[go: up one dir, main page]

JP2002299110A - Method of manufacturing rare-earth element permanent magnet - Google Patents

Method of manufacturing rare-earth element permanent magnet

Info

Publication number
JP2002299110A
JP2002299110A JP2001102491A JP2001102491A JP2002299110A JP 2002299110 A JP2002299110 A JP 2002299110A JP 2001102491 A JP2001102491 A JP 2001102491A JP 2001102491 A JP2001102491 A JP 2001102491A JP 2002299110 A JP2002299110 A JP 2002299110A
Authority
JP
Japan
Prior art keywords
ratio
rare earth
permanent magnet
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001102491A
Other languages
Japanese (ja)
Other versions
JP4870274B2 (en
Inventor
Eiji Kato
英治 加藤
Tsutomu Ishizaka
力 石坂
Makoto Nakane
誠 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001102491A priority Critical patent/JP4870274B2/en
Publication of JP2002299110A publication Critical patent/JP2002299110A/en
Application granted granted Critical
Publication of JP4870274B2 publication Critical patent/JP4870274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a rare-earth element permanent magnet, that is superior in both coercive force and residual magnetic flux density can be manufactured. SOLUTION: After a mixture of alloy X powder, composed mainly of R<1> 2 T14 B (where R<1> , T, and B respectively denote one or more kinds of rare earth elements including Y (Dy is indispensable), one or more kinds of transition metal elements, and boron) and alloy Y powder, composed mainly of R<2> T (where R<2> and T respectively denote one or more kinds of heavy rare-earth elements and one or more kinds of transition metal elements) is obtained, the mixed powder is sintered. The magnetic characteristics of the rare-earth permanent magnet can be improved, by adjusting the Dy ratio which is the ratio of the content of the heavy rare-earth elements in the alloy X powder to that of the heavy rare-earth elements in the sintered magnet composition to be 0.38-0.99 and R ratio, which is the ratio of the content of the rare-earth elements in the alloy X powder to that of the rare-earth elements, in the sintered magnet composition to be 0.94-1.03.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は希土類元素R、遷移
金属元素T、ホウ素Bを主成分とする磁気特性に優れた
希土類永久磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties and containing a rare earth element R, a transition metal element T, and boron B as main components.

【0002】[0002]

【従来の技術】希土類磁石の中でもNd−Fe−B系磁
石は、磁気特性に優れていること、主成分であるNdが
資源的に豊富で比較的安価であることから、需要は年
々、増大している。Nd−Fe−B系磁石の磁気特性を
向上するための研究開発も精力的に行われており、近年
では、高性能なNd−Fe−B系磁石を製造する場合、
各種金属粉体や組成の異なる合金粉末を混合、焼結する
混合法が主流となっている。
2. Description of the Related Art Among rare earth magnets, the demand for Nd-Fe-B magnets has been increasing year by year because of its excellent magnetic properties, Nd as a main component is abundant in resources and relatively inexpensive. are doing. Research and development for improving the magnetic properties of Nd-Fe-B-based magnets have also been vigorously conducted. In recent years, when manufacturing high-performance Nd-Fe-B-based magnets,
A mixing method of mixing and sintering various metal powders and alloy powders having different compositions has become mainstream.

【0003】ところで、Nd−Fe−B系磁石は、キュ
リー温度が低いために、温度上昇に伴って保磁力が低下
してしまうという問題がある。この問題を解決すべく、
様々な試みがなされている。例えば、特公平5−108
06号公報では、Dy、Tb等の重希土類元素を添加す
ることによりNd−Fe−B系磁石の保磁力を高めるこ
とを提案している。ところが、Dy、Tb等の重希土類
元素を添加すると、保磁力が向上する一方で残留磁束密
度が低下してしまうという問題が生じる。特開平6−2
83318号公報および特開平7−50205号公報で
は、R214B系金属間化合物(RはYを含む希土類元
素の1種または2種以上、Tは遷移金属元素の1種また
は2種以上)を主体とする主相とRリッチ相を主構成相
とする混合法を用いたR−T−B系希土類永久磁石の製
造方法において、R−T−B系合金粉末に対するR−T
系合金粉末の配合量を適宜変更することにより磁石の特
性を向上させることを提案している。しかしながら、特
開平6−283318号公報および特開平7−5020
5号公報記載の方法は、残留磁束密度を向上させる上で
は有効であるものの、保磁力が低下してしまうという問
題があった。
[0003] Incidentally, the Nd-Fe-B magnet has a problem that the coercive force decreases as the temperature rises because the Curie temperature is low. To solve this problem,
Various attempts have been made. For example, Japanese Patent Publication 5-108
No. 06 proposes increasing the coercive force of an Nd—Fe—B magnet by adding a heavy rare earth element such as Dy or Tb. However, when heavy rare earth elements such as Dy and Tb are added, there arises a problem that the coercive force is improved while the residual magnetic flux density is reduced. JP-A-6-2
No. 83318 and JP-A-7-50205 disclose R 2 T 14 B-based intermetallic compounds (R is one or more rare earth elements including Y, and T is one or more transition metal elements) ), A method for producing an RTB-based rare earth permanent magnet using a mixing method in which a main phase mainly composed of an R-rich phase is used as a main component phase.
It has been proposed to improve the properties of the magnet by appropriately changing the amount of the system alloy powder. However, JP-A-6-283318 and JP-A-7-5020 disclose
Although the method described in Japanese Patent Application Laid-Open No. 5-205400 is effective in improving the residual magnetic flux density, it has a problem in that the coercive force is reduced.

【0004】[0004]

【発明が解決しようとする課題】また、特開平7−57
913号公報では、R214B系金属間化合物の面積率
が95%以上であるR−T−B系合金粉末に、R共晶の
面積率が10%以下であるR−T系合金粉末を8〜15
wt%の範囲で添加することを提案している。特開平7
−57913号公報記載の製造方法によれば、残留磁束
密度の低下を抑制しつつ高い保磁力を得ることができ
る。しかしながら、より高い残留磁束密度を有する希土
類永久磁石の製造方法が求められている。そこで、本発
明は、保磁力および残留磁束密度がともに優れた希土類
永久磁石の製造方法を提供することを課題とする。
The problem to be solved by the present invention is disclosed in Japanese Patent Application Laid-Open No. 7-57.
No. 913 discloses that an R-T-based alloy powder having an R 2 T 14 B-based intermetallic compound having an area ratio of 95% or more includes an R-T-based alloy having an R eutectic area ratio of 10% or less. 8-15 powder
It is proposed to add in the range of wt%. JP 7
According to the manufacturing method described in JP-A-57913, a high coercive force can be obtained while suppressing a decrease in residual magnetic flux density. However, there is a need for a method of manufacturing a rare earth permanent magnet having a higher residual magnetic flux density. Therefore, an object of the present invention is to provide a method for manufacturing a rare earth permanent magnet having both excellent coercive force and residual magnetic flux density.

【0005】[0005]

【課題を解決するための手段】本発明者は、混合法を用
いた希土類永久磁石の製造方法において、より高い磁気
特性を得るために様々な検討を行った。その結果、R−
T−B系合金粉末における重希土類元素の含有量と焼結
後の磁石組成における重希土類元素の含有量の比(以
下、適宜「Dy比」という。)を変動させることより残
留磁束密度Brを向上させることができることを知見し
た。また、もう一つのパラメータとして、R−T−B系
合金粉末における希土類元素の含有量と焼結後の磁石組
成における希土類元素の含有量の比(以下、適宜「R
比」という。)を用いることにより、保磁力Hcjおよ
び残留磁束密度Brともに優れた値を得ることができる
ことを知見した。したがって、本発明は、R1 214
(R1 214B:R1=Yを含む希土類元素の1種または
2種以上(Dyは必須)、T=遷移金属元素の1種また
は2種以上、B=ホウ素)を主体とするX合金粉末と、
2T(R2T:R2=重希土類元素の1種または2種以
上、T=遷移金属元素の1種または2種以上)を主体と
するY合金粉末との混合粉末を得る工程と、前記混合粉
末を焼結する工程とを含む希土類永久磁石の製造方法に
おいて、前記X合金粉末における重希土類元素の含有量
と焼結後の磁石組成における重希土類元素の含有量の比
であるDy比が0.38〜0.99であり、かつ前記X合
金粉末における希土類元素の含有量と焼結後の磁石組成
における希土類元素の含有量の比であるR比が0.94
〜1.03であることを特徴とする希土類永久磁石の製
造方法を提供する。Dy比の減少に伴って、残留磁束密
度Brが向上する傾向にあるが、Dy比が0.38未満
になると、保磁力Hcjが低下してしまう。Dy比が
0.99を超えると、高い保磁力Hcjを得ることがで
きるが、その一方で残留磁束密度Brが低下してしま
う。特に、Dy比を0.6〜0.8、R比を0.94〜0.
99とした場合には、優れた磁気特性を有する希土類永
久磁石を得ることができる。
Means for Solving the Problems The present inventor has made various studies to obtain higher magnetic characteristics in a method of manufacturing a rare earth permanent magnet using a mixing method. As a result, R-
By changing the ratio of the content of the heavy rare earth element in the TB alloy powder to the content of the heavy rare earth element in the magnet composition after sintering (hereinafter referred to as “Dy ratio” as appropriate), the residual magnetic flux density Br is reduced. It has been found that it can be improved. As another parameter, a ratio of the content of the rare earth element in the RTB-based alloy powder to the content of the rare earth element in the magnet composition after sintering (hereinafter referred to as “R
Ratio. " It has been found that by using (), excellent values can be obtained for both the coercive force Hcj and the residual magnetic flux density Br. Accordingly, the present invention, R 1 2 T 14 B
(R 1 2 T 14 B: R 1 = Y 1 , or two or more rare earth elements including (Dy mandatory), T = transition metal element one or more of, B = boron) as a main component X alloy powder,
A step of obtaining a mixed powder with a Y alloy powder mainly composed of R 2 T (R 2 T: R 2 = one or more heavy rare earth elements, T = one or more transition metal elements); And sintering the mixed powder, wherein Dy is a ratio of the content of the heavy rare earth element in the X alloy powder to the content of the heavy rare earth element in the magnet composition after sintering. The ratio is 0.38 to 0.99, and the R ratio, which is the ratio of the content of the rare earth element in the X alloy powder to the content of the rare earth element in the magnet composition after sintering, is 0.94.
The present invention provides a method for producing a rare earth permanent magnet, wherein As the Dy ratio decreases, the residual magnetic flux density Br tends to increase. However, when the Dy ratio is less than 0.38, the coercive force Hcj decreases. When the Dy ratio exceeds 0.99, a high coercive force Hcj can be obtained, but on the other hand, the residual magnetic flux density Br decreases. In particular, the Dy ratio is 0.6 to 0.8, and the R ratio is 0.94 to 0.8.
When it is set to 99, a rare earth permanent magnet having excellent magnetic properties can be obtained.

【0006】本発明の希土類永久磁石の製造方法におい
て、Y合金粉末をR2TM系合金とし、MとしてAl,
Cu,Sn,Ga,BiおよびInのうち1種または2
種以上選択することができる。特に、MとしてGaを選
択した場合には、希土類永久磁石の磁気特性を向上させ
る上で有効である。Dyは異方性磁界が大きいので、保
磁力Hcjを向上させる上で有効であることから、本発
明ではX合金粉末にDyを含むことを必須としている。
特に、焼結後の磁石にDyを1〜13wt%含むことに
より、高い残留磁束密度Brを得ることができる。本発
明の希土類永久磁石の製造方法によれば、残留磁束密度
Brが1.22T以上である希土類永久磁石を得ること
ができる。さらに、本発明者は、焼結温度の上昇に伴い
残留磁束密度Brが向上することを知見した。つまり、
本発明の希土類永久磁石の製造方法によれば、1050
〜1130℃の温度範囲で焼結することにより、保磁力
Hcjが1900kA/m以上かつ残留磁束密度Brが
1.22T以上の希土類永久磁石を得ることができる。
In the method for producing a rare earth permanent magnet according to the present invention, the Y alloy powder is an R 2 TM alloy, and M is Al,
One or two of Cu, Sn, Ga, Bi and In
More than one species can be selected. In particular, when Ga is selected as M, it is effective in improving the magnetic characteristics of the rare earth permanent magnet. Since Dy has a large anisotropic magnetic field and is effective in improving the coercive force Hcj, the present invention requires that the X alloy powder contain Dy.
In particular, when the magnet after sintering contains 1 to 13 wt% of Dy, a high residual magnetic flux density Br can be obtained. According to the method for manufacturing a rare earth permanent magnet of the present invention, a rare earth permanent magnet having a residual magnetic flux density Br of 1.22 T or more can be obtained. Furthermore, the present inventor has found that the residual magnetic flux density Br increases as the sintering temperature increases. That is,
According to the method for manufacturing a rare earth permanent magnet of the present invention, 1050
By sintering in a temperature range of 1130 ° C., a rare earth permanent magnet having a coercive force Hcj of 1900 kA / m or more and a residual magnetic flux density Br of 1.22 T or more can be obtained.

【0007】以上の本発明では、R比およびDy比の両
者を所定の値にすることを提案しているが、R比または
Dy比単独でも有効である。したがって、本発明は、R
1 214B(R1 214B:R1=Yを含む希土類元素の1
種または2種以上(Dyは必須)、T=遷移金属元素の
1種または2種以上、B=ホウ素)を主体とするX合金
粉末と、R2T(R2T:R2=重希土類元素の1種また
は2種以上、T=遷移金属元素の1種または2種以上)
を主体とするY合金粉末との混合粉末を得る工程と、前
記混合粉末を焼結する工程とを含む希土類永久磁石の製
造方法において、前記X合金粉末における希土類元素の
含有量と焼結後の磁石組成における希土類元素の含有量
の比であるR比が0.94〜0.99であることを特徴と
する希土類永久磁石の製造方法を提供する。さらにま
た、本発明は、R1 214B(R1 214B:R1=Yを含
む希土類元素の1種または2種以上(Dyは必須)、T
=遷移金属元素の1種または2種以上、B=ホウ素)を
主体とするX合金粉末と、R2T(R2T:R2=重希土
類元素の1種または2種以上、T=遷移金属元素の1種
または2種以上)を主体とするY合金粉末との混合粉末
を得る工程と、前記混合粉末を焼結する工程とを含む希
土類永久磁石の製造方法において、前記X合金粉末にお
ける希土類元素の含有量と焼結後の磁石組成における希
土類元素の含有量の比であるDy比が0.65〜0.99
であることを特徴とする希土類永久磁石の製造方法を提
供する。
Although the present invention proposes setting both the R ratio and the Dy ratio to predetermined values, it is effective to use the R ratio or the Dy ratio alone. Therefore, the present invention relates to R
1 2 T 14 B (R 1 2 T 14 B: 1 of rare earth elements including R 1 = Y
X alloy powder mainly composed of one or more kinds (Dy is essential), T = one or more kinds of transition metal elements, B = boron), and R 2 T (R 2 T: R 2 = heavy rare earth) One or more elements, T = one or more transition metal elements)
A process of obtaining a mixed powder with a Y alloy powder mainly comprising: and a step of sintering the mixed powder, wherein the content of the rare earth element in the X alloy powder and the sintered A method for producing a rare earth permanent magnet, wherein the R ratio, which is the ratio of the content of the rare earth element in the magnet composition, is 0.94 to 0.99. Furthermore, the present invention, R 1 2 T 14 B ( R 1 2 T 14 B: 1 or more kinds of rare earth elements including R 1 = Y (Dy mandatory), T
= Transition metal element one or more, and X alloy powder B = boron) and mainly, R 2 T (R 2 T : R 2 = 1 , two or more of heavy rare earth elements, T = transition A method for producing a rare earth permanent magnet including a step of obtaining a mixed powder with a Y alloy powder mainly composed of one or more metal elements) and a step of sintering the mixed powder. The Dy ratio, which is the ratio of the rare earth element content to the rare earth element content in the magnet composition after sintering, is 0.65 to 0.99.
A method for producing a rare earth permanent magnet is provided.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。本発明は、R1 214Bを主体とするX合金
粉末と、R2Tを主体とするY合金粉末とを混合する、
いわゆる混合法を用いた希土類永久磁石の製造方法であ
る。本発明による希土類永久磁石の製造方法は、R1 2
14B(R1 214B:R1=Yを含む希土類元素の1種ま
たは2種以上(Dyは必須)、T=遷移金属元素の1種
または2種以上、B=ホウ素)を主体とするX合金粉末
と、R2T(R2T:R 2=重希土類元素の1種または2
種以上、T=遷移金属元素の1種または2種以上)を主
体とするY合金粉末との混合粉末を得る工程と、その混
合粉末を焼結する工程とを含む。以下、詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
Will be explained. The present invention relates to R1 TwoT14X alloy mainly composed of B
Powder and RTwoMixing with Y alloy powder mainly composed of T,
This is a method of manufacturing rare earth permanent magnets using a so-called mixing method.
You. The method for producing a rare-earth permanent magnet according to the present invention comprises:1 TwoT
14B (R1 TwoT14B: R1= One kind of rare earth element containing Y
Or two or more (Dy is essential), T = one of transition metal elements
Or two or more kinds, X = B alloy)
And RTwoT (RTwoT: R Two= One or two heavy rare earth elements
Or more, T = one or more of transition metal elements)
A step of obtaining a mixed powder with a Y alloy powder to be
Sintering the combined powder. The details will be described below.

【0009】はじめに、原料となる金属および/または
合金を配合し、溶解、凝固することにより、X合金およ
びY合金を得る。X合金粉末は、主としてR1 214B化
合物相からなる。ここで、R1は、Yを含む希土類元素
(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,
Dy,Ho,Er,YbおよびLu)の1種または2種
以上であり、Dyを含有することを必須とする。Dyは
異方性磁界が大きいので、保磁力Hcjを向上させる上
で有効である。遷移金属Tとしては従来から用いられて
いるFe、Co、Niを用いることができる。これらの
中では、焼結性の点からFe、Coが望ましく、特に磁
気特性の点からFeを主体とすることが望ましい。Y合
金粉末は、R2とTとを主成分とする。ここで、R2は、
重希土類元素の1種または2種以上であり、特にDyを
含むことが好ましい。本明細書において、「R2T」と
は、R2とTとが1:1であることを意味するものでは
なく、R2とTとを主成分とする合金であることを意味
する。また、後述する「R2TM」ついても、R2とTと
Mとが1:1:1であることを意味するものではなく、
2とTとMとを主成分とする合金であることを意味す
る。なお、本発明において、重希土類元素とはGd、T
b、Dy、Ho、Er、Tm、Yb、Lu、Yをいう。
X合金粉末がホウ素Bを含むのに対し、Y合金粉末には
ホウ素Bは含まれない。Y合金粉末は焼結後に主相とな
るR1 214B相を取り囲む粒界相として機能するもので
あって本質的にホウ素Bを含む必要がないため、および
Y合金粉末にホウ素Bを添加しないことによって焼結性
が向上するためである。
First, an X alloy and a Y alloy are obtained by blending, melting and solidifying a metal and / or an alloy as raw materials. X alloy powder mainly consists of R 1 2 T 14 B compound phase. Here, R 1 is a rare earth element containing Y (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Yb and Lu), and it is essential to contain Dy. Since Dy has a large anisotropic magnetic field, it is effective in improving the coercive force Hcj. As the transition metal T, Fe, Co, and Ni conventionally used can be used. Among these, Fe and Co are desirable from the viewpoint of sintering properties, and it is particularly desirable to mainly use Fe from the viewpoint of magnetic properties. The Y alloy powder contains R 2 and T as main components. Where R 2 is
It is one or more of heavy rare earth elements, and particularly preferably contains Dy. In this specification, “R 2 T” does not mean that R 2 and T are 1: 1 but means that it is an alloy containing R 2 and T as main components. Also, “R 2 TM” described below does not mean that R 2 , T, and M are 1: 1: 1.
It means that the alloy is mainly composed of R 2 , T and M. In the present invention, heavy rare earth elements are Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu, Y.
The X alloy powder contains boron B, whereas the Y alloy powder does not contain boron B. Since Y alloy powder need not include essentially boron B configured to work as a grain boundary phase surrounding the R 1 2 T 14 B phase as a main phase after sintering, and Y alloy powder boron B This is because the sinterability is improved by not adding it.

【0010】本発明において、組成は目的に応じ選択す
ればよいが、磁気特性に優れた希土類永久磁石を得るた
めには、焼結後の磁石組成において軽希土類元素:17
〜37重量%、重希土類元素:1〜13重量%、ホウ素
B:0.5〜4.5重量%、遷移金属元素T:51〜74
重量%となるような配合組成とすることが望ましい。よ
り望ましくは、軽希土類元素が20〜30重量%、重希
土類元素が3〜10重量%、ホウ素Bが0.9〜1.2重
量%、遷移金属元素Tが60〜74重量%である。ま
た、Mを加えてR2TMとする場合には、焼結後の磁石
組成においてMが0.03〜1重量%、より望ましくは
0.1〜0.7重量%となるようにすればよい。Mとして
は、Al、Cu,Sn、Ga,Bi,Inの中から1種
または2種以上を選択することができる。この中で特に
好ましいのはGaである。MとしてGaを選択した場合
には、高い保磁力HcJおよび残留磁束密度Brを得る
ことができるとともに、焼結性も向上する傾向がある。
希土類永久磁石の磁気特性は組成依存性が非常に強く、
上記の範囲を外れた領域では、本発明を適用しても優れ
た磁気特性を得ることが困難である。
In the present invention, the composition may be selected according to the purpose. However, in order to obtain a rare earth permanent magnet having excellent magnetic properties, a light rare earth element: 17
To 37% by weight, heavy rare earth element: 1 to 13% by weight, boron B: 0.5 to 4.5% by weight, transition metal element T: 51 to 74%
It is desirable that the composition be such that the weight% is obtained. More preferably, the light rare earth element is 20 to 30% by weight, the heavy rare earth element is 3 to 10% by weight, the boron B is 0.9 to 1.2% by weight, and the transition metal element T is 60 to 74% by weight. In addition, when M is added to form R 2 TM, the magnet composition after sintering should have M in the range of 0.03 to 1% by weight, more preferably 0.1 to 0.7% by weight. Good. As M, one or more of Al, Cu, Sn, Ga, Bi, and In can be selected. Of these, Ga is particularly preferred. When Ga is selected as M, high coercive force HcJ and residual magnetic flux density Br can be obtained, and sinterability tends to be improved.
The magnetic properties of rare earth permanent magnets are very composition dependent,
In a region outside the above range, it is difficult to obtain excellent magnetic properties even when the present invention is applied.

【0011】原料金属を真空または不活性ガス、好まし
くはAr雰囲気中で溶解し鋳造することにより、X合金
およびY合金を得る。原料金属としては、純希土類元素
あるいは希土類合金、純鉄、フェロボロン、さらにはこ
れらの合金等を使用することができる。得られたインゴ
ットは、凝固偏析がある場合は必要に応じて溶体化処理
を行う。その条件は真空またはAr雰囲気下、700〜
1500℃領域で1時間以上保持すれば良い。X合金粉
末とY合金粉末との混合粉末を得る方法としては、大き
く二通りの方法がある。第一の方法としては、X合金の
鋳塊とY合金の鋳塊をそれぞれ単独で粉砕し、X合金粉
末とY合金粉末とした後、両者を混合する方法がある。
第二の方法としては、X合金の鋳塊とY合金の鋳塊を1
つの粉砕機に入れて、両合金を粉砕しつつ混合する方法
がある。本明細書においては第一の方法を用いたものと
して、以下の説明を行う。
An X alloy and a Y alloy are obtained by melting and casting a raw metal in a vacuum or an inert gas, preferably an Ar atmosphere. As a raw material metal, a pure rare earth element or a rare earth alloy, pure iron, ferroboron, or an alloy thereof can be used. If there is solidification segregation, the obtained ingot is subjected to a solution treatment if necessary. The conditions are vacuum or Ar atmosphere, 700 to
What is necessary is just to hold at 1500 degreeC area | region for 1 hour or more. There are roughly two methods for obtaining a mixed powder of the X alloy powder and the Y alloy powder. As a first method, there is a method in which the ingot of the X alloy and the ingot of the Y alloy are individually pulverized to obtain an X alloy powder and a Y alloy powder, and then the both are mixed.
As a second method, the ingot of the X alloy and the ingot of the Y alloy are
There is a method in which both alloys are pulverized and mixed while being put in one pulverizer. In the present specification, the following description is given assuming that the first method is used.

【0012】粉砕工程には、粗粉砕工程と微粉砕工程と
がある。まず、X合金の鋳塊とY合金の鋳塊を、それぞ
れ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、
スタンプミル、ジョークラッシャー、ブラウンミル等を
用い、不活性ガス雰囲気中にて行うことが望ましい。粗
粉砕性を向上させるために、水素を吸蔵させた後、粗粉
砕を行うことが効果的である。粗粉砕工程後、微粉砕工
程に移る。微粉砕は、主にジェットミルが用いられ、粒
径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmに
なるまで行われる。ジェットミルは、高圧の不活性ガス
(例えば窒素ガス)を狭いノズルより開放して高速のガ
ス流を発生させ、この高速のガス流により粉体の粒子を
加速し、粉体の粒子同士の衝突やターゲットあるいは容
器壁との衝突を発生させて粉砕する方法である。
The pulverizing step includes a coarse pulverizing step and a fine pulverizing step. First, the ingot of the X alloy and the ingot of the Y alloy are coarsely pulverized to a particle size of about several hundred μm. Coarse grinding is
It is desirable to use a stamp mill, jaw crusher, brown mill or the like in an inert gas atmosphere. In order to improve the coarse pulverizability, it is effective to perform the coarse pulverization after absorbing hydrogen. After the coarse grinding step, the process proceeds to the fine grinding step. The fine pulverization is mainly performed using a jet mill, and the coarse pulverized powder having a particle size of about several hundred μm is performed until the average particle size becomes 3 to 5 μm. The jet mill releases a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, accelerates the powder particles by the high-speed gas flow, and collides the powder particles. This is a method of crushing by generating collision with a target or a container wall.

【0013】微粉砕工程においてそれぞれ微粉砕された
X合金粉末とY合金粉末とを、窒素雰囲気中で混合す
る。X合金粉末とY合金粉末との混合比率は、重量比で
90:10〜97:3程度とすればよい。微粉砕時に、
ステアリン酸亜鉛等の添加剤を0.01〜0.3wt%程
度添加することにより、配向度の高い微粉を得ることが
できる。次いで、X合金粉末およびY合金粉末からなる
混合粉末を、電磁石に抱かれた金型内に充填し、磁場印
加によってその結晶軸を配向させた状態で磁場中成形す
る。この磁場中成形は、110〜130kA/mの磁場
中で、130〜160Mpa前後の圧力で行えばよい。
In the fine pulverizing step, the X alloy powder and the Y alloy powder each finely pulverized are mixed in a nitrogen atmosphere. The mixing ratio between the X alloy powder and the Y alloy powder may be about 90:10 to 97: 3 by weight. When pulverizing,
By adding about 0.01 to 0.3 wt% of an additive such as zinc stearate, fine powder having a high degree of orientation can be obtained. Next, a mixed powder composed of the X alloy powder and the Y alloy powder is filled in a mold held by an electromagnet, and is molded in a magnetic field with its crystal axis oriented by applying a magnetic field. This molding in a magnetic field may be performed in a magnetic field of 110 to 130 kA / m at a pressure of about 130 to 160 Mpa.

【0014】磁場中成形後、その成形体を真空または不
活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕
方法、粒度と粒度分布の違い等、諸条件により調整する
必要があるが、1050〜1130℃で1〜5時間程度
焼結すればよい。焼結後、得られた焼結体に時効処理を
施すことができる。この工程は、保磁力Hcjを制御す
る重要な工程である。時効処理を二段に分けて行う場合
には、800℃近傍、600℃近傍での熱処理が有効で
ある。800℃近傍での熱処理を焼結後に行うと、保磁
力Hcjが増大するため、混合法においては特に有効で
ある。また、600℃近傍の熱処理で保磁力Hcjが大
きく増加するため、時効処理を一段で行う場合には、6
00℃近傍の時効処理を施すとよい。
After compacting in a magnetic field, the compact is sintered in a vacuum or inert gas atmosphere. The sintering temperature needs to be adjusted according to various conditions such as the composition, the pulverization method, the difference between the particle size and the particle size distribution, and the sintering may be performed at 1,050 to 1,130 ° C for about 1 to 5 hours. After sintering, the obtained sintered body can be subjected to an aging treatment. This step is an important step for controlling the coercive force Hcj. When the aging treatment is performed in two stages, heat treatment at around 800 ° C. and around 600 ° C. is effective. If the heat treatment at around 800 ° C. is performed after sintering, the coercive force Hcj increases, which is particularly effective in the mixing method. In addition, since the coercive force Hcj is greatly increased by the heat treatment near 600 ° C., when the aging treatment is performed in one step,
It is preferable to perform aging treatment at around 00 ° C.

【0015】[0015]

【実施例】次に、具体的な実施例を挙げて本発明を更に
詳細に説明する。 (実施例1)原料金属をAr雰囲気中で高周波溶解する
ことにより、X合金およびY合金を調整し、X合金およ
びY合金を以下の条件にて粉砕した。微粉砕後の粒径は
3〜5μmである。得られた微粉を窒素雰囲気中にて混
合し、磁場中成形および焼結を以下の条件にて行った。
次いで以下の条件で二段時効処理を施し、試料No.1
〜4および比較例1〜4を得た。X合金粉末およびY合
金粉末の組成、X合金粉末およびY合金粉末の配合比、
焼結後の磁石の組成は、表1に示す通りである。なお、
表1中、「Dy比」とは、X合金粉末における重希土類
元素の含有量と焼結後の磁石組成における重希土類元素
の含有量の比をいう。また、表1中、「R比」とは、X
合金粉末における希土類元素の含有量と焼結後の磁石組
成における希土類元素の含有量の比をいう。試料No.
1〜4および比較例1〜4について、保磁力Hcjと残
留磁束密度BrをB−Hトレーサーにより測定した。そ
の結果を表1に示す。また、試料No.1〜3、比較例
1,2のDy比と残留磁束密度Brとの関係について、
図1に示す。 粗粉砕:ブラウンミル使用(水素吸蔵後、窒素雰囲気中
にて行った。) 微粉砕:ジェットミル使用(高圧窒素ガス雰囲気中にて
行った。) 粉砕時添加剤:ステアリン酸亜鉛0.1wt% 焼結条件:試料No.1、3、4=1070℃×4時間 試料No.2=1110℃×4時間 比較例1、3、4=1110℃×4時間 比較例2=1070℃×4時間 磁場中成形条件:120kA/mの磁場中で147Mp
aの圧力で成形 二段時効処理:850℃×1時間、540℃×1時間
Next, the present invention will be described in more detail with reference to specific examples. (Example 1) An X alloy and a Y alloy were adjusted by high frequency melting of a raw material metal in an Ar atmosphere, and the X alloy and the Y alloy were pulverized under the following conditions. The particle size after pulverization is 3-5 μm. The obtained fine powder was mixed in a nitrogen atmosphere, and molding and sintering in a magnetic field were performed under the following conditions.
Next, a two-stage aging treatment was performed under the following conditions, and Sample No. 1 was obtained.
And Comparative Examples 1 to 4 were obtained. Composition of X alloy powder and Y alloy powder, mixing ratio of X alloy powder and Y alloy powder,
The composition of the magnet after sintering is as shown in Table 1. In addition,
In Table 1, "Dy ratio" refers to the ratio of the content of heavy rare earth elements in the X alloy powder to the content of heavy rare earth elements in the magnet composition after sintering. In Table 1, “R ratio” means X
The ratio of the rare earth element content in the alloy powder to the rare earth element content in the magnet composition after sintering. Sample No.
With respect to Examples 1 to 4 and Comparative Examples 1 to 4, the coercive force Hcj and the residual magnetic flux density Br were measured using a BH tracer. Table 1 shows the results. Further, regarding the relationship between the Dy ratio and the residual magnetic flux density Br of Sample Nos. 1 to 3 and Comparative Examples 1 and 2,
As shown in FIG. Coarse pulverization: Use of a brown mill (After occlusion of hydrogen, performed in a nitrogen atmosphere.) Fine pulverization: Use of a jet mill (Performed in a high-pressure nitrogen gas atmosphere.) Sintering conditions: Sample Nos. 1, 3, 4 = 1070 ° C × 4 hours Sample No. 2 = 1110 ° C × 4 hours Comparative Examples 1, 3, 4 = 1110 ° C × 4 hours Comparative Example 2 = 1070 ° C × 4 hours Molding conditions in a magnetic field: 147 Mp in a magnetic field of 120 kA / m
Molding at pressure a Two-stage aging treatment: 850 ° C x 1 hour, 540 ° C x 1 hour

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すように、焼結後の磁石における
Dy量がほぼ等しい試料No.2(Dy量6.207)と
比較例1(Dy量6.18)とを比較すると、試料No.
2は保磁力Hcjが1984kA/m、残留磁束密度B
rが1.227Tと、ともに良好な値を示しているのに
対し、比較例1では保磁力Hcjが1740kA/m、
残留磁束密度Brが1.2Tと、特に保磁力Hcjが低
い値となっている。次に、Dy量がほぼ等しい試料N
o.3(Dy量7.030)と比較例2(Dy量7.04
4)とを比較すると、試料No.3は保磁力Hcjが2
086kA/m、残留磁束密度Brが1.21Tと、と
もに良好な値を示しているのに対し、比較例2では保磁
力Hcjが2101kA/m、残留磁束密度Brが1.
15Tと、残留磁束密度Brが低下してしまう。ここ
で、比較例1のDy比は0.324、比較例2のDy比
は1.022である。次に、試料No.1(Dy量4.6
65)と比較例1(Dy量6.18)とを比較すると、
比較例1の保磁力Hcjは1740kA/mであるのに
対し、試料No.1では比較例1よりもDy量が大幅に
少ないにも拘わらず、1843kA/mという良好な保
磁力Hcjを得ている。また、比較例1の残留磁束密度
Brは1.2Tであるのに対し、試料No.1の残留磁束
密度Brは1.29Tと、比較例1の残留磁束密度Br
を大きく上回っている。つまり、Dy比が0.517で
ある試料No.1の方が、Dy比が0.324である比較
例1よりも高い保磁力Hcjおよび残留磁束密度Brを
示している。よって、Dy比が残留磁束密度Brおよび
保磁力Hcjに影響を及ぼしており、Dy比が所定の範
囲外となると、残留磁束密度Brもしくは保磁力Hcj
が低下するといえる。以上の結果から、Dy比を0.3
8〜0.99とすることにより、良好な保磁力Hcjお
よび残留磁束密度Brを得ることができることがわかっ
た。具体的には、Dy比が0.38〜0.9の範囲にある
試料No.1〜4は、いずれも1800kA/m以上の
保磁力Hcjおよび1.21T以上の残留磁束密度Br
を得ている。
As shown in Table 1, the comparison between Sample No. 2 (Dy amount 6.207) and Comparative Example 1 (Dy amount 6.18) in which the magnets after sintering had almost the same Dy amount showed that Sample No. .
No. 2 has a coercive force Hcj of 1984 kA / m and a residual magnetic flux density B
r is 1.227T, which is a good value. In Comparative Example 1, the coercive force Hcj is 1740 kA / m,
The residual magnetic flux density Br is 1.2T, and especially the coercive force Hcj is a low value. Next, the sample N having almost the same Dy amount was used.
o.3 (Dy amount 7.030) and Comparative Example 2 (Dy amount 7.04)
4), sample No. 3 has a coercive force Hcj of 2
086 kA / m and a residual magnetic flux density Br of 1.21 T, both showing good values, whereas in Comparative Example 2, the coercive force Hcj was 2101 kA / m and the residual magnetic flux density Br was 1.0.
15T, the residual magnetic flux density Br decreases. Here, the Dy ratio of Comparative Example 1 is 0.324, and the Dy ratio of Comparative Example 2 is 1.022. Next, Sample No. 1 (Dy amount 4.6)
65) and Comparative Example 1 (Dy amount 6.18),
The coercive force Hcj of Comparative Example 1 was 1740 kA / m, whereas the sample No. 1 obtained a good coercive force Hcj of 1843 kA / m despite the Dy amount being much smaller than that of Comparative Example 1. I have. The residual magnetic flux density Br of Comparative Example 1 was 1.2 T, whereas the residual magnetic flux density Br of Sample No. 1 was 1.29 T, and the residual magnetic flux density Br of Comparative Example 1 was 1.2 T.
Greatly exceeds. That is, the sample No. 1 having the Dy ratio of 0.517 has a higher coercive force Hcj and the residual magnetic flux density Br than the comparative example 1 having the Dy ratio of 0.324. Therefore, the Dy ratio affects the residual magnetic flux density Br and the coercive force Hcj, and when the Dy ratio is out of the predetermined range, the residual magnetic flux density Br or the coercive force Hcj.
Can be said to decrease. From the above results, the Dy ratio was 0.3.
It has been found that by setting the ratio to 8 to 0.99, a good coercive force Hcj and a residual magnetic flux density Br can be obtained. Specifically, Sample Nos. 1 to 4 having a Dy ratio in the range of 0.38 to 0.9 each have a coercive force Hcj of 1800 kA / m or more and a residual magnetic flux density Br of 1.21 T or more.
Have gained.

【0018】次に、表1のR比の欄に着目する。焼結後
の磁石におけるDy量がほぼ等しい試料No.2と比較
例1,4とを比較すると、R比が0.888の場合(比
較例1)には、残留磁束密度Brは1.2Tと良好であ
るものの、保磁力Hcjは1740kA/mと低い値を
示している。また、R比が1.051の場合(比較例
4)には、保磁力Hcjは1930kA/mと高い値を
示しているが、その一方で残留磁束密度Brは1.16
9Tと低い値を示している。これに対し、R比が0.9
71である場合(試料No.2)は、1800kA/m
以上の保磁力Hcjおよび1.21T以上の残留磁束密
度Brを得ており、保磁力Hcjおよび残留磁束密度B
rともに良好な値を示していることが注目される。ま
た、R比が0.979である試料No.4(Dy量3.2
70)とR比が1.052である比較例3(Dy量3.0
00)とを比較しても、R比が0.979である試料N
o.4の方が、R比が1.052である比較例3よりも良
好な保磁力Hcjおよび残留磁束密度Brを示してい
る。よって、良好な保磁力Hcjおよび残留磁束密度B
rを得るためには、R比も一つのパラメータであるとい
える。以上の結果から、R比を0.94〜1.03、さら
には0.94〜0.99とすることにより、良好な保磁力
Hcjおよび残留磁束密度Brを得ることができること
がわかった。また、本発明において、X合金粉末はDy
を含むことを必須の要件としているが、望ましいDy量
としては、焼結後の磁石組成にDyが1〜13wt%程
度、さらには3〜10wt%程度含まれていればよい。
Next, attention is paid to the column of R ratio in Table 1. Comparing Sample No. 2 and Comparative Examples 1 and 4 in which the Dy amount in the magnet after sintering is almost equal, when the R ratio is 0.888 (Comparative Example 1), the residual magnetic flux density Br is 1.2T. However, the coercive force Hcj shows a low value of 1740 kA / m. When the R ratio is 1.051 (Comparative Example 4), the coercive force Hcj shows a high value of 1930 kA / m, while the residual magnetic flux density Br is 1.16.
It shows a low value of 9T. In contrast, the R ratio is 0.9.
When it is 71 (sample No. 2), it is 1800 kA / m
The coercive force Hcj and the residual magnetic flux density Br of not less than 1.21 T are obtained.
It is noted that both r show good values. Sample No. 4 (Dy amount of 3.2) having an R ratio of 0.979
70) and Comparative Example 3 having an R ratio of 1.052 (Dy amount of 3.0)
00), sample N having an R ratio of 0.979
No. 0.4 shows better coercive force Hcj and residual magnetic flux density Br than Comparative Example 3 in which the R ratio is 1.052. Therefore, good coercive force Hcj and residual magnetic flux density B
In order to obtain r, the R ratio is also a parameter. From the above results, it was found that by setting the R ratio to 0.94 to 1.03, and more preferably 0.94 to 0.99, good coercive force Hcj and residual magnetic flux density Br can be obtained. In the present invention, the X alloy powder is Dy
It is an essential requirement that Dy be contained, but a desirable amount of Dy is that the magnet composition after sintering contains Dy in an amount of about 1 to 13 wt%, and more preferably about 3 to 10 wt%.

【0019】(実施例2)焼結温度の変動に伴う磁気特
性の変化を確認するために行った実験を、実施例2とし
て説明する。実施例1と同様の条件でX合金粉末および
Y合金粉末を調整し、粉砕、混合、磁場中成形を行っ
た。磁場中成形後の成形体を1070℃、1090℃、
1110℃でそれぞれ4時間焼結した後、実施例1と同
様の条件で二段時効処理を施し、試料No.5〜13お
よび比較例5〜7を得た。X合金粉末およびY合金粉末
の組成、X合金粉末およびY合金粉末の配合比、焼結後
の磁石の組成は、表2に示す通りである。ここで、試料
No.5〜7はDy比0.396、R比0.971、試料
No.8〜10はDy比0.641、R比0.973、試
料No.11〜13はDy比0.738、R比0.97
4、比較例5〜7はDy比1.0、R比1.0である。試
料No.5〜13および比較例5〜7について、保磁力
Hcjと残留磁束密度BrをB−Hトレーサーにより測
定した。その結果を表3に示す。また、試料No.5〜
13および比較例5〜7の焼結温度と残留磁束密度Br
との関係について、図2に示す。図2中、曲線(a)は
Dy比0.396、R比0.971の場合(試料No.5
〜7)の焼結温度と残留磁束密度Brとの関係を示して
いる。同様に、曲線(b)はDy比0.641、R比0.
973の場合(試料No.8〜10)、曲線(c)はD
y比0.738、R比0.974の場合(試料No.11
〜13)、曲線(d)はDy比1.0、R比1.0の場合
(比較例5〜7)の焼結温度と残留磁束密度Brとの関
係を示している。
(Example 2) An experiment conducted to confirm a change in magnetic characteristics due to a change in sintering temperature will be described as Example 2. The X alloy powder and the Y alloy powder were adjusted under the same conditions as in Example 1, and pulverized, mixed, and molded in a magnetic field. The molded body after molding in a magnetic field is 1070 ° C, 1090 ° C,
After sintering at 1110 ° C. for 4 hours each, a two-stage aging treatment was performed under the same conditions as in Example 1 to obtain Sample Nos. 5 to 13 and Comparative Examples 5 to 7. The composition of the X alloy powder and the Y alloy powder, the mixing ratio of the X alloy powder and the Y alloy powder, and the composition of the magnet after sintering are as shown in Table 2. Here, samples Nos. 5 to 7 have a Dy ratio of 0.396 and an R ratio of 0.971, samples Nos. 8 to 10 have a Dy ratio of 0.641, an R ratio of 0.973, and samples Nos. 11 to 13 have a Dy ratio of 0.738, R ratio 0.97
4, Comparative Examples 5 to 7 have a Dy ratio of 1.0 and an R ratio of 1.0. With respect to Sample Nos. 5 to 13 and Comparative Examples 5 to 7, the coercive force Hcj and the residual magnetic flux density Br were measured with a BH tracer. Table 3 shows the results. Sample Nos. 5 to 5
13 and Comparative Examples 5 to 7 and the Residual Magnetic Flux Density Br
2 is shown in FIG. In FIG. 2, the curve (a) shows the case where the Dy ratio is 0.396 and the R ratio is 0.971 (sample No. 5).
7) shows the relationship between the sintering temperature and the residual magnetic flux density Br. Similarly, curve (b) shows a Dy ratio of 0.641 and an R ratio of 0.4.
973 (Sample Nos. 8 to 10), the curve (c) is D
When the y ratio is 0.738 and the R ratio is 0.974 (Sample No. 11
13) and curve (d) show the relationship between the sintering temperature and the residual magnetic flux density Br when the Dy ratio is 1.0 and the R ratio is 1.0 (Comparative Examples 5 to 7).

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表3に示すように、焼結温度の上昇に伴
い、保磁力Hcjが減少する傾向がある。試料No.5
〜7は同一のDy比およびR比であるが、焼結温度が1
070℃(試料No.5)、1090℃(試料No.
6)、1110℃(試料No.7)と上昇するにつれ
て、保磁力Hcjは2062kA/m(試料No.
5)、2013kA/m(試料No.6)、1984k
A/m(試料No.7)と減少する。この傾向は、試料
No.8〜10、試料No.11〜13、比較例5〜7に
ついても同様である。これに対し、表3および図2に示
すように、焼結温度の上昇に伴い、残留磁束密度Brは
向上する傾向がある。つまり、Dy比が0.738およ
びR比が0.974である試料No.11〜13(図2
曲線(c))において、焼結温度が1070℃(試料N
o.11)から1110℃(試料No.13)になると、
残留磁束密度Brは1.233Tから1.242Tまで向
上する。
As shown in Table 3, as the sintering temperature increases, the coercive force Hcj tends to decrease. Sample No.5
7 are the same Dy ratio and R ratio, but the sintering temperature is 1
070 ° C (Sample No. 5), 1090 ° C (Sample No. 5)
6) As the temperature rises to 1110 ° C. (Sample No. 7), the coercive force Hcj becomes 2062 kA / m (Sample No. 7).
5), 2013 kA / m (Sample No. 6), 1984 k
A / m (Sample No. 7). This tendency is the same for Sample Nos. 8 to 10, Sample Nos. 11 to 13, and Comparative Examples 5 to 7. On the other hand, as shown in Table 3 and FIG. 2, the residual magnetic flux density Br tends to increase as the sintering temperature increases. That is, Sample Nos. 11 to 13 having a Dy ratio of 0.738 and an R ratio of 0.974 (FIG. 2)
In the curve (c)), the sintering temperature was 1070 ° C. (sample N
o.11) to 1110 ° C. (Sample No. 13)
The residual magnetic flux density Br increases from 1.233T to 1.242T.

【0023】次に、試料No.5〜7(Dy比0.39
6、R比0.971)と、比較例5〜7(Dy比1.0、
R比1.0)との比較を行う。図2に示したように、焼
結温度が1070℃の場合には、試料No.5(曲線
(a))よりも比較例5(曲線(d))の方が高い残留
磁束密度Brを示す。ところが、焼結温度が1110℃
になると、比較例7(曲線(d))の残留磁束密度Br
が1.216Tであるのに対し、試料No.7(曲線
(a))の残留磁束密度Brは1.227Tまで向上す
る。つまり、図2から明らかなように、Dy比が1.0
以上になると、焼結温度を上昇させても、1.22T以
上の残留磁束密度Brを得ることが困難であるといえ
る。
Next, Sample Nos. 5 to 7 (Dy ratio 0.39)
6, R ratio 0.971) and Comparative Examples 5 to 7 (Dy ratio 1.0,
(R ratio 1.0). As shown in FIG. 2, when the sintering temperature is 1070 ° C., the comparative example 5 (curve (d)) shows a higher residual magnetic flux density Br than the sample No. 5 (curve (a)). . However, the sintering temperature was 1110 ° C
, The residual magnetic flux density Br of Comparative Example 7 (curve (d))
Is 1.216 T, whereas the residual magnetic flux density Br of sample No. 7 (curve (a)) is improved to 1.227 T. That is, as is apparent from FIG. 2, the Dy ratio is 1.0.
In this case, it can be said that it is difficult to obtain a residual magnetic flux density Br of 1.22 T or more even when the sintering temperature is increased.

【0024】また、Dy比が0.641、R比が0.97
3である試料No.8〜10(曲線(b))、およびD
y比が0.738、R比が0.974である試料No.1
1〜13(曲線(c))については、いずれも1.23
T以上の優れた残留磁束密度Brを示していることが注
目される。ここで、試料No.8〜10のR比は0.97
3であり、試料No.11〜13のR比は0.974であ
るから、両者のR比はほぼ等しい。ところが、図2を見
ると、曲線(b)で示す試料No.8〜10(Dy比0.
641)の方が曲線(c)で示す試料No.11〜13
(Dy比0.738)よりも安定して高い残留磁束密度
Brを示していることから、R比よりもDy比の方が残
留磁束密度Brに及ぼす影響が大きい。以上の結果か
ら、焼結温度に伴って残留磁束密度Brが向上する傾向
があること、また、Dy比を0.38〜0.99程度とす
ることにより、1.22T以上の良好な残留磁束密度B
rを得ることができることがわかった。
The Dy ratio is 0.641 and the R ratio is 0.97.
Sample Nos. 8 to 10 (curve (b)), and D
Sample No. 1 having a y ratio of 0.738 and an R ratio of 0.974
All of the curves 1 to 13 (curve (c)) were 1.23.
It is noted that it shows an excellent residual magnetic flux density Br of T or more. Here, the R ratio of Sample Nos. 8 to 10 was 0.97.
3, and the R ratios of Sample Nos. 11 to 13 are 0.974, so that the R ratios of both are almost equal. However, when looking at FIG. 2, Sample Nos. 8 to 10 (Dy ratio of 0.
Sample Nos. 11 to 13 show the curve No. 641) as the curve (c).
Since the residual magnetic flux density Br is higher and more stable than (Dy ratio 0.738), the influence of the Dy ratio on the residual magnetic flux density Br is greater than the R ratio. From the above results, it can be seen that the residual magnetic flux density Br tends to increase with the sintering temperature, and that the Dy ratio is set to about 0.38 to 0.99, whereby a good residual magnetic flux of 1.22 T or more is obtained. Density B
It was found that r could be obtained.

【0025】(実施例3)実施例1および2により、D
y比を0.38〜0.99、R比を0.94〜0.99とす
ることにより、良好な保磁力Hcjおよび残留磁束密度
Brを得ることができることが明らかとなった。Dy比
およびR比の好ましいコンビネーション、すなわち、良
好な保磁力Hcjおよび残留磁束密度Brを得るために
Dy比およびR比をどのように組み合わせるべきかを確
認するために行った実験を、実施例3として説明する。
実施例1と同様の条件でX合金およびY合金を調整し、
粉砕、混合、磁場中成形を行った。磁場中成形後の成形
体を1090℃、1110℃でそれぞれ4時間焼結した
後、実施例1と同様の条件で二段時効処理を施し、試料
No.14〜18および比較例8,9を得た。X合金粉
末およびY合金粉末の組成、X合金粉末およびY合金粉
末の配合比、焼結後の磁石の組成は、表4に示す通りで
ある。試料No.14〜18および比較例8,9につい
て、保磁力Hcjと残留磁束密度Brを実施例1と同様
の条件でB−Hトレーサーにより測定した。その結果を
表5に示す。なお、比較の便宜のために、表5には、実
施例1および2で得た試料No.1〜13、比較例1〜
7のDy比、R比、保磁力Hcj、残留磁束密度Brに
ついても示している。以下、試料No.1〜18、比較
例1〜9を用いて、Dy比およびR比の好ましいコンビ
ネーションについての検討を行う。なお、試料No.1
〜18、比較例1〜9のうち、保磁力Hcjが1800
kA/m以上、かつ残留磁束密度Brが1.16T以上
のもの(試料No.5および比較例1〜3以外は全て該
当)については、図3に示す。
Example 3 According to Examples 1 and 2, D
It became clear that good coercive force Hcj and residual magnetic flux density Br can be obtained by setting the y ratio to 0.38 to 0.99 and the R ratio to 0.94 to 0.99. An experiment conducted to confirm a preferable combination of the Dy ratio and the R ratio, that is, how to combine the Dy ratio and the R ratio in order to obtain a good coercive force Hcj and a residual magnetic flux density Br was performed in Example 3. It will be described as.
X alloy and Y alloy were adjusted under the same conditions as in Example 1,
Pulverization, mixing and molding in a magnetic field were performed. After sintering each of the compacts after being molded in a magnetic field at 1090 ° C. and 1110 ° C. for 4 hours, respectively, a two-stage aging treatment was performed under the same conditions as in Example 1, and Sample Nos. Obtained. The composition of the X alloy powder and the Y alloy powder, the mixing ratio of the X alloy powder and the Y alloy powder, and the composition of the magnet after sintering are as shown in Table 4. With respect to Sample Nos. 14 to 18 and Comparative Examples 8 and 9, the coercive force Hcj and the residual magnetic flux density Br were measured using a BH tracer under the same conditions as in Example 1. Table 5 shows the results. In addition, for convenience of comparison, Table 5 shows samples Nos. 1 to 13 obtained in Examples 1 and 2 and Comparative Examples 1 to 3.
7, the Dy ratio, the R ratio, the coercive force Hcj, and the residual magnetic flux density Br are also shown. Hereinafter, a preferable combination of the Dy ratio and the R ratio will be examined using Sample Nos. 1 to 18 and Comparative Examples 1 to 9. Sample No. 1
To 18 and Comparative Examples 1 to 9, the coercive force Hcj was 1800
Those having a kA / m or more and a residual magnetic flux density Br of 1.16 T or more (all except Sample No. 5 and Comparative Examples 1 to 3) are shown in FIG.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】図3を見ると、保磁力Hcjが1900k
A/m以上、かつ残留磁束密度Brが1.22T以上の
比較例は存在しないことがわかる。これに対し、試料N
o.2、7〜18はいずれも1900kA/m以上の保
磁力Hcj、および1.22T以上の残留磁束密度Br
を示している。とりわけ、試料No.8〜13、16〜
18については1950kA/m以上の保磁力Hcj、
および1.23T以上の残留磁束密度Brを示している
ことが注目される。ここで、試料No.8〜13、16
〜18のDy比およびR比に着目すると、試料No.8
〜10はDy比0.641、R比0.973、試料No.
11〜13はDy比0.738、R比0.974、試料N
o.16、17はDy比0.733、R比0.973、試
料No.18はDy比0.638、R比0.973となっ
ている。この傾向から、Dy比を0.5〜0.99、さら
には0.6〜0.9、より好ましくは0.6〜0.8とし、
かつR比を0.8〜0.99、さらには0.94〜0.99
とすることにより、優れた保磁力Hcjおよび残留磁束
密度Brを得ることができるといえる。
Referring to FIG. 3, the coercive force Hcj is 1900 k.
It can be seen that there is no comparative example with A / m or more and residual magnetic flux density Br of 1.22 T or more. On the other hand, sample N
o.2 and 7 to 18 each have a coercive force Hcj of 1900 kA / m or more and a residual magnetic flux density Br of 1.22 T or more.
Is shown. In particular, sample Nos. 8 to 13, 16 to
18, a coercive force Hcj of 1950 kA / m or more,
And a residual magnetic flux density Br of not less than 1.23T. Here, sample Nos. 8 to 13 and 16
Focusing on the Dy ratio and the R ratio of Sample Nos.
-10 are Dy ratio 0.641, R ratio 0.973, sample No.
11 to 13 have a Dy ratio of 0.738, an R ratio of 0.974, and a sample N
Sample Nos. 18 and 17 have a Dy ratio of 0.733 and an R ratio of 0.973, and Sample No. 18 has a Dy ratio of 0.638 and an R ratio of 0.973. From this tendency, the Dy ratio is set to 0.5 to 0.99, more preferably 0.6 to 0.9, more preferably 0.6 to 0.8,
And the R ratio is 0.8 to 0.99, further 0.94 to 0.99.
Thus, it can be said that excellent coercive force Hcj and residual magnetic flux density Br can be obtained.

【0029】次に、焼結温度が1090℃である試料N
o.6、9、12、14、16、18、比較例6、8の
保磁力Hcjおよび残留磁束密度Brを図4に示す。図
4に示したように、試料No.9、12、16、18が
特に優れた保磁力Hcjおよび残留磁束密度Brを示し
ており、保磁力Hcjについては約2000kA/m以
上の値を得ている。しかも、この良好な保磁力Hcjを
保ちつつ、試料No.9、12、16、18はいずれも
1.23T以上の残留磁束密度Brを示していることが
注目される。次に、試料No.18と試料No.9の比較
を行う。図4では、試料No.18は試料No.9の右上
に位置しており、試料No.18の方が試料No.9より
も高い保磁力Hcjおよび残留磁束密度Brを得てい
る。ところが、表5に示したように、試料No.18の
Dy比は0.638、R比は0.973、試料No.9の
Dy比は0.641、R比は0.973と、両者のDy比
およびR比はほぼ等しい。ここで、表2および4を見る
と、試料No.18はGaを含むのに対し、試料No.9
はGaを含まずにSnを含む。試料No.18と試料N
o.9の他の組成がほぼ等しいことから、MとしてGa
を選択した場合には、保磁力Hcjおよび残留磁束密度
Brを向上させる上で有効であるといえる。
Next, sample N having a sintering temperature of 1090 ° C.
FIG. 4 shows the coercive force Hcj and the residual magnetic flux density Br of o, 6, 9, 12, 14, 16, 18 and Comparative Examples 6 and 8. As shown in FIG. 4, Sample Nos. 9, 12, 16, and 18 show particularly excellent coercive force Hcj and residual magnetic flux density Br, and a value of about 2000 kA / m or more was obtained for coercive force Hcj. I have. Moreover, it is noted that all of the samples Nos. 9, 12, 16, and 18 exhibit a residual magnetic flux density Br of 1.23 T or more while maintaining this good coercive force Hcj. Next, sample No. 18 and sample No. 9 are compared. 4, sample No. 18 is located at the upper right of sample No. 9, and sample No. 18 has higher coercive force Hcj and residual magnetic flux density Br than sample No. 9. However, as shown in Table 5, the Dy ratio of Sample No. 18 was 0.638, the R ratio was 0.973, the Dy ratio of Sample No. 9 was 0.641, and the R ratio was 0.973. Are approximately equal. Here, looking at Tables 2 and 4, while Sample No. 18 contains Ga, Sample No. 9
Contains Sn without Ga. Sample No. 18 and Sample N
Since other compositions of o.9 are almost equal, Ga
Is effective in improving coercive force Hcj and residual magnetic flux density Br.

【0030】[0030]

【発明の効果】以上詳述したように、本発明によれば、
保磁力および残留磁束密度がともに優れた希土類永久磁
石の製造方法を提供することができる。
As described in detail above, according to the present invention,
A method for manufacturing a rare earth permanent magnet having both excellent coercive force and residual magnetic flux density can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 試料No.1〜3、比較例1,2のDy比と
残留磁束密度Brとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Dy ratio and the residual magnetic flux density Br of Sample Nos. 1 to 3 and Comparative Examples 1 and 2.

【図2】 試料No.5〜13および比較例5〜7の焼
結温度と残留磁束密度Brとの関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the sintering temperature and the residual magnetic flux density Br of Sample Nos. 5 to 13 and Comparative Examples 5 to 7.

【図3】 試料No.1〜4、6〜18、比較例4〜9
の保磁力Hcjおよび残留磁束密度Brを示すグラフで
ある。
FIG. 3 Samples Nos. 1-4, 6-18, Comparative Examples 4-9
4 is a graph showing the coercive force Hcj and the residual magnetic flux density Br of the present invention.

【図4】 焼結温度が1090℃である試料No.6、
9、12、14、16、18、比較例6、8の保磁力H
cjおよび残留磁束密度Brを示すグラフである。
FIG. 4 shows a sample No. 6 having a sintering temperature of 1090 ° C.
Coercive force H of 9, 12, 14, 16, 18 and Comparative Examples 6, 8
It is a graph which shows cj and residual magnetic flux density Br.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中根 誠 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 4K018 AA08 AA11 AA27 BA04 BA05 BA18 BC12 CA04 KA45 5E040 AA04 AA19 BD01 CA01 NN01 NN12 NN13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Makoto Nakane 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation F-term (reference) 4K018 AA08 AA11 AA27 BA04 BA05 BA18 BC12 CA04 KA45 5E040 AA04 AA19 BD01 CA01 NN01 NN12 NN13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R1 214B(R1 214B:R1=Yを含
む希土類元素の1種または2種以上(Dyは必須)、T
=遷移金属元素の1種または2種以上、B=ホウ素)を
主体とするX合金粉末と、R2T(R2T:R2=重希土
類元素の1種または2種以上、T=遷移金属元素の1種
または2種以上)を主体とするY合金粉末との混合粉末
を得る工程と、前記混合粉末を焼結する工程とを含む希
土類永久磁石の製造方法において、 前記X合金粉末における重希土類元素の含有量と焼結後
の磁石組成における重希土類元素の含有量の比であるD
y比が0.38〜0.99であり、かつ前記X合金粉末に
おける希土類元素の含有量と焼結後の磁石組成における
希土類元素の含有量の比であるR比が0.94〜1.03
であることを特徴とする希土類永久磁石の製造方法。
1. A R 1 2 T 14 B (R 1 2 T 14 B: 1 or more kinds of rare earth elements including R 1 = Y (Dy mandatory), T
= Transition metal element one or more, and X alloy powder B = boron) and mainly, R 2 T (R 2 T : R 2 = 1 , two or more of heavy rare earth elements, T = transition A method for producing a rare earth permanent magnet, comprising: a step of obtaining a mixed powder with a Y alloy powder mainly containing one or more metal elements) and a step of sintering the mixed powder. D, which is the ratio of the content of heavy rare earth elements to the content of heavy rare earth elements in the magnet composition after sintering
The y ratio is 0.38 to 0.99, and the R ratio, which is the ratio of the content of the rare earth element in the X alloy powder to the content of the rare earth element in the magnet composition after sintering, is 0.94 to 1.94. 03
A method for producing a rare earth permanent magnet.
【請求項2】 前記X合金粉末における重希土類元素の
含有量と焼結後の磁石組成における重希土類元素の含有
量の比であるDy比が0.6〜0.8であり、かつ前記X
合金粉末における希土類元素の含有量と焼結後の磁石組
成における希土類元素の含有量の比であるR比が0.9
4〜0.99であることを特徴とする請求項1に記載の
希土類永久磁石の製造方法。
2. A Dy ratio, which is a ratio of a content of a heavy rare earth element in the X alloy powder to a content of a heavy rare earth element in a magnet composition after sintering, is 0.6 to 0.8, and
The R ratio, which is the ratio of the content of the rare earth element in the alloy powder to the content of the rare earth element in the magnet composition after sintering, is 0.9.
The method for producing a rare earth permanent magnet according to claim 1, wherein the number is from 4 to 0.99.
【請求項3】 前記Y合金粉末としてM(M=Al,C
u,Sn,Ga,BiおよびInのうち1種または2種
以上)をさらに含むことを特徴とする請求項1または2
に記載の希土類永久磁石の製造方法。
3. The method according to claim 1, wherein the Y alloy powder is M (M = Al, C
and at least one of u, Sn, Ga, Bi, and In).
3. The method for producing a rare earth permanent magnet according to item 1.
【請求項4】 焼結後の磁石組成にDyを1〜13wt
%含むことを特徴とする請求項1〜3のいずれかに記載
の希土類永久磁石の製造方法。
4. Dy is added to the magnet composition after sintering in an amount of 1 to 13 wt.
%. The method for producing a rare earth permanent magnet according to claim 1, wherein
【請求項5】 焼結後の磁石組成の残留磁束密度が1.
22T以上であることを特徴とする請求項1〜4のいず
れかに記載の希土類永久磁石の製造方法。
5. The sintered magnet composition having a residual magnetic flux density of 1.
The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein the permanent magnet is at least 22T.
【請求項6】 焼結後の磁石組成の残留磁束密度が1.
22T以上であり、かつ保磁力が1900kA/m以上
であることを特徴とする請求項1〜5のいずれかに記載
の希土類永久磁石の製造方法。
6. The sintered magnet composition has a residual magnetic flux density of 1.
The method for producing a rare-earth permanent magnet according to any one of claims 1 to 5, wherein the permanent magnet has a coercive force of 22 T or more and a coercive force of 1900 kA / m or more.
【請求項7】 R1 214B(R1 214B:R1=Yを含
む希土類元素の1種または2種以上(Dyは必須)、T
=遷移金属元素の1種または2種以上、B=ホウ素)を
主体とするX合金粉末と、R2T(R2T:R2=重希土
類元素の1種または2種以上、T=遷移金属元素の1種
または2種以上)を主体とするY合金粉末との混合粉末
を得る工程と、前記混合粉末を焼結する工程とを含む希
土類永久磁石の製造方法において、 前記X合金粉末における希土類元素の含有量と焼結後の
磁石組成における希土類元素の含有量の比であるR比が
0.94〜0.99であることを特徴とする希土類永久磁
石の製造方法。
7. R 1 2 T 14 B (R 1 2 T 14 B: 1 or more kinds of rare earth elements including R 1 = Y (Dy mandatory), T
= Transition metal element one or more, and X alloy powder B = boron) and mainly, R 2 T (R 2 T : R 2 = 1 , two or more of heavy rare earth elements, T = transition A method for producing a rare earth permanent magnet, comprising: a step of obtaining a mixed powder with a Y alloy powder mainly containing one or more metal elements) and a step of sintering the mixed powder. A method for producing a rare earth permanent magnet, wherein the R ratio, which is the ratio of the content of the rare earth element to the content of the rare earth element in the magnet composition after sintering, is 0.94 to 0.99.
【請求項8】 R1 214B(R1 214B:R1=Yを含
む希土類元素の1種または2種以上(Dyは必須)、T
=遷移金属元素の1種または2種以上、B=ホウ素)を
主体とするX合金粉末と、R2T(R2T:R2=重希土
類元素の1種または2種以上、T=遷移金属元素の1種
または2種以上)を主体とするY合金粉末との混合粉末
を得る工程と、前記混合粉末を焼結する工程とを含む希
土類永久磁石の製造方法において、 前記X合金粉末における希土類元素の含有量と焼結後の
磁石組成における希土類元素の含有量の比であるDy比
が0.65〜0.99であることを特徴とする希土類永久
磁石の製造方法。
8. R 1 2 T 14 B (R 1 2 T 14 B: 1 or more kinds of rare earth elements including R 1 = Y (Dy mandatory), T
= Transition metal element one or more, and X alloy powder B = boron) and mainly, R 2 T (R 2 T : R 2 = 1 , two or more of heavy rare earth elements, T = transition A method for producing a rare earth permanent magnet, comprising: a step of obtaining a mixed powder with a Y alloy powder mainly containing one or more metal elements) and a step of sintering the mixed powder. A method for producing a rare earth permanent magnet, wherein the Dy ratio, which is the ratio of the content of the rare earth element to the content of the rare earth element in the magnet composition after sintering, is 0.65 to 0.99.
JP2001102491A 2001-03-30 2001-03-30 Rare earth permanent magnet manufacturing method Expired - Fee Related JP4870274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102491A JP4870274B2 (en) 2001-03-30 2001-03-30 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102491A JP4870274B2 (en) 2001-03-30 2001-03-30 Rare earth permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2002299110A true JP2002299110A (en) 2002-10-11
JP4870274B2 JP4870274B2 (en) 2012-02-08

Family

ID=18955676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102491A Expired - Fee Related JP4870274B2 (en) 2001-03-30 2001-03-30 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4870274B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077457A1 (en) * 2003-02-27 2004-09-10 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
WO2005001856A1 (en) 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
EP1746611A1 (en) * 2005-07-22 2007-01-24 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Rare earth magnet manufacturing method
WO2009031292A1 (en) 2007-09-04 2009-03-12 Hitachi Metals, Ltd. R-Fe-B ANISOTROPIC SINTERED MAGNET
CN102114536A (en) * 2010-01-05 2011-07-06 北京中科三环高技术股份有限公司 Method for improving corrosion resistance of surface of rare earth permanent-magnetic material of diffusion-plated fluoride
US8123832B2 (en) 2005-03-14 2012-02-28 Tdk Corporation R-T-B system sintered magnet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
WO2004077457A1 (en) * 2003-02-27 2004-09-10 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
JP4697961B2 (en) * 2003-02-27 2011-06-08 日立金属株式会社 Permanent magnet and magnetic field generator for particle beam accelerator
US7570142B2 (en) 2003-02-27 2009-08-04 Hitachi Metals, Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
EP1603142A4 (en) * 2003-02-27 2009-08-05 Hitachi Metals Ltd PERMANENT MAGNET FOR PARTICLE BEAM ACCELERATOR AND MAGNETIC FIELD GENERATOR
EP1641000A4 (en) * 2003-06-30 2009-10-28 Tdk Corp R-t-b based rare earth permanent magnet and method for production thereof
WO2005001856A1 (en) 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
CN100334663C (en) * 2003-06-30 2007-08-29 Tdk株式会社 R-T-B based rare earth permanent magnet and method for production thereof
US7618497B2 (en) 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
US8123832B2 (en) 2005-03-14 2012-02-28 Tdk Corporation R-T-B system sintered magnet
EP1746611A1 (en) * 2005-07-22 2007-01-24 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
US7559996B2 (en) 2005-07-22 2009-07-14 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Rare earth magnet manufacturing method
WO2009031292A1 (en) 2007-09-04 2009-03-12 Hitachi Metals, Ltd. R-Fe-B ANISOTROPIC SINTERED MAGNET
US8177922B2 (en) 2007-09-04 2012-05-15 Hitachi Metals, Ltd. R-Fe-B anisotropic sintered magnet
CN102114536A (en) * 2010-01-05 2011-07-06 北京中科三环高技术股份有限公司 Method for improving corrosion resistance of surface of rare earth permanent-magnetic material of diffusion-plated fluoride
CN102114536B (en) * 2010-01-05 2015-05-20 北京中科三环高技术股份有限公司 Method for improving corrosion resistance of surface of rare earth permanent-magnetic material of diffusion-plated fluoride

Also Published As

Publication number Publication date
JP4870274B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4076177B2 (en) Method for producing RTB-based rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP2002299110A (en) Method of manufacturing rare-earth element permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP2006299402A (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
JP3422490B1 (en) Rare earth permanent magnet
JP2003243210A (en) Rare earth permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JP2011210850A (en) Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet
JP2004244702A (en) Method of producing rare earth permanent magnet
JP2006237168A (en) R-T-B system sintered magnet and manufacturing method thereof
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090730

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees