[go: up one dir, main page]

JP2002261343A - Laminated one-body baked type electromechanical conversion element - Google Patents

Laminated one-body baked type electromechanical conversion element

Info

Publication number
JP2002261343A
JP2002261343A JP2001376241A JP2001376241A JP2002261343A JP 2002261343 A JP2002261343 A JP 2002261343A JP 2001376241 A JP2001376241 A JP 2001376241A JP 2001376241 A JP2001376241 A JP 2001376241A JP 2002261343 A JP2002261343 A JP 2002261343A
Authority
JP
Japan
Prior art keywords
electrode
laminated
electromechanical transducer
conversion element
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376241A
Other languages
Japanese (ja)
Inventor
Toshiatsu Nagaya
年厚 長屋
Hitoshi Shindo
仁志 進藤
Atsuhiro Sumiya
篤宏 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2001376241A priority Critical patent/JP2002261343A/en
Priority to US10/029,005 priority patent/US6734607B2/en
Priority to DE10164326A priority patent/DE10164326A1/en
Publication of JP2002261343A publication Critical patent/JP2002261343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated one-body baking type electromechanical conversion element, having the same or more electrode characteristics than that of Ag-Pd-based electrode, especially having a low rigidity of the inner electrode layer and small inner stress generated at expansion or shrinkage of a ceramic layer, while using a low-cost electrode material. SOLUTION: The laminated one-body baking type electromechanical conversion element includes a laminate, in which a plurality of ceramic layers 11 made of piezoelectric ceramics or of electrostriction ceramics, and inner electrode layers 21 and 22 between the ceramic layers 11 are baked. The inner electrode layers 21 and 22 contain base metal with modulus of rigidity of 160 GPa or lower as a main component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,圧電あるいは電歪材料を用いた
積層一体焼成型の電気機械変換素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated integrated firing type electromechanical transducer using a piezoelectric or electrostrictive material.

【0002】[0002]

【従来技術】アクチュエータ,圧電トランス,超音波モ
ータなどに使われる積層一体焼成型の電気機械変換素子
は,圧電セラミックスあるいは電歪セラミックスよりな
る複数層のセラミック層と,該セラミック層間に介在さ
せた内部電極層とを一体的に焼成して作製される。
2. Description of the Related Art A laminated monolithic electromechanical transducer used in actuators, piezoelectric transformers, ultrasonic motors, and the like is composed of a plurality of ceramic layers made of piezoelectric ceramics or electrostrictive ceramics, and an internal layer interposed between the ceramic layers. It is manufactured by integrally firing the electrode layer.

【0003】この積層一体焼成型の電気機械変換素子に
おいては,電圧印加により歪みを発生するという逆圧電
効果が得られるので,内部電極とセラミック層との間に
応力が発生する。さらには,電圧の繰返し印加により発
熱するという基本的性質がある。従って,内部の電極層
に要求される特性は, 1.電気抵抗が低く,注入電荷のロスが少ないこと, 2.熱伝導率が高く,放熱性に優れること, 3.耐マイグレーション性に優れること, 4.剛性が低く,内部応力が小さくクラック等を発生し
ないこと, 5.セラミックスとの接合強度が高く,使用時に剥離な
どを生じないこと, 6.低コストであること, などである。
[0003] In the electro-mechanical transducer of the laminated integral firing type, a stress is generated between the internal electrode and the ceramic layer because an inverse piezoelectric effect that distortion is generated by applying a voltage is obtained. Furthermore, there is a basic property that heat is generated by repeated application of a voltage. Therefore, the characteristics required for the internal electrode layer are: 1. low electrical resistance and low loss of injected charge; 2. High thermal conductivity and excellent heat dissipation. 3. Excellent migration resistance; 4. Low rigidity, small internal stress and no cracks. 5. High bonding strength with ceramics and no peeling during use. And low cost.

【0004】従来の積層一体焼成型の電気機械変換素子
においては,電極材料としてAg−Pd系金属材料が広
く使用されている。Agは導電率が高く比較的安価であ
るが,融点が960℃と低くまたマイグレーションが生
じ易いため,Ag単独では信頼性に劣る。一方,Pdは
高価ではあるが融点が高いため,Ag−Pd系金属材料
とすることによりマイグレーションの抑制,電極材料の
高融点化が可能である(特開平5−304043号公報
中に記載)。そのため,上記のごとくAg−Pd系金属
材料が広く使用されている。
[0004] In the conventional laminated integral firing type electromechanical transducer, an Ag-Pd-based metal material is widely used as an electrode material. Ag has high conductivity and is relatively inexpensive, but has a low melting point of 960 ° C. and easily causes migration, so that Ag alone is inferior in reliability. On the other hand, Pd is expensive but has a high melting point, and therefore, by using an Ag-Pd-based metal material, it is possible to suppress migration and increase the melting point of the electrode material (described in JP-A-5-304443). Therefore, as described above, Ag-Pd-based metal materials are widely used.

【0005】しかしPd添加によりマイグレーションを
抑制するとは言うものの,電極材料とセラミックス材料
間の接合は十分ではなく,このための対策として,特開
平5−304043号,特開平8−255509号他の
ようにさまざまな対策が取られている。また,Pd添加
によりマイグレーションは抑制されるが,コストが高く
なるため工業的には問題である。従って,Ag−Pd系
金属材料と同等以上の電極特性を有する低コストの電極
材料を用いた積層一体焼成型の電気機械変換素子が求め
られている。
However, although the migration is suppressed by the addition of Pd, the bonding between the electrode material and the ceramic material is not sufficient, and as a countermeasure for this, as disclosed in JP-A-5-304443, JP-A-8-255509 and others. Various measures have been taken. In addition, although migration is suppressed by adding Pd, it is industrially problematic because the cost is increased. Therefore, there is a need for a laminated and integrally fired electromechanical transducer using a low-cost electrode material having electrode characteristics equal to or higher than that of an Ag-Pd-based metal material.

【0006】[0006]

【解決しようとする課題】本発明はかかる従来の問題点
に鑑みてなされたもので,Ag−Pd系電極と同等以上
の電極特性を有し,かつ低コストの電極材料を用いた積
層一体焼成型の電気機械変換素子,特に,内部電極層の
剛性が低く,セラミック層の伸縮時に発生する内部応力
が小さいものを提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has an electrode characteristic that is equal to or higher than that of an Ag-Pd-based electrode and uses a low-cost electrode material to integrally laminate and fire. It is an object of the present invention to provide an electromechanical transducer of the type, in particular, one in which the rigidity of the internal electrode layer is low and the internal stress generated when the ceramic layer expands and contracts is small.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は,圧電
セラミックスあるいは電歪セラミックスよりなる複数層
のセラミック層と,該セラミック層間に介在させた内部
電極層とを一体的に焼成してなる積層体を有する積層一
体焼成型の電気機械変換素子において,上記内部電極層
は剛性率が160GPa以下の卑金属を主成分とするこ
とを特徴とする積層一体焼成型の電気機械変換素子にあ
る。
According to the first aspect of the present invention, a plurality of ceramic layers made of piezoelectric ceramics or electrostrictive ceramics and an internal electrode layer interposed between the ceramic layers are integrally fired. In the laminated monolithic electromechanical transducer having the laminated body, the internal electrode layer is mainly composed of a base metal having a rigidity of 160 GPa or less.

【0008】本発明において注目すべき点は,上記内部
電極層の主成分として,剛性率が160GPa以下とい
う,特定の性質を有する卑金属を適用する点にある。こ
れにより,積層一体焼成型の電気機械変換素子における
上記内部電極層全体の剛性を小さくすることができる。
それ故,上記電気機械変換素子を駆動した際にセラミッ
ク層の伸縮に伴って生じる内部応力を小さくすることが
できる。更に,上記内部電極層の主成分が卑金属である
ので,従来のAg−Pd系の材料を用いる場合に比べ,
低コスト化を図ることができる。
A point to be noted in the present invention is that a base metal having a specific property of a rigidity of 160 GPa or less is applied as a main component of the internal electrode layer. This makes it possible to reduce the rigidity of the entire internal electrode layer in the laminated integral firing type electromechanical transducer.
Therefore, when the electromechanical transducer is driven, the internal stress caused by the expansion and contraction of the ceramic layer can be reduced. Further, since the main component of the internal electrode layer is a base metal, compared with the case of using a conventional Ag-Pd-based material,
Cost reduction can be achieved.

【0009】上記ビッカース高度Hvが50を超える場
合,あるいは,剛性率(ヤング率)が160GPaを超
える場合には,いずれも内部電極層全体の剛性が高くな
り,伸縮時の内部応力が大きくなる。それ故,クラック
等の発生を誘発するおそれがある。
When the Vickers height Hv exceeds 50, or when the rigidity (Young's modulus) exceeds 160 GPa, the rigidity of the entire internal electrode layer increases, and the internal stress during expansion and contraction increases. Therefore, cracks and the like may be induced.

【0010】即ち,例えば,積層アクチュエータの場
合,積層方向の縦歪みをXとすると,同時に横方向に約
1/3X歪む性質がある。従って内部電極層とセラミッ
ク層との間にせん断応力が発生する。そのため,電極材
料は剛性の小さな材料である必要がある。従来から電極
材料として使用されているAg−Pd30%の純金属の
剛性率は不明であるが,500℃焼鈍品のAgからAg
−Pd30%への硬度上昇率である1.6倍を純金属の
Agの剛性率である100.5GPa(表3参照)に乗
じると約160GPaになる。よって,アクチュエータ
の変位性能,信頼性を損なわないためには純金属の剛性
率が160GPa以下である必要があり,そうすれば内
部応力はAgPd30%以下と同等以下と見積もられ
る。
That is, for example, in the case of a laminated actuator, if the longitudinal distortion in the laminating direction is X, there is a property that about 1 / 3X distortion occurs in the lateral direction at the same time. Therefore, a shear stress is generated between the internal electrode layer and the ceramic layer. Therefore, the electrode material needs to be a material with low rigidity. The rigidity of a pure metal of 30% Ag-Pd conventionally used as an electrode material is unknown, but the 500 ° C. annealed Ag is replaced with Ag.
Multiplying the rigidity of pure metal Ag, 100.5 GPa (see Table 3), by 1.6 times, the rate of increase in hardness to 30% Pd, results in about 160 GPa. Therefore, in order not to impair the displacement performance and reliability of the actuator, the rigidity of the pure metal needs to be 160 GPa or less, and the internal stress is estimated to be equal to or less than 30% of AgPd.

【0011】純金属の剛性率が160GPa以下であれ
ば内部応力はAg−Pd30%と同等以下と見積もられ
る。該当する卑金属はAl,Cu等である。特に後述す
るCuは体積抵抗率が15μΩcmと小さく,融点10
83℃とセラミックスの焼結温度である900−105
0℃より大きくかつ近いためより好ましい(後述する実
施形態例9参照)。
If the rigidity of the pure metal is 160 GPa or less, the internal stress is estimated to be equal to or less than 30% of Ag-Pd. The corresponding base metal is Al, Cu, or the like. In particular, Cu described below has a small volume resistivity of 15 μΩcm and a melting point of 10 μΩcm.
83 ° C and 900-105 which is the sintering temperature of ceramics
This is more preferable because it is larger and close to 0 ° C. (see Embodiment 9 described later).

【0012】次に,請求項2の発明のように,上記電気
機械変換素子の駆動時の変位は0.06〜0.15%と
することができる。即ち,上記変位が大きいほど,電気
機械変換素子での内部応力が大きくなり,クラックの誘
発を招きやすくなる。これに対し,上記のごとく変位が
0.06%以上という高変位の場合であっても,上記特
定の卑金属を用いることにより,内部応力を抑制し,ク
ラックの発生を防止することができる。0.15%以上
の変位では電極とは関係なく,繰り返し疲労によりセラ
ミック層そのものの強度が低下し,寿命が短くなるため
好ましくない。
Next, as in the second aspect of the present invention, the displacement of the electromechanical transducer during driving can be set to 0.06 to 0.15%. That is, the larger the displacement is, the larger the internal stress in the electromechanical transducer becomes, and the more likely it is to induce cracks. On the other hand, even when the displacement is as high as 0.06% or more as described above, the use of the specific base metal can suppress the internal stress and prevent the occurrence of cracks. A displacement of 0.15% or more is not preferable because the strength of the ceramic layer itself is reduced due to repeated fatigue and the life is shortened irrespective of the electrode.

【0013】また,請求項3の発明のように,上記電極
層の平均膜厚が1〜8μmであることが好ましい。上記
平均膜厚が8μmを超える場合には,内部電極層の剛性
が高くなり,駆動時の内部応力が高くなるという問題が
ある。1μm未満の場合には電極の抵抗値が高く,かつ
製造ばらつきが大きくなるため好ましくない。
It is preferable that the average thickness of the electrode layer is 1 to 8 μm. When the average film thickness is more than 8 μm, there is a problem that the rigidity of the internal electrode layer is increased and the internal stress during driving is increased. If the thickness is less than 1 μm, the resistance value of the electrode is high, and the manufacturing variation is undesirably large.

【0014】また,請求項4の発明のように,上記積層
体の積層方向の切断面に露出する上記内部電極の全長に
対する電極形成部分の割合で示す電極形成率が75%以
上とすることができる。上記電極形成率が高くなれば,
内部電極層全体の剛性が高くなる傾向にある。しかしな
がら,本発明では,上記のごとく内部電極層の剛性その
ものを低くできるので,電極形成率の向上による剛性ア
ップの影響を小さくすることができ,逆に,電気抵抗低
下の効果を得ることができる。
According to a fourth aspect of the present invention, an electrode formation ratio, which is a ratio of an electrode formation portion to the entire length of the internal electrode exposed on a cut surface in the stacking direction of the stack, is 75% or more. it can. If the electrode formation rate becomes higher,
The rigidity of the entire internal electrode layer tends to increase. However, in the present invention, since the rigidity of the internal electrode layer itself can be reduced as described above, the effect of increasing the rigidity due to the improvement in the electrode formation rate can be reduced, and conversely, the effect of reducing the electrical resistance can be obtained. .

【0015】また,請求項5の発明のように,上記電極
層の主成分は,Cu,Cu合金またはこれらの酸化物で
あることが好ましい。Cu,Cu合金またはこれらの酸
化物は比較的安価であると共に,剛性率が160GPa
以下の卑金属という要件を確実に満たすことができる
(表3参照)。
Preferably, the main component of the electrode layer is Cu, a Cu alloy or an oxide thereof. Cu, Cu alloys or their oxides are relatively inexpensive and have a rigidity of 160 GPa.
The following requirements for base metals can be reliably satisfied (see Table 3).

【0016】また,請求項6の発明のように,上記電極
層は更にCa,Mg,Srの少なくとも1種以上を含有
することが好ましい。即ち,本発明の電気機械変換素子
は,積層一体焼成型であるので,セラミック層を形成す
るためのグリーンシートと,上記電極層を形成するため
の電極用ペースト材料を交互に配した積層体を形成し,
これを一体的に焼成させて作製する。このとき,上記電
極用ペースト材料に電極層の主成分としてCu等を含有
させると共に,上記Ca,Mg,Srの少なくとも1種
を有する成分を含有させることが好ましい。この場合
に,上記のごとく,一体焼成後得られた電極層にはC
a,Mg,Srの少なくとも1種以上が含有される。
Further, it is preferable that the electrode layer further contains at least one of Ca, Mg and Sr. That is, since the electromechanical transducer of the present invention is of a laminated integral sintering type, a green sheet for forming a ceramic layer and a laminate in which an electrode paste material for forming the electrode layer is alternately arranged. Form
This is manufactured by integrally firing. At this time, it is preferable that the electrode paste material contains Cu and the like as a main component of the electrode layer, and also contains a component having at least one of Ca, Mg, and Sr. In this case, as described above, the electrode layer obtained after the integral firing has C
At least one of a, Mg, and Sr is contained.

【0017】そして,上記電極用ペースト材料にCa,
Mg,Srの少なくとも1種を有する成分を含有させる
ことにより,一体焼成時において次のような優れた作用
効果が得られる。即ち,Ca,Mg,Srの少なくとも
1種を有する成分,例えばCaO,MgO,SrO等が
上記電極用ペースト材料中に存在していれば,上記グリ
ーンシートと電極用ペースト材料との積層体を一体焼成
する際に,Cuとセラミック材料との混合物の溶融を防
止もしくは抑制する効果,あるいは上記混合物の融点を
上昇させる効果が得られる。これにより,Cuを含有す
る溶融物がセラミック層中に流れ込んで偏析等すること
を抑制することができる。そして,これにより,得られ
たセラミック層は本来の優れた性能を十分に発揮できる
状態に焼成される。
[0017] Then, Ca,
By including a component having at least one of Mg and Sr, the following excellent operational effects can be obtained during integral firing. That is, if a component having at least one of Ca, Mg, and Sr, such as CaO, MgO, and SrO, is present in the electrode paste material, the laminate of the green sheet and the electrode paste material is integrated. During firing, the effect of preventing or suppressing the melting of the mixture of Cu and the ceramic material or the effect of increasing the melting point of the mixture is obtained. Thereby, it is possible to prevent the melt containing Cu from flowing into the ceramic layer and causing segregation. Thus, the obtained ceramic layer is fired in a state where the original excellent performance can be sufficiently exhibited.

【0018】次に,請求項7の発明のように,上記セラ
ミック層は,主にPb(Zr,Ti)O3系のペロブス
カイト構造の酸化物であるPZTよりなることが好まし
い。このPZTは電気機械変換素子用のセラミック層と
して非常に優れた特性を示す。
Next, the ceramic layer is preferably made of PZT, which is a Pb (Zr, Ti) O 3 -based oxide having a perovskite structure. This PZT exhibits very excellent characteristics as a ceramic layer for an electromechanical transducer.

【0019】また,請求項8の発明のように,上記PZ
Tは,MoあるいはWの少なくとも1種以上を含有する
ことが好ましい。これにより,PZTの焼結温度を低下
せしめ,Cuとの同時焼成を容易にするという効果を得
ることができる。
Further, according to the present invention, the PZ
T preferably contains at least one of Mo and W. As a result, the effect of lowering the sintering temperature of PZT and facilitating simultaneous firing with Cu can be obtained.

【0020】また,請求項9の発明のように,上記電気
機械変換素子は,アクチュエータ,圧電トランス,超音
波モータのいずれかに用いることができる。そして,こ
れらの製品コストの低減,性能の向上を図ることができ
る。
Further, as in the ninth aspect of the present invention, the electromechanical transducer can be used in any of an actuator, a piezoelectric transformer, and an ultrasonic motor. In addition, the cost of these products can be reduced and the performance can be improved.

【0021】また,請求項10の発明のように,上記電
気機械変換素子は,インジェクタにおける燃料噴射用ア
クチュエータに用いることもできる。即ち,燃料噴射用
アクチュエータには,低コスト高速応答性及び高い耐久
性,信頼性が求められるが,上記電気機械変換素子を採
用することにより,これらを満たすことができる。
Further, as in the tenth aspect of the present invention, the electromechanical transducer can be used for a fuel injection actuator in an injector. That is, the fuel injection actuator is required to have low cost, high speed response, high durability, and reliability. These can be satisfied by employing the electromechanical transducer.

【0022】[0022]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる積層一体焼成型の電気機械
変換素子につき,図1,図2を用いて説明する。本例で
は,図1に示すごとく,PZTよりなるセラミック層1
1と,該セラミック層間に介在させた内部電極層21,
22とを一体的に焼成してなる積層体10を有する積層
一体焼成型の電気機械変換素子を作製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A laminated integrated firing type electromechanical transducer according to an embodiment of the present invention will be described with reference to FIGS. In this example, as shown in FIG. 1, a ceramic layer 1 made of PZT is used.
1, an internal electrode layer 21 interposed between the ceramic layers,
Thus, an electromechanical conversion element of a laminated integral sintering type having the laminated body 10 obtained by integrally sintering 22 and 22 was produced.

【0023】まず,セラミック層を作製するためのグリ
ーンシートを得るため,化学組成が(Pb0.92
0.09){(Zr0.54Ti0.460.985(Y0.5Nb0.5
0.01Mn0. 005}O3+0.5外mol%Pb0.830.17
Xとなるように調整したPZT原料粉末を準備した。
次いで,PZT原料粉末にポリビニルアルコール,BB
P,有機溶剤,分散剤を加えボールミルで48H混錬し
た後,ドクターブレード法で厚み110μmのグリーン
シートを作製した。
First, in order to obtain a green sheet for producing a ceramic layer, the chemical composition is (Pb 0.92 S
r 0.09 ) {(Zr 0.54 Ti 0.46 ) 0.985 (Y 0.5 Nb 0.5 )
0.01 Mn 0. 005} O 3 +0.5 outer mol% Pb 0.83 W 0.17
The PZT raw material powder was adjusted to O X was prepared.
Next, polyvinyl alcohol and BB were added to the PZT raw material powder.
After adding P, an organic solvent, and a dispersant, and kneading the mixture for 48 H using a ball mill, a green sheet having a thickness of 110 μm was prepared by a doctor blade method.

【0024】電極用ペースト材料は,エチルセルロース
をテルピネオールで溶解してなる有機ビヒクルと樹脂剤
(アクリル系樹脂,アラキド樹脂,エトセル系樹脂他)
35wt%とCuO粉(平均粒径:0.2〜0.5μm)
65wt%を混練することにより作製した。
The electrode paste material is an organic vehicle obtained by dissolving ethyl cellulose with terpineol and a resin agent (acrylic resin, arachid resin, ethocell resin, etc.).
35 wt% and CuO powder (average particle size: 0.2 to 0.5 μm)
It was produced by kneading 65 wt%.

【0025】回収したグリーンシートはプレス機で打ち
抜くか,切断機により切断し,所定の大きさの矩形体に
成形する。次いで,図2に示すごとく,上記電極用ペー
スト材料を,成形後のグリーンシート11の一方の表面
にスクリーン印刷により塗布した。なお,本例では,印
刷厚みは15μmとした。次に,同図に示すごとく,2
00枚程度のグリーンシート11を積層する。このと
き,電極用ペースト材料21,22が交互に左右の側面
101,102(図1,図2)に到達するようにした。
次いで,この積層体を圧着させた後,所定寸法にカット
した。
The collected green sheet is punched by a press or cut by a cutter to form a rectangular body having a predetermined size. Next, as shown in FIG. 2, the electrode paste material was applied to one surface of the formed green sheet 11 by screen printing. In this example, the print thickness was 15 μm. Next, as shown in FIG.
About 00 green sheets 11 are stacked. At this time, the electrode paste materials 21 and 22 alternately reach the left and right side surfaces 101 and 102 (FIGS. 1 and 2).
Next, the laminate was pressed and cut to a predetermined size.

【0026】次に,積層体を大気雰囲気において脱脂し
た後,メタライズ工程を行った。メタライズ工程は,比
較的低温の還元雰囲気で,電極用ペースト材料中のCu
OをCuへ還元する工程である。本例では,セラミック
材料が少なくとも化学式上鉛を含む酸化物であるため,
鉛と銅の共晶点:326℃直下で雰囲気調整し還元し
た。
Next, after the laminate was degreased in an air atmosphere, a metallizing step was performed. The metallizing step is performed in a reducing atmosphere at a relatively low temperature, in which Cu
This is a step of reducing O to Cu. In this example, since the ceramic material is an oxide containing at least lead on the chemical formula,
Eutectic point of lead and copper: The atmosphere was adjusted just below 326 ° C. for reduction.

【0027】メタライズ工程は,比較的低温の還元雰囲
気で,電極用ペースト材料中のCuOをCuへ還元する
工程である。本例では,セラミック材料が少なくとも化
学式上鉛を含む酸化物であるため,鉛と銅の共晶点:3
26℃直下で雰囲気調整し還元した。
The metallizing step is a step of reducing CuO in the electrode paste material to Cu in a relatively low-temperature reducing atmosphere. In this example, since the ceramic material is an oxide containing at least lead on the chemical formula, the eutectic point of lead and copper: 3
The atmosphere was adjusted just below 26 ° C. to reduce.

【0028】次に,上記積層体を一体的に焼成する焼成
工程を行った。本例では,温度965℃,酸素分圧を1
-6atmに調整して焼成を行った。次に,得られた焼
結体を研削し7×7×20mmと5×5×20mmと
4.2×4.2×30mmにそれぞれ加工したのち,図1
に示すごとく側面電極31,32を印刷焼付けした後,
リード線(図示略)取り付けを行った。その後,シリコ
ンオイル中130℃で電圧150Vを30分印加するこ
とで分極処理を行ない,積層一体焼成型の電気機械変換
素子1を作製した。これを本発明品E1とする。
Next, a firing step for integrally firing the laminate was performed. In this example, the temperature is 965 ° C. and the oxygen partial pressure is 1
The baking was performed while adjusting to 0 -6 atm. Next, the obtained sintered body was ground and processed into 7 × 7 × 20 mm, 5 × 5 × 20 mm, and 4.2 × 4.2 × 30 mm, respectively.
After printing and printing the side electrodes 31, 32 as shown in FIG.
A lead wire (not shown) was attached. Thereafter, a polarization treatment was performed by applying a voltage of 150 V for 30 minutes in silicon oil at 130 ° C., thereby producing a laminated integrated firing type electromechanical transducer 1. This is designated as Product E1 of the present invention.

【0029】次に,本例の電気機械変換素子1(本発明
品E1)の諸性能等を測定した。本発明品E1のセラミ
ック層厚は90μm,電極膜厚4.5μm,電極形成率
は98%であった。負荷荷重10MPa,印加電圧15
0V時の静的変位は1μm/mmであり,アクチュエー
タとして良好な特性を示した。
Next, various performances and the like of the electromechanical transducer 1 of the present example (product E1 of the present invention) were measured. The product E1 of the present invention had a ceramic layer thickness of 90 μm, an electrode film thickness of 4.5 μm, and an electrode formation ratio of 98%. Load load 10MPa, applied voltage 15
The static displacement at 0 V was 1 μm / mm, showing good characteristics as an actuator.

【0030】次に,本例では,比較品として,本発明品
E1と同一のPZT組成物とAg−Pd30%の電極ペ
ーストを用い,同一体格,同一の層厚,同一の膜厚なる
ように作製した積層一体焼成型の電気機械変換素子を作
製した(比較品C1とする)。そして,上記本発明品E
1と比較品C1の電極の抵抗値を比較した。なお,比較
品C1においては,電極形成率は97%であった。比較
の結果,電極1層あたりの抵抗値は比較品C1のAg−
Pd30%が0.15Ω,本発明品E1のCu電極が0.
06Ωであった。
Next, in this example, the same PZT composition and 30% Ag-Pd electrode paste as that of the product E1 of the present invention were used as comparative products so as to have the same physique, the same layer thickness, and the same film thickness. The produced laminated integrated firing type electromechanical transducer was produced (referred to as comparative product C1). Then, the product E of the present invention
1 and the resistance value of the electrode of the comparative product C1 were compared. In the comparative product C1, the electrode formation rate was 97%. As a result of the comparison, the resistance value per electrode layer is the Ag- of the comparative product C1.
Pd 30% is 0.15Ω, and the Cu electrode of the product E1 of the present invention is 0.15Ω.
It was 06Ω.

【0031】次に,本例では,実施形態例1における,
体格7×7×20mmの本発明品E1(Cu電極)と比
較品C1(Ag−Pd30%電極)の積層一体焼成型の
電気機械変換素子をモデルとして,150Vの直流電圧
を印加したときの応力計算を行なった。この時の縦方向
の実測変位は0.08%である。計算に用いた剛性率は
セラミックスが70GPa,Ag−Pd30%電極が1
60GPa,Cu電極が136GPa,ポアソン比はい
ずれも0.3とした。
Next, in the present embodiment, in the first embodiment,
Stress when a DC voltage of 150 V is applied using a model of a laminated and integrated sintering-type electromechanical transducer element of the present invention product E1 (Cu electrode) and comparative product C1 (Ag-Pd 30% electrode) having a body size of 7 × 7 × 20 mm. Calculations were made. The measured displacement in the vertical direction at this time is 0.08%. The rigidity used in the calculation was 70 GPa for ceramics and 30% for Ag-Pd electrodes.
60 GPa, the Cu electrode was 136 GPa, and the Poisson ratio was 0.3.

【0032】その結果,比較品C1(Ag−Pd30%
電極)の場合は37MPaの内部応力(引張り応力)
が,本発明品E1(Cu電極)の場合は31MPaの内
部応力それぞれセラミックス層に発生することがわかっ
た。また,内部応力が40MPaを超えるのは,Cu電
極の場合に膜厚が8μm以上の場合であった。
As a result, the comparative product C1 (Ag-Pd 30%
(Electrode) internal stress of 37MPa (tensile stress)
However, it was found that in the case of the product E1 (Cu electrode) of the present invention, an internal stress of 31 MPa was generated in each of the ceramic layers. The internal stress exceeds 40 MPa when the thickness of the Cu electrode is 8 μm or more.

【0033】実施形態例2 本例では,実施形態例1における本発明品E1及び比較
品C1を用い,放熱性の比較測定を行った。測定は,各
電気機械変換素子を,負荷荷重20MPa,印加電圧0
〜150V,電圧立上げ150μsの正電圧台形波を1
00Hzで注入エネルギーを変えて駆動し,10分後の
素子表面温度を放射温度計で測定した。なお,この時の
変位量は0.06%であった。
Embodiment 2 In this embodiment, comparative measurement of heat dissipation was performed using the product E1 of the present invention and the comparative product C1 in Embodiment 1. The measurement was performed by applying a load of 20 MPa and an applied voltage of 0 to each electromechanical transducer.
A positive voltage trapezoidal wave with a voltage of 150 V
The device was driven by changing the injection energy at 00 Hz, and the device surface temperature after 10 minutes was measured with a radiation thermometer. The displacement at this time was 0.06%.

【0034】表1に結果を示す。発熱温度は,本発明品
E1のCu電極品のほうが全て小さく,体積500mm
3以上の場合,断面積18mm2以上の場合,注入エネル
ギー0.021mJ/mm3の場合で発熱の低下が認めら
れた。これはCu電極の熱伝達率が高いため放熱性がよ
いためと考えられる。
Table 1 shows the results. The exothermic temperature is
All of the E1 Cu electrode products are smaller and have a volume of 500 mm.
ThreeIn the case above, the cross-sectional area is 18mmTwoIn the above case, the injection energy
Gee 0.021mJ / mmThreeIn the case of
Was. This is because the heat conductivity of the Cu electrode is high and the heat dissipation is good.
It is thought to be a disaster.

【0035】[0035]

【表1】 [Table 1]

【0036】実施形態例3 本例では,実施形態例1における,体格7×7×20m
mの本発明品E1(Cu電極)と比較品C1(Ag−P
d30%電極)の積層一体焼成型の電気機械変換素子を
用いて耐マイグレーション性を比較した。
Embodiment 3 In this embodiment, the physique of the embodiment 1 is 7 × 7 × 20 m.
m of the present invention E1 (Cu electrode) and comparative product C1 (Ag-P
The migration resistance was compared using an electromechanical transducer of a laminated integral firing type (d30% electrode).

【0037】図1に示すごとく,各電気機械変換素子
は,側面電極31,32と接続しない側面においてプラ
ス電極とマイナス電極が交互に露出した構造とし,表面
には絶縁を確保するための樹脂であるシリコングリース
などを塗布しない状態とした。これらの電気機械変換素
子を,室温,相対湿度40〜50%の雰囲気中,90V
の直流電圧(電界強度1kV/mm)を印加し,ショー
トに至るまでの時間を各3ヶずつ評価した。
As shown in FIG. 1, each of the electromechanical transducers has a structure in which a positive electrode and a negative electrode are alternately exposed on the side surfaces not connected to the side electrodes 31, 32, and the surface is made of a resin for securing insulation. Some silicon grease was not applied. These electromechanical transducers were subjected to 90 V in an atmosphere at room temperature and a relative humidity of 40 to 50%.
Of DC voltage (electric field intensity of 1 kV / mm) was applied, and the time until short-circuit was evaluated for each three.

【0038】その結果,比較品C1(Ag−Pd30%
電極品)は25,37,68時間でショートした。これ
に対し,本発明品E1(Cu電極品)は100時間後も
ショートせず,優れた対マイグレーション性を示した。
As a result, the comparative product C1 (Ag-Pd 30%
The electrode product was short-circuited in 25, 37, 68 hours. On the other hand, the product E1 (Cu electrode product) of the present invention did not short-circuit even after 100 hours, and exhibited excellent migration resistance.

【0039】実施形態例4 本例では,実施形態例1における,体格7×7×20m
mの本発明品E1(Cu電極)と比較品C1(Ag−P
d30%電極)の積層一体焼成型の電気機械変換素子を
用いて接合強度を測定した。両者の電極形成率は98%
であった。また,比較のため比較品C2としてAg−P
d30%電極で電極形成率75%の積層一体焼成型の電
気機械変換素子も準備し,その接合強度を測定した。
Fourth Embodiment In this embodiment, a physique of 7 × 7 × 20 m in the first embodiment is used.
m of the present invention E1 (Cu electrode) and comparative product C1 (Ag-P
(30% electrode), the bonding strength was measured using an electromechanical transducer of a laminated integral firing type. The electrode formation rate of both is 98%
Met. For comparison, Ag-P was used as a comparative product C2.
An electromechanical conversion element of a laminated integral firing type having an electrode formation rate of 75% with d30% electrodes was also prepared, and the bonding strength was measured.

【0040】その結果,本発明品E1(Cu電極,電極
形成率98%)の接合強度は35〜50MPa,比較品
C1(Ag−Pd30%電極,電極形成率98%)の接
合強度は15〜30MPa,比較品C2(Ag−Pd3
0%電極,電極形成率85%)の接合強度は25〜40
MPaであった。従って,本発明品E1(Cu電極)の
場合は,電極形成率75%以上で接合強度が40MPa
以上あることが確認された。
As a result, the joint strength of the product E1 of the present invention (Cu electrode, electrode formation rate 98%) was 35 to 50 MPa, and that of the comparative product C1 (Ag-Pd 30% electrode, electrode formation rate 98%) was 15 to 50 MPa. 30 MPa, comparative product C2 (Ag-Pd3
(0% electrode, electrode formation rate 85%), the bonding strength is 25-40.
MPa. Therefore, in the case of the product E1 (Cu electrode) of the present invention, the bonding strength is 40 MPa and the electrode formation rate is 75% or more.
It was confirmed that there was.

【0041】実施形態例5 本例では,まず,表2に示すごとく,電極用ペースト材
料として,9種類の試料(試料1〜試料9)を準備し
た。そして,これを用いて電気機械変換素子を作製し
た。
Embodiment 5 In this embodiment, first, as shown in Table 2, nine types of samples (samples 1 to 9) were prepared as electrode paste materials. Then, an electromechanical conversion element was manufactured using this.

【0042】[0042]

【表2】 [Table 2]

【0043】上記電極用ペースト材料は,次のように作
製した。エチルセルロースをテルピネオールで溶解して
なる有機ビヒクルと樹脂剤(アクリル系樹脂,アラキド
樹脂,エトセル系樹脂他)に,CuO粉(平均粒径:
0.2〜0.5μm)及び添加物(CaO,MgO,Sr
Oの中のそれぞれ一つ)を,表2に示すような配合割合
で混練することにより電極用ペースト材料を作製した。
但し,CaOを得るための材料としてはCaCO3を,
SrOを得るための材料としてはSrCO3を,化学式
の分子量の割合で換算し使用した。(以下,CaO,S
rOについては全て同様)
The electrode paste material was prepared as follows. An organic vehicle obtained by dissolving ethyl cellulose with terpineol and a resin agent (acrylic resin, arachid resin, ethocell resin, etc.) are mixed with CuO powder (average particle size:
0.2-0.5 μm) and additives (CaO, MgO, Sr
O) was kneaded at a mixing ratio as shown in Table 2 to prepare an electrode paste material.
However, CaCO 3 is used as a material for obtaining CaO,
As a material for obtaining SrO, SrCO 3 was used in terms of the molecular weight ratio in the chemical formula. (Hereinafter, CaO, S
Same for rO)

【0044】これらのCuOペースト材料を用い,以下
に示す手順で積層体を作製した。但し,本例では試験の
ため積層数は3層とした。まず,セラミック材料をシー
ト状に成形してなるグリーンシートを,実施形態例1と
同様のドクターブレード法を用いて作製した。
Using these CuO paste materials, a laminate was prepared in the following procedure. However, in this example, the number of layers was three for the test. First, a green sheet formed by molding a ceramic material into a sheet shape was manufactured by using the same doctor blade method as in the first embodiment.

【0045】次に,グリーンシートの表面に実施形態例
1と同様に,各電極用ペースト材料をスクリーン印刷に
より塗布した。印刷時の厚みは15μmとした。次に,
図3に示すごとく,電極用ペースト材料2を印刷したグ
リーンシートシート11を2枚と,印刷していないグリ
ーンシート11を1枚,合計3枚を積層・圧着し,所定
の寸法にカットした。
Next, the paste material for each electrode was applied to the surface of the green sheet by screen printing as in the first embodiment. The thickness at the time of printing was 15 μm. next,
As shown in FIG. 3, two green sheet sheets 11 on which the electrode paste material 2 was printed and one unprinted green sheet 11 were laminated and pressed together, and cut to a predetermined size.

【0046】次に,これを大気中において脱脂した後,
メタライズ工程を行った。条件は,実施形態例1と同様
に,326℃直下で雰囲気調整し還元するという条件に
した。次に,焼成工程を行った。焼成温度は,素子材料
の密度変化により異なる。本例では温度950℃。調整
雰囲気はCuが極力酸化されず,素子部の酸化物が極力
還元されない雰囲気に調整する。本例では950℃にお
いて酸素分圧を10-4atm程度に調整した。
Next, after degreased in the air,
A metallization step was performed. As in the case of the first embodiment, the conditions were such that the atmosphere was adjusted and reduced immediately below 326 ° C. Next, a firing step was performed. The firing temperature varies depending on the density change of the element material. In this example, the temperature is 950 ° C. The adjustment atmosphere is adjusted to an atmosphere in which Cu is not oxidized as much as possible and oxides in the element portion are not reduced as much as possible. In this example, the oxygen partial pressure was adjusted at 950 ° C. to about 10 −4 atm.

【0047】次に,図4に示すごとく,得られた積層一
体焼成型の電気機械変換素子1を用いて,その断面観察
を行った。観察位置は,図4におけるA−A線矢視断面
の中央部分である。断面観察は,断面におけるCuとO
の分布をEPMAを用いて,加速電圧20kV,電流1
×10-7A,ピクセル数256×256,1ピクセル当
たり20ms,倍率700倍という条件により測定し
た。
Next, as shown in FIG. 4, the cross-section of the obtained electro-mechanical transducer 1 of the integrated lamination type was observed. The observation position is the center of the cross section taken along the line AA in FIG. The cross-section observation was performed using Cu and O
Of the distribution of the acceleration was 20 kV, the current was 1
The measurement was performed under the conditions of × 10 -7 A, 256 × 256 pixels, 20 ms per pixel, and magnification of 700 times.

【0048】観察結果を模式的にスケッチしたものを図
5〜図13に示す。同図中においては,比較的濃度の高
い部分をハッチングにより示した。各図の上部はCuの
分布を,下部は同一位置におけるOの分布を示す。図1
1〜図13より知られるごとく,試料7〜90の場合に
は,電極層の消失が多くかつセラミック層内に導電性卑
金属材料であるCuの偏析がある。これに対し,図5〜
図10より知られるごとく,試料1〜6の場合には,セ
ラミック層内にCuの偏析は見られなかった,あるいは
少なかった。このことから,溶融抑制物質としてのCa
O,もしくは融点上昇物質としてのMgO又はSrOを
電極用ペースト材料に添加することによりCuの偏析を
抑制することができることがわかった。
FIGS. 5 to 13 schematically show the observation results. In the figure, the relatively high density portions are indicated by hatching. The upper part of each figure shows the distribution of Cu, and the lower part shows the distribution of O at the same position. Figure 1
As can be seen from FIGS. 1 to 13, in the case of samples 7 to 90, the electrode layer is largely lost and the conductive base metal material Cu is segregated in the ceramic layer. In contrast, FIGS.
As can be seen from FIG. 10, in the case of samples 1 to 6, no or little Cu segregation was observed in the ceramic layer. This indicates that Ca as a melting inhibitor
It was found that the segregation of Cu can be suppressed by adding O or MgO or SrO as a melting point increasing substance to the electrode paste material.

【0049】実施形態例6 本例では,実施形態例5における試料1〜3と試料7の
ペースト材料を用いて,焼成時の950℃における酸素
分圧以外は実施形態例5と同じ手順で3層積層体を作製
した。950℃における酸素分圧は10-5atm程度に
調整した。得られた電気機械変換素子の断面観察の結
果,実施形態例5と同様にCaO添加のペースト材料で
作製した積層体に限り,成分元素Cuの素子部内での偏
析を抑制することができた。
Embodiment 6 In this embodiment, using the paste materials of Samples 1 to 3 and Sample 7 in Embodiment 5 and the same procedure as in Embodiment 5 except for the partial pressure of oxygen at 950 ° C. during firing. A layer laminate was produced. The oxygen partial pressure at 950 ° C. was adjusted to about 10 −5 atm. As a result of observing the cross section of the obtained electromechanical transducer, it was possible to suppress the segregation of the component element Cu in the element part only in the laminate made of the CaO-added paste material as in the fifth embodiment.

【0050】実施形態例7 本例では,実施形態例6において,焼成時の950℃に
おける酸素分圧を10 -6atm程度に変更して調整し
た。この結果,試料7のペースト材料で作製した積層体
でも成分元素Cuの偏析は認められなかった。以上,実
施形態例5〜7よりCuOペースト組成と焼成時の酸素
分圧を制御することにより,セラミック層内にCuが偏
析せず,かつ電極が連続的に形成された積層体が得られ
ることがわかった。
Embodiment 7 In this embodiment, in Embodiment 6, the temperature is raised to 950 ° C. during firing.
Oxygen partial pressure -6Change it to about atm and adjust
Was. As a result, a laminated body made of the paste material of Sample 7 was obtained.
However, no segregation of the component element Cu was observed. Above, actual
CuO paste composition and oxygen during firing from Embodiments 5 to 7
By controlling the partial pressure, Cu is localized in the ceramic layer.
A laminated body without electrodeposition and with continuous electrodes was obtained.
I found out.

【0051】実施形態例8 本例は,実施形態例1における積層一体焼成型の電気機
械変換素子1と基本的に同じ構成の電気機械変換素子を
燃料噴射用アクチュエータに用いたインジェクタ5の一
例を示す。本例のインジェクタ5は,図14に示すごと
く,ディーゼルエンジンのコモンレール噴射システムに
適用したものである。このインジェクタ5は,同図に示
すごとく,駆動部としての積層一体焼成型の電気機械変
換素子1が収容される上部ハウジング52と,その下端
に固定され,内部に噴射ノズル部54が形成される下部
ハウジング53を有している。
Embodiment 8 This embodiment is an example of an injector 5 in which an electromechanical transducer having basically the same configuration as the electro-mechanical transducer 1 of the first embodiment is used as a fuel injection actuator. Show. As shown in FIG. 14, the injector 5 of this example is applied to a common rail injection system of a diesel engine. As shown in the drawing, the injector 5 is fixed to an upper housing 52 in which the laminated integral firing type electromechanical transducer 1 is housed as a driving portion, and is fixed to a lower end thereof, and an injection nozzle portion 54 is formed therein. It has a lower housing 53.

【0052】上部ハウジング52は略円柱状で,中心軸
に対し偏心する縦穴521内に,積層一体焼成型の電気
機械変換素子1が挿通固定されている。縦穴521の側
方には,高圧燃料通路522が平行に設けられ,その上
端部は,上部ハウジング52上側部に突出する燃料導入
管523内を経て外部のコモンレール(図略)に連通し
ている。
The upper housing 52 has a substantially cylindrical shape, and the laminated and integrally fired electromechanical transducer 1 is inserted and fixed in a vertical hole 521 eccentric to the center axis. A high-pressure fuel passage 522 is provided in parallel to the side of the vertical hole 521, and the upper end thereof communicates with an external common rail (not shown) through a fuel introduction pipe 523 projecting upward from the upper housing 52. .

【0053】上部ハウジング52上側部には,また,ド
レーン通路524に連通する燃料導出管525が突設
し,燃料導出管525から流出する燃料は,燃料タンク
(図略)へ戻される。ドレーン通路524は,縦穴52
1と駆動部(積層一体焼成型の電気機械変換素子)1と
の間の隙間50を経由し,さらに,この隙間50から上
下ハウジング52,53内を下方に延びる図示しない通
路によって後述する3方弁551に連通している。
A fuel outlet pipe 525 communicating with the drain passage 524 protrudes from the upper portion of the upper housing 52, and the fuel flowing out of the fuel outlet pipe 525 is returned to a fuel tank (not shown). The drain passage 524 is provided with the vertical hole 52.
1 through a gap 50 between the drive unit 1 and the drive unit (laminated integrated firing type electromechanical transducer), and further through a passage (not shown) extending downward from the gap 50 through the upper and lower housings 52, 53. It communicates with the valve 551.

【0054】噴射ノズル部54は,ピストンボデー53
1内を上下方向に摺動するノズルニードル541と,ノ
ズルニードル541によって開閉されて燃料溜まり54
2から供給される高圧燃料をエンジンの各気筒に噴射す
る噴孔543を備えている。燃料溜まり542は,ノズ
ルニードル541の中間部周りに設けられ,上記高圧燃
料通路522の下端部がここに開口している。ノズルニ
ードル541は,燃料溜まり542から開弁方向の燃料
圧を受けるとともに,上端面に面して設けた背圧室54
4から閉弁方向の燃料圧を受けており,背圧室544の
圧力が降下すると,ノズルニードル541がリフトし
て,噴孔543が開放され,燃料噴射がなされる。
The injection nozzle 54 is provided with a piston body 53.
1, a nozzle needle 541 that slides in a vertical direction, and a fuel reservoir 54 that is opened and closed by the nozzle needle 541.
2 is provided with injection holes 543 for injecting high-pressure fuel supplied from the engine 2 into each cylinder of the engine. The fuel reservoir 542 is provided around an intermediate portion of the nozzle needle 541, and the lower end of the high-pressure fuel passage 522 is opened here. The nozzle needle 541 receives the fuel pressure in the valve opening direction from the fuel reservoir 542 and also has a back pressure chamber 54 provided facing the upper end surface.
When the fuel pressure is received from the back pressure chamber 544, the nozzle needle 541 is lifted, the nozzle hole 543 is opened, and the fuel is injected.

【0055】背圧室544の圧力は3方弁551によっ
て増減される。3方弁551は,背圧室544と高圧燃
料通路522,またはドレーン通路524と選択的に連
通させる構成である。ここでは,高圧燃料通路522ま
たはドレーン通路524へ連通するポートを開閉するボ
ール状の弁体を有している。この弁体は,上記駆動部1
により,その下方に配設される大径ピストン552,油
圧室553,小径ピストン554を介して,駆動され
る。
The pressure in the back pressure chamber 544 is increased or decreased by a three-way valve 551. The three-way valve 551 is configured to selectively communicate with the back pressure chamber 544 and the high pressure fuel passage 522 or the drain passage 524. Here, a ball-shaped valve body that opens and closes a port communicating with the high-pressure fuel passage 522 or the drain passage 524 is provided. This valve element is connected to the drive unit 1
Accordingly, the piston is driven via a large-diameter piston 552, a hydraulic chamber 553, and a small-diameter piston 554 disposed below.

【0056】本例の駆動部1,即ち積層一体焼成型の電
気機械変換素子1は,実施形態例1における積層一体焼
成型の電気機械変換素子の下部に,伸縮可能機構を設け
ると共に,全体を金属ケースにより覆ったものである
(図示略)。そして,本例のインジェクタ5において
は,Cu系電極を有する上記構成の積層一体焼成型の電
気機械変換素子1を用いているので,優れた耐久性,低
コスト化を得ることができる。
The drive section 1 of this embodiment, that is, the electro-mechanical transducer 1 of the integrated lamination type is provided with an extendable mechanism below the electro-mechanical transducer of the integrated lamination type in the first embodiment, and the whole is provided. It is covered with a metal case (not shown). In addition, in the injector 5 of the present embodiment, since the laminated integrated firing type electromechanical transducer 1 having the above-described configuration having the Cu-based electrode is used, excellent durability and low cost can be obtained.

【0057】なお,本発明の積層一体焼成型の電気機械
変換素子は,上記インジェクタに限らず,超音波モータ
用の圧電素子(図示略),あるいは,図15に示す圧電
インバータ7用の圧電トランス71などにも適用するこ
とができる。
The electromechanical transducer of the present invention is not limited to the above-described injector, but may be a piezoelectric element for an ultrasonic motor (not shown) or a piezoelectric transformer for a piezoelectric inverter 7 shown in FIG. 71 and the like.

【0058】実施形態例9 各種金属材料の剛性率と体積抵抗率について,表3に記
載した。同表より,Cu,Alは剛性率が160GPa
以下であり,本発明の電気機械変換素子の電極として用
いることができるが,CuやAl以外の材料も合金化す
る等して,剛性率160GPaを満たすことができれ
ば,他の材料でも使用することは可能である。また,同
表よりCuの体積抵抗率がAgに近く,導電性に優れて
いるため,CuやCuを含む合金等は電極材料として非
常に優れていることが分かった。
Embodiment 9 Table 3 shows the rigidity and volume resistivity of various metal materials. According to the table, Cu and Al have a rigidity of 160 GPa.
The following can be used as the electrode of the electromechanical transducer of the present invention. However, if a material other than Cu or Al can be alloyed to satisfy the rigidity of 160 GPa, other materials may be used. Is possible. In addition, from the table, it was found that Cu or an alloy containing Cu is very excellent as an electrode material because Cu has a volume resistivity close to that of Ag and has excellent conductivity.

【0059】[0059]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,積層一体焼成型の電気
機械変換素子を示す斜視図。
FIG. 1 is a perspective view showing a laminated integrated firing type electromechanical conversion element according to a first embodiment.

【図2】実施形態例1における,セラミック層と内部電
極層との積層状態を示す斜視展開図。
FIG. 2 is a perspective developed view showing a laminated state of a ceramic layer and an internal electrode layer in the first embodiment.

【図3】実施形態例5における,セラミック層と内部電
極層との積層状態を示す斜視展開図。
FIG. 3 is a perspective developed view showing a laminated state of a ceramic layer and an internal electrode layer in a fifth embodiment.

【図4】実施形態例5における,積層一体焼成型の電気
機械変換素子を示す斜視図。
FIG. 4 is a perspective view showing a laminated integral firing type electromechanical conversion element according to a fifth embodiment.

【図5】実施形態例5における,試料1の場合のCu,
O分布を表す説明図。
FIG. 5 shows Cu,
Explanatory drawing showing O distribution.

【図6】実施形態例5における,試料2の場合のCu,
O分布を表す説明図。
FIG. 6 is a graph showing the relationship between Cu,
Explanatory drawing showing O distribution.

【図7】実施形態例5における,試料3の場合のCu,
O分布を表す説明図。
FIG. 7 is a graph showing the relationship between Cu,
Explanatory drawing showing O distribution.

【図8】実施形態例5における,試料4の場合のCu,
O分布を表す説明図。
FIG. 8 shows Cu,
Explanatory drawing showing O distribution.

【図9】実施形態例5における,試料5の場合のCu,
O分布を表す説明図。
FIG. 9 shows Cu, Cu,
Explanatory drawing showing O distribution.

【図10】実施形態例5における,試料6の場合のC
u,O分布を表す説明図。
FIG. 10 is a graph showing C in the case of sample 6 in the fifth embodiment.
Explanatory drawing showing a u and O distribution.

【図11】実施形態例5における,試料7の場合のC
u,O分布を表す説明図。
FIG. 11 is a graph showing C of Sample 7 in Embodiment 5;
Explanatory drawing showing a u and O distribution.

【図12】実施形態例5における,試料8の場合のC
u,O分布を表す説明図。
FIG. 12 is a graph showing C in the case of sample 8 in the fifth embodiment.
Explanatory drawing showing a u and O distribution.

【図13】実施形態例5における,試料9の場合のC
u,O分布を表す説明図。
FIG. 13 is a graph showing C in the case of sample 9 in the fifth embodiment.
Explanatory drawing showing a u and O distribution.

【図14】実施形態例8における,インジェクタの構造
を示す説明図。
FIG. 14 is an explanatory diagram showing a structure of an injector according to an eighth embodiment.

【図15】実施形態例8における,圧電インバータを示
す説明図。
FIG. 15 is an explanatory diagram showing a piezoelectric inverter in an eighth embodiment.

【符号の説明】[Explanation of symbols]

1...積層一体焼成型の電気機械変換素子, 10...圧電アクチュエータ, 11...セラミック層(圧電層), 2...電極層, 21,22...内部電極(電極層), 5...インジェクタ, 7...圧電インバータ, 1. . . 9. An integrated electromechanical conversion element of a sintering type, . . 10. piezoelectric actuator, . . 1. ceramic layer (piezoelectric layer); . . Electrode layer, 21, 22,. . . 4. internal electrode (electrode layer); . . Injector, 7. . . Piezoelectric inverter,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 41/187 H01L 41/08 A (72)発明者 進藤 仁志 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 角谷 篤宏 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 Fターム(参考) 3G066 AA07 AB02 AC09 AD12 BA19 BA46 BA61 CC06T CC14 CC64U CC66 CC67 CC68T CC68U CC69 CC70 CD15 CD17 CD18 CD28 CD30 CE13 CE27 CE31 4G031 AA11 AA12 AA17 AA18 AA32 AA39 BA10 CA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 41/187 H01L 41/08 A (72) Inventor Hitoshi Shindo 14 Iwatani Shimowasukamachi, Nishio-shi, Aichi Pref. (72) Inventor Atsuhiro Kakutani Awahiro, Nishio City, Aichi Prefecture 14 Iwatani, Ichigaya F-term (reference) CC68T CC68U CC69 CC70 CD15 CD17 CD18 CD28 CD30 CE13 CE27 CE31 4G031 AA11 AA12 AA17 AA18 AA32 AA39 BA10 CA03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧電セラミックスあるいは電歪セラミッ
クスよりなる複数層のセラミック層と,該セラミック層
間に介在させた内部電極層とを一体的に焼成してなる積
層体を有する積層一体焼成型の電気機械変換素子におい
て,上記内部電極層は剛性率が160GPa以下の卑金
属を主成分とすることを特徴とする積層一体焼成型の電
気機械変換素子。
1. A laminated integrated firing type electric machine having a multilayer structure obtained by integrally firing a plurality of ceramic layers made of piezoelectric ceramics or electrostrictive ceramics and an internal electrode layer interposed between the ceramic layers. In the conversion element, the internal electrode layer is mainly composed of a base metal having a rigidity of 160 GPa or less.
【請求項2】 請求項1において,上記電気機械変換素
子の駆動時の変位が0.06〜0.15%であることを
特徴とする積層一体焼成型の電気機械変換素子。
2. The electromechanical transducer according to claim 1, wherein the displacement of the electromechanical transducer at the time of driving is 0.06 to 0.15%.
【請求項3】 請求項1又は2において,上記電極層の
平均膜厚が1〜8μmであることを特徴とする積層一体
焼成型の電気機械変換素子。
3. An electromechanical transducer according to claim 1, wherein said electrode layer has an average thickness of 1 to 8 μm.
【請求項4】 請求項1〜3のいずれか1項において,
上記積層体の積層方向の切断面に露出する上記内部電極
の全長に対する電極形成部分の割合で示す電極形成率が
75%以上であることを特徴とする積層一体焼成型の電
気機械変換素子。
4. The method according to claim 1, wherein:
An electromechanical conversion element of a laminated monolithic firing type, wherein an electrode formation ratio represented by a ratio of an electrode formation portion to a total length of the internal electrodes exposed on a cut surface in a lamination direction of the laminate is 75% or more.
【請求項5】 請求項1〜4のいずれか1項において,
上記電極層の主成分は,Cu,Cu合金またはこれらの
酸化物であることを特徴とする積層一体焼成型の電気機
械変換素子。
5. The method according to claim 1, wherein:
A main component of the electrode layer is Cu, a Cu alloy, or an oxide thereof.
【請求項6】 請求項5において,上記電極層は更にC
a,Mg,Srの少なくとも1種以上を含有することを
特徴とする請求項1記載の積層一体焼成型の電気機械変
換素子。
6. The method according to claim 5, wherein the electrode layer further comprises C
2. The electro-mechanical transducer according to claim 1, wherein said electromechanical transducer comprises at least one of a, Mg, and Sr.
【請求項7】 請求項1〜6のいずれか1項において,
上記セラミック層は,主にPb(Zr,Ti)O3系の
ペロブスカイト構造の酸化物であるPZTよりなること
を特徴とする積層一体焼成型の電気機械変換素子。
7. The method according to claim 1, wherein:
The ceramic layer is mainly composed of PZT, which is a Pb (Zr, Ti) O 3 -based oxide having a perovskite structure, and is a laminated monolithic electromechanical transducer.
【請求項8】 請求項7において,上記PZTは,Mo
あるいはWの少なくとも1種以上を含有することを特徴
とする積層一体焼成型の電気機械変換素子。
8. The method according to claim 7, wherein the PZT is Mo.
Alternatively, a laminated and integrally fired electromechanical transducer comprising at least one kind of W.
【請求項9】 請求項1〜8のいずれか1項において,
上記電気機械変換素子は,アクチュエータ,圧電トラン
ス,超音波モータのいずれかに用いられることを特徴と
する積層一体焼成型の電気機械変換素子。
9. The method according to claim 1, wherein:
The above electromechanical transducer is used for any one of an actuator, a piezoelectric transformer, and an ultrasonic motor.
【請求項10】 請求項1〜9のいずれか1項におい
て,上記電気機械変換素子は,インジェクタにおける燃
料噴射用アクチュエータに用いられることを特徴とする
積層一体焼成型の電気機械変換素子。
10. The electromechanical conversion element according to claim 1, wherein the electromechanical conversion element is used for a fuel injection actuator in an injector.
JP2001376241A 2000-12-28 2001-12-10 Laminated one-body baked type electromechanical conversion element Pending JP2002261343A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001376241A JP2002261343A (en) 2000-12-28 2001-12-10 Laminated one-body baked type electromechanical conversion element
US10/029,005 US6734607B2 (en) 2000-12-28 2001-12-28 Integrally fired, laminated electromechanical transducing element
DE10164326A DE10164326A1 (en) 2000-12-28 2001-12-28 Integrally fired, layered electromechanical conversion element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000400212 2000-12-28
JP2000-400212 2000-12-28
JP2001376241A JP2002261343A (en) 2000-12-28 2001-12-10 Laminated one-body baked type electromechanical conversion element

Publications (1)

Publication Number Publication Date
JP2002261343A true JP2002261343A (en) 2002-09-13

Family

ID=26607010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376241A Pending JP2002261343A (en) 2000-12-28 2001-12-10 Laminated one-body baked type electromechanical conversion element

Country Status (1)

Country Link
JP (1) JP2002261343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071769A1 (en) * 2004-01-23 2005-08-04 Murata Manufacturing Co., Ltd. Piezoelectric element and laminated piezoelectric element
WO2006129434A1 (en) 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd Piezoelectric element
US7667377B2 (en) 2005-12-08 2010-02-23 Murata Manufacturing Co., Ltd. Laminated piezoelectric element and process for producing the same
JP2012019245A (en) * 2003-09-30 2012-01-26 Epcos Ag Method for manufacturing ceramic multi-layer component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019245A (en) * 2003-09-30 2012-01-26 Epcos Ag Method for manufacturing ceramic multi-layer component
JP2013214764A (en) * 2003-09-30 2013-10-17 Epcos Ag Multilayered element manufacturing method
US9186870B2 (en) 2003-09-30 2015-11-17 Epcos Ag Ceramic multi-layer component and method for the production thereof
WO2005071769A1 (en) * 2004-01-23 2005-08-04 Murata Manufacturing Co., Ltd. Piezoelectric element and laminated piezoelectric element
WO2006129434A1 (en) 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd Piezoelectric element
US7667377B2 (en) 2005-12-08 2010-02-23 Murata Manufacturing Co., Ltd. Laminated piezoelectric element and process for producing the same

Similar Documents

Publication Publication Date Title
JP4987847B2 (en) Manufacturing method of ceramic member
EP1160886B1 (en) Piezoelectric element for injector
US20040178701A1 (en) Laminated piezoelectric element
JPWO2006095716A1 (en) Piezoelectric / electrostrictive porcelain composition and method for producing the same
US20020150508A1 (en) Integrally fired, laminated electromechanical transducing element
WO2006135013A1 (en) Multilayer piezoelectric element and ejector using this
JPWO2007026687A1 (en) Laminated piezoelectric element and ejection device using the same
WO2005093866A1 (en) Multilayer piezoelectric element and its manufacturing method
JP4422973B2 (en) Multilayer piezoelectric body, actuator, and print head
JP2006303045A (en) Multilayer piezoelectric element
JP2004266261A (en) Laminated piezoelectric element and method of manufacturing the same
CN100517789C (en) Laminated piezoelectric element and method for manufacturing the same
JP2002261346A (en) Laminated one-body baked type electromechanical conversion element
JP4207423B2 (en) Laminated integrated firing type electromechanical transducer
JP4803956B2 (en) Piezoelectric ceramics, laminated piezoelectric element using the same, and jetting apparatus
JP2009007236A (en) Piezoelectric / electrostrictive porcelain composition, piezoelectric / electrostrictive element and method for producing the same
JP4956054B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2002261343A (en) Laminated one-body baked type electromechanical conversion element
JP2007013096A (en) Piezoelectric actuator, driving method thereof, and print head
JP2010522973A (en) LAMINATED PIEZOELECTRIC ELEMENT, INJECTION DEVICE USING THE SAME, AND METHOD FOR PRODUCING LAMINATED PIEZOELECTRIC ELEMENT
WO2006001334A1 (en) Multilayer electronic component and injection system using same
JP4485140B2 (en) Piezoelectric actuator and manufacturing method thereof
JP2002261345A (en) Laminated one-body baked type electromechanical conversion element
JP4683689B2 (en) Multilayer piezoelectric element, piezoelectric actuator, and injection device
US20070001031A1 (en) Multilayer piezoelectric element and fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703