[go: up one dir, main page]

JP2002289208A - Electrode catalyst for fuel cell and method for producing the same - Google Patents

Electrode catalyst for fuel cell and method for producing the same

Info

Publication number
JP2002289208A
JP2002289208A JP2001088417A JP2001088417A JP2002289208A JP 2002289208 A JP2002289208 A JP 2002289208A JP 2001088417 A JP2001088417 A JP 2001088417A JP 2001088417 A JP2001088417 A JP 2001088417A JP 2002289208 A JP2002289208 A JP 2002289208A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
electrode catalyst
fuel cell
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001088417A
Other languages
Japanese (ja)
Other versions
JP4721539B2 (en
Inventor
Hidenobu Wakita
英延 脇田
Masato Hosaka
正人 保坂
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001088417A priority Critical patent/JP4721539B2/en
Publication of JP2002289208A publication Critical patent/JP2002289208A/en
Application granted granted Critical
Publication of JP4721539B2 publication Critical patent/JP4721539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst for a fuel cell, in particular, a cathode-side catalyst capable of exerting high durability. SOLUTION: This electrode catalyst is formed by supporting particles of metal other than platinum and harder to oxidize than platinum in an acidic condition by a conductive carbon material in order to restrain particle growth of platinum particles and by covering the outside surfaces of the particles with platinum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池などで用いられる燃料電池用電極触媒、およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode catalyst used in a polymer electrolyte fuel cell and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池およびリン酸型
燃料電池の電極触媒のカソード触媒としては、白金を含
む貴金属をカーボンブラックに担持した触媒が用いられ
てきた。白金担持カーボンブラックは、塩化白金酸水溶
液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水
と反応させ、生じた白金コロイドをカーボンブラックに
担持させ、洗浄後、必要に応じて熱処理することにより
調製するのが一般的である。高分子電解質型燃料電池の
電極は、白金担持カーボンブラックを高分子電解質溶液
に分散させてインクを調製し、そのインクをカーボンペ
ーパーなどのガス拡散基材に塗布し、乾燥することによ
り作製される。この2枚の電極で高分子電解質膜を挟
み、ホットプレスをすることにより電解質膜−電極接合
体(MEA)が組立られる。燃料として、炭化水素、メ
タノールなどの改質ガスを用いる場合、水素、二酸化炭
素以外に数十ppm程度の一酸化炭素が混入する。この
一酸化炭素は、アノードの白金触媒を被毒するため、ア
ノード用触媒としてはルテニウムと白金を合金化させた
触媒が用いられる。ルテニウム上に生成したヒドロキシ
ル基により、白金に吸着した一酸化炭素が酸化され、触
媒活性が良好に保たれる。
2. Description of the Related Art As a cathode catalyst for an electrode catalyst of a polymer electrolyte fuel cell and a phosphoric acid fuel cell, a catalyst in which a noble metal containing platinum is supported on carbon black has been used. Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to aqueous chloroplatinic acid solution, then reacting with hydrogen peroxide solution, supporting the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. It is generally prepared. Electrodes of a polymer electrolyte fuel cell are prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution to prepare an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. . The polymer electrolyte membrane is sandwiched between the two electrodes, and hot pressing is performed to assemble an electrolyte membrane-electrode assembly (MEA). When a reformed gas such as a hydrocarbon or methanol is used as a fuel, about tens of ppm of carbon monoxide is mixed in addition to hydrogen and carbon dioxide. Since this carbon monoxide poisons the platinum catalyst of the anode, a catalyst obtained by alloying ruthenium and platinum is used as a catalyst for the anode. Hydroxyl groups formed on ruthenium oxidize carbon monoxide adsorbed on platinum and maintain good catalytic activity.

【0003】白金は高価であり、少ない担持量で十分な
性能を発揮させることが望まれている。このため、白金
を微粒子にし、露出表面積をあげることが行われてい
る。しかし、露出白金一個あたりの酸素還元活性は、白
金粒子が2.5nm以下になると大きく低下する。これ
は、このように小さい白金粒子では、エッジ、ステップ
など配位不飽和な白金原子の割合が相対的に多くなって
おり、これらの白金原子の活性が低いためであると考え
られている。このため、通常3nm程度の白金を担持さ
せる場合が多い。しかし、実際には高分子電解質型燃料
電池の運転条件で使用すると、使用中に若干の白金の粒
子成長が観察される。この粒子成長の原因は、未だ不明
である。リン酸型燃料電池のカソード側触媒でも同様の
現象が観測されている。この場合、白金の溶解析出機構
による粒子成長、白金と炭素材料との接合部がはがれる
ことにより引き起こされる白金粒子同士の融着などが原
因すると推察されている。高分子電解質型燃料電池の作
動温度は、リン酸型燃料電池の作動温度(190℃)に
比べて低く、70℃から80℃程度であり、粒子成長は
起こりにくい条件である。しかし、酸性条件下でかつ電
位が同じようにかかっていることを考えると、同様の機
構が推測される。白金触媒の粒子成長は、白金担持量が
十分な電極では、見かけ上特性に大きな変化は及ぼさな
いが、白金量が少ない場合特性の低下となって現れてく
る。以上のように、白金量の低減という点からも、運転
中の白金粒子の成長を抑える必要がある。
[0003] Platinum is expensive, and it is desired to exhibit sufficient performance with a small amount of platinum. For this reason, platinum is made into fine particles to increase the exposed surface area. However, the oxygen reduction activity per exposed platinum greatly decreases when the platinum particle size becomes 2.5 nm or less. This is thought to be because in such small platinum particles, the proportion of the coordinatively unsaturated platinum atoms such as edges and steps is relatively large, and the activity of these platinum atoms is low. For this reason, usually, about 3 nm of platinum is often supported. However, in practice, when used under the operating conditions of a polymer electrolyte fuel cell, some platinum particle growth is observed during use. The cause of this grain growth is still unknown. A similar phenomenon has been observed with the cathode catalyst of the phosphoric acid fuel cell. In this case, it is presumed that this is due to particle growth due to the mechanism of dissolution and precipitation of platinum, fusion of platinum particles caused by peeling of the joint between platinum and the carbon material, and the like. The operating temperature of the polymer electrolyte fuel cell is lower than the operating temperature of the phosphoric acid fuel cell (190 ° C.) and is about 70 ° C. to 80 ° C., which is a condition under which particle growth hardly occurs. However, a similar mechanism is assumed, given that the potentials are equally applied under acidic conditions. The particle growth of the platinum catalyst does not seem to have a large change in characteristics with an electrode having a sufficient amount of supported platinum, but when the amount of platinum is small, the characteristics are deteriorated. As described above, it is necessary to suppress the growth of platinum particles during operation from the viewpoint of reducing the amount of platinum.

【0004】[0004]

【発明が解決しようとする課題】本発明は、運転中の白
金粒子の成長が抑制され、高い耐久性能を有する燃料電
池用電極触媒を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode catalyst for a fuel cell which has high durability while suppressing the growth of platinum particles during operation.

【0005】[0005]

【課題を解決するための手段】本発明の燃料電池用電極
触媒は、導電性炭素材料、前記導電性炭素材料に担持さ
れた、酸性条件下で白金より酸化されにくい金属粒子、
および前記金属粒子の外表面を覆う白金からなることを
特徴とする。前記金属粒子は、金が好ましい。前記金属
粒子は、クロム、鉄、ニッケル、コバルト、チタン、バ
ナジウム、銅、およびマンガンからなる群より選ばれた
少なくとも一種の金属と白金とからなる合金が好ましく
用いられる。
An electrode catalyst for a fuel cell according to the present invention comprises a conductive carbon material, metal particles supported on the conductive carbon material and less oxidizable than platinum under acidic conditions;
And platinum that covers the outer surfaces of the metal particles. The metal particles are preferably gold. As the metal particles, an alloy composed of platinum and at least one metal selected from the group consisting of chromium, iron, nickel, cobalt, titanium, vanadium, copper, and manganese is preferably used.

【0006】本発明は、酸性条件下で白金より酸化され
にくい金属粒子を導電性炭素材料に担持する工程、前記
炭素材料を白金塩の水溶液に分散し、還元剤により白金
を還元する工程を有する燃料電池用電極触媒の製造方法
を提供する。ここで、前記還元剤には、水素が好ましく
用いられる。触媒担持前または担持後に、導電性炭素材
料を不活性ガス雰囲気中または還元ガス雰囲気中で熱処
理する工程を有することが好ましい。
The present invention comprises the steps of supporting metal particles which are less oxidized than platinum under acidic conditions on a conductive carbon material, dispersing the carbon material in an aqueous solution of a platinum salt, and reducing platinum with a reducing agent. Provided is a method for manufacturing an electrode catalyst for a fuel cell. Here, hydrogen is preferably used as the reducing agent. It is preferable to include a step of heat-treating the conductive carbon material in an inert gas atmosphere or a reducing gas atmosphere before or after the catalyst is supported.

【0007】[0007]

【発明の実施の形態】本発明の燃料電池用電極触媒は、
白金粒子の粒子成長を抑制するため、白金以外の金属
で、かつ酸性条件下で白金よりも酸化されにくい金属の
粒子が導電性炭素材料に担持されており、前記粒子の外
表面が白金で覆われた構成を有する。白金より酸化され
にくい金属とは、以下のように、電位−pH図におい
て、酸化電位が白金より貴側にある金属と定義する。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode catalyst for a fuel cell of the present invention comprises:
In order to suppress the particle growth of platinum particles, particles of a metal other than platinum and less oxidizable than platinum under acidic conditions are supported on a conductive carbon material, and the outer surface of the particles is covered with platinum. It has a modified configuration. A metal that is less oxidizable than platinum is defined as a metal whose oxidation potential is more noble than platinum in a potential-pH diagram as described below.

【0008】白金の粒子成長は、0.8V弱付近で起こ
るPtとPtO(もしくはPt(OH)2)の酸化還元
が要因の一つであるとされている。すなわち、これより
高い電位では、白金の表面は酸化されているが、これよ
り低い電位では表面は還元されている。しかし、この酸
化還元は、担体であるカーボンブラックと白金粒子の界
面でも起こり得るため、結果として、白金によるカーボ
ンブラックの酸化が起こり、白金粒子の移動の引き金と
なる。この白金粒子の移動は、白金とカーボンブラック
の相互作用(接合度合い)にもよるため、白金担持法、
カーボンブラックの前処理などによっても変化すると考
えられる。一方、白金の粒子表面上では、白金原子の移
動による白金表面の再構成も起こるため、白金粒子の移
動により互いに接した粒子同士は、やがて融着するに至
る。これを防ぐため、酸性条件下、より高い電位で酸化
還元が起こる粒子をカーボンブラックに担持し、その粒
子上を白金で覆う。これにより、粒子がカーボンブラッ
クから離れて移動しにくくなるとともに、白金の触媒作
用も保たれる。粒子表面での白金の再構成は起こるが、
粒子の移動が起こりにくくなるため、粒子同士の融着に
よる粒子成長は抑制される。
[0008] It is said that one of the factors for the platinum particle growth is the oxidation-reduction of Pt and PtO (or Pt (OH) 2 ) occurring at around 0.8 V or less. That is, at a higher potential, the surface of the platinum is oxidized, but at a lower potential, the surface is reduced. However, this oxidation-reduction can also occur at the interface between the carbon black as a carrier and the platinum particles, and as a result, oxidation of the carbon black by platinum occurs, which triggers the movement of the platinum particles. The movement of the platinum particles also depends on the interaction (degree of bonding) between platinum and carbon black.
It is considered that it may be changed by the pretreatment of carbon black. On the other hand, on the surface of the platinum particles, the platinum surface is reconstructed by the movement of the platinum atoms, so that the particles in contact with each other due to the movement of the platinum particles eventually fuse. In order to prevent this, particles that undergo oxidation-reduction at a higher potential under acidic conditions are supported on carbon black, and the particles are covered with platinum. This makes it difficult for the particles to move away from the carbon black and keeps the catalytic action of platinum. Reconstitution of platinum on the particle surface occurs,
Since the movement of the particles hardly occurs, the particle growth due to the fusion of the particles is suppressed.

【0009】白金により覆われる粒子としては、金が挙
げられるが、そのほかにはクロム、鉄、ニッケル、コバ
ルト、チタン、バナジウム、および銅からなる群より選
ばれる少なくとも一つの金属と白金とからなる合金も白
金のみに比べて高い電位で酸化還元が起こる。例えば金
では、1V付近で表面の酸化還元が起こる。また、担体
の導電性炭素材料としては、不活性ガス雰囲気中もしく
は還元ガス雰囲気中で熱処理されたカーボンブラックが
望ましい。カーボンブラックは、表面にカルボキシル基
などの官能基を持ち、室温、空気中でもある程度酸化さ
れる。このため、電池特性試験中に表面の酸化が起こ
り、白金粒子の脱離の原因となる。カーボンブラック
を、700℃以上の不活性ガス雰囲気中もしくは500
℃以上の還元ガス雰囲気中で熱処理することにより、カ
ーボンブラックの表面官能基が除去され、白金とカーボ
ンブラックの界面が化学的に安定となる。この処理は、
白金を担持後に行ってもよいが、その場合白金の凝集を
抑えるため、還元ガス雰囲気下低温で行うことが望まし
い。
The particles covered with platinum include gold, and in addition, an alloy comprising platinum and at least one metal selected from the group consisting of chromium, iron, nickel, cobalt, titanium, vanadium and copper. Also, redox occurs at a higher potential than that of platinum alone. For example, in the case of gold, surface oxidation-reduction occurs at around 1V. As the conductive carbon material of the carrier, carbon black heat-treated in an inert gas atmosphere or a reducing gas atmosphere is desirable. Carbon black has a functional group such as a carboxyl group on the surface and is oxidized to some extent at room temperature and in the air. For this reason, the surface is oxidized during the battery characteristic test, which causes desorption of platinum particles. Carbon black in an inert gas atmosphere of 700 ° C. or more or 500
By performing the heat treatment in a reducing gas atmosphere at a temperature of not less than ℃, the surface functional groups of carbon black are removed, and the interface between platinum and carbon black becomes chemically stable. This process
It may be carried out after loading platinum, but in that case, it is desirable to carry out at a low temperature in a reducing gas atmosphere in order to suppress the aggregation of platinum.

【0010】本発明の燃料電池用電極触媒は、酸性で白
金よりも酸化されにくい粒子を導電性炭素材料に担持し
た後、白金塩の水溶液に前記炭素材料を分散し、還元剤
により白金を酸化されにくい粒子表面に還元析出させる
ことにより、製造することができる。還元剤としては、
ホルムアルデヒド、水素化ホウ素ナトリウムなどを用い
ることができるが、不純物混入を抑える点から、水素に
よるバブリングが望ましい。
In the electrode catalyst for a fuel cell of the present invention, particles of an acid which are less oxidized than platinum are supported on a conductive carbon material, the carbon material is dispersed in an aqueous solution of a platinum salt, and the platinum is oxidized by a reducing agent. It can be produced by reducing and precipitating on the surface of particles that are difficult to be formed. As a reducing agent,
Although formaldehyde and sodium borohydride can be used, bubbling with hydrogen is preferable from the viewpoint of suppressing contamination of impurities.

【0011】[0011]

【実施例】以下に具体的な実施例を示す。 《実施例1》800℃で水素還元処理したカーボンブラ
ック(ケッチェンEC)に、析出沈殿法により、重量比
80:20の割合で金を担持させた。続いて、この金担
持カーボンブラックを超音波ホモジナイザーを用いて水
に分散させた。一方、水に溶解した後一日静置した塩化
白金酸カリウム水溶液を調製した。この塩化白金酸カリ
ウム水溶液を前記金担持カーボンブラックの水分散液に
加え、水素ガスを5分間バブリングさせた。その後一晩
密封し、溶存水素により白金を金粒子の上に還元析出さ
せた。これをろ過し、100℃で乾燥後、窒素気流中2
00℃で熱処理し、水洗した。こうして、カーボンブラ
ックと金と白金の重量比が50:20:30のPt−A
u/カーボンブラック(触媒A)を調製した。このよう
に調製した触媒を高分解能透過型電子顕微鏡により倍率
200万で観察したところ、カーボンブラックに担持さ
れた触媒粒子の平均粒径は4.5nmであり、白金のみ
で構成されていると思われる粒径2nm以下の粒子は1
0%程度であった。触媒のXPSスペクトルで、約9割
の金が白金で覆われていることが確認された。
EXAMPLES Specific examples will be described below. Example 1 Gold was supported on carbon black (Ketjen EC) which had been subjected to a hydrogen reduction treatment at 800 ° C. at a weight ratio of 80:20 by a precipitation method. Subsequently, the gold-supported carbon black was dispersed in water using an ultrasonic homogenizer. Meanwhile, an aqueous solution of potassium chloroplatinate was dissolved in water and allowed to stand for one day. The aqueous solution of potassium chloroplatinate was added to the aqueous dispersion of gold-supported carbon black, and hydrogen gas was bubbled for 5 minutes. Thereafter, sealing was performed overnight, and platinum was reduced and precipitated on the gold particles with dissolved hydrogen. This is filtered and dried at 100 ° C.
Heat treated at 00 ° C. and washed with water. Thus, Pt-A having a weight ratio of carbon black, gold, and platinum of 50:20:30.
u / carbon black (catalyst A) was prepared. When the catalyst thus prepared was observed with a high-resolution transmission electron microscope at a magnification of 2,000,000, the average particle size of the catalyst particles supported on carbon black was 4.5 nm, and it was assumed that the catalyst particles were composed only of platinum. Particles having a particle size of 2 nm or less
It was about 0%. The XPS spectrum of the catalyst confirmed that about 90% of the gold was covered with platinum.

【0012】続いて、この触媒Aに水および高分子電解
質パーフルオロスルホン酸イオノマーのエタノール溶液
(旭硝子(株)製のフレミオン:9wt%)を加え、触
媒インクaを調製した。ここで、高分子電解質とカーボ
ンブラックの重量比が1:1となるようにした。触媒A
のサイクリックボルタメトリーを回転電極法により測定
するため、インクaを用いて白金電極板にこの触媒層を
形成し、130℃で乾燥させた。この電極を0.5Mの
硫酸水溶液中に浸し、酸素をバブリングさせ、0Vから
1.2Vの間で走査した。酸化された金属が酸素を放出
する還元波のピーク位置は、0.95Vであった。この
電位が高いほど金属が酸化されにくい。
Subsequently, water and an ethanol solution of a polymer electrolyte perfluorosulfonic acid ionomer (Flemion manufactured by Asahi Glass Co., Ltd .: 9 wt%) were added to the catalyst A to prepare a catalyst ink a. Here, the weight ratio between the polymer electrolyte and the carbon black was set to 1: 1. Catalyst A
This catalyst layer was formed on a platinum electrode plate using ink a and dried at 130 ° C. in order to measure the cyclic voltammetry of the above by a rotating electrode method. The electrode was immersed in a 0.5 M sulfuric acid aqueous solution, oxygen was bubbled, and scanning was performed between 0 V and 1.2 V. The peak position of the reduction wave at which the oxidized metal releases oxygen was 0.95V. The higher the potential, the less the metal is oxidized.

【0013】一方、塩化白金酸水溶液に亜硫酸水素ナト
リウムを加えた後、過酸化水素水と反応させ、生じた白
金コロイドを、800℃で水素還元処理したカーボンブ
ラック(ケッチェンEC)に担持し、カーボンブラック
と白金の重量比が50:50のPt/ケッチェンECの
組成の電極触媒Bを調製した。この触媒Bについて、触
媒Aと同様の方法でサイクリックボルタメトリーを行
い、酸化された白金が還元される電位を調べたところ、
0.76Vであり、金に比べて酸化されやすかった。
On the other hand, sodium bisulfite is added to an aqueous solution of chloroplatinic acid, and then reacted with an aqueous solution of hydrogen peroxide. The resulting platinum colloid is supported on carbon black (Ketjen EC) which has been hydrogen-reduced at 800 ° C. Electrode catalyst B having a composition of Pt / Ketjen EC with a weight ratio of black to platinum of 50:50 was prepared. For this catalyst B, cyclic voltammetry was performed in the same manner as for catalyst A, and the potential at which oxidized platinum was reduced was examined.
0.76 V, which was easily oxidized compared to gold.

【0014】次に、触媒インクaを、Pt0.3mg/
cm2となるように、ドクターブレード法でカーボンペ
ーパーに塗布し、60℃で乾燥させて、カソードを作製
した。一方、アノードは、カーボンブラックと白金とル
テニウムの重量比が50:30:24のPt−Ru/ケ
ッチェンEC(田中貴金属工業(株)製)によりPt
0.3mg/cm2となるように同様の手法で作製し
た。このように作製したカソードおよびアノードで高分
子電解質膜(デュポン社製ナフィオン112膜)を挟
み、130℃でホットプレスしてMEAを組み立てた。
Next, the catalyst ink a was added to Pt 0.3 mg /
The solution was applied to carbon paper by a doctor blade method so as to have a volume of cm 2 and dried at 60 ° C. to produce a cathode. On the other hand, the anode was made of Pt-Ru / Ketjen EC (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) having a weight ratio of carbon black, platinum and ruthenium of 50:30:24.
It was produced by the same method so as to obtain 0.3 mg / cm 2 . An MEA was assembled by sandwiching a polymer electrolyte membrane (Nafion 112 membrane manufactured by DuPont) between the thus prepared cathode and anode and hot pressing at 130 ° C.

【0015】このMEAについて、セル温度75℃にお
いて、カソードに露点65℃となるように加熱・加湿し
た空気を、アノードに露点70℃となるように加熱・加
湿した水素をそれぞれ供給し、酸素利用率40%、水素
利用率70%、電流密度0.2A/cm2で100時間
運転した後、0.7A/cm2で100時間運転させ
た。その後、運転を停止し、MEAを分解し、パーフル
オロスルホン酸イオノマーを溶解させるため、カソード
側の触媒層をエタノールで拭い取り、寿命試験後の電極
触媒を高分解能透過型電子顕微鏡により観察したとこ
ろ、平均粒径は5.1nmであった。一方、カソード触
媒として触媒Bを用いて、MEAを組み立て、前記と同
様の条件で電池寿命試験を行った。寿命試験前後のアノ
ード触媒を高分解能透過型電子顕微鏡により観察したと
ころ、寿命試験前に平均粒径3.5nmであった粒子は
平均粒径6.7nmまで粒子成長していた。
With respect to this MEA, at a cell temperature of 75 ° C., air heated and humidified so as to have a dew point of 65 ° C. to the cathode and hydrogen heated and humidified so as to have a dew point of 70 ° C. to the anode are supplied, respectively. After operating at a rate of 40%, a hydrogen utilization rate of 70%, and a current density of 0.2 A / cm 2 for 100 hours, it was operated at 0.7 A / cm 2 for 100 hours. After that, the operation was stopped, the MEA was decomposed, and the catalyst layer on the cathode side was wiped with ethanol to dissolve the perfluorosulfonic acid ionomer, and the electrode catalyst after the life test was observed with a high-resolution transmission electron microscope. The average particle size was 5.1 nm. On the other hand, an MEA was assembled using Catalyst B as a cathode catalyst, and a battery life test was performed under the same conditions as described above. When the anode catalyst before and after the life test was observed with a high-resolution transmission electron microscope, particles having an average particle size of 3.5 nm before the life test grew to an average particle size of 6.7 nm.

【0016】《実施例2》触媒Bと同じ方法で、カーボ
ンブラック(ケッチェンEC)と白金の重量比が90:
10のPt/ケッチェンECを調製した。白金合金化を
行うため、硝酸クロム水溶液を用い含浸法により、前記
のカーボンブラックにクロムを担持し、900℃で水素
還元した。白金とクロムの原子比は1:1となるように
した。続いて、触媒Aと同様の方法で、白金を担持し、
後から担持した白金の含有量が30wt%(カーボンブ
ラックと最初に担持した白金とクロムと後から担持した
白金の重量比は90:10:2.7:44)となるよう
に調製した。この触媒を用いて触媒Aと同様の手法で、
電池特性試験を行い、その前後で平均粒子径を測定し
た。また、白金を担持する前の触媒について、サイクリ
ックボルタメトリーで表面酸化物が還元される電位を調
べた。結果を表1に示す。クロムの場合と同様に、鉄、
ニッケル、コバルト、銅、およびマンガンの硝酸塩か
ら、それぞれ白金との合金を調製し、酸化物の還元電位
を調べるとともに、電池特性による粒子径の変化を調べ
た。結果を表1に示した。
Example 2 In the same manner as in Catalyst B, the weight ratio of carbon black (Ketjen EC) to platinum was 90:
Ten Pt / Ketjen ECs were prepared. In order to perform platinum alloying, chromium was supported on the above-mentioned carbon black by an impregnation method using an aqueous chromium nitrate solution, and hydrogen reduction was performed at 900 ° C. The atomic ratio of platinum to chromium was set to 1: 1. Subsequently, platinum is supported in the same manner as in the case of the catalyst A,
The content of platinum supported later was adjusted to 30 wt% (weight ratio of carbon black, platinum initially supported, chromium and platinum subsequently supported was 90: 10: 2.7: 44). Using this catalyst, in the same manner as Catalyst A,
A battery characteristic test was performed, and the average particle diameter was measured before and after that. Further, with respect to the catalyst before supporting platinum, the potential at which the surface oxide was reduced was examined by cyclic voltammetry. Table 1 shows the results. As with chrome, iron,
Alloys with platinum were prepared from nitrates of nickel, cobalt, copper, and manganese, and the reduction potential of oxides was examined, and the change in particle size due to battery characteristics was examined. The results are shown in Table 1.

【0017】また、塩化バナジウム(III)からバナジウ
ムと白金の合金を、四塩化チタンからチタンと白金の合
金を、それぞれクロムの場合と同様に作製し、酸化物の
還元電位を調べた。さらに白金を被覆し、電池特性によ
る粒子径の変化を調べた。結果を表1に示した。表1か
ら明らかなように、上記の合金触媒は、白金単独に比べ
て還元されやすく、また寿命試験後の粒子径の変化も小
さい。
Further, an alloy of vanadium and platinum from vanadium (III) chloride and an alloy of titanium and platinum from titanium tetrachloride were prepared in the same manner as in the case of chromium, respectively, and the reduction potential of the oxide was examined. Further, platinum was coated, and a change in particle diameter due to battery characteristics was examined. The results are shown in Table 1. As is clear from Table 1, the above alloy catalyst is more easily reduced than platinum alone, and the change in particle diameter after the life test is small.

【0018】[0018]

【表1】 [Table 1]

【0019】《実施例3》触媒Aと同様の方法で、未処
理のカーボンブラック(ケッチェンEC)に金を担持
し、続いて白金を担持させた触媒Cを調製した。この、
触媒Cをカソード触媒に用いて、実施例1と同様にME
Aを組み立て、電池寿命試験を行った。寿命試験前後の
カソード触媒を高分解能透過型電子顕微鏡により観察し
たところ、寿命試験前に平均粒径4.5nmであった粒
子は平均粒径は6.2nmまで粒子成長していた。一
方、触媒Aと同様の方法で、1200℃のアルゴンガス
雰囲気下で熱処理したカーボンブラック(ケッチェンE
C)に金を担持し、続いて白金を担持させた触媒Dを調
製した。この触媒Dをカソード触媒に用いて、MEAを
組み立て、電池寿命試験を行った。寿命試験前後の電極
触媒を高分解能透過型電子顕微鏡により観察したとこ
ろ、寿命試験前に平均粒径4.6nmであった粒子は寿
命試験後は平均粒径5.2nmであった。
Example 3 In the same manner as in the case of the catalyst A, a catalyst C in which gold was supported on untreated carbon black (Ketjen EC), and then platinum was supported was prepared. this,
Using catalyst C as a cathode catalyst, ME
A was assembled and a battery life test was performed. When the cathode catalyst before and after the life test was observed with a high-resolution transmission electron microscope, particles having an average particle size of 4.5 nm before the life test grew to an average particle size of 6.2 nm. On the other hand, carbon black (Ketjen E) heat-treated in the same manner as Catalyst A in an argon gas atmosphere at 1200 ° C.
Catalyst D was prepared by supporting gold on C) and subsequently supporting platinum. Using this catalyst D as a cathode catalyst, an MEA was assembled and a battery life test was performed. When the electrode catalyst before and after the life test was observed with a high-resolution transmission electron microscope, particles having an average particle diameter of 4.6 nm before the life test had an average particle diameter of 5.2 nm after the life test.

【0020】以上のように触媒CとDの比較から明らか
なように、カーボンブラックが不活性ガス雰囲気中で熱
処理されている場合、電池特性の寿命試験後の粒子を小
さく保つことができる。上記の例では、カーボンブラッ
クを不活性ガス雰囲気中で熱処理したが、還元雰囲気中
で熱処理しても同様の効果がある。
As is clear from the comparison between the catalysts C and D as described above, when carbon black is heat-treated in an inert gas atmosphere, particles after a life test of battery characteristics can be kept small. In the above example, the carbon black was heat-treated in an inert gas atmosphere, but heat treatment in a reducing atmosphere has the same effect.

【0021】[0021]

【発明の効果】以上のように本発明によれば、高い耐久
性能を有する燃料電池用電極触媒を提供することができ
る。
As described above, according to the present invention, an electrode catalyst for a fuel cell having high durability can be provided.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/86 H01M 4/86 B 4/88 4/88 K C 4/90 4/90 M 8/10 8/10 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G069 AA03 AA08 AA09 AA11 BA08A BA08B BC31A BC31B BC33A BC33B BC50A BC50B BC58A BC58B BC62A BC62B BC66A BC66B BC67A BC67B BC68A BC68B BC75A BC75B BC75C CC32 DA06 EA01X EA01Y EB19 FA02 FB08 FB29 FB44 5H018 AA06 AS02 AS03 BB01 BB08 BB17 EE02 EE03 EE05 5H026 AA06 BB00 BB01 BB04 BB10 EE02 EE05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01M 4/86 H01M 4/86 B 4/88 4/88 K C 4/90 4/90 M 8/10 8/10 (72) Inventor Teruhisa Kamihara 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) BC75A BC75B BC75C CC32 DA06 EA01X EA01Y EB19 FA02 FB08 FB29 FB44 5H018 AA06 AS02 AS03 BB01 BB08 BB17 EE02 EE03 EE05 5H026 AA06 BB00 BB01 BB04 BB10 EE02 EE05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 導電性炭素材料、前記導電性炭素材料に
担持された、酸性条件下で白金より酸化されにくい金属
粒子、および前記金属粒子の外表面を覆う白金からなる
ことを特徴とする燃料電池用電極触媒。
1. A fuel comprising: a conductive carbon material; metal particles supported on the conductive carbon material, which are less oxidizable than platinum under acidic conditions; and platinum covering an outer surface of the metal particles. Electrode catalyst for batteries.
【請求項2】 前記金属粒子が金である請求項1記載の
燃料電池用電極触媒。
2. The fuel cell electrode catalyst according to claim 1, wherein the metal particles are gold.
【請求項3】 前記金属粒子が、クロム、鉄、ニッケ
ル、コバルト、チタン、バナジウム、銅、およびマンガ
ンからなる群より選ばれた少なくとも一種の金属と白金
とからなる合金である請求項1記載の燃料電池用電極触
媒。
3. The method according to claim 1, wherein the metal particles are an alloy composed of platinum and at least one metal selected from the group consisting of chromium, iron, nickel, cobalt, titanium, vanadium, copper, and manganese. Electrode catalyst for fuel cells.
【請求項4】 酸性条件下で白金より酸化されにくい金
属粒子を導電性炭素材料に担持する工程、前記炭素材料
を白金塩の水溶液に分散し、還元剤により白金を還元す
る工程を有する燃料電池用電極触媒の製造方法。
4. A fuel cell comprising: a step of supporting metal particles less oxidizable than platinum under acidic conditions on a conductive carbon material; and a step of dispersing the carbon material in an aqueous solution of a platinum salt and reducing platinum with a reducing agent. For producing an electrode catalyst for use.
【請求項5】 前記還元剤が水素である請求項4記載の
燃料電池用電極触媒の製造方法。
5. The method for producing an electrode catalyst for a fuel cell according to claim 4, wherein the reducing agent is hydrogen.
【請求項6】 触媒担持前または担持後に、導電性炭素
材料を不活性ガス雰囲気中または還元ガス雰囲気中で熱
処理する工程を有する請求項4記載の燃料電池用電極触
媒の製造方法。
6. The method for producing an electrode catalyst for a fuel cell according to claim 4, further comprising a step of subjecting the conductive carbon material to a heat treatment in an inert gas atmosphere or a reducing gas atmosphere before or after supporting the catalyst.
JP2001088417A 2001-03-26 2001-03-26 Fuel cell electrode catalyst and method for producing the same Expired - Lifetime JP4721539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088417A JP4721539B2 (en) 2001-03-26 2001-03-26 Fuel cell electrode catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088417A JP4721539B2 (en) 2001-03-26 2001-03-26 Fuel cell electrode catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002289208A true JP2002289208A (en) 2002-10-04
JP4721539B2 JP4721539B2 (en) 2011-07-13

Family

ID=18943514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088417A Expired - Lifetime JP4721539B2 (en) 2001-03-26 2001-03-26 Fuel cell electrode catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4721539B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100890A1 (en) * 2002-05-29 2003-12-04 Nec Corporation Fuel cell catalyst carrying particle, composite electrolyte containing the same, catalytic electrode, fuel cell and process for producing tehm
WO2004114444A1 (en) * 2003-06-24 2004-12-29 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell and method for producing same
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Fuel cell electrode catalyst and method for producing the same
WO2005113143A1 (en) * 2004-05-24 2005-12-01 Youtec Co., Ltd Fine particles
JP2006012691A (en) * 2004-06-28 2006-01-12 Nissan Motor Co Ltd Electrode catalyst and method for producing the same
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, method for producing the same, and fuel cell
JP2007005162A (en) * 2005-06-24 2007-01-11 Permelec Electrode Ltd Method for producing catalyst for fuel cell, gas diffusion electrode using the catalyst, and fuel cell
JP2007075811A (en) * 2005-09-14 2007-03-29 Samsung Sdi Co Ltd Supported catalyst, method for producing supported catalyst, electrode and fuel cell using supported catalyst
JP2007214130A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Fuel cell supported catalyst and manufacturing method thereof, fuel cell electrode including the supported catalyst, and fuel cell including the electrode
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and production method thereof, electrode for fuel cell, and production method of membrane electrode structure
JP2008269850A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Catalyst for polymer electrolyte fuel cell electrode
WO2008153189A1 (en) 2007-06-11 2008-12-18 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
JP2009514167A (en) * 2005-10-27 2009-04-02 ユーティーシー パワー コーポレイション Metal catalysts that extend the life of fuel cell membranes and ionomers.
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane-electrode assembly for fuel cell and manufacturing method of fuel cell system including the same
WO2009096356A1 (en) 2008-01-28 2009-08-06 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
US7700521B2 (en) 2003-08-18 2010-04-20 Symyx Solutions, Inc. Platinum-copper fuel cell catalyst
JP2010211946A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Catalyst layer for fuel cell, and method of manufacturing the same
JP2010214330A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Method for manufacturing core-shell particles
US7811965B2 (en) 2004-08-18 2010-10-12 Symyx Solutions, Inc. Platinum-copper-nickel fuel cell catalyst
WO2011045869A1 (en) 2009-10-16 2011-04-21 Toyota Jidosha Kabushiki Kaisha Method for producing electrode catalyst for fuel cell
KR101102546B1 (en) 2006-09-13 2012-01-04 히다치 막셀 에너지 가부시키가이샤 Membrane Electrode Assembly and Solid Polymer Fuel Cell
US10263260B2 (en) 2009-06-22 2019-04-16 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726575B1 (en) 2015-08-21 2017-04-14 한국과학기술연구원 Ultra-low Loading of Pt-decorated Ni Electrocatalyst, Manufacturing Method of the Same and Anion Exchange Membrane Water Electrolyzer Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139569A (en) * 1982-12-30 1984-08-10 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Fuel battery
JPH08203536A (en) * 1995-01-30 1996-08-09 Fuji Electric Co Ltd Fuel electrode for fuel cell, method for producing catalyst therefor, and method for operating cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139569A (en) * 1982-12-30 1984-08-10 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Fuel battery
JPH08203536A (en) * 1995-01-30 1996-08-09 Fuji Electric Co Ltd Fuel electrode for fuel cell, method for producing catalyst therefor, and method for operating cell

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236724B2 (en) 2002-05-29 2012-08-07 Nec Corporation Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
WO2003100890A1 (en) * 2002-05-29 2003-12-04 Nec Corporation Fuel cell catalyst carrying particle, composite electrolyte containing the same, catalytic electrode, fuel cell and process for producing tehm
JP4781818B2 (en) * 2003-06-24 2011-09-28 旭硝子株式会社 Method for producing membrane electrode assembly for polymer electrolyte fuel cell
CN100426572C (en) * 2003-06-24 2008-10-15 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell and method for producing same
JPWO2004114444A1 (en) * 2003-06-24 2006-08-03 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
WO2004114444A1 (en) * 2003-06-24 2004-12-29 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell and method for producing same
US7157176B2 (en) * 2003-06-24 2007-01-02 Asahi Glass Company, Limited Membrane-electrode assembly for polymer electrolyte fuel cell, and process for its production
US7700521B2 (en) 2003-08-18 2010-04-20 Symyx Solutions, Inc. Platinum-copper fuel cell catalyst
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Fuel cell electrode catalyst and method for producing the same
US7205255B2 (en) 2003-10-06 2007-04-17 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell and method for production thereof
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane-electrode assembly for fuel cell and manufacturing method of fuel cell system including the same
WO2005113143A1 (en) * 2004-05-24 2005-12-01 Youtec Co., Ltd Fine particles
JP2005334685A (en) * 2004-05-24 2005-12-08 Takayuki Abe Fine particles
JP2006012691A (en) * 2004-06-28 2006-01-12 Nissan Motor Co Ltd Electrode catalyst and method for producing the same
US7811965B2 (en) 2004-08-18 2010-10-12 Symyx Solutions, Inc. Platinum-copper-nickel fuel cell catalyst
JP2006205088A (en) * 2005-01-28 2006-08-10 Cataler Corp Electrode catalyst, method for producing the same, and fuel cell
JP2007005162A (en) * 2005-06-24 2007-01-11 Permelec Electrode Ltd Method for producing catalyst for fuel cell, gas diffusion electrode using the catalyst, and fuel cell
US7919426B2 (en) 2005-09-14 2011-04-05 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
JP2007075811A (en) * 2005-09-14 2007-03-29 Samsung Sdi Co Ltd Supported catalyst, method for producing supported catalyst, electrode and fuel cell using supported catalyst
US7589043B2 (en) 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US8288054B2 (en) 2005-10-27 2012-10-16 Utc Power Corporation Alloy catalysts for extending life of fuel cell membranes and ionomer
JP2009514167A (en) * 2005-10-27 2009-04-02 ユーティーシー パワー コーポレイション Metal catalysts that extend the life of fuel cell membranes and ionomers.
US7902111B2 (en) 2006-02-07 2011-03-08 Samsung Sdi Co., Ltd. Supported catalyst for fuel cell, method of preparing the same, electrode for fuel cell including the supported catalyst, and fuel cell including the electrode
JP2007214130A (en) * 2006-02-07 2007-08-23 Samsung Sdi Co Ltd Fuel cell supported catalyst and manufacturing method thereof, fuel cell electrode including the supported catalyst, and fuel cell including the electrode
KR101102546B1 (en) 2006-09-13 2012-01-04 히다치 막셀 에너지 가부시키가이샤 Membrane Electrode Assembly and Solid Polymer Fuel Cell
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and production method thereof, electrode for fuel cell, and production method of membrane electrode structure
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008269850A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Catalyst for polymer electrolyte fuel cell electrode
WO2008153189A1 (en) 2007-06-11 2008-12-18 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
US8338051B2 (en) 2007-06-11 2012-12-25 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
WO2009096356A1 (en) 2008-01-28 2009-08-06 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
US8236462B2 (en) 2008-01-28 2012-08-07 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the electrode catalyst, and polymer electrolyte fuel cell using the electrode catalyst
JP2010211946A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Catalyst layer for fuel cell, and method of manufacturing the same
JP2010214330A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Method for manufacturing core-shell particles
US10263260B2 (en) 2009-06-22 2019-04-16 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same
WO2011045869A1 (en) 2009-10-16 2011-04-21 Toyota Jidosha Kabushiki Kaisha Method for producing electrode catalyst for fuel cell

Also Published As

Publication number Publication date
JP4721539B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4721539B2 (en) Fuel cell electrode catalyst and method for producing the same
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
US6686308B2 (en) Supported nanoparticle catalyst
JP5166842B2 (en) ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST
JP4963147B2 (en) ELECTRODE CATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
KR20010071152A (en) Improved composition of a selective oxidation catalyst for use in fuel cells
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
US10998556B2 (en) Catalyst for solid polymer fuel cell and method for producing same
JP2007273340A (en) High durability electrode catalyst for fuel cell and fuel cell using the electrode catalyst
EP1022795A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
CN104995774A (en) Electrode catalyst, method for preparing same, and membrane electrode assembly and fuel cell comprising same
WO2006114942A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2002305001A (en) Electrode catalyst for fuel cell and method for producing the same
JP2002231257A (en) Electrode catalyst for fuel cell and method for producing the same
JP6478677B2 (en) Fuel cell electrode
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP4797166B2 (en) Noble metal catalyst-supported conductive polymer composite and method for producing the same
JP2006179427A (en) Fuel cell electrode catalyst and fuel cell
US20220238892A1 (en) Method for producing alloy fine particle-supported catalyst, electrode, fuel cell, method for producing alloy fine particle, alloy fine particle-supported catalyst, alloy fine particle, method for producing membrane electrode assembly, and method for producing fuel cell
JP2005251455A (en) Catalyst for fuel cell and production method thereof, electrode, and direct methanol fuel cell
US7825057B2 (en) Method for preparing the mixed electrode catalyst materials for a PEM fuel cell
JP2005141920A (en) Catalyst supported electrode
JP2005190887A (en) ELECTRODE CATALYST HAVING SURFACE STRUCTURE FOR CONSTRUCTING CATALYST LAYER HAVING HIGH PERFORMANCE AND DUTY AND PROCESS FOR PRODUCING THE SAME
JP2005190712A (en) Catalyst-supporting electrode, MEA for fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4721539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term