6、R7、R8、
R9、R10、R11、R12およびR17は、それぞれ独立し
て炭素数1〜12のアルキル基、炭素数3〜6のシクロ
アルキル基、アリール基、または水素原子を示す。但
し、R4、R5、R6およびR7が同時に水素原子となるこ
とはない。式中、R2、R3、R13、R14、R15およびR
16は、それぞれ独立して炭素数1〜12のアルキル基、
炭素数3〜6のシクロアルキル基、アリール基を示す。
また、R2とR3、R4とR5、R6とR7、R13とR14、R
15とR16は、互いに結合して炭素数3〜6のシクロアル
キル基を形成していても良い。式中、Y1は、−COO
R18、−COR18または−SO2R18、Y2は、−COO
R19、−COR19または−SO2R19、Y3は、−COO
R20、−COR20または−SO2R20、Y4は、−COO
R21、−COR21または−SO2R21、およびY5は、−
COOR22、−COR22、−SO2R22を示し、前記R
18、R 19、R20、R21およびR22は、それぞれ独立して
炭素数1〜12のアルキル基、炭素数3〜6のシクロア
ルキル基、アリール基を示す。ただし、nは1または2
の整数を示す。)で表されるアルキン誘導体のうち少な
くとも1種が含有されていることを特徴とするリチウム
二次電池用電解液に関する。(Wherein R1, RFour, RFive, R6, R7, R8,
R9, RTen, R11, R12And R17Are independent
Alkyl group having 1 to 12 carbon atoms, cyclo group having 3 to 6 carbon atoms
Represents an alkyl group, an aryl group, or a hydrogen atom. However
Then RFour, RFive, R6And R7Are simultaneously hydrogen atoms
And not. Where RTwo, RThree, R13, R14, RFifteenAnd R
16Is independently an alkyl group having 1 to 12 carbon atoms,
It represents a cycloalkyl group or an aryl group having 3 to 6 carbon atoms.
Also, RTwoAnd RThree, RFourAnd RFive, R6And R7, R13And R14, R
FifteenAnd R16Are cycloalkyl having 3 to 6 carbon atoms bonded to each other
A kill group may be formed. Where Y1Is -COO
R18, -COR18Or -SOTwoR18, YTwoIs -COO
R19, -COR19Or -SOTwoR19, YThreeIs -COO
R20, -COR20Or -SOTwoR20, YFourIs -COO
Rtwenty one, -CORtwenty oneOr -SOTwoRtwenty one, And YFiveIs-
COORtwenty two, -CORtwenty two, -SOTwoRtwenty twoAnd R
18, R 19, R20, Rtwenty oneAnd Rtwenty twoAre each independently
An alkyl group having 1 to 12 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms
It represents an alkyl group or an aryl group. Where n is 1 or 2
Indicates an integer. ) Alkyne derivatives represented by
Lithium characterized by containing at least one kind
The present invention relates to an electrolyte for a secondary battery.
【0011】また、本発明は、正極、負極および非水溶
媒に電解質が溶解されている電解液からなるリチウム二
次電池において、該電解液中に下記一般式(I)、(I
I)、(III)、(IV)、The present invention also provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the electrolyte has the following general formula (I) or (I)
I), (III), (IV),
【0012】[0012]
【化13】 Embedded image
【0013】[0013]
【化14】 Embedded image
【0014】[0014]
【化15】 Embedded image
【0015】[0015]
【化16】 Embedded image
【0016】(式中、R1、R4、R5、R6、R7、R8、
R9、R10、R11、R12およびR17は、それぞれ独立し
て炭素数1〜12のアルキル基、炭素数3〜6のシクロ
アルキル基、アリール基、または水素原子を示す。但
し、R4、R5、R6およびR7が同時に水素原子となるこ
とはない。式中、R2、R3、R13、R14、R15およびR
16は、それぞれ独立して炭素数1〜12のアルキル基、
炭素数3〜6のシクロアルキル基、アリール基を示す。
また、R2とR3、R4とR5、R6とR7、R13とR14、R
15とR16は、互いに結合して炭素数3〜6のシクロアル
キル基を形成していても良い。式中、Y1は、−COO
R18、−COR18または−SO2R18、Y2は、−COO
R19、−COR19または−SO2R19、Y3は、−COO
R20、−COR20または−SO2R20、Y4は、−COO
R21、−COR21または−SO2R21、およびY5は、−
COOR22、−COR22、−SO2R22を示し、前記R
18、R 19、R20、R21およびR22は、それぞれ独立して
炭素数1〜12のアルキル基、炭素数3〜6のシクロア
ルキル基、アリール基を示す。ただし、nは1または2
の整数を示す。)で表されるアルキン誘導体のうち少な
くとも1種が含有されていることを特徴とするリチウム
二次電池に関する。(Wherein R1, RFour, RFive, R6, R7, R8,
R9, RTen, R11, R12And R17Are independent
Alkyl group having 1 to 12 carbon atoms, cyclo group having 3 to 6 carbon atoms
Represents an alkyl group, an aryl group, or a hydrogen atom. However
Then RFour, RFive, R6And R7Are simultaneously hydrogen atoms
And not. Where RTwo, RThree, R13, R14, RFifteenAnd R
16Is independently an alkyl group having 1 to 12 carbon atoms,
It represents a cycloalkyl group or an aryl group having 3 to 6 carbon atoms.
Also, RTwoAnd RThree, RFourAnd RFive, R6And R7, R13And R14, R
FifteenAnd R16Are cycloalkyl having 3 to 6 carbon atoms bonded to each other
A kill group may be formed. Where Y1Is -COO
R18, -COR18Or -SOTwoR18, YTwoIs -COO
R19, -COR19Or -SOTwoR19, YThreeIs -COO
R20, -COR20Or -SOTwoR20, YFourIs -COO
Rtwenty one, -CORtwenty oneOr -SOTwoRtwenty one, And YFiveIs-
COORtwenty two, -CORtwenty two, -SOTwoRtwenty twoAnd R
18, R 19, R20, Rtwenty oneAnd Rtwenty twoAre each independently
An alkyl group having 1 to 12 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms
It represents an alkyl group or an aryl group. Where n is 1 or 2
Indicates an integer. ) Alkyne derivatives represented by
Lithium characterized by containing at least one kind
Related to secondary batteries.
【0017】電解液中に含有される前記アルキン誘導体
は、充電時に炭素負極表面で、電解液中の有機溶媒より
先に還元分解して、該分解物の一部は、天然黒鉛や人造
黒鉛などの活性で高結晶化した炭素負極表面に不働態皮
膜を形成することにより、電解液中の有機溶媒の還元分
解を未然に防ぐと推定される。さらに、該分解物の一部
は、正極材料表面の電位が過度に高くなった微少な過電
圧部分において、電解液中の有機溶媒より先に酸化分解
して、電解液中の有機溶媒の酸化分解を未然に防ぐと推
定される。これにより、電池の正常な反応を損なうこと
なく電解液の分解を抑制する効果を有するものと考えら
れる。The alkyne derivative contained in the electrolytic solution is reductively decomposed on the surface of the carbon negative electrode during charging before the organic solvent in the electrolytic solution, and a part of the decomposed product is, for example, natural graphite or artificial graphite. It is presumed that by forming a passivation film on the surface of the carbon negative electrode highly crystallized by the above activity, the reductive decomposition of the organic solvent in the electrolytic solution is prevented beforehand. Further, a part of the decomposition product is oxidatively decomposed before the organic solvent in the electrolytic solution in a minute overvoltage portion where the potential of the positive electrode material surface becomes excessively high, and the oxidative decomposition of the organic solvent in the electrolytic solution is performed. It is presumed to prevent this. This is considered to have an effect of suppressing the decomposition of the electrolyte solution without impairing the normal reaction of the battery.
【0018】[0018]
【発明の実施の形態】非水溶媒に電解質が溶解されてい
る電解液に含有される前記一般式(I)、(II)、
(III),(IV)で表されるアルキン誘導体におい
て、R1、R4、R5、R6、R7、R8、R9、R10、
R11、R12およびR17は、それぞれ独立してメチル基、
エチル基、プロピル基、ブチル基、ペンチル基、ヘキシ
ル基のような炭素数1〜12のアルキル基が好ましい。
アルキル基はイソプロピル基、イソブチル基のような分
枝アルキル基でもよい。また、シクロプロピル基、シク
ロヘキシル基のような炭素数3〜6のシクロアルキル基
でもよい。また、フェニル基、ベンジル基、p−トリル
基のような炭素数6〜12のアリール基を含有するもの
でもよい。さらに、水素原子でもよい。但し、R4、
R5、R6およびR7が同時に水素原子となることはな
い。式中、R2、R3、R13、R14、R15およびR16は、
それぞれ独立してメチル基、エチル基、プロピル基、ブ
チル基、ペンチル基、ヘキシル基のような炭素数1〜1
2のアルキル基が好ましい。アルキル基はイソプロピル
基、イソブチル基のような分枝アルキル基でもよい。ま
た、シクロプロピル基、シクロヘキシル基のような炭素
数3〜6のシクロアルキル基でもよい。また、フェニル
基、ベンジル基、p−トリル基のような炭素数6〜12
のアリール基を含有するものでもよい。BEST MODE FOR CARRYING OUT THE INVENTION The above-mentioned general formulas (I), (II) and (II) contained in an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent
In the alkyne derivatives represented by (III) and (IV), R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 ,
R 11 , R 12 and R 17 each independently represent a methyl group,
An alkyl group having 1 to 12 carbon atoms such as an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group is preferred.
The alkyl group may be a branched alkyl group such as an isopropyl group and an isobutyl group. Further, a cycloalkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclohexyl group may be used. Further, those containing an aryl group having 6 to 12 carbon atoms such as a phenyl group, a benzyl group and a p-tolyl group may be used. Further, it may be a hydrogen atom. Where R 4 ,
R 5 , R 6 and R 7 are not simultaneously hydrogen atoms. Wherein R 2 , R 3 , R 13 , R 14 , R 15 and R 16 are
Each independently having 1 to 1 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl;
Two alkyl groups are preferred. The alkyl group may be a branched alkyl group such as an isopropyl group and an isobutyl group. Further, a cycloalkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclohexyl group may be used. Further, a phenyl group, a benzyl group, a p-tolyl group and the like having 6 to 12 carbon atoms.
May be those containing an aryl group.
【0019】また、前記一般式(I)、(II)、(I
II)で表されるアルキン誘導体におけるY1、Y2、Y
3、Y4およびY5において、R18、R19、R20、R21お
よびR22は、それぞれ独立してメチル基、エチル基、プ
ロピル基、ブチル基、ペンチル基、ヘキシル基のような
炭素数1〜12のアルキル基が好ましい。アルキル基は
イソプロピル基、イソブチル基のような分枝アルキル基
でもよい。また、シクロプロピル基、シクロヘキシル基
のような炭素数3〜6のシクロアルキル基でもよい。ま
た、フェニル基、ベンジル基、p−トリル基のような炭
素数6〜12のアリール基を含有するものでもよい。ま
た、R2とR3、R4とR5、R6とR7、R 13とR14、R15
とR16は、互いに結合してシクロプロピル基、シクロブ
チル基、シクロペンチル基、シクロヘキシル基を形成し
ていても良い。ただし、nは1または2の整数を示す。Further, the compounds represented by the general formulas (I), (II) and (I)
Y in the alkyne derivative represented by II)1, YTwo, Y
Three, YFourAnd YFiveIn, R18, R19, R20, Rtwenty oneYou
And Rtwenty twoAre each independently a methyl group, an ethyl group,
Such as ropyl, butyl, pentyl, hexyl
An alkyl group having 1 to 12 carbon atoms is preferred. The alkyl group is
Branched alkyl groups such as isopropyl and isobutyl
May be. In addition, cyclopropyl group, cyclohexyl group
And a cycloalkyl group having 3 to 6 carbon atoms such as Ma
Charcoal such as phenyl, benzyl, p-tolyl
It may contain an aryl group having a prime number of 6 to 12. Ma
RTwoAnd RThree, RFourAnd RFive, R6And R7, R 13And R14, RFifteen
And R16Are bonded to each other to form a cyclopropyl group,
Forming a tyl, cyclopentyl or cyclohexyl group
May be. Here, n represents an integer of 1 or 2.
【0020】前記一般式(I)で表されるアルキン誘導
体の具体例として、例えば、Y1=−COOR18の場
合、1,1−ジメチル−2−プロピニルメチルカーボネ
ート〔R1=水素原子、R2=R3=メチル基、R18=メ
チル基、n=1〕、1,1−ジエチル−2−プロピニル
メチルカーボネート〔R1=水素原子、R2=R3=エチ
ル基、R18=メチル基、n=1〕、1,1−エチルメチ
ル−2−プロピニルメチルカーボネート〔R1=水素原
子、R2=エチル基、R3=メチル基、R18=メチル基、
n=1〕、1,1−イソブチルメチル−2−プロピニル
メチルカーボネート〔R1=水素原子、R2=イソブチル
基、R3=メチル基、R18=メチル基、n=1〕、1,
1−ジメチル−2−ブチニルメチルカーボネート〔R1
=R2=R3=メチル基、R18=メチル基、n=1〕、1
−エチニルシクロヘキシルメチルカーボネート〔R1=
水素原子、R2とR3が結合=ペンタメチレン基、R18=
メチル基、n=1〕、1,1−フェニルメチル−2−プ
ロピニルメチルカーボネート〔R1=水素原子、R2=フ
ェニル基、R3=メチル基、R18=メチル基、n=
1〕、1,1−ジフェニル−2−プロピニルメチルカー
ボネート〔R1=水素原子、R2=R3=フェニル基、R
18=メチル基、n=1〕、1,1−ジメチル−2−プロ
ピニルエチルカーボネート〔R1=水素原子、R2=R3
=メチル基、R18=エチル基、n=1〕などが挙げられ
る。Y1=−COR18の場合、酢酸1,1−ジメチル−
2−プロピニル〔R1=水素原子、R2=R3=メチル
基、R18=メチル基、n=1〕、酢酸1,1−ジエチル
−2−プロピニル〔R1=水素原子、R2=R3=エチル
基、R18=メチル基、n=1〕、酢酸1,1−エチルメ
チル−2−プロピニル〔R1=水素原子、R2=エチル
基、R3=メチル基、R18=メチル基、n=1〕、酢酸
1,1−イソブチルメチル−2−プロピニル〔R1=水
素原子、R2=イソブチル基、R3=メチル基、R18=メ
チル基、n=1〕、酢酸1,1−ジメチル−2−ブチニ
ル〔R1=R2=R3=メチル基、R18=メチル基、n=
1〕、酢酸1−エチニルシクロヘキシル〔R1=水素原
子、R2とR3が結合=ペンタメチレン基、R18=メチル
基、n=1〕、酢酸1,1−フェニルメチル−2−プロ
ピニル〔R1=水素原子、R2=フェニル基、R3=メチ
ル基、R18=メチル基、n=1〕、酢酸1,1−ジフェ
ニル−2−プロピニル〔R1=水素原子、R2=R3=フ
ェニル基、R18=メチル基、n=1〕、プロピオン酸
1,1−ジメチル−2−プロピニル〔R1=水素原子、
R2=R3=メチル基、R18=エチル基、n=1〕などが
挙げられる。Y1=−SO2R18の場合、メタンスルホン
酸1,1−ジメチル−2−プロピニル〔R1=水素原
子、R2=R3=メチル基、R18=メチル基、n=1〕、
メタンスルホン酸1,1−ジエチル−2−プロピニル
〔R1=水素原子、R2=R3=エチル基、R18=メチル
基、n=1〕、メタンスルホン酸1,1−エチルメチル
−2−プロピニル〔R1=水素原子、R2=エチル基、R
3=メチル基、R18=メチル基、n=1〕、メタンスル
ホン酸1,1−イソブチルメチル−2−プロピニル〔R
1=水素原子、R2=イソブチル基、R3=メチル基、R
18=メチル基、n=1〕、メタンスルホン酸1,1−ジ
メチル−2−ブチニル〔R1=R2=R3=メチル基、R
18=メチル基、n=1〕、メタンスルホン酸1−エチニ
ルシクロヘキシル〔R1=水素原子、R2とR3が結合=
ペンタメチレン基、R18=メチル基、n=1〕、メタン
スルホン酸1,1−フェニルメチル−2−プロピニル
〔R1=水素原子、R2=フェニル基、R3=メチル基、
R1 8=メチル基、n=1〕、メタンスルホン酸1,1−
ジフェニル−2−プロピニル〔R1=水素原子、R2=R
3=フェニル基、R18=メチル基、n=1〕、エタンス
ルホン酸1,1−ジメチル−2−プロピニル〔R1=水
素原子、R2=R3=メチル基、R18=エチル基、n=
1〕などが挙げられる。ただし、本発明はこれらの化合
物に何ら限定されるものではない。As a specific example of the alkyne derivative represented by the general formula (I), for example, when Y 1 = —COOR 18 , 1,1-dimethyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 1 2 = R 3 = methyl group, R 18 = methyl group, n = 1], 1,1-diethyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 2 = R 3 = ethyl group, R 18 = methyl Group, n = 1], 1,1-ethylmethyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 2 = ethyl group, R 3 = methyl group, R 18 = methyl group,
n = 1], 1,1-isobutylmethyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 2 = isobutyl group, R 3 = methyl group, R 18 = methyl group, n = 1], 1,
1-dimethyl-2-butynylmethyl carbonate [R 1
= R 2 = R 3 = methyl group, R 18 = methyl group, n = 1], 1
-Ethynylcyclohexylmethyl carbonate [R 1 =
Hydrogen atom, R 2 and R 3 are bonded = pentamethylene group, R 18 =
Methyl group, n = 1], 1,1-phenylmethyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 2 = phenyl group, R 3 = methyl group, R 18 = methyl group, n =
1], 1,1-diphenyl-2-propynylmethyl carbonate [R 1 = hydrogen atom, R 2 = R 3 = phenyl group, R
18 = methyl group, n = 1], 1,1-dimethyl-2-propynylethyl carbonate [R 1 = hydrogen atom, R 2 = R 3
= Methyl group, R 18 = ethyl group, n = 1]. When Y 1 = —COR 18 , 1,1-dimethyl acetate-
2-propynyl [R 1 = hydrogen atom, R 2 = R 3 = methyl group, R 18 = methyl group, n = 1], 1,1-diethyl-2-propynyl acetate [R 1 = hydrogen atom, R 2 = R 3 = ethyl group, R 18 = methyl group, n = 1], 1,1-ethylmethyl-2-propynyl acetate [R 1 = hydrogen atom, R 2 = ethyl group, R 3 = methyl group, R 18 = Methyl group, n = 1], 1,1-isobutylmethyl-2-propynyl acetate [R 1 = hydrogen atom, R 2 = isobutyl group, R 3 = methyl group, R 18 = methyl group, n = 1], acetic acid 1,1-dimethyl-2-butynyl [R 1 = R 2 = R 3 = methyl group, R 18 = methyl group, n =
1], 1-ethynylcyclohexyl acetate [R 1 = hydrogen atom, R 2 and R 3 bond = pentamethylene group, R 18 = methyl group, n = 1], 1,1-phenylmethyl-2-propynyl acetate [ R 1 = hydrogen atom, R 2 = phenyl group, R 3 = methyl group, R 18 = methyl group, n = 1], 1,1-diphenyl-2-propynyl acetate [R 1 = hydrogen atom, R 2 = R 3 = phenyl group, R 18 = methyl group, n = 1], 1,1-dimethyl-2-propynyl propionate [R 1 = hydrogen atom,
R 2 = R 3 = methyl group, R 18 = ethyl group, n = 1]. When Y 1 = —SO 2 R 18 , 1,1-dimethyl-2-propynyl methanesulfonate [R 1 = hydrogen atom, R 2 = R 3 = methyl group, R 18 = methyl group, n = 1],
1,1-diethyl-2-propynyl methanesulfonate [R 1 = hydrogen atom, R 2 = R 3 = ethyl group, R 18 = methyl group, n = 1], 1,1-ethylmethyl-2 methanesulfonate -Propynyl [R 1 = hydrogen atom, R 2 = ethyl group, R
3 = methyl group, R 18 = methyl group, n = 1], 1,1-isobutylmethyl-2-propynyl methanesulfonate [R
1 = hydrogen atom, R 2 = isobutyl group, R 3 = methyl group, R
18 = methyl group, n = 1], 1,1-dimethyl-2-butynyl methanesulfonate [R 1 = R 2 = R 3 = methyl group, R
18 = methyl group, n = 1], 1-ethynylcyclohexyl methanesulfonate [R 1 = hydrogen atom, R 2 and R 3 are bonded =
Pentamethylene group, R 18 = methyl group, n = 1], 1,1-phenylmethyl-2-propynyl methanesulfonate [R 1 = hydrogen atom, R 2 = phenyl group, R 3 = methyl group,
R 1 8 = methyl, n = 1], methanesulfonic acid 1,1
Diphenyl-2-propynyl [R 1 = hydrogen atom, R 2 = R
3 = phenyl group, R 18 = methyl group, n = 1], 1,1-dimethyl-2-propynyl ethanesulfonate [R 1 = hydrogen atom, R 2 = R 3 = methyl group, R 18 = ethyl group, n =
1]. However, the present invention is not limited to these compounds at all.
【0021】前記一般式(II)で表されるアルキン誘
導体の具体例として、例えば、Y2=−COOR19およ
びY3=−COOR20の場合、3−ヘキシン−2,5−
ジオール ジメチルジカーボネート〔R4=R6=メチル
基、R5=R7=水素原子、R 19=R20=メチル基、n=
1〕、3−ヘキシン−2,5−ジオール ジエチルジカ
ーボネート〔R4=R6=メチル基、R5=R7=水素原
子、R19=R20=エチル基、n=1〕、2,5−ジメチ
ル−3−ヘキシン−2,5−ジオール ジメチルジカー
ボネート〔R4=R5=R6=R7=メチル基、R19=R20
=メチル基、n=1〕、2,5−ジメチル−3−ヘキシ
ン−2,5−ジオール ジエチルジカーボネート〔R4
=R5=R6=R7=メチル基、R19=R20=エチル基、
n=1〕などが挙げられる。Y2=−COR19およびY3
=−COR20の場合、3−ヘキシン−2,5−ジオール
ジアセテート〔R4=R6=メチル基、R5=R7=水素
原子、R19=R20=メチル基、n=1〕、3−ヘキシン
−2,5−ジオール ジプロピオネート〔R4=R6=メ
チル基、R5=R7=水素原子、R19=R20=エチル基、
n=1〕、2,5−ジメチル−3−ヘキシン−2,5−
ジオール ジアセテート〔R4=R5=R6=R7=メチル
基、R19=R20=メチル基、n=1〕、2,5−ジメチ
ル−3−ヘキシン−2,5−ジオール ジプロピオネー
ト〔R4=R5=R 6=R7=メチル基、R19=R20=エチ
ル基、n=1〕などが挙げられる。Y2=−SO2R19お
よびY3=−SO2R20の場合、3−ヘキシン−2,5−
ジオールジメタンスルホネート〔R4=R6=メチル基、
R5=R7=水素原子、R19=R 20=メチル基、n=
1〕、3−ヘキシン−2,5−ジオール ジエタンスル
ホネート〔R4=R6=メチル基、R5=R7=水素原子、
R19=R20=エチル基、n=1〕、2,5−ジメチル−
3−ヘキシン−2,5−ジオール ジメタンスルホネー
ト〔R4=R5=R6=R7=メチル基、R19=R20=メチ
ル基、n=1〕、2,5−ジメチル−3−ヘキシン−
2,5−ジオール ジエタンスルホネート〔R4=R5=
R6=R7=メチル基、R19=R20=エチル基、n=1〕
などが挙げられる。ただし、本発明はこれらの化合物に
何ら限定されるものではない。Alkyne derivative represented by the general formula (II)
As a specific example of the conductor, for example, YTwo= -COOR19And
And YThree= -COOR20In the case of 3-hexyne-2,5-
Diol dimethyl dicarbonate [RFour= R6= Methyl
Group, RFive= R7= Hydrogen atom, R 19= R20= Methyl group, n =
1], 3-hexyne-2,5-diol diethyldica
-Bonate [RFour= R6= Methyl group, RFive= R7= Hydrogen source
Child, R19= R20= Ethyl group, n = 1], 2,5-dimethyl
Ru-3-hexyne-2,5-diol dimethyl dicar
Bonate [RFour= RFive= R6= R7= Methyl group, R19= R20
= Methyl group, n = 1], 2,5-dimethyl-3-hexy
-2,5-diol diethyl dicarbonate [RFour
= RFive= R6= R7= Methyl group, R19= R20= Ethyl group,
n = 1]. YTwo= -COR19And YThree
= -COR20In the case of 3-hexyne-2,5-diol
Diacetate [RFour= R6= Methyl group, RFive= R7= Hydrogen
Atom, R19= R20= Methyl group, n = 1], 3-hexyne
-2,5-diol dipropionate [RFour= R6= Me
Tyl group, RFive= R7= Hydrogen atom, R19= R20= Ethyl group,
n = 1], 2,5-dimethyl-3-hexyne-2,5-
Diol diacetate [RFour= RFive= R6= R7= Methyl
Group, R19= R20= Methyl group, n = 1], 2,5-dimethyl
Ru-3-hexyne-2,5-diol dipropione
G [RFour= RFive= R 6= R7= Methyl group, R19= R20= Echi
And n = 1]. YTwo= -SOTwoR19You
And YThree= -SOTwoR20In the case of 3-hexyne-2,5-
Diol dimethane sulfonate [RFour= R6= Methyl group,
RFive= R7= Hydrogen atom, R19= R 20= Methyl group, n =
1], 3-hexyne-2,5-diol diethanesul
Honate [RFour= R6= Methyl group, RFive= R7= Hydrogen atom,
R19= R20= Ethyl group, n = 1], 2,5-dimethyl-
3-hexyne-2,5-diol dimethanesulfone
G [RFour= RFive= R6= R7= Methyl group, R19= R20= Met
Group, n = 1], 2,5-dimethyl-3-hexyne-
2,5-diol diethane sulfonate [RFour= RFive=
R6= R7= Methyl group, R19= R20= Ethyl group, n = 1]
And the like. However, the present invention relates to these compounds.
It is not limited at all.
【0022】前記一般式(III)で表されるアルキン
誘導体の具体例として、例えば、Y 4=−COOR21お
よびY5=−COOR22の場合、2,4−ヘキサジイン
−1,6−ジオール ジメチルジカーボネート〔R8=
R9=R10=R11=水素原子、R 21=R22=メチル基、
n=1〕、2,4−ヘキサジイン−1,6−ジオール
ジエチルジカーボネート〔R8=R9=R10=R11=水素
原子、R21=R22=エチル基、n=1〕、2,7−ジメ
チル−3,5−オクタジイン−2,7−ジオールジメチ
ルジカーボネート〔R8=R9=R10=R11=メチル基、
R21=R22=メチル基、n=1〕、2,7−ジメチル−
3,5−オクタジイン−2,7−ジオールジエチルジカ
ーボネート〔R8=R9=R10=R11=メチル基、R21=
R22=エチル基、n=1〕などが挙げられる。Y4=−
COR21およびY5=−COR22の場合、2,4−ヘキ
サジイン−1,6−ジオール ジアセテート〔R8=R9
=R 10=R11=水素原子、R21=R22=メチル基、n=
1〕、2,4−ヘキサジイン−1,6−ジオール ジプ
ロピオネート〔R8=R9=R10=R11=水素原子、R 21
=R22=エチル基、n=1〕、2,7−ジメチル−3,
5−オクタジイン−2,7−ジオール ジアセテート
〔R8=R9=R10=R11=メチル基、R21=R22=メチ
ル基、n=1〕、2,7−ジメチル−3,5−オクタジ
イン−2,7−ジオール ジプロピオネート〔R8=R9
=R10=R11=メチル基、R21=R22=エチル基、n=
1〕などが挙げられる。Y4=−SO2R21およびY5=
−SO2R22の場合、2,4−ヘキサジイン−1,6−
ジオール ジメタンスルホネート〔R 8=R9=R10=R
11=水素原子、R21=R22=メチル基、n=1〕、2,
4−ヘキサジイン−1,6−ジオール ジエタンスルホ
ネート〔R8=R9=R10=R11=水素原子、R21=R22
=エチル基、n=1〕、2,7−ジメチル−3,5−オ
クタジイン−2,7−ジオール ジメタンスルホネート
〔R8=R9=R10=R11=メチル基、R21=R22=メチ
ル基、n=1〕、2,7−ジメチル−3,5−オクタジ
イン−2,7−ジオール ジエタンスルホネート〔R8
=R9=R10=R11=メチル基、R21=R22=エチル
基、n=1〕などが挙げられる。ただし、本発明はこれ
らの化合物に何ら限定されるものではない。Alkyne represented by the general formula (III)
As a specific example of the derivative, for example, Y Four= -COORtwenty oneYou
And YFive= -COORtwenty twoIn the case of 2,4-hexadiyne
-1,6-diol dimethyl dicarbonate [R8=
R9= RTen= R11= Hydrogen atom, R twenty one= Rtwenty two= Methyl group,
n = 1], 2,4-hexadiyne-1,6-diol
Diethyl dicarbonate [R8= R9= RTen= R11= Hydrogen
Atom, Rtwenty one= Rtwenty two= Ethyl group, n = 1], 2,7-dimethyl
Cyl-3,5-octadiyne-2,7-diol dimethyl
Lujicarbonate [R8= R9= RTen= R11= Methyl group,
Rtwenty one= Rtwenty two= Methyl group, n = 1], 2,7-dimethyl-
3,5-octadiyne-2,7-diol diethyldica
-Bonate [R8= R9= RTen= R11= Methyl group, Rtwenty one=
Rtwenty two= Ethyl group, n = 1]. YFour= −
CORtwenty oneAnd YFive= -CORtwenty twoIn the case of 2,4-hex
Sadiin-1,6-diol diacetate [R8= R9
= R Ten= R11= Hydrogen atom, Rtwenty one= Rtwenty two= Methyl group, n =
1], 2,4-hexadiyne-1,6-diol dip
Lopionate [R8= R9= RTen= R11= Hydrogen atom, R twenty one
= Rtwenty two= Ethyl group, n = 1], 2,7-dimethyl-3,
5-octadiyne-2,7-diol diacetate
[R8= R9= RTen= R11= Methyl group, Rtwenty one= Rtwenty two= Met
Group, n = 1], 2,7-dimethyl-3,5-octadi
In-2,7-diol dipropionate [R8= R9
= RTen= R11= Methyl group, Rtwenty one= Rtwenty two= Ethyl group, n =
1]. YFour= -SOTwoRtwenty oneAnd YFive=
-SOTwoRtwenty twoIn the case of 2,4-hexadiyne-1,6-
Diol dimethanesulfonate [R 8= R9= RTen= R
11= Hydrogen atom, Rtwenty one= Rtwenty two= Methyl group, n = 1], 2,
4-hexadiyne-1,6-diol diethanesulfo
Nate [R8= R9= RTen= R11= Hydrogen atom, Rtwenty one= Rtwenty two
= Ethyl group, n = 1], 2,7-dimethyl-3,5-o
Kutadiyne-2,7-diol dimethanesulfonate
[R8= R9= RTen= R11= Methyl group, Rtwenty one= Rtwenty two= Met
Group, n = 1], 2,7-dimethyl-3,5-octadi
In-2,7-diol diethanesulfonate [R8
= R9= RTen= R11= Methyl group, Rtwenty one= Rtwenty two= Ethyl
Group, n = 1]. However, the present invention
The compounds are not limited at all.
【0023】前記一般式(IV)で表されるアルキン誘
導体の具体例としては、例えば、ジ(1,1−ジメチル
−2−プロピニル)カーボネート〔R12=R17=水素原
子、R13=R14=R15=R16=メチル基、n=1〕、ジ
(1,1−ジエチル−2−プロピニル)カーボネート
〔R12=R17=水素原子、R13=R14=R15=R16=エ
チル基、n=1〕、ジ(1,1−エチルメチル−2−プ
ロピニル)カーボネート〔R12=R17=水素原子、R13
=R15=エチル基、R14=R16=メチル基、n=1〕、
ジ(1,1−イソブチルメチル−2−プロピニル)カー
ボネート〔R12=R17=水素原子、R13=R15=イソブ
チル基、R14=R16=メチル基、n=1〕、ジ(1,1
−ジメチル−2−ブチニル)カーボネート〔R12=R17
=R13=R 14=R15=R16=メチル基、n=1〕、ジ
(1−エチニルシクロヘキシル)カーボネート〔R12=
R17=水素原子、R13とR14が結合=ペンタメチレン
基、R15とR16が結合=ペンタメチレン基、n=1〕が
挙げられる。ただし、本発明はこれらの化合物に何ら限
定されるものではない。Alkyne derivative represented by the general formula (IV)
Specific examples of the conductor include, for example, di (1,1-dimethyl
-2-propynyl) carbonate [R12= R17= Hydrogen source
Child, R13= R14= RFifteen= R16= Methyl group, n = 1], di
(1,1-diethyl-2-propynyl) carbonate
[R12= R17= Hydrogen atom, R13= R14= RFifteen= R16= D
Tyl group, n = 1], di (1,1-ethylmethyl-2-propyl)
Ropinyl) carbonate [R12= R17= Hydrogen atom, R13
= RFifteen= Ethyl group, R14= R16= Methyl group, n = 1],
Di (1,1-isobutylmethyl-2-propynyl) car
Bonate [R12= R17= Hydrogen atom, R13= RFifteen= Isobu
Tyl group, R14= R16= Methyl group, n = 1], di (1,1
-Dimethyl-2-butynyl) carbonate [R12= R17
= R13= R 14= RFifteen= R16= Methyl group, n = 1], di
(1-ethynylcyclohexyl) carbonate [R12=
R17= Hydrogen atom, R13And R14Is a bond = pentamethylene
Group, RFifteenAnd R16Is a bond = pentamethylene group, n = 1] is
No. However, the present invention is not limited to these compounds.
It is not specified.
【0024】前記アルキン誘導体において、前記一般式
(I)、(II)、(III)、(IV)で表されるア
ルキン誘導体の含有量は、過度に多いと、電解液の電導
度などが変わり電池性能が低下することがあり、また、
過度に少ないと、十分な皮膜が形成されず、期待した電
池特性が得られないので、電解液の重量に対して0.0
1〜20重量%、特に0.1〜10重量%の範囲が好ま
しい。In the alkyne derivative, if the content of the alkyne derivative represented by the general formulas (I), (II), (III), and (IV) is excessively large, the conductivity of the electrolytic solution and the like change. Battery performance may decrease,
If the amount is excessively small, a sufficient film is not formed and the expected battery characteristics cannot be obtained.
A range of 1 to 20% by weight, particularly 0.1 to 10% by weight is preferred.
【0025】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)、ビニレンカーボネート(VC)
などの環状カーボネート類が好適に挙げられる。これら
の高誘電率溶媒は、1種類で使用してもよく、また2種
類以上組み合わせて使用してもよい。The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC).
Preferred examples thereof include cyclic carbonates. One of these high dielectric constant solvents may be used, or two or more thereof may be used in combination.
【0026】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
1種類で使用してもよく、また2種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。Examples of the low viscosity solvent include dimethyl carbonate (DMC) and methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are each arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3. You.
【0027】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
O2CF3)2、LiN(SO2C2F5)2、LiC(SO2
CF3)3、LiPF4(CF3)2、LiPF3(C2F5)
3、LiPF3(CF3)3、LiPF3(iso−C
3F7)3、LiPF5(iso−C3F7)などが挙げられ
る。これらの電解質は、1種類で使用してもよく、2種
類以上組み合わせて使用してもよい。これら電解質は、
前記の非水溶媒に通常0.1〜3M、好ましくは0.5
〜1.5Mの濃度で溶解されて使用される。As the electrolyte used in the present invention, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 )
3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C
3 F 7) 3, LiPF 5 (iso-C 3 F 7) , and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are
The non-aqueous solvent is usually 0.1 to 3 M, preferably 0.5 to 3 M.
It is used after being dissolved at a concentration of ~ 1.5M.
【0028】本発明の電解液は、例えば、前記の高誘電
率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶
解し、前記一般式(I)、(II)、(III)、(I
V)で表されるアルキン誘導体のうち少なくとも1種を
溶解することにより得られる。The electrolytic solution of the present invention is prepared, for example, by mixing the above-mentioned high-dielectric solvent or low-viscosity solvent, dissolving the above-mentioned electrolyte therein, and mixing the above-mentioned general formulas (I), (II), (III), (I
It is obtained by dissolving at least one of the alkyne derivatives represented by V).
【0029】本発明の電解液は、二次電池の構成部材、
特にリチウム二次電池の構成部材として好適に使用され
る。二次電池を構成する電解液以外の構成部材について
は特に限定されず、従来使用されている種々の構成部材
を使用できる。[0029] The electrolyte of the present invention comprises a constituent member of a secondary battery,
In particular, it is suitably used as a component of a lithium secondary battery. The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.
【0030】例えば、正極活物質としてはコバルト、マ
ンガン、ニッケル、クロム、鉄およびバナジウムからな
る群より選ばれる少なくとも1種類の金属とリチウムと
の複合金属酸化物が使用される。このような複合金属酸
化物としては、例えば、LiCoO2、LiMn2O4、
LiNiO2などが挙げられる。For example, as the positive electrode active material, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 ,
LiNiO 2 and the like.
【0031】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤およびポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)、スチレンとブタジエンの共重合体(S
BR)、アクリロニトリルとブタジエンの共重合体(N
BR)、カルボキシメチルセルロース(CMC)などの
結着剤と混練して正極合剤とした後、この正極材料を集
電体としてのアルミニウムやステンレス製の箔やラス板
に圧延して、50℃〜250℃程度の温度で2時間程度
真空下で加熱処理することにより作製される。For the positive electrode, a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (S
BR), a copolymer of acrylonitrile and butadiene (N
After kneading with a binder such as BR) and carboxymethylcellulose (CMC) to form a positive electrode mixture, this positive electrode material is rolled into a foil or lath plate made of aluminum or stainless steel as a current collector, and heated to 50 ° C. It is manufactured by performing a heat treatment under a vacuum at a temperature of about 250 ° C. for about 2 hours.
【0032】負極(負極活物質)としては、リチウム金
属やリチウム合金、およびリチウムを吸蔵・放出可能な
黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コー
クス類、グラファイト類(人造黒鉛、天然黒鉛など)、
有機高分子化合物燃焼体、炭素繊維〕や複合スズ酸化物
などの物質が使用される。特に、格子面(002)の面
間隔(d002)が0.335〜0.340nm(ナノメ
ーター)である黒鉛型結晶構造を有する炭素材料を使用
することが好ましい。なお、炭素材料のような粉末材料
はエチレンプロピレンジエンターポリマー(EPD
M)、ポリテトラフルオロエチレン(PTFE)、ポリ
フッ化ビニリデン(PVDF)、スチレンとブタジエン
の共重合体(SBR)、アクリロニトリルとブタジエン
の共重合体(NBR)、カルボキシメチルセルロース
(CMC)などの結着剤と混練して負極合剤として使用
される。As the negative electrode (negative electrode active material), a lithium metal, a lithium alloy, and a carbon material having a graphite type crystal structure capable of occluding and releasing lithium [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite) Graphite, etc.),
Organic polymer compound combustion body, carbon fiber] and composite tin oxide. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the plane spacing (d 002 ) of the lattice plane (002) is 0.335 to 0.340 nm (nanometers). The powder material such as carbon material is ethylene propylene diene terpolymer (EPD).
M), binders such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), copolymer of acrylonitrile and butadiene (NBR), and carboxymethylcellulose (CMC) And used as a negative electrode mixture.
【0033】リチウム二次電池の構造は特に限定される
ものではなく、単層又は複層の正極、負極、セパレータ
を有するコイン型電池やポリマー電池、さらに、ロール
状の正極、負極およびロール状のセパレータを有する円
筒型電池や角型電池などが一例として挙げられる。な
お、セパレータとしては公知のポリオレフィンの微多孔
膜、織布、不織布などが使用される。The structure of the lithium secondary battery is not particularly limited, and may be a coin-type battery or a polymer battery having a single or multiple layers of a positive electrode, a negative electrode, a separator, a roll-shaped positive electrode, a negative electrode, and a roll-shaped battery. Examples include a cylindrical battery and a prismatic battery having a separator. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.
【0034】[0034]
【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔電解液の調製〕EC/DEC(容量比)=1/2の非
水溶媒を調製し、これにLiPF6を1Mの濃度になる
ように溶解して電解液を調製した後、さらにアルキン誘
導体として1,1−ジメチル−2−プロピニルメチルカ
ーボネート〔一般式(I)中、Y 1=−COOR18、R1
=水素原子、R2=R3=メチル基、R18=メチル基、n
=1〕を電解液に対して2重量%となるように加えた。Next, the present invention will be described with reference to Examples and Comparative Examples.
Is specifically described. Example 1 [Preparation of electrolytic solution] EC / DEC (volume ratio) = 1/2
A water solvent was prepared and LiPF6To a concentration of 1M
After preparing the electrolyte by dissolving
1,1-dimethyl-2-propynylmethylca as a conductor
-Bonate [Y in the general formula (I) 1= -COOR18, R1
= Hydrogen atom, RTwo= RThree= Methyl group, R18= Methyl group, n
= 1] was added to the electrolyte solution so as to be 2% by weight.
【0035】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れに1−メチル−2−ピロリドンを加えてスラリー状に
してアルミ箔上に塗布した。その後、これを乾燥し、加
圧成形して正極を調製した。人造黒鉛(負極活物質)を
90重量%、ポリフッ化ビニリデン(結着剤)を10重
量%の割合で混合し、これに1−メチル−2−ピロリド
ンを加えてスラリー状にして銅箔上に塗布した。その
後、これを乾燥し、加圧成形して負極を調製した。そし
て、ポリプロピレン微多孔性フィルムのセパレータを用
い、上記の電解液を注入してコイン電池(直径20m
m、厚さ3.2mm)を作製した。このコイン電池を用
いて、室温(20℃)下、0.8mAの定電流及び定電
圧で、終止電圧4.2Vまで5時間で充電し、次に0.
8mAの定電流下、終止電圧2.7Vまで放電し、この
充放電を繰り返した。初期放電容量は、1M LiPF
6+EC/DEC(容量比)=1/2を電解液として用
いた場合(比較例1)と比較してその相対容量として算
出し、1.03であった。50サイクル後の電池特性を
測定したところ、初期放電容量を100%としたときの
放電容量維持率は92.2%であった。また、低温特性
も良好であった。コイン電池の作製条件および電池特性
を表1に示す。[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (positive electrode active material) was 80% by weight, acetylene black (conductive agent) was 10% by weight, and polyvinylidene fluoride (binder) was 10% by weight. %, And 1-methyl-2-pyrrolidone was added to the mixture to form a slurry, which was applied on an aluminum foil. Thereafter, it was dried and molded under pressure to prepare a positive electrode. 90% by weight of artificial graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed, and 1-methyl-2-pyrrolidone was added thereto to form a slurry to form a slurry on a copper foil. Applied. Thereafter, this was dried and molded under pressure to prepare a negative electrode. Then, using a separator made of a polypropylene microporous film, the above-mentioned electrolytic solution was injected into the coin battery (diameter 20 m).
m, 3.2 mm in thickness). Using this coin battery, the battery was charged to a final voltage of 4.2 V in 5 hours at room temperature (20 ° C.) at a constant current and a constant voltage of 0.8 mA.
Under a constant current of 8 mA, the battery was discharged to a final voltage of 2.7 V, and this charge / discharge was repeated. Initial discharge capacity is 1M LiPF
6 + EC / DEC (volume ratio) = 1/2 was calculated as the relative capacity as compared with the case where the electrolyte was used (Comparative Example 1), and was 1.03. When the battery characteristics after 50 cycles were measured, the discharge capacity retention ratio when the initial discharge capacity was 100% was 92.2%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0036】実施例2 EC/DEC(容量比)=1/2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解して電
解液を調製した後、さらにアルキン誘導体として酢酸
1,1−エチルメチル−2−プロピニル〔一般式(I)
中、Y1=−COR18、R1=水素原子、R2=エチル
基、R3=メチル基、R18=メチル基、n=1〕を電解
液に対して2重量%となるように加えた。この電解液を
使用して実施例1と同様にコイン電池を作製し、電池特
性を測定したところ、初期放電容量は、1M LiPF
6+EC/DEC(容量比)=1/2を電解液として用
いた場合(比較例1)と比較してその相対容量として算
出し、1.02であった。50サイクル後の電池特性を
測定したところ、初期放電容量を100%としたときの
放電容量維持率は91.5%であった。コイン電池の作
製条件および電池特性を表1に示す。Example 2 A non-aqueous solvent having EC / DEC (volume ratio) = 1/2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1 M to prepare an electrolytic solution, and further, as an alkyne derivative, 1,1-ethylmethyl-2-propynyl acetate [general formula (I)
In the formula, Y 1 = —COR 18 , R 1 = hydrogen atom, R 2 = ethyl group, R 3 = methyl group, R 18 = methyl group, n = 1] so as to be 2% by weight based on the electrolyte. added. Using this electrolytic solution, a coin battery was prepared in the same manner as in Example 1, and the battery characteristics were measured. The initial discharge capacity was 1 M LiPF
6 + EC / DEC (volume ratio) = 1/2 was calculated as a relative capacity as compared with the case where the electrolyte was used (Comparative Example 1), and was 1.02. When the battery characteristics after 50 cycles were measured, the discharge capacity retention ratio when the initial discharge capacity was 100% was 91.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0037】実施例3 PC/EC/DEC(容量比)=1/2/7の非水溶媒
を調製し、これにLiPF6を1Mの濃度になるように
溶解して電解液を調製した後、さらにアルキン誘導体と
してメタンスルホン酸1,1−ジエチル−2−プロピニ
ル〔一般式(I)中、Y1=−SO2R18、R1=水素原
子、R2=R3=エチル基、R18=メチル基、n=1〕を
電解液に対して2重量%使用したほかは実施例1と同様
に電解液を調製してコイン電池を作製し、電池特性を測
定したところ、初期放電容量の相対容量は1.05であ
り、50サイクル後の電池特性を測定したところ、放電
容量維持率は91.9%であった。また、低温特性も良
好であった。コイン電池の作製条件および電池特性を表
1に示す。Example 3 A non-aqueous solvent of PC / EC / DEC (volume ratio) = 1/2/7 was prepared, and LiPF 6 was dissolved in the non-aqueous solvent to a concentration of 1 M to prepare an electrolyte. And 1,1-diethyl-2-propynyl methanesulfonate as an alkyne derivative [in the general formula (I), Y 1 = —SO 2 R 18 , R 1 = hydrogen atom, R 2 = R 3 = ethyl group, R 18 = methyl group, n = 1] was used in the same manner as in Example 1 except that 2% by weight of the electrolytic solution was used to prepare a coin battery, and the battery characteristics were measured. Was 50%, and the battery capacity after 50 cycles was measured. As a result, the discharge capacity retention ratio was 91.9%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0038】実施例4 アルキン誘導体として2,5−ジメチル−3−ヘキシン
−2,5−ジオールジエチルジカーボネート〔一般式
(II)中、Y2=Y3=−COOR19=−COOR20、
R4=R5=R6=R7=メチル基、R19=R20=エチル
基、n=1〕を電解液に対して1重量%使用したほかは
実施例3と同様にコイン電池を作製し、電池特性を測定
したところ、初期放電容量の相対容量は1.02であ
り、50サイクル後の電池特性を測定したところ、放電
容量維持率は91.1%であった。また、低温特性も良
好であった。コイン電池の作製条件および電池特性を表
1に示す。Example 4 As an alkyne derivative, 2,5-dimethyl-3-hexyne-2,5-diol diethyldicarbonate [in the general formula (II), Y 2 = Y 3 = -COOR 19 = -COOR 20 ;
R 4 = R 5 = R 6 = R 7 = methyl group, R 19 = R 20 = ethyl group, n = 1] except that 1% by weight of the electrolytic solution was used. When the battery was fabricated and the battery characteristics were measured, the relative capacity of the initial discharge capacity was 1.02, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 91.1%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0039】実施例5 アルキン誘導体として3−ヘキシン−2,5−ジオール
ジメタンスルホネート〔一般式(II)中、Y2=Y3
=−SO2R19=−SO2R20、R4=R6=メチル基、R
5=R7=水素原子、R19=R20=メチル基、n=1〕を
電解液に対して1重量%使用したほかは実施例3と同様
にコイン電池を作製し、電池特性を測定したところ、初
期放電容量の相対容量は1.03であり、50サイクル
後の電池特性を測定したところ、放電容量維持率は9
1.6%であった。また、低温特性も良好であった。コ
イン電池の作製条件および電池特性を表1に示す。Example 5 As an alkyne derivative, 3-hexyne-2,5-diol dimethanesulfonate [in the general formula (II), Y 2 = Y 3
= -SO 2 R 19 = -SO 2 R 20, R 4 = R 6 = methyl radical, R
5 = R 7 = hydrogen atom, R 19 = R 20 = methyl group, n = 1] except that 1% by weight of the electrolytic solution was used, a coin battery was fabricated in the same manner as in Example 3, and the battery characteristics were measured. As a result, the relative capacity of the initial discharge capacity was 1.03, and the battery characteristics after 50 cycles were measured.
1.6%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0040】実施例6 PC/EC/MEC(容量比)=1/2/7の非水溶媒
を調製し、これにLiPF6を1Mの濃度になるように
溶解して電解液を調製した後、さらにアルキン誘導体と
して2,4−ヘキサジイン−1,6−ジオール ジメチ
ルジカーボネート〔一般式(III)中、Y4=Y5=−
COOR21=−COOR22、R8=R9=R10=R11=水
素原子、R21=R22=メチル基、n=1〕を電解液に対
して1重量%使用したほかは実施例1と同様に電解液を
調製してコイン電池を作製し、電池特性を測定したとこ
ろ、初期放電容量の相対容量は1.02であり、50サ
イクル後の電池特性を測定したところ、放電容量維持率
は91.8%であった。コイン電池の作製条件および電
池特性を表1に示す。Example 6 A non-aqueous solvent of PC / EC / MEC (volume ratio) = 1/2/7 was prepared, and LiPF 6 was dissolved in the non-aqueous solvent to a concentration of 1 M to prepare an electrolytic solution. And 2,4-hexadiyne-1,6-diol dimethyl dicarbonate as an alkyne derivative [in the general formula (III), Y 4 = Y 5 = −
COOR 21 = -COOR 22 , R 8 = R 9 = R 10 = R 11 = hydrogen atom, R 21 = R 22 = methyl group, n = 1] except that 1% by weight of the electrolyte was used. An electrolytic solution was prepared in the same manner as in Example 1 to prepare a coin battery, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.02, and the battery characteristics after 50 cycles were measured. The rate was 91.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0041】実施例7 アルキン誘導体として2,4−ヘキサジイン−1,6−
ジオール ジメタンスルホネート〔一般式(III)
中、Y4=Y5=−SO2R21=−SO2R22、R8=R9=
R10=R11=水素原子、R21=R22=メチル基、n=
1〕を電解液に対して1重量%使用したほかは実施例6
と同様にコイン電池を作製し、電池特性を測定したとこ
ろ、初期放電容量の相対容量は1.03であり、50サ
イクル後の電池特性を測定したところ、放電容量維持率
は91.5%であった。また、低温特性も良好であっ
た。コイン電池の作製条件および電池特性を表1に示
す。Example 7 As an alkyne derivative, 2,4-hexadiyne-1,6-
Diol dimethanesulfonate [general formula (III)
Where Y 4 = Y 5 = -SO 2 R 21 = -SO 2 R 22 , R 8 = R 9 =
R 10 = R 11 = hydrogen atom, R 21 = R 22 = methyl group, n =
Example 6 except that 1) was used in an amount of 1% by weight based on the electrolyte.
A coin battery was prepared in the same manner as described above, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.03, and the battery characteristics after 50 cycles were measured. The discharge capacity retention ratio was 91.5%. there were. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0042】実施例8 PC/EC/DMC/DEC(容量比)=1/2/3/
4の非水溶媒を調製し、これにLiPF6を1Mの濃度
になるように溶解して電解液を調製した後、さらにアル
キン誘導体としてジ(1,1−ジメチル−2−プロピニ
ル)カーボネート〔一般式(IV)中、R12=R17=水
素原子、R13=R14=R15=R16=メチル基、n=1〕
を電解液に対して0.5重量%使用したほかは実施例1
と同様に電解液を調製してコイン電池を作製し、電池特
性を測定したところ、初期放電容量の相対容量は1.0
3であり、50サイクル後の電池特性を測定したとこ
ろ、放電容量維持率は92.6%であった。コイン電池
の作製条件および電池特性を表1に示す。Example 8 PC / EC / DMC / DEC (capacity ratio) = 1/2/3 /
After preparing a non-aqueous solvent of No. 4 and dissolving LiPF 6 to a concentration of 1 M to prepare an electrolytic solution, di (1,1-dimethyl-2-propynyl) carbonate [general In the formula (IV), R 12 = R 17 = hydrogen atom, R 13 = R 14 = R 15 = R 16 = methyl group, n = 1]
Example 1 except for using 0.5% by weight of
An electrolytic solution was prepared in the same manner as in Example 1 to prepare a coin battery, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.0%.
3, and the battery capacity after 50 cycles was measured. As a result, the discharge capacity retention ratio was 92.6%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0043】実施例9 正極活物質として、LiCoO2に代えてLiMn2O4
を使用したほかは実施例3と同様に電解液を調製してコ
イン電池を作製し、電池特性を測定したところ、初期放
電容量の相対容量は0.83であり、50サイクル後の
電池特性を測定したところ、放電容量維持率は93.1
%であった。コイン電池の作製条件および電池特性を表
1に示す。Example 9 As a positive electrode active material, LiMn 2 O 4 was used instead of LiCoO 2.
A coin battery was prepared by preparing an electrolytic solution in the same manner as in Example 3 except for using, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 0.83. Upon measurement, the discharge capacity retention ratio was 93.1.
%Met. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0044】実施例10 正極活物質として、LiCoO2に代えてLiCo0.1N
i0.9O2を使用し、アルキン誘導体としてジ(1,1−
ジメチル−2−プロピニル)カーボネート〔一般式(I
V)中、R12=R17=水素原子、R13=R14=R15=R
16=メチル基、n=1〕を電解液に対して0.5重量%
使用したほかは実施例3と同様に電解液を調製してコイ
ン電池を作製し、電池特性を測定したところ、初期放電
容量の相対容量は1.19であり、50サイクル後の電
池特性を測定したところ、放電容量維持率は90.5%
であった。コイン電池の作製条件および電池特性を表1
に示す。Example 10 As a positive electrode active material, LiCo 0.1 N was used instead of LiCoO 2.
Using i 0.9 O 2 , di (1,1-
Dimethyl-2-propynyl) carbonate [General formula (I
In V), R 12 = R 17 = hydrogen atom, R 13 = R 14 = R 15 = R
16 = methyl group, n = 1] is 0.5% by weight based on the electrolytic solution.
Except for the use, an electrolytic solution was prepared in the same manner as in Example 3 to prepare a coin battery, and the battery characteristics were measured. The relative capacity of the initial discharge capacity was 1.19, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 90.5%.
Met. Table 1 shows the coin battery fabrication conditions and battery characteristics.
Shown in
【0045】実施例11 負極活物質として、人造黒鉛に代えて天然黒鉛を使用し
たほかは実施例8と同様に電解液を調製してコイン電池
を作製し、電池特性を測定したところ、初期放電容量の
相対容量は1.02であり、50サイクル後の電池特性
を測定したところ、放電容量維持率は93.2%であっ
た。コイン電池の作製条件および電池特性を表1に示
す。Example 11 A coin battery was prepared by preparing an electrolytic solution in the same manner as in Example 8 except that natural graphite was used instead of artificial graphite as the negative electrode active material, and the battery characteristics were measured. The relative capacity of the capacity was 1.02, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention rate was 93.2%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0046】比較例1 EC/DEC(容量比)=1/2の非水溶媒を調製し、
これにLiPF6 を1Mの濃度になるように溶解した。
このときアルキン誘導体は全く添加しなかった。この電
解液を使用して実施例1と同様にコイン電池を作製し、
電池特性を測定した。この場合の初期放電容量の相対容
量を1とする。初期放電容量に対し、50サイクル後の
放電容量維持率は82.8%であった。コイン電池の作
製条件および電池特性を表1に示す。Comparative Example 1 A non-aqueous solvent having EC / DEC (volume ratio) = 1/2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no alkyne derivative was added at all. Using this electrolytic solution, a coin battery was produced in the same manner as in Example 1,
Battery characteristics were measured. In this case, the relative capacity of the initial discharge capacity is 1. The discharge capacity retention rate after 50 cycles with respect to the initial discharge capacity was 82.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.
【0047】[0047]
【表1】 [Table 1]
【0048】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。The present invention is not limited to the above-described embodiments, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.
【0049】[0049]
【発明の効果】本発明によれば、広い温度範囲でのサイ
クル特性や電気容量、更には保存特性などの電池特性に
優れたリチウム二次電池を提供することができる。According to the present invention, it is possible to provide a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity, and storage characteristics in a wide temperature range.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 高之 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 (72)発明者 松森 保男 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM06 AM07 EJ11 HJ02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takayuki Hattori10, 1978 Kogushi, Oji, Ube City, Yamaguchi Prefecture Inside Ube Chemical Plant Ube Industries, Ltd. Ube Kosan Co., Ltd. Ube Chemical Factory F-term (reference) 5H029 AJ03 AJ04 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM06 AM07 EJ11 HJ02
Claims (2)
液において、該電解液中に下記一般式(I)、(I
I)、(III)、(IV)、 【化1】 【化2】 【化3】 【化4】 (式中、R1、R4、R5、R6、R7、R8、R9、R10、
R11、R12およびR17は、それぞれ独立して炭素数1〜
12のアルキル基、炭素数3〜6のシクロアルキル基、
アリール基、または水素原子を示す。但し、R4、R5、
R6およびR7が同時に水素原子となることはない。式
中、R2、R3、R13、R14、R15およびR16は、それぞ
れ独立して炭素数1〜12のアルキル基、炭素数3〜6
のシクロアルキル基、アリール基を示す。また、R2と
R3、R4とR5、R6とR7、R13とR14、R15とR
16は、互いに結合して炭素数3〜6のシクロアルキル基
を形成していても良い。式中、Y1は、−COOR18、
−COR18または−SO2R18、Y2は、−COOR19、
−COR19または−SO2R19、Y3は、−COOR20、
−COR20または−SO2R20、Y4は、−COOR21、
−COR21または−SO2R21、およびY5は、−COO
R22、−COR22、−SO2R22を示し、前記R18、R
19、R20、R21およびR22は、それぞれ独立して炭素数
1〜12のアルキル基、炭素数3〜6のシクロアルキル
基、アリール基を示す。ただし、nは1または2の整数
を示す。)で表されるアルキン誘導体のうち少なくとも
1種が含有されていることを特徴とするリチウム二次電
池用電解液。1. An electrolysis in which an electrolyte is dissolved in a non-aqueous solvent.
In the solution, the following general formulas (I) and (I)
I), (III), (IV),Embedded imageEmbedded imageEmbedded image(Where R1, RFour, RFive, R6, R7, R8, R9, RTen,
R11, R12And R17Is each independently 1 to 1 carbon atoms
12 alkyl groups, a cycloalkyl group having 3 to 6 carbon atoms,
Represents an aryl group or a hydrogen atom. Where RFour, RFive,
R6And R7Are not simultaneously hydrogen atoms. formula
Medium, RTwo, RThree, R13, R14, RFifteenAnd R16Each
Each independently an alkyl group having 1 to 12 carbon atoms, 3 to 6 carbon atoms
And a cycloalkyl group and an aryl group. Also, RTwoWhen
RThree, RFourAnd RFive, R6And R7, R13And R14, RFifteenAnd R
16Are bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms
May be formed. Where Y1Is -COOR18,
-COR18Or -SOTwoR18, YTwoIs -COOR19,
-COR19Or -SOTwoR19, YThreeIs -COOR20,
-COR20Or -SOTwoR20, YFourIs -COORtwenty one,
-CORtwenty oneOr -SOTwoRtwenty one, And YFiveIs -COO
Rtwenty two, -CORtwenty two, -SOTwoRtwenty twoAnd R18, R
19, R20, Rtwenty oneAnd Rtwenty twoAre carbon numbers independently
Alkyl group of 1 to 12, cycloalkyl of 3 to 6 carbon atoms
And an aryl group. Where n is an integer of 1 or 2
Is shown. )) Represented by at least
Lithium secondary battery characterized by containing one type
Electrolyte for pond.
解されている電解液からなるリチウム二次電池におい
て、該電解液中に下記一般式(I)、(II)、(II
I)、(IV)、 【化5】 【化6】 【化7】 【化8】 (式中、R1、R4、R5、R6、R7、R8、R9、R10、
R11、R12およびR17は、それぞれ独立して炭素数1〜
12のアルキル基、炭素数3〜6のシクロアルキル基、
アリール基、または水素原子を示す。但し、R4、R5、
R6およびR7が同時に水素原子となることはない。式
中、R2、R3、R13、R14、R15およびR16は、それぞ
れ独立して炭素数1〜12のアルキル基、炭素数3〜6
のシクロアルキル基、アリール基を示す。また、R2と
R3、R4とR5、R6とR7、R13とR14、R15とR
16は、互いに結合して炭素数3〜6のシクロアルキル基
を形成していても良い。式中、Y1は、−COOR18、
−COR18または−SO2R18、Y2は、−COOR19、
−COR19または−SO2R19、Y3は、−COOR20、
−COR20または−SO2R20、Y4は、−COOR21、
−COR21または−SO2R21、およびY5は、−COO
R22、−COR22、−SO2R22を示し、前記R18、R
19、R20、R21およびR22は、それぞれ独立して炭素数
1〜12のアルキル基、炭素数3〜6のシクロアルキル
基、アリール基を示す。ただし、nは1または2の整数
を示す。)で表されるアルキン誘導体のうち少なくとも
1種が含有されていることを特徴とするリチウム二次電
池。2. An electrolyte dissolved in a positive electrode, a negative electrode and a non-aqueous solvent.
Lithium rechargeable battery composed of unsolved electrolyte
In the electrolytic solution, the following general formulas (I), (II) and (II)
I), (IV),Embedded imageEmbedded imageEmbedded image(Where R1, RFour, RFive, R6, R7, R8, R9, RTen,
R11, R12And R17Is each independently 1 to 1 carbon atoms
12 alkyl groups, a cycloalkyl group having 3 to 6 carbon atoms,
Represents an aryl group or a hydrogen atom. Where RFour, RFive,
R6And R7Are not simultaneously hydrogen atoms. formula
Medium, RTwo, RThree, R13, R14, RFifteenAnd R16Each
Each independently an alkyl group having 1 to 12 carbon atoms, 3 to 6 carbon atoms
And a cycloalkyl group and an aryl group. Also, RTwoWhen
RThree, RFourAnd RFive, R6And R7, R13And R14, RFifteenAnd R
16Are bonded to each other to form a cycloalkyl group having 3 to 6 carbon atoms
May be formed. Where Y1Is -COOR18,
-COR18Or -SOTwoR18, YTwoIs -COOR19,
-COR19Or -SOTwoR19, YThreeIs -COOR20,
-COR20Or -SOTwoR20, YFourIs -COORtwenty one,
-CORtwenty oneOr -SOTwoRtwenty one, And YFiveIs -COO
Rtwenty two, -CORtwenty two, -SOTwoRtwenty twoAnd R18, R
19, R20, Rtwenty oneAnd Rtwenty twoAre carbon numbers independently
Alkyl group of 1 to 12, cycloalkyl of 3 to 6 carbon atoms
And an aryl group. Where n is an integer of 1 or 2
Is shown. )) Represented by at least
Lithium secondary battery characterized by containing one type
pond.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000284790A JP4710116B2 (en) | 2000-09-20 | 2000-09-20 | Nonaqueous electrolyte and lithium secondary battery using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000284790A JP4710116B2 (en) | 2000-09-20 | 2000-09-20 | Nonaqueous electrolyte and lithium secondary battery using the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002100399A true JP2002100399A (en) | 2002-04-05 |
| JP4710116B2 JP4710116B2 (en) | 2011-06-29 |
Family
ID=18768951
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000284790A Expired - Lifetime JP4710116B2 (en) | 2000-09-20 | 2000-09-20 | Nonaqueous electrolyte and lithium secondary battery using the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4710116B2 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004303544A (en) * | 2003-03-31 | 2004-10-28 | Tdk Corp | Lithium ion secondary battery |
| WO2005117197A1 (en) | 2004-05-28 | 2005-12-08 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery |
| JP2005340080A (en) * | 2004-05-28 | 2005-12-08 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
| WO2006077763A1 (en) * | 2005-01-20 | 2006-07-27 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
| JP2006269438A (en) * | 2006-04-28 | 2006-10-05 | Tdk Corp | Lithium ion secondary battery |
| JP2007066864A (en) * | 2005-08-05 | 2007-03-15 | Ube Ind Ltd | Non-aqueous electrolyte and lithium secondary battery using the same |
| WO2009122908A1 (en) * | 2008-04-02 | 2009-10-08 | 宇部興産株式会社 | Nonaqueous electrolyte for lithium battery and lithium battery using same |
| EP2369670A1 (en) | 2003-07-17 | 2011-09-28 | Ube Industries, Ltd. | Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery using the same |
| JP2012234771A (en) * | 2011-05-09 | 2012-11-29 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte and lithium secondary battery including the same |
| WO2013141345A1 (en) * | 2012-03-23 | 2013-09-26 | 宇部興産株式会社 | Non-aqueous electrolytic solution and electricity storage device using same |
| EP2571090A4 (en) * | 2010-05-12 | 2014-01-22 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTE SECONDARY ACCUMULATOR |
| EP2618418A4 (en) * | 2010-09-16 | 2014-01-22 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
| EP2768064A1 (en) * | 2013-02-15 | 2014-08-20 | Basf Se | Use of substituted alkynyl sulfonates, carbonates and oxalates as additives in electrolytes of secondary lithium-ion batteries |
| JP2014232706A (en) * | 2013-05-30 | 2014-12-11 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
| JP2017112123A (en) * | 2011-11-11 | 2017-06-22 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte |
| EP3605710A4 (en) * | 2017-09-21 | 2020-11-11 | LG Chem, Ltd. | WATER-FREE ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY, INCLUDING THE SAME |
| CN116154281A (en) * | 2021-11-22 | 2023-05-23 | 张家港市国泰华荣化工新材料有限公司 | Nonaqueous electrolyte and high-voltage lithium battery containing same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05159787A (en) * | 1991-12-06 | 1993-06-25 | Hitachi Maxell Ltd | Organic electrolyte battery |
| JPH06223875A (en) * | 1993-01-21 | 1994-08-12 | Mitsubishi Cable Ind Ltd | Electrolyte for lithium secondary battery |
| JP2000195545A (en) * | 1998-12-25 | 2000-07-14 | Ube Ind Ltd | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
| JP2001256995A (en) * | 2000-03-13 | 2001-09-21 | Denso Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
-
2000
- 2000-09-20 JP JP2000284790A patent/JP4710116B2/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05159787A (en) * | 1991-12-06 | 1993-06-25 | Hitachi Maxell Ltd | Organic electrolyte battery |
| JPH06223875A (en) * | 1993-01-21 | 1994-08-12 | Mitsubishi Cable Ind Ltd | Electrolyte for lithium secondary battery |
| JP2000195545A (en) * | 1998-12-25 | 2000-07-14 | Ube Ind Ltd | Electrolyte for lithium secondary battery and lithium secondary battery using the same |
| JP2001256995A (en) * | 2000-03-13 | 2001-09-21 | Denso Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
Cited By (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004303544A (en) * | 2003-03-31 | 2004-10-28 | Tdk Corp | Lithium ion secondary battery |
| EP2369670A1 (en) | 2003-07-17 | 2011-09-28 | Ube Industries, Ltd. | Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery using the same |
| US7629085B2 (en) | 2004-05-28 | 2009-12-08 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary battery |
| WO2005117197A1 (en) | 2004-05-28 | 2005-12-08 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery |
| JP2005340080A (en) * | 2004-05-28 | 2005-12-08 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
| KR101176812B1 (en) * | 2004-05-28 | 2012-08-24 | 우베 고산 가부시키가이샤 | Nonaqueous electrolyte solution and lithium secondary battery |
| JPWO2005117197A1 (en) * | 2004-05-28 | 2008-04-03 | 宇部興産株式会社 | Non-aqueous electrolyte and lithium secondary battery |
| JP4678370B2 (en) * | 2004-05-28 | 2011-04-27 | 宇部興産株式会社 | Non-aqueous electrolyte and lithium secondary battery |
| US8530080B2 (en) | 2005-01-20 | 2013-09-10 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
| KR101229193B1 (en) | 2005-01-20 | 2013-02-01 | 우베 고산 가부시키가이샤 | Nonaqueous electrolyte solution and lithium secondary battery using same |
| US7754380B2 (en) | 2005-01-20 | 2010-07-13 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
| JP2013239468A (en) * | 2005-01-20 | 2013-11-28 | Ube Ind Ltd | Nonaqueous electrolytic solution and lithium secondary battery using the same |
| WO2006077763A1 (en) * | 2005-01-20 | 2006-07-27 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
| US8440349B2 (en) | 2005-01-20 | 2013-05-14 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
| JP2012079711A (en) * | 2005-01-20 | 2012-04-19 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
| KR101229133B1 (en) | 2005-01-20 | 2013-02-01 | 우베 고산 가부시키가이샤 | Nonaqueous electrolyte solution and lithium secondary battery using same |
| JP2010118356A (en) * | 2005-01-20 | 2010-05-27 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
| JP2007066864A (en) * | 2005-08-05 | 2007-03-15 | Ube Ind Ltd | Non-aqueous electrolyte and lithium secondary battery using the same |
| JP2006269438A (en) * | 2006-04-28 | 2006-10-05 | Tdk Corp | Lithium ion secondary battery |
| CN101981749B (en) * | 2008-04-02 | 2014-09-10 | 宇部兴产株式会社 | Nonaqueous electrolyte for lithium battery and lithium battery using same |
| WO2009122908A1 (en) * | 2008-04-02 | 2009-10-08 | 宇部興産株式会社 | Nonaqueous electrolyte for lithium battery and lithium battery using same |
| CN101981749A (en) * | 2008-04-02 | 2011-02-23 | 宇部兴产株式会社 | Non-aqueous electrolytic solution for lithium battery and lithium battery using the non-aqueous electrolytic solution |
| JP2014013773A (en) * | 2008-04-02 | 2014-01-23 | Ube Ind Ltd | Nonaqueous electrolytic solution for lithium battery and lithium battery using the same |
| US8673508B2 (en) | 2008-04-02 | 2014-03-18 | Ube Industries, Ltd. | Nonaqueous electrolyte for lithium battery and lithium battery using same |
| JP5494472B2 (en) * | 2008-04-02 | 2014-05-14 | 宇部興産株式会社 | Nonaqueous electrolyte for lithium battery and lithium battery using the same |
| EP2571090A4 (en) * | 2010-05-12 | 2014-01-22 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTE SECONDARY ACCUMULATOR |
| US9553333B2 (en) | 2010-09-16 | 2017-01-24 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery |
| EP2618418A4 (en) * | 2010-09-16 | 2014-01-22 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
| JP2012234771A (en) * | 2011-05-09 | 2012-11-29 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte and lithium secondary battery including the same |
| JP2017112123A (en) * | 2011-11-11 | 2017-06-22 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte |
| JP2018190739A (en) * | 2011-11-11 | 2018-11-29 | 三菱ケミカル株式会社 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
| JPWO2013141345A1 (en) * | 2012-03-23 | 2015-08-03 | 宇部興産株式会社 | Non-aqueous electrolyte and power storage device using the same |
| WO2013141345A1 (en) * | 2012-03-23 | 2013-09-26 | 宇部興産株式会社 | Non-aqueous electrolytic solution and electricity storage device using same |
| US9793576B2 (en) | 2012-03-23 | 2017-10-17 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and energy storage device using same |
| EP2768064A1 (en) * | 2013-02-15 | 2014-08-20 | Basf Se | Use of substituted alkynyl sulfonates, carbonates and oxalates as additives in electrolytes of secondary lithium-ion batteries |
| JP2014232706A (en) * | 2013-05-30 | 2014-12-11 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
| EP3605710A4 (en) * | 2017-09-21 | 2020-11-11 | LG Chem, Ltd. | WATER-FREE ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY, INCLUDING THE SAME |
| US11183711B2 (en) | 2017-09-21 | 2021-11-23 | Lg Chem, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
| CN116154281A (en) * | 2021-11-22 | 2023-05-23 | 张家港市国泰华荣化工新材料有限公司 | Nonaqueous electrolyte and high-voltage lithium battery containing same |
| WO2023087648A1 (en) * | 2021-11-22 | 2023-05-25 | 张家港市国泰华荣化工新材料有限公司 | Non-aqueous electrolyte solution and high-voltage lithium battery containing same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4710116B2 (en) | 2011-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3815087B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP5626379B2 (en) | Non-aqueous electrolyte for lithium secondary battery | |
| JP3951486B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
| JP3558007B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP2001043895A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP2001313071A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP2003059529A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP4710116B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
| JP2001313072A (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP3444243B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
| JP4304404B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP3823712B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
| JP3663897B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP3633269B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP4045644B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
| JP2001023688A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JPH11329494A (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP4075416B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
| JP4042082B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
| JP3633268B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP5110057B2 (en) | Lithium secondary battery | |
| JP2000133305A (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP4016497B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
| JP2000195546A (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP2000149987A (en) | Non-aqueous electrolyte and lithium secondary battery using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061130 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090803 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100315 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110307 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4710116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |