[go: up one dir, main page]

JP2002246071A - Electricity storage device - Google Patents

Electricity storage device

Info

Publication number
JP2002246071A
JP2002246071A JP2001043055A JP2001043055A JP2002246071A JP 2002246071 A JP2002246071 A JP 2002246071A JP 2001043055 A JP2001043055 A JP 2001043055A JP 2001043055 A JP2001043055 A JP 2001043055A JP 2002246071 A JP2002246071 A JP 2002246071A
Authority
JP
Japan
Prior art keywords
layer capacitor
electric double
storage device
power storage
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001043055A
Other languages
Japanese (ja)
Other versions
JP4526718B2 (en
Inventor
Hiroyuki Tajiri
博幸 田尻
Shiro Kato
史朗 加藤
Hajime Kinoshita
肇 木下
Hisashi Satake
久史 佐竹
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001043055A priority Critical patent/JP4526718B2/en
Publication of JP2002246071A publication Critical patent/JP2002246071A/en
Application granted granted Critical
Publication of JP4526718B2 publication Critical patent/JP4526718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a electricity storage device, capable of operating with a low-capacity battery, without needing capacity three to five times as much as that of normal usage, by using a lithium secondary battery as a main power source, even when high power consumption of the battery for a short time is required. SOLUTION: The lithium secondary battery 1 is connected in parallel with an electric double-layer capacitor 2, and the internal resistance value of the lithium secondary battery 1 is set to be lower than that of the electric double- layer capacitor 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池を
主電源とする蓄電装置であって、特にリチウム二次電池
の負荷を低減した良好な放電特性を有する電源として使
用できる蓄電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device using a lithium secondary battery as a main power supply, and more particularly to a power storage device which can reduce the load on the lithium secondary battery and can be used as a power source having good discharge characteristics.

【0002】[0002]

【従来の技術】近年、地球環境の保全、省資源などに適
したエネルギーの有効利用の観点から、深夜電力貯蔵、
太陽光発電による電力貯蔵などを行うための家庭用分散
蓄電システム、電気自動車のための蓄電システムなどが
注目を集めている。例えば、特開平6−86463号公
報は、エネルギー需要者にエネルギーを最適条件で供給
できるシステムとして、発電所から供給される電気、ガ
スコージェネレーション、燃料電池、蓄電池などを組み
合わせたトータルシステムを提案している。これらの蓄
電システムに用いる二次電池は、エネルギー容量が10W
h以下の携帯機器用小型二次電池とは異なり、大容量かつ
大型のものが必要となる。また、これらのシステムで
は、複数の二次電池を直列に接続し、電圧を例えば50
〜400Vの組電池として用いるのが常法であり、ほと
んどの場合、鉛電池を接続し、用いていた。
2. Description of the Related Art In recent years, from the viewpoint of effective use of energy suitable for preserving the global environment and conserving resources, midnight power storage,
2. Description of the Related Art A household distributed power storage system for storing electric power by solar power generation, a power storage system for electric vehicles, and the like have attracted attention. For example, JP-A-6-86463 proposes a total system combining power supplied from a power plant, gas cogeneration, a fuel cell, a storage battery, and the like, as a system capable of supplying energy to energy consumers under optimal conditions. I have. The secondary batteries used in these power storage systems have an energy capacity of 10 W
Unlike small rechargeable batteries for portable devices of h or less, large capacity and large batteries are required. In these systems, a plurality of secondary batteries are connected in series, and the
It is a common practice to use a battery pack of up to 400 V. In most cases, a lead battery is connected and used.

【0003】また、リチウム二次電池の実用化に向けて
の研究開発が、リチウム電池電力貯蔵技術研究会(LI
BES)などにより、精力的に進められている。このよう
な大型リチウムイオン電池は、エネルギー容量が100
〜400Wh程度であり、また体積エネルギー密度が20
0〜300Wh/lと携帯機器用小型二次電池並のレベル
に達している。その形状は、直径50〜70mm程度、長
さ250〜450mm程度の円筒型、厚さ35mm〜50mm
の角型或いは長円角型などの扁平角柱型が代表的なもの
である。
[0003] Research and development for practical use of lithium secondary batteries has been conducted by the Lithium Battery Power Storage Technology Research Group (LI).
(BES), etc. Such a large lithium ion battery has an energy capacity of 100
About 400 Wh and a volume energy density of 20
It has reached the level of 0 to 300 Wh / l, which is comparable to that of a small secondary battery for portable equipment. Its shape is cylindrical, about 50-70mm in diameter and about 250-450mm in length, and 35mm-50mm in thickness.
A rectangular prism or a flat prism such as an oblong prism is typical.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、リチウ
ム二次電池を家庭用分散蓄電システムに用いる場合、通
常の負荷変動の時は、リチウム二次電池に負荷は余りか
からないが、エアコン、掃除機などの使用時に短時間に
高電力を要する場合、リチウム二次電池の負荷は大きく
なる。高負荷は電池にとって寿命を著しく縮めるので、
従来は、短時間の高負荷に耐えるため、高負荷を想定
し、通常使用容量以上の電池容量が必要であった。
However, when a lithium secondary battery is used in a home distributed power storage system, the load on the lithium secondary battery is not excessive during normal load fluctuations, but the load on an air conditioner, a vacuum cleaner, or the like is small. When high power is required for a short time during use, the load on the lithium secondary battery increases. High loads can significantly reduce battery life,
Conventionally, in order to withstand a high load for a short time, a high load is assumed and a battery capacity equal to or more than a normal use capacity is required.

【0005】そこで本発明は、リチウム二次電池を主電
源とし、短時間の高電力需要が有る場合でもリチウム二
次電池に過剰容量を必要とせず通常使用容量に相当する
電池容量で賄い得る蓄電装置を提供することを目的とす
る。
Accordingly, the present invention provides a lithium secondary battery as a main power source, which does not require an excess capacity of the lithium secondary battery even when short-time high power demand is required, and which can be covered by a battery capacity equivalent to a normally used capacity. It is intended to provide a device.

【0006】[0006]

【発明を解決するための手段】本発明者は、上記目的を
達成するため、上記従来技術の問題点に留意しつつ鋭意
研究を重ねた結果、リチウム二次電池と特定のキャパシ
タを特定の条件で並列接続した蓄電装置を用いると、高
負荷時、キャパシタから主に放電が行われ、電池の負荷
が小さくなることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies while paying attention to the above-mentioned problems of the prior art, and as a result, have found that a lithium secondary battery and a specific capacitor have a specific condition. It has been found that when a power storage device connected in parallel is used, when the load is high, the capacitor is mainly discharged, and the load on the battery is reduced, and the present invention has been completed.

【0007】即ち本発明は、リチウム二次電池と電気二
重層キャパシタを並列接続した蓄電装置であって、前記
リチウム二次電池の内部抵抗値を前記電気二重層キャパ
シタの内部抵抗値以上としたことを特徴とする。なお、
内部抵抗は放電時のIRドロップより求める。
That is, the present invention relates to a power storage device in which a lithium secondary battery and an electric double layer capacitor are connected in parallel, wherein the internal resistance of the lithium secondary battery is equal to or more than the internal resistance of the electric double layer capacitor. It is characterized by. In addition,
The internal resistance is determined from the IR drop during discharge.

【0008】前記リチウム二次電池は、エネルギー容量
が30Wh以上であり,電池の体積エネルギー密度が180
Wh/l以上であり、かつ電池が厚さ12mm未満の扁平形状
であることが好ましい。
[0008] The lithium secondary battery has an energy capacity of 30 Wh or more and a volume energy density of 180
It is preferable that the battery has a flat shape of not less than Wh / l and a thickness of less than 12 mm.

【0009】また、前記電気二重層キャパシタが活性炭
を含む電極を備え、活性炭は、BET法による比表面積
が1300m2/g以上2200m2/g以下であり、粉
体充填密度が0.45g/cm3以上0.70g/cm3
以下であり、平均粒子径が1μm以上7μm以下である
ことが好ましい。
The electric double layer capacitor has an electrode containing activated carbon, the activated carbon has a specific surface area of 1300 m 2 / g or more and 2200 m 2 / g or less by a BET method and a powder packing density of 0.45 g / cm. 3 or more 0.70 g / cm 3
And the average particle diameter is preferably 1 μm or more and 7 μm or less.

【0010】前記活性炭は、体積基準の累積分布の90
%粒子径が6μm以上22μm以下であり、体積基準の
累積分布の10%粒子径が0.1μm以上2μm以下で
あることが好ましい。
The activated carbon has a volume-based cumulative distribution of 90%.
% Particle diameter is preferably 6 μm or more and 22 μm or less, and the 10% particle diameter of the volume-based cumulative distribution is preferably 0.1 μm or more and 2 μm or less.

【0011】前記活性炭の半径15Å以下の細孔容積
は、0.8ml/g以上であることが好ましい。
The pore volume of the activated carbon having a radius of 15 ° or less is preferably 0.8 ml / g or more.

【0012】前記前記二重層キャパシタの電解液として
非水系電解液を用いることが好ましい。
Preferably, a non-aqueous electrolyte is used as the electrolyte of the double-layer capacitor.

【0013】前記活性炭の単位重量当たりの容量が40
F/g以上であり、前記電極の単位体積当たりの容量が
20F/cm3以上であることをが好ましい。
The activated carbon has a capacity per unit weight of 40.
F / g or more, and the capacity per unit volume of the electrode is preferably 20 F / cm 3 or more.

【0014】前記電気二重層キャパシタの充電電圧が
1.8V以上3.3V以下であることが好ましい。
It is preferable that a charging voltage of the electric double layer capacitor is 1.8 V or more and 3.3 V or less.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る蓄電装置の一
実施形態について図面を参照しながら説明する。図1は
リチウム二次電池と電気二重層キャパシタの並列接続を
示す回路図であり、図2はリチウム二次電池の平面図及
び側面図であり、図3は電気二重層キャパシタの概略図
であり、図4は本蓄電装置の放電カーブを示すグラフで
あり、図5は図4を拡大して示すグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a power storage device according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a parallel connection of a lithium secondary battery and an electric double layer capacitor, FIG. 2 is a plan view and a side view of the lithium secondary battery, and FIG. 3 is a schematic diagram of the electric double layer capacitor. 4 is a graph showing a discharge curve of the power storage device, and FIG. 5 is a graph showing an enlarged view of FIG.

【0016】図1に示すように、例えば、リチウム二次
電池1を1個と、2個の単位セル2’を直列接続した電
気二重層キャパシタ2とを並列に接続している。端子間
電圧(V4)は満充電時約4.2Vである。電気二重層
キャパシタ2は、単位セル2’、2”を2個直列接続し
た満充電時の端子間電圧(V1)+(V2)も4.2V
である。
As shown in FIG. 1, for example, one lithium secondary battery 1 and an electric double layer capacitor 2 in which two unit cells 2 'are connected in series are connected in parallel. The terminal voltage (V4) is about 4.2 V when fully charged. The electric double layer capacitor 2 has a terminal voltage (V1) + (V2) of 4.2 V when fully charged by connecting two unit cells 2 ′ and 2 ″ in series.
It is.

【0017】電気二重層キャパシタ2が所定の充電電圧
となったときに、それ以上充電しなように電流をバイパ
スさせるバイパス回路を設けることが好ましい。バイパ
ス回路5は、例えば、図6に示すように、各単位セル
2’、2”毎に設けられ、2.1Vの基準電源6と、コ
ンパレータ7と、トランジスタ8と、ダイオード9とか
ら構成することができる。図示の例では、電気二重層キ
ャパシタ2の単位セル2’,2”は、各々定格電圧2.
5Vである。電気二重層キャパシタの単位セル2’又は
2”が基準電圧2.1Vに達すると、コンパレータ7か
らの信号(ベース電流)によりトランジスタ8がオン
し、電流がトランジスタ8のコレクタ側からエミッタ側
へ流れ、単位セル2’,2”への電流をバイパスさせて
いる。これは、電気二重層キャパシタ2の単位セル
2’,2”間において充電容量がばらつくと、電気二重
層キャパシタ2の耐久性が短くなり、さらに、放電時の
電流ばらつきになる恐れがあることから、各単位セル
2’,2”を均等に充電する必要があるからである。ま
た、単位セル2’,2”の定格電圧を超えないようにし
て、電気二重層キャパシタ2の劣化を防止する。
When the electric double layer capacitor 2 has reached a predetermined charging voltage, it is preferable to provide a bypass circuit for bypassing the current so that the electric double layer capacitor 2 is not charged any more. For example, as shown in FIG. 6, the bypass circuit 5 is provided for each unit cell 2 ′, 2 ″, and includes a 2.1 V reference power supply 6, a comparator 7, a transistor 8, and a diode 9. In the illustrated example, the unit cells 2 ′ and 2 ″ of the electric double layer capacitor 2 have rated voltages of 2..
5V. When the unit cell 2 'or 2 "of the electric double layer capacitor reaches the reference voltage 2.1V, the transistor 8 is turned on by a signal (base current) from the comparator 7, and the current flows from the collector side of the transistor 8 to the emitter side. , The current to the unit cells 2 ′, 2 ″ is bypassed. This is because if the charging capacity varies between the unit cells 2 ′ and 2 ″ of the electric double layer capacitor 2, the durability of the electric double layer capacitor 2 is shortened, and furthermore, there is a possibility that the current may vary during discharging. This is because it is necessary to charge each unit cell 2 ′, 2 ″ equally. In addition, the deterioration of the electric double layer capacitor 2 is prevented by not exceeding the rated voltage of the unit cells 2 ', 2 ".

【0018】なお、図1の接続はリチウム二次電池1を
1個に対し、電気二重層キャパシタ2の単位セルを3個
直列接続、若しくはそれ以上の複数個の直列接続しても
良い。また、電気二重層キャパシタの単位セルを複数個
直列接続したものをユニットとし、このユニットを直列
接続し、電圧を高くしても良い。さらに、必要に応じ
て、リチウム二次電池1の単位セルを複数個直列接続
し、各単位セル毎に電気二重層キャパシタを並列に接続
することもできるし、リチウム二次電池1の単位セルを
複数個直列接続したものをユニットとし、このユニット
毎に電気二重層キャパシタを並列接続することもでき
る。
The connection in FIG. 1 may be such that three unit cells of the electric double layer capacitor 2 are connected in series with respect to one lithium secondary battery 1 or a plurality of unit cells are connected in series. A unit in which a plurality of unit cells of the electric double layer capacitor are connected in series may be used as a unit, and the units may be connected in series to increase the voltage. Further, if necessary, a plurality of unit cells of the lithium secondary battery 1 can be connected in series, and an electric double layer capacitor can be connected in parallel for each unit cell. A plurality of units connected in series can be used as a unit, and an electric double layer capacitor can be connected in parallel for each unit.

【0019】図2は、リチウム二次電池の平面図及び側
面図を示す。図示のリチウム二次電池は、扁平で矩形を
した電池容器を備え、該電池容器は、上蓋1aと底容器
1bとをその周縁部Aで溶接接合してなる。上蓋1aに
は、正極端子1c、負極端子1d及び注液口1eが設け
られている。注液口1eは、封止フィルム1fで封止さ
れている。なお、リチウム二次電池1の容器形状は図示
のものに限定されない。リチウム二次電池1は、エネル
ギー容量が30Wh以上、電池の体積エネルギー密度が1
80Wh/l以上、かつ電池が厚さ12mm未満の扁平形状
のものが特に当用途に適している。
FIG. 2 shows a plan view and a side view of the lithium secondary battery. The illustrated lithium secondary battery includes a flat and rectangular battery case. The battery case is formed by welding and joining an upper lid 1a and a bottom container 1b at a peripheral edge A thereof. The upper lid 1a is provided with a positive electrode terminal 1c, a negative electrode terminal 1d, and a liquid inlet 1e. The injection port 1e is sealed with a sealing film 1f. The shape of the container of the lithium secondary battery 1 is not limited to the illustrated one. The lithium secondary battery 1 has an energy capacity of 30 Wh or more and a volume energy density of 1
A flat battery having a thickness of 80 Wh / l or more and a battery thickness of less than 12 mm is particularly suitable for this use.

【0020】図3は本発明に係る電気二重層キャパシタ
の一実施形態を概念的に示す断面図である。図示の例の
他に巻回型タイプ及び、積層タイプもある。
FIG. 3 is a sectional view conceptually showing one embodiment of the electric double layer capacitor according to the present invention. In addition to the illustrated example, there are also a wound type and a laminated type.

【0021】リチウム二次電池1の内部抵抗(R1)と
電気二重層キャパシタ2の単位セル合計内部抵抗(R
2)とはR1≧R2とされ、この場合、放電直後の電流
値は電気二重層キャパシタの方が大きい。つまり、急激
な負荷を本蓄電装置に与えたとき、放電初期には電流の
50%以上を電気二重層キャパシタが負い、リチウム二
次電池は負荷の50%未満の放電電流である。しかし、
R1<R2の場合、放電直後の電流値は電池のほうが大
きい。この場合、電気二重層キャパシタ2をリチウム二
次電池1と並列に設けた効果が少なくなる。
The internal resistance (R1) of the lithium secondary battery 1 and the total internal resistance (R) of the unit cells of the electric double layer capacitor 2
2) is defined as R1 ≧ R2. In this case, the electric current value immediately after the discharge is larger in the electric double layer capacitor. That is, when a sudden load is applied to the power storage device, the electric double layer capacitor bears 50% or more of the current in the initial stage of discharge, and the discharge current of the lithium secondary battery is less than 50% of the load. But,
In the case of R1 <R2, the current value immediately after discharging is larger in the battery. In this case, the effect of providing the electric double layer capacitor 2 in parallel with the lithium secondary battery 1 is reduced.

【0022】家庭用分散蓄電システムにこの蓄電装置を
用いる場合、図1に示すリチウム二次電池と電気二重層
キャパシタとを並列接続したユニットを所定数直列接続
し、所定の電圧を得る。電圧は例えば、ユニットを10
個直列接続して42Vの電圧を得、これをDC/DCコン
バーターで家庭用に必要な電圧例えば、320Vに昇圧
しても良い。また、直接320Vに直列接続にしても良
い。
When this power storage device is used in a household distributed power storage system, a predetermined number of units in which a lithium secondary battery and an electric double layer capacitor shown in FIG. 1 are connected in parallel are connected in series to obtain a predetermined voltage. The voltage is, for example, 10 units.
A voltage of 42 V may be obtained by connecting them in series, and this may be boosted to a voltage required for home use, for example, 320 V by a DC / DC converter. Moreover, you may directly connect in series with 320V.

【0023】リチウム二次電池と電気二重層キャパシタ
については、限定されるものではないが、以下のものを
用いると効果が大きい。
The lithium secondary battery and the electric double layer capacitor are not limited, but the following ones are more effective.

【0024】つまり、用いるリチウム二次電池はエネル
ギー容量が30Wh以上であり,電池の体積エネルギー密度
が180Wh/l以上であり、かつ電池が厚さ12mm未満の
扁平形状のものを用いると、電池の積層スペースが有効
に利用できること及び、電池が薄いため、放熱設計が容
易であること、高容量であることより、当目的に適して
いる。また、電気二重層キャパシタは、活性炭を含む電
極を備え、前記活性炭は、BET法による比表面積が1
300m2/g以上2200m2/g以下であり、粉体充
填密度が0.45g/cm3以上0.70g/cm3以下
であり、平均粒子径が1μm以上7μm以下である電気
二重層キャパシタがより効果がある。
That is, if the lithium secondary battery used has an energy capacity of 30 Wh or more, the volume energy density of the battery is 180 Wh / l or more, and the battery has a flat shape with a thickness of less than 12 mm, It is suitable for this purpose because the stacking space can be used effectively, and since the battery is thin, the heat dissipation design is easy and the capacity is high. The electric double layer capacitor includes an electrode containing activated carbon, and the activated carbon has a specific surface area of 1 according to a BET method.
300 meters 2 / g or more 2200m and 2 / g or less, the powder packing density is not more than 0.45 g / cm 3 or more 0.70 g / cm 3, an electric double layer capacitor average particle diameter of 1μm or more 7μm or less More effective.

【0025】以下、本発明の一実施形態の電気二重層キ
ャパシタについて図面を参照しながら説明する。図3は
本発明の構成要素である電気二重層キャパシタの一実施
形態を示す概略断面図である。
Hereinafter, an electric double layer capacitor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic sectional view showing an embodiment of an electric double layer capacitor which is a component of the present invention.

【0026】図3に示すように、電気二重層キャパシタ
2は、セパレータ2aを介した一対の電極2b、2b’
が外装缶2cに収納されている。セパレータ2a及び電
極2b、2b’には電解液が含浸されており、電極2
b,2b’には各々電流を外部に取り出す集電体2d、
2d’が電気的に接続されている。なお、電気二重層キ
ャパシタ2の形状は、特に限定されるものではないが、
フィルム型、コイン型、円筒型、箱形等種々の形状が作
製可能である。
As shown in FIG. 3, the electric double layer capacitor 2 has a pair of electrodes 2b, 2b ′ with a separator 2a interposed therebetween.
Is stored in the outer can 2c. The separator 2a and the electrodes 2b, 2b 'are impregnated with an electrolytic solution.
b and 2b 'each have a current collector 2d for extracting a current to the outside;
2d 'is electrically connected. Although the shape of the electric double layer capacitor 2 is not particularly limited,
Various shapes such as a film type, a coin type, a cylindrical type, and a box type can be manufactured.

【0027】電気二重層キャパシタ2の電極2b、2
b’は、活性炭をバインダーで成形したものであり、必
要に応じて導電材等を添加してもよい。電極2b、2
b’の成形法としては、ロール成形、プレス成形、上記
混合物を溶媒に分散させたスラリーを金属箔状に塗布す
る塗布法等の、電池用電極又は電気二重層キャパシタ電
極に対して提案されている種々の方法を用いることがで
きる。なお、導電材を電極2b、2b’中に含ませる場
合、導電材としては、アセチレンブラック、カーボンブ
ラック、黒鉛等の炭素質、金属粉等を用いることができ
る。
The electrodes 2b and 2 of the electric double layer capacitor 2
b ′ is formed by molding activated carbon with a binder, and a conductive material or the like may be added as necessary. Electrodes 2b, 2
As a forming method of b ′, roll forming, press forming, such as a coating method of applying a slurry obtained by dispersing the above mixture in a solvent in the form of a metal foil, have been proposed for battery electrodes or electric double layer capacitor electrodes. Various methods can be used. When a conductive material is included in the electrodes 2b and 2b ', carbon materials such as acetylene black, carbon black, and graphite, metal powder, and the like can be used as the conductive material.

【0028】また、電極2b,2b’の形状は、電気二
重層キャパシタ2の形状又は大きさ、若しくはキャパシ
タが満たすべき特性によって適宜決定されるが、例え
ば、コイン型の場合は、厚さ0.1mm〜30mm程度
の円盤状の電極、箱形の場合は、厚さ0.1mm〜30
mm程度のシート状の電極、円筒型の場合は、円柱状の
電極又は厚さ0.02mm〜2mm程度のアルミニウ
ム、ステンレス等の金属集電箔上に形成した電極を巻回
したもの等を用いることができる。
The shape of the electrodes 2b and 2b 'is appropriately determined depending on the shape or size of the electric double layer capacitor 2 or the characteristics to be satisfied by the capacitor. A disk-shaped electrode of about 1 mm to 30 mm, and a box-shaped electrode has a thickness of 0.1 mm to 30 mm.
In the case of a sheet-like electrode having a thickness of about mm, a cylindrical electrode or a cylindrical electrode or a material obtained by winding an electrode formed on a metal current collector foil such as aluminum or stainless steel having a thickness of about 0.02 mm to 2 mm, or the like is used. be able to.

【0029】電気二重層キャパシタ2の電極2b、2
b’に含まれる活性炭のBET法による比表面積は、1
300m2/g以上2200m2/g以下であり、好まし
くは1400m2/g以上2000m2/g以下である。
比表面積が1300m2/g未満の場合、充填密度は向
上するが、重量当たりの容量が低下したり、又は保液量
が低下して、充分な出力特性が得られないので好ましく
ない。一方、比表面積が2200m2/gを越える場
合、充填密度が低下して充分な容量が得られないので好
ましくない。
The electrodes 2b and 2 of the electric double layer capacitor 2
The specific surface area of the activated carbon contained in b ′ by the BET method is 1
It is 300 m 2 / g or more and 2200 m 2 / g or less, preferably 1400 m 2 / g or more and 2000 m 2 / g or less.
When the specific surface area is less than 1300 m 2 / g, the packing density is improved, but the capacity per weight is reduced or the liquid retention amount is reduced, so that it is not preferable because sufficient output characteristics cannot be obtained. On the other hand, when the specific surface area exceeds 2200 m 2 / g, the packing density is lowered and a sufficient capacity cannot be obtained, which is not preferable.

【0030】また、前記活性炭の充填性は、粒子の形
状、粒度分布、表面状態等に依存する。この充填性を評
価する方法として、タップ密度又は粉体充填密度等が上
げられる。本発明者は、このうち粉体充填密度が電極密
度と高い相関があることを見いだした。すなわち、電極
2b、2b’に含まれる活性炭の粉体充填密度は、0.
45g/cm3以上0.70g/cm3以下であり、好ま
しくは0.45g/cm 3以上0.65g/cm3以下で
ある。粉体充填密度が0.45g/cm3未満の場合、
電極密度が低下し、充分な容量が得られないので好まし
くない。一方、粉体充填密度が0.70g/cm3を越
える場合、粉体充填密度は向上するが、重量当たりの容
量が低下したり、又は保液量が低下して、充分な出力特
性が得られないので好ましくない。
The packing property of the activated carbon depends on the shape of the particles.
It depends on the shape, particle size distribution, surface condition, etc. Evaluation of this filling property
Tap density or powder packing density
I can do it. The present inventor has found that the powder packing density is
And high degree of correlation. That is, the electrode
The powder packing density of the activated carbon contained in 2b and 2b 'is 0.
45g / cmThree0.70g / cm or moreThreeLess and preferred
Or 0.45 g / cm Three0.65g / cm or moreThreeBelow
is there. 0.45g / cm powder packing densityThreeIf less than
It is preferable because the electrode density decreases and sufficient capacity cannot be obtained.
I don't. On the other hand, the powder packing density is 0.70 g / cmThreeOver
Powder packing density improves, but the capacity per weight
If the output volume decreases or the
It is not preferable because the property cannot be obtained.

【0031】さらに、電極2b、2b’に含まれる活性
炭の平均粒子径は、1μm以上7μm以下であり、好ま
しくは1μm以上5μm以下である。平均粒子径が1μ
m未満の場合、粉体の二次凝集などが激しくなり、電極
成形時に問題が生じるので好ましくない。一方、平均粒
子径が7μmを越える場合、電極密度が低下して充分な
容量が得られないので好ましくない。さらに、上記の平
均粒子径の条件に加え、活性炭の体積基準の累積分布の
90%粒子径が6μm以上22μm以下であり、かつ、
体積基準の累積分布の10%粒子径が0.1μm以上2
μm以下であることがより好ましく、活性炭の体積基準
の累積分布の90%粒子径が6μm以上20μm以下で
あり、かつ、体積基準の累積分布の10%粒子径が0.
1μm以上2μm以下であることがさらに好ましい。こ
の場合、活性炭の粒子径が比較的幅広い分布を有し、ま
た、0.1μm未満の微粉及び22μmを越える大粒子
が少ない活性炭により、より高い体積当たりの容量を実
現することができる。
Further, the average particle size of the activated carbon contained in the electrodes 2b and 2b 'is 1 μm or more and 7 μm or less, preferably 1 μm or more and 5 μm or less. Average particle size is 1μ
If it is less than m, secondary agglomeration and the like of the powder become intense and a problem occurs at the time of electrode molding, which is not preferable. On the other hand, when the average particle diameter exceeds 7 μm, the electrode density is lowered and a sufficient capacity cannot be obtained, which is not preferable. Further, in addition to the above-mentioned condition of the average particle size, the 90% particle size of the volume-based cumulative distribution of the activated carbon is 6 μm or more and 22 μm or less, and
10% particle size of the volume-based cumulative distribution is 0.1 μm or more 2
More preferably, the 90% particle diameter of the volume-based cumulative distribution of the activated carbon is 6 μm or more and 20 μm or less, and the 10% particle size of the volume-based cumulative distribution is 0.1 μm or less.
More preferably, it is 1 μm or more and 2 μm or less. In this case, a higher capacity per volume can be realized by the activated carbon having a relatively wide distribution of the particle size of the activated carbon and a small amount of fine powder of less than 0.1 μm and less large particles of more than 22 μm.

【0032】また、電極2b、2b’に含まれる活性炭
の半径15Å以下の細孔容積は、0.8ml/g以上で
あり、好ましくは1.0ml/g以上であり、また、
1.6ml/g以下であることが好ましい。細孔容積が
0.8ml/g未満の場合、充分な容量が得られないの
で好ましくなく、細孔容積が1.6ml/gを越える場
合、電極密度が低下して体積当たりの容量が低下して好
ましくない。
The pore volume of the activated carbon contained in the electrodes 2b and 2b 'having a radius of 15 ° or less is 0.8 ml / g or more, preferably 1.0 ml / g or more.
It is preferably 1.6 ml / g or less. When the pore volume is less than 0.8 ml / g, a sufficient capacity cannot be obtained, which is not preferable. When the pore volume exceeds 1.6 ml / g, the electrode density decreases and the capacity per volume decreases. Is not preferred.

【0033】上記条件を満たしていれば、電極2b、2
b’に含まれる活性炭の製造方法は、特に限定されず、
一般的な製造法として、例えば、真田雄三ら著「新版
活性炭基礎と応用」に記載されている方法を用いること
ができる。従って、本実施の形態の電気二重層キャパシ
タは、活性炭が上記の条件を満たすように加工する以外
は、一般的な電気二重層キャパシタの製造方法を用いる
ことができるので、容易に製造することができる。ま
た、一般に、活性炭は、10μm以上の粉体又は繊維等
の形態に製造されるため、ボールミル、ジェットミル等
の粉砕装置及び分級装置を用いて上記条件を満たす活性
炭を得ることが簡便で好ましいが、原料、賦活法、一次
的に合成される活性炭の形状等を調整することにより上
記の条件を満たす活性炭を得てもよい。
If the above conditions are satisfied, the electrodes 2b, 2b
The method for producing the activated carbon contained in b ′ is not particularly limited,
As a general manufacturing method, for example, "New Edition" by Yuzo Sanada et al.
The method described in "Activated Carbon Basics and Applications" can be used. Therefore, the electric double layer capacitor of the present embodiment can be easily manufactured because a general method of manufacturing an electric double layer capacitor can be used except that the activated carbon is processed so as to satisfy the above conditions. it can. In general, activated carbon is manufactured in the form of powder or fiber having a size of 10 μm or more. Therefore, it is convenient and preferable to obtain activated carbon that satisfies the above-mentioned conditions using a crusher and a classifier such as a ball mill and a jet mill. The activated carbon satisfying the above conditions may be obtained by adjusting the raw material, the activation method, the shape of the activated carbon to be primarily synthesized, and the like.

【0034】電極2b、2b’に用いられるバインダー
としては、公知のものが使用可能であるが、例えば、ポ
リテトラフルオロエチレン、ポリフッ化ビニリデン等の
フッ素樹脂、カルボキシメチルセルロース、ポリビニル
ピロリドン、ポリビニルアルコール、SBRゴム、アク
リル酸樹脂等が挙げられ、これらのうちの一種又は複数
種を用いることができる。バインダーの添加量は、特に
限定されず、活性炭の粒度、粒度分布、粒子形状、目的
とする電極密度等により適宜決定されるが、活性炭に対
し3重量%〜20重量%が一般的である。
As the binder used for the electrodes 2b and 2b ', known binders can be used. For example, fluorocarbon resins such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, SBR Rubber, acrylic acid resin and the like can be mentioned, and one or more of these can be used. The amount of the binder to be added is not particularly limited, and is appropriately determined depending on the particle size, particle size distribution, particle shape, target electrode density, and the like of the activated carbon, and is generally 3% by weight to 20% by weight based on the activated carbon.

【0035】セパレータ2aとしては、ポリエチレン、
ポリプロピレン等のポリオレフィン製の微孔膜又は不織
布、一般に電解コンデンサー紙と呼ばれるパルプを主原
料とする多孔質膜等の公知のものを用いることができ
る。なお、上記のように、一般に電極間は電解液を含浸
させた多孔質のセパレータで隔離されている場合が多い
が、このセパレータの代わりに固体電解質、ゲル状電解
質を用いてもよい。
As the separator 2a, polyethylene,
Known materials such as a microporous membrane or nonwoven fabric made of polyolefin such as polypropylene, a porous membrane mainly made of pulp generally called electrolytic condenser paper, and the like can be used. As described above, in general, the electrodes are often separated by a porous separator impregnated with an electrolytic solution, but a solid electrolyte or a gel electrolyte may be used instead of the separator.

【0036】電極2b、2b’及びセパレータ2aに用
いられる電解液としては、特に限定されないが、非水系
電解液を用いることが好ましく、単セル当たりの電圧が
高い有機電解液を用いることがより好ましい。有機電解
液は非プロトン性の有機溶媒に電解質を0.5mol/
l〜3.0mol/lに溶解したものが好ましく、有機
溶媒としては、プロピレンカーボネート、エチレンカー
ボネート、ブチレンカーボネート、γ−ブチロラクト
ン、スルホラン、アセトニトリル等の公知のものが使用
でき、これらのうちの一種又は複数種を混合して使用し
てもよい。また、電解質としては、テトラエチルアンモ
ニウムテトラフルオロボレート、トリエチルメチルアン
モニウムテトラフルオロボレート、テトラエチルアンモ
ニウムヘキサフルオロフォスフェート等の公知のものが
使用でき、これらのうちの一種又は複数種を混合して使
用してもよい。
The electrolyte used for the electrodes 2b, 2b 'and the separator 2a is not particularly limited, but a non-aqueous electrolyte is preferably used, and an organic electrolyte having a high voltage per unit cell is more preferably used. . The organic electrolyte is prepared by adding 0.5 mol /
1 to 3.0 mol / l are preferable. As the organic solvent, known solvents such as propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, and acetonitrile can be used. A plurality of types may be mixed and used. In addition, as the electrolyte, known materials such as tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, and tetraethylammonium hexafluorophosphate can be used, and one or a mixture of these may be used. Good.

【0037】上記のように構成された電気二重層キャパ
シタの充電電圧は、上記有機電解液を用いた場合、1.
8V以上3.3V以下に設定することが好ましい。充電
電圧は、電気二重層キャパシタに用いる活性炭種、電解
液、使用温度、目的とする寿命により適宜決定される
が、1.8V未満の場合、利用可能な容量が減少するの
で好ましくなく、3.3Vを越える場合、電解液の分解
が激しくなるので好ましくない。
The charging voltage of the electric double layer capacitor having the above-mentioned structure is as follows.
It is preferable to set the voltage between 8 V and 3.3 V. The charging voltage is appropriately determined depending on the type of activated carbon used for the electric double layer capacitor, the electrolytic solution, the operating temperature, and the intended life, but if it is less than 1.8 V, the usable capacity decreases, which is not preferable. If the voltage exceeds 3 V, the decomposition of the electrolytic solution becomes intense, which is not preferable.

【0038】[0038]

【実施例】以下、本発明の実施例を示し、本発明をさらに
具体的に説明する。
The present invention will be described more specifically below with reference to examples of the present invention.

【0039】リチウム二次電池として寸法150×21
0×厚み6mmでエネルギー容量37Wh、エネルギー
密度196Wh/lの電池を用いた。内部抵抗値(R
1)は14mΩであった。
Size: 150 × 21 as lithium secondary battery
A battery having a 0 × 6 mm thickness, an energy capacity of 37 Wh, and an energy density of 196 Wh / l was used. Internal resistance (R
1) was 14 mΩ.

【0040】電気二重層キャパシタとして、寸法φ40
×125で静電容量2000F、内部抵抗6mΩの単位
セルを2直列にして前記のリチウム二次電池と並列接続
した。電気二重層キャパシタの内部抵抗値合計(R2)
は12mΩであった。つまり、内部抵抗値の関係はR1>
R2である。接続方法は図1と同様にした。
As an electric double layer capacitor, the size φ40
A unit cell of × 125, a capacitance of 2000 F, and an internal resistance of 6 mΩ was connected in series with the lithium secondary battery in two series. Total internal resistance of electric double layer capacitor (R2)
Was 12 mΩ. That is, the relationship between the internal resistance values is R1>
R2. The connection method was the same as in FIG.

【0041】2Aの電流で4.2Vまで充電し、その後
4.2Vの定電圧を印加する定電流定電圧充電を7時間
行った後、(a)20A、10秒間放電、(b)20秒
間回路をオープンとし、この(a)(b)の操作を10
0回繰り返した。その結果を図4及び、拡大図を図5に
示す。
The battery was charged to 4.2 V with a current of 2 A, and then a constant current and constant voltage charge of applying a constant voltage of 4.2 V was performed for 7 hours, followed by (a) discharging at 20 A for 10 seconds, and (b) discharging for 20 seconds. The circuit is opened, and these operations (a) and (b)
Repeated 0 times. The result is shown in FIG. 4 and an enlarged view is shown in FIG.

【0042】電気二重層キャパシタの電流値は初期にお
いて12Aで放電し、リチウム二次電池の初期電流値は
8Aであった。また、20Aで10秒間放電させた後、
20秒間、オープン回路の状態時に図1の外部回路への
電流の流れはなく、アンペアメータ(A3)の電流値は
0Aであるが、リチウム二次電池1と電気二重層キャパ
シタ2との間で電流の流れが生じ、リチウム二次電池1
から電気二重層キャパシタ2の側に電流が流れ、リチウ
ム二次電池から電気二重層キャパシタ2へ充電している
ことが分かる。この組み合わせでは、リチウム二次電池
1の電池電流の初期電流値が8Aであったので、リチウ
ム二次電池の放電レートは0.8Cで電池負荷は小さ
い。
The electric current of the electric double layer capacitor was initially discharged at 12 A, and the initial current value of the lithium secondary battery was 8 A. After discharging at 20A for 10 seconds,
For 20 seconds, there is no current flow to the external circuit of FIG. 1 in the open circuit state, and the current value of the ampere meter (A3) is 0 A, but between the lithium secondary battery 1 and the electric double layer capacitor 2 A current flow occurs, and the lithium secondary battery 1
Thus, it can be seen that a current flows to the side of the electric double layer capacitor 2 and the electric double layer capacitor 2 is charged from the lithium secondary battery. In this combination, since the initial current value of the battery current of the lithium secondary battery 1 was 8 A, the discharge rate of the lithium secondary battery was 0.8 C and the battery load was small.

【0043】次に、電気二重層キャパシタを併用せずに
リチウム二次電池単独では20A放電時、該電池の放電
レートは2Cと大きい。そのため、電気二重層キャパシ
タと併用した場合、2Cの負荷時においても0.8Cと
いう1/2以下の負荷しかリチウム二次電池にはかから
ない事が判明した。
Next, when a lithium secondary battery is used alone without discharging an electric double layer capacitor and discharges at 20 A, the discharge rate of the battery is as large as 2 C. Therefore, it has been found that when used in combination with an electric double layer capacitor, only a load of 0.8 C or less, which is 1/2 or less, is applied to the lithium secondary battery even at a load of 2 C.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
に係る蓄電装置によれば、リチウム二次電池と電気二重
層キャパシタとを並列接続し、前記リチウム二次電池の
内部抵抗値を前記電気二重層キャパシタの内部抵抗値以
上としたことにより、電気二重層キャパシタがリチウム
二次電池の負荷を低減して、良好な放電特性を得ること
ができる。
As is apparent from the above description, according to the power storage device of the present invention, a lithium secondary battery and an electric double layer capacitor are connected in parallel, and the internal resistance of the lithium secondary battery is reduced by By setting the internal resistance value of the electric double layer capacitor or more, the electric double layer capacitor can reduce the load of the lithium secondary battery and obtain good discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蓄電装置の一実施形態を示す回路
図である。
FIG. 1 is a circuit diagram illustrating an embodiment of a power storage device according to the present invention.

【図2】本発明に係る蓄電装置の構成要素であるリチウ
ム二次電池の一例を示し、図2(a)は平面図、図2
(b)は側面図である。
2A and 2B show an example of a lithium secondary battery which is a component of a power storage device according to the present invention. FIG. 2A is a plan view and FIG.
(B) is a side view.

【図3】本発明に係る蓄電装置の構成要素である電気二
重層キャパシタの一実施形態を概略的に示す断面図であ
る。
FIG. 3 is a cross-sectional view schematically showing an embodiment of an electric double layer capacitor which is a component of the power storage device according to the present invention.

【図4】本発明に係る蓄電装置を用いた放電実験の結果
を示すグラフである。
FIG. 4 is a graph showing the results of a discharge experiment using a power storage device according to the present invention.

【図5】図4のグラフを一部拡大して示すグラフであ
る。
FIG. 5 is a graph showing a partially enlarged graph of FIG. 4;

【図6】図1の回路にバイパス回路を設けた例を示す回
路図である。
FIG. 6 is a circuit diagram showing an example in which a bypass circuit is provided in the circuit of FIG. 1;

【符号の説明】[Explanation of symbols]

1 リチウム二次電池 1a 上蓋 1b 底容器 1c 正極端子 1d 負極端子 1e 注液口 1f 封口フィルム 2 電気二重層キャパシタ 2b、2b’ 電極 2a セパレータ 2d、2d’ 集電体 2c 外装缶 DESCRIPTION OF SYMBOLS 1 Lithium secondary battery 1a Top lid 1b Bottom container 1c Positive electrode terminal 1d Negative electrode terminal 1e Injection port 1f Sealing film 2 Electric double layer capacitor 2b, 2b 'Electrode 2a Separator 2d, 2d' Current collector 2c Outer can

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/02 H01G 9/00 301A 301D 301Z (72)発明者 木下 肇 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 佐竹 久史 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 矢田 静邦 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 Fターム(参考) 5G003 AA00 AA01 BA03 BA04 CA12 CC04 DA13 5H029 AJ02 BJ03 HJ04 HJ19 HJ20 5H030 AA01 AS01 BB21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/02 H01G 9/00 301A 301D 301Z (72) Inventor Hajime Kinoshita Hajime Hiranocho, Chuo-ku, Osaka-shi, Osaka 1-2, Kansai New Technology Research Institute Co., Ltd. (72) Inventor Hisashi Satake 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka, Japan Inside Kansai New Technology Research Institute Co., Ltd. (72) Inventor Shizukuni Yada Osaka 4-1-2 Hirano-cho, Chuo-ku, Osaka F-term in Kansai Research Institute of Technology (reference) 5G003 AA00 AA01 BA03 BA04 CA12 CC04 DA13 5H029 AJ02 BJ03 HJ04 HJ19 HJ20 5H030 AA01 AS01 BB21

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 リチウム二次電池と電気二重層キャパシ
タとを並列接続した蓄電装置であって、前記リチウム二
次電池の内部抵抗値を前記電気二重層キャパシタの内部
抵抗値以上としたことを特徴とする蓄電装置。
1. A power storage device in which a lithium secondary battery and an electric double layer capacitor are connected in parallel, wherein the internal resistance of the lithium secondary battery is equal to or greater than the internal resistance of the electric double layer capacitor. Power storage device.
【請求項2】 前記電気二重層キャパシタは、電気二重
層キャパシタの単位セルの複数個が直列接続されてお
り、前記リチウム二次電池の内部抵抗値が前記直列接続
した電気二重層キャパシタ単位セルの合計内部抵抗値以
上であることを特徴とする請求項1記載の蓄電装置。
2. The electric double-layer capacitor, wherein a plurality of unit cells of the electric double-layer capacitor are connected in series, and an internal resistance value of the lithium secondary battery is equal to that of the unit cell of the electric double-layer capacitor connected in series. The power storage device according to claim 1, wherein the power storage device has a total internal resistance value or more.
【請求項3】 前記リチウム二次電池のエネルギー容量
が30Wh以上であり,電池の体積エネルギー密度が180
Wh/l以上であり、かつ電池が厚さ12mm未満の扁平形状
であることを特徴とする請求項1記載の蓄電装置。
3. The energy capacity of the lithium secondary battery is 30 Wh or more, and the volume energy density of the battery is 180 Wh.
2. The power storage device according to claim 1, wherein the battery has a flat shape of not less than Wh / l and a thickness of less than 12 mm. 3.
【請求項4】 前記電気二重層キャパシタが活性炭を含
む電極を備え、該活性炭は、BET法による比表面積が
1300m2/g以上2200m2/g以下であり、粉体
充填密度が0.45g/cm3以上0.70g/cm3
下であり、平均粒子径が1μm以上7μm以下であるこ
とを特徴とする請求項1記載の蓄電装置。
4. The electric double layer capacitor includes an electrode containing activated carbon, the activated carbon has a specific surface area of 1300 m 2 / g or more and 2200 m 2 / g or less according to a BET method, and a powder packing density of 0.45 g / g. cm 3 or more 0.70 g / cm 3 or less, the electric storage device according to claim 1, wherein the average particle diameter of 1μm or more 7μm or less.
【請求項5】 前記活性炭は、体積基準の累積分布の9
0%粒子径が6μm以上22μm以下であり、体積基準
の累積分布の10%粒子径が0.1μm以上2μm以下
であることを特徴とする請求項4に記載の蓄電装置。
5. The activated carbon has a volume-based cumulative distribution of 9%.
5. The power storage device according to claim 4, wherein the 0% particle diameter is 6 μm to 22 μm, and the 10% particle diameter of the volume-based cumulative distribution is 0.1 μm to 2 μm. 6.
【請求項6】 前記活性炭の半径15Å以下の細孔容積
は、0.8ml/g以上であることを特徴とする請求項
4又は5に記載の蓄電装置。
6. The power storage device according to claim 4, wherein a pore volume of the activated carbon having a radius of 15 ° or less is 0.8 ml / g or more.
【請求項7】 前記電気二重層キャパシタの電解液とし
て非水系電解液を用いることを特徴とする請求項4〜6
のいずれかに記載の蓄電装置。
7. A non-aqueous electrolytic solution is used as an electrolytic solution for the electric double layer capacitor.
The power storage device according to any one of the above.
【請求項8】 前記活性炭の単位重量当たりの容量が4
0F/g以上であり、前記電極の単位体積当たりの容量
が20F/cm3以上であることを特徴とする請求項7
記載の蓄電装置。
8. The capacity per unit weight of the activated carbon is 4
8. The electrode according to claim 7, wherein the electrode has a capacity per unit volume of 20 F / cm 3 or more.
The power storage device according to claim 1.
【請求項9】 前記電気二重層キャパシタの充電電圧
が、1.8V以上3.3V以下であることを特徴とする
請求項7又は8に記載の蓄電装置。
9. The power storage device according to claim 7, wherein a charging voltage of the electric double layer capacitor is 1.8 V or more and 3.3 V or less.
JP2001043055A 2001-02-20 2001-02-20 Power storage device Expired - Fee Related JP4526718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043055A JP4526718B2 (en) 2001-02-20 2001-02-20 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043055A JP4526718B2 (en) 2001-02-20 2001-02-20 Power storage device

Publications (2)

Publication Number Publication Date
JP2002246071A true JP2002246071A (en) 2002-08-30
JP4526718B2 JP4526718B2 (en) 2010-08-18

Family

ID=18905284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043055A Expired - Fee Related JP4526718B2 (en) 2001-02-20 2001-02-20 Power storage device

Country Status (1)

Country Link
JP (1) JP4526718B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431788A (en) * 2005-10-27 2007-05-02 Oxloc Ltd Tracking device
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Battery system charge state recovery method
JP2008182809A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Battery circuit, battery pack, and battery system
WO2009040916A1 (en) * 2007-09-27 2009-04-02 Shin-Kobe Electric Machinery Co., Ltd. Electric double layer capacitor, power supply system for vehicle, stationary power supply system, and method for determining number of polar plates
JP2009123385A (en) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd Power storage device
WO2009128482A1 (en) 2008-04-16 2009-10-22 日清紡ホールディングス株式会社 Accumulator
US7667350B2 (en) 2004-09-30 2010-02-23 Hitachi, Ltd. Electric power source apparatus using fuel cell and method of controlling the same
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
US9368980B2 (en) 2012-07-02 2016-06-14 Rohm Co., Ltd. Battery control circuit
JP2021111782A (en) * 2019-12-31 2021-08-02 位速科技股▲ふん▼有限公司 Energy storage system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937317A (en) * 1972-08-12 1974-04-06
JPS62103165U (en) * 1985-12-20 1987-07-01
JPH06104014A (en) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd Power supply circuit including batteries
JPH06319287A (en) * 1993-04-30 1994-11-15 Aqueous Res:Kk Power supply for motor drive
JPH07335266A (en) * 1994-06-08 1995-12-22 Nissan Motor Co Ltd Battery pack and its charging device
JPH0819188A (en) * 1994-06-29 1996-01-19 Nissan Motor Co Ltd Battery charger for assembled batteries
JPH09130969A (en) * 1995-10-30 1997-05-16 Okamura Kenkyusho:Kk Power storage device
JP2000102186A (en) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd Method for controlling charging and discharging of combined battery
JP2000182904A (en) * 1998-12-15 2000-06-30 Osaka Gas Co Ltd Electric double-layered capacitor
JP2000195480A (en) * 1998-12-28 2000-07-14 Osaka Gas Co Ltd Battery module
JP2000251941A (en) * 1999-03-01 2000-09-14 Osaka Gas Co Ltd Nonaqueous secondary battery and its manufacture
JP2000260478A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000294461A (en) * 1999-04-08 2000-10-20 Osaka Gas Co Ltd Electric double-layer capacitor
JP2000295784A (en) * 1999-04-08 2000-10-20 Sekisui Chem Co Ltd Power storage system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937317A (en) * 1972-08-12 1974-04-06
JPS62103165U (en) * 1985-12-20 1987-07-01
JPH06104014A (en) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd Power supply circuit including batteries
JPH06319287A (en) * 1993-04-30 1994-11-15 Aqueous Res:Kk Power supply for motor drive
JPH07335266A (en) * 1994-06-08 1995-12-22 Nissan Motor Co Ltd Battery pack and its charging device
JPH0819188A (en) * 1994-06-29 1996-01-19 Nissan Motor Co Ltd Battery charger for assembled batteries
JPH09130969A (en) * 1995-10-30 1997-05-16 Okamura Kenkyusho:Kk Power storage device
JP2000102186A (en) * 1998-09-18 2000-04-07 Sanyo Electric Co Ltd Method for controlling charging and discharging of combined battery
JP2000182904A (en) * 1998-12-15 2000-06-30 Osaka Gas Co Ltd Electric double-layered capacitor
JP2000195480A (en) * 1998-12-28 2000-07-14 Osaka Gas Co Ltd Battery module
JP2000251941A (en) * 1999-03-01 2000-09-14 Osaka Gas Co Ltd Nonaqueous secondary battery and its manufacture
JP2000260478A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000294461A (en) * 1999-04-08 2000-10-20 Osaka Gas Co Ltd Electric double-layer capacitor
JP2000295784A (en) * 1999-04-08 2000-10-20 Sekisui Chem Co Ltd Power storage system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667350B2 (en) 2004-09-30 2010-02-23 Hitachi, Ltd. Electric power source apparatus using fuel cell and method of controlling the same
JP2007122882A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Battery system charge state recovery method
GB2431788A (en) * 2005-10-27 2007-05-02 Oxloc Ltd Tracking device
JP2008182809A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Battery circuit, battery pack, and battery system
WO2009040916A1 (en) * 2007-09-27 2009-04-02 Shin-Kobe Electric Machinery Co., Ltd. Electric double layer capacitor, power supply system for vehicle, stationary power supply system, and method for determining number of polar plates
JP4983925B2 (en) * 2007-09-27 2012-07-25 新神戸電機株式会社 Electric double layer capacitor, vehicle power supply system, stationary power supply system, and number of plates
JP2009123385A (en) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd Power storage device
WO2009128482A1 (en) 2008-04-16 2009-10-22 日清紡ホールディングス株式会社 Accumulator
CN102007635A (en) * 2008-04-16 2011-04-06 日清纺控股株式会社 Accumulator
US8030901B2 (en) 2008-04-16 2011-10-04 Nisshinbo Holdings Inc. Electric energy storage device
CN102007635B (en) * 2008-04-16 2013-09-04 日清纺控股株式会社 Accumulator
JP2011108372A (en) * 2009-11-12 2011-06-02 Asahi Kasei Corp Module for power supply device and automobile equipped with this
US9368980B2 (en) 2012-07-02 2016-06-14 Rohm Co., Ltd. Battery control circuit
JP2021111782A (en) * 2019-12-31 2021-08-02 位速科技股▲ふん▼有限公司 Energy storage system
JP7303177B2 (en) 2019-12-31 2023-07-04 位速科技股▲ふん▼有限公司 energy storage system

Also Published As

Publication number Publication date
JP4526718B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
CN100385587C (en) Organic electrolytic capacitor
JP5085651B2 (en) Capacitor-battery hybrid electrode assembly
WO2019230464A1 (en) Charging method for nonaqueous electrolyte secondary cell and charging system for nonaqueous electrolyte secondary cell
CN103715383B (en) Charge storage element
US11296325B2 (en) Electrode for secondary battery including electrode protecting layer
WO2023138109A1 (en) Lithium-ion battery and power apparatus
US10319536B1 (en) High-capacity electrical energy storage device
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
CN110326074A (en) Electrochemical device
JP4526718B2 (en) Power storage device
WO2019167475A1 (en) Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
JP4813168B2 (en) Lithium ion capacitor
JP3390309B2 (en) Sealed alkaline storage battery
JP2022100813A (en) Secondary battery
JPH04248274A (en) laminated battery
CN204045667U (en) The capacitor batteries that a kind of composite pole piece manufactures
CN111788735B (en) Charging method and charging system of nonaqueous electrolyte secondary battery
JP5131949B2 (en) Capacitors
CN216850039U (en) Composite power storage device
JP2000294461A (en) Electric double-layer capacitor
US20230013715A1 (en) Secondary Battery
JP2011258919A (en) Secondary power source and method for manufacturing the same
JPH10284138A (en) Electric charge storing part compounded battery
JP2011216685A (en) Composite electricity storage device
Takei et al. The 200 V 2 kWh energy storage multicell system with 25 Wh Li/LiV3O8 single cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees