[go: up one dir, main page]

JP2002211985A - Method for C or SiC coating of SiC or C fiber - Google Patents

Method for C or SiC coating of SiC or C fiber

Info

Publication number
JP2002211985A
JP2002211985A JP2001007141A JP2001007141A JP2002211985A JP 2002211985 A JP2002211985 A JP 2002211985A JP 2001007141 A JP2001007141 A JP 2001007141A JP 2001007141 A JP2001007141 A JP 2001007141A JP 2002211985 A JP2002211985 A JP 2002211985A
Authority
JP
Japan
Prior art keywords
sic
fiber
pressure
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007141A
Other languages
Japanese (ja)
Inventor
Akira Kayama
晃 香山
Takehiro Kato
雄大 加藤
Hiroshi Araki
弘 荒木
Tetsuji Noda
哲二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Japan Science and Technology Corp filed Critical National Institute for Materials Science
Priority to JP2001007141A priority Critical patent/JP2002211985A/en
Publication of JP2002211985A publication Critical patent/JP2002211985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Ceramic Products (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

(57)【要約】 【目的】 繊維プリフォームにSiC又はCコーティン
グ層を直接形成することにより、SiC又はC繊維/S
iCマトリックスの界面に層間剥離のないSiC又はC
繊維/SiC複合材料を得る。 【構成】 反応器に収容されたSiC又はC繊維プリフォー
ムの反応ガス供給側と排気側とを同じ一定圧力に維持
し、最大流量300cc/分でメタン,エタン,プロパン等
の炭化水素ガスを供給しながら、圧力15kPa以下,最高
反応温度1100℃の条件下で炭化水素ガスを熱分解し、熱
分解生成物であるCをSiC又はC繊維の周りに析出させ
る。SiC被覆する場合には、アルキルクロロシラン/水
素の流量比率が60体積%以下の混合ガスを供給しなが
ら、圧力10kPa以上,最高反応温度1100℃の条件下でア
ルキルクロロシランを熱分解する。
(57) [Summary] [Object] To form SiC or C fiber / S by directly forming a SiC or C coating layer on a fiber preform.
SiC or C without delamination at the interface of iC matrix
Obtain a fiber / SiC composite. [Constitution] Maintain the same constant pressure on the reaction gas supply side and exhaust side of the SiC or C fiber preform stored in the reactor, and supply hydrocarbon gas such as methane, ethane, and propane at a maximum flow rate of 300 cc / min. Meanwhile, the hydrocarbon gas is thermally decomposed under the conditions of a pressure of 15 kPa or less and a maximum reaction temperature of 1100 ° C., and C as a pyrolysis product is precipitated around SiC or C fibers. When coating with SiC, the alkylchlorosilane is thermally decomposed under the conditions of a pressure of 10 kPa or more and a maximum reaction temperature of 1100 ° C. while supplying a mixed gas having a flow ratio of alkylchlorosilane / hydrogen of 60% by volume or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、SiC又はC繊維/S
iC複合材料を製造する際に、C又はSiCでSiC繊
維を予め被覆する方法に関する。
The present invention relates to SiC or C fiber / S
The present invention relates to a method of pre-coating SiC fibers with C or SiC when manufacturing an iC composite material.

【0002】[0002]

【従来の技術】原子力,宇宙航空分野等の特殊環境や極
限環境で使用される材料として、耐熱性,耐摩耗性に優
れたセラミックス系材料が注目されている。セラミック
ス系材料は、過酷な条件に曝される熱交換器,メカニカ
ルシール等の部材としても使用されている。なかでも、
SiC,Si34等の非酸化物系セラミックスは、高温
雰囲気においても優れた強度を維持する材料である。特
に、SiCやCは、強度、耐熱性、高熱伝導性、耐摩耗
性に優れていることに加え、中性子照射によっても長寿
命の放射性核種を生じないことを活用し、宇宙航空用か
ら核融合炉の第1隔壁に至るまでの広範な分野において
有望視されている材料である。
2. Description of the Related Art Ceramic materials having excellent heat resistance and wear resistance have attracted attention as materials used in special or extreme environments such as the nuclear and aerospace fields. Ceramic materials are also used as members for heat exchangers, mechanical seals, and the like exposed to severe conditions. Above all,
Non-oxide ceramics such as SiC and Si 3 N 4 are materials that maintain excellent strength even in a high-temperature atmosphere. In particular, SiC and C are superior in strength, heat resistance, high thermal conductivity, and wear resistance, and they do not produce long-lived radionuclides by neutron irradiation. It is a promising material in a wide range of fields up to the first partition of the furnace.

【0003】SiCは、融点が高く高温特性に優れてい
るが、それ自体では脆い材料である。そこで、C繊維や
SiC繊維で強化した複合材料の開発が進められてい
る。SiC又はC繊維/SiC複合材料は反応焼結法,
ホットプレス法等、種々の方法で製造されているが、気
相反応浸透法(CVI)によるとき、最終製品に近い任
意形状で且つ高強度に成形できる利点がある。気相反応
浸透法(CVI)では、アルキルクロロシランの熱分解
で生成したSiC相によってSiC又はC繊維の内部空
隙を充填している。
[0003] SiC has a high melting point and excellent high-temperature properties, but is itself a brittle material. Therefore, development of a composite material reinforced with C fibers or SiC fibers has been promoted. SiC or C-fiber / SiC composite material is reactive sintering,
Although it is manufactured by various methods such as a hot press method, there is an advantage that a gas-phase reaction permeation method (CVI) can be formed into an arbitrary shape close to the final product and high strength. In the gas phase reactive infiltration method (CVI), the internal voids of SiC or C fibers are filled with a SiC phase generated by thermal decomposition of alkylchlorosilane.

【0004】[0004]

【発明が解決しようとする課題】作製されたSiC又は
C繊維/SiC複合材料の性質は、繊維/バルクの界面
組織に大きく影響される。そのため、C,SiC、BN
等でSiC又はC繊維を予めコーティングした後、気相
反応浸透法を実施している。SiC又はC繊維に施した
コーティング層は、熱分解反応で生成するSiCとの親
和性が高く、繊維/バルク界面の接合強度を改善する。
The properties of the produced SiC or C fiber / SiC composite material are greatly influenced by the fiber / bulk interface structure. Therefore, C, SiC, BN
After pre-coating SiC or C fibers with the above, a gas phase reactive infiltration method is performed. The coating layer applied to the SiC or C fiber has a high affinity for SiC generated by the thermal decomposition reaction, and improves the bonding strength at the fiber / bulk interface.

【0005】しかし、従来のコーティングは、SiC又
はC繊維の糸に施されることから、コーティング自体が
困難なことは勿論、コーティングされたSiC又はC繊
維を所定形状の織物に編成することも難しい。織物に編
成できても、加圧積層やプリフォーム形成時にコーティ
ング層がSiC又はC繊維から剥離・脱落することがあ
り、結果としてコーティング層による親和性の改善を十
分に活かしきれていない。
However, since the conventional coating is applied to the yarn of SiC or C fiber, it is difficult not only to coat the coating itself but also to knit the coated SiC or C fiber into a woven fabric having a predetermined shape. . Even when knitted into a woven fabric, the coating layer may peel or fall off from the SiC or C fibers during pressure lamination or preform formation, and as a result, the improvement in affinity by the coating layer cannot be fully utilized.

【0006】[0006]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、熱分解反応を制
御することにより、SiC又はC繊維のプリフォームに
均一なSiC又はCコーティング層を直接形成し、界面
の接合強度が高く熱的・機械的特性に優れたSiC又は
C繊維/SiC複合材料を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem. By controlling the thermal decomposition reaction, a uniform SiC or C fiber preform can be obtained. An object of the present invention is to provide a SiC or C fiber / SiC composite material in which a C coating layer is directly formed and the interface has high bonding strength and excellent thermal and mechanical properties.

【0007】本発明のC被覆方法は、その目的を達成す
るため、反応器に収容されたSiC又はC繊維プリフォ
ームの反応ガス供給側と排気側とを同じ一定圧力に維持
し、メタン,エタン,プロパン等の炭化水素ガスを供給
しながら、圧力20kPa以下,最高反応温度1100
℃の条件下で炭化水素ガスを熱分解し、熱分解生成物で
あるCをSiC又はC繊維の周りに析出させることを特
徴とする。
[0007] In order to achieve the object, the C coating method of the present invention maintains the same constant pressure on the reaction gas supply side and the exhaust side of the SiC or C fiber preform accommodated in the reactor, and prepares methane and ethane. , While supplying hydrocarbon gas such as propane, pressure 20 kPa or less, maximum reaction temperature 1100
It is characterized in that hydrocarbon gas is thermally decomposed under the condition of ° C., and C as a pyrolysis product is deposited around SiC or C fiber.

【0008】SiC被覆する場合には、反応器に収容さ
れたSiC又はC繊維プリフォームの反応ガス供給側と
排気側とを同じ一定圧力に維持し、アルキルクロロシラ
ン/水素の流量比率が60%以下の混合ガスを供給しな
がら、圧力10kPa以上,最高反応温度1100℃の
条件下でアルキルクロロシランを熱分解し、熱分解生成
物であるSiCをSiC又はC繊維の周りに析出させ
る。
When coating with SiC, the reaction gas supply side and the exhaust side of the SiC or C fiber preform accommodated in the reactor are maintained at the same constant pressure, and the flow ratio of alkylchlorosilane / hydrogen is 60% or less. While supplying a mixed gas of the above, the alkylchlorosilane is thermally decomposed under the conditions of a pressure of 10 kPa or more and a maximum reaction temperature of 1100 ° C., and SiC as a pyrolysis product is precipitated around the SiC or C fiber.

【0009】[0009]

【作用】SiC又はC繊維を予めC,SiC,BN等で
コーティングする方法では、前述したようにコーティン
グ法自体の困難性,コーティングされたSiC又はC繊
維を所定形状の繊維プリフォームに成形するときの困難
性,SiC又はC繊維に対するコーティング層の密着性
等に難点がある。そこで、本発明者等は、所定形状に成
形した繊維プリフォームにSiC又はCコーティング層
を直接形成する方法を調査検討した。その結果、繊維プ
リフォーム内部で均等にC又はSiCの生成反応が進行
する圧力条件下で反応条件を制御するとき、成形された
繊維プリフォームに層厚のバラツキが抑えられたC又は
SiCのコーティング層が直接形成されることを見出し
た。
In the method of coating SiC or C fiber with C, SiC, BN or the like in advance, as described above, the difficulty of the coating method itself is required when forming the coated SiC or C fiber into a fiber preform of a predetermined shape. And the adhesion of the coating layer to SiC or C fibers. Then, the present inventors investigated and examined a method of directly forming a SiC or C coating layer on a fiber preform molded into a predetermined shape. As a result, when the reaction conditions are controlled under the pressure conditions under which the reaction of generating C or SiC proceeds evenly inside the fiber preform, the formed fiber preform is coated with C or SiC in which the thickness variation is suppressed. It has been found that the layer is formed directly.

【0010】C又はSiCの生成速度は、反応ガスの濃
度(圧力)及び温度に律速される。そこで、繊維プリフ
ォームの何れの場所においてもC又はSiCの生成反応
が均一に進行するように繊維プリフォームの反応ガス供
給側と排気側とを一定圧力に維持し、個々の繊維を同じ
濃度の反応ガスに曝す。繊維プリフォームの反応ガス供
給側と排気側との圧力との間に差が生じると、圧力の高
い反応ガス供給側におけるC又はSiCの生成反応が活
発になり、排気側での反応が遅延するため、供給側と排
気側とで繊維表面に形成されるコーティング層の厚さの
均一化が図れない。圧力差に起因する均一度低下は、圧
力差0.5kPa以上で顕著になる。
The rate of generation of C or SiC is determined by the concentration (pressure) and temperature of the reaction gas. Therefore, the reaction gas supply side and the exhaust side of the fiber preform are maintained at a constant pressure so that the generation reaction of C or SiC proceeds uniformly in any place of the fiber preform, and the individual fibers have the same concentration. Expose to reaction gas. When a difference occurs between the pressure on the reactive gas supply side and the pressure on the exhaust side of the fiber preform, the generation reaction of C or SiC on the high-pressure reactive gas supply side becomes active, and the reaction on the exhaust side is delayed. Therefore, the thickness of the coating layer formed on the fiber surface between the supply side and the exhaust side cannot be made uniform. The decrease in uniformity caused by the pressure difference becomes significant at a pressure difference of 0.5 kPa or more.

【0011】C又はSiCの生成反応は圧力が高いほど
促進されるが、高すぎる圧力ではC又はSiCの生成反
応の速度制御が難しくなるため20kPa以下(好まし
くは15kPa以下)に設定する。C又はSiCの生成
反応は反応温度の上昇に伴って促進されるが、高すぎる
反応温度では繊維プリフォームの場所によって反応速度
に大きな差が生じやすくなる。そこで、繊維表面に形成
されたコーティング層の層厚のバラツキを20%以下に
抑えるため、反応温度を1100℃以下に設定する。
The reaction for forming C or SiC is promoted as the pressure is increased. However, if the pressure is too high, it is difficult to control the speed of the reaction for forming C or SiC, so the pressure is set to 20 kPa or less (preferably 15 kPa or less). Although the reaction of forming C or SiC is accelerated with an increase in the reaction temperature, if the reaction temperature is too high, a large difference in the reaction rate tends to occur depending on the location of the fiber preform. Therefore, the reaction temperature is set to 1100 ° C. or less in order to suppress the variation in the thickness of the coating layer formed on the fiber surface to 20% or less.

【0012】アルキルクロロシランの熱分解反応でSi
Cを析出させる場合、アルキルクロロシラン:水素の流
量比を60%以下に調整する。流量比が60%を超える
と、アルキルクロロシランの量が多くなりすぎ、SiC
生成反応が過度に進行し、微量な層厚制御が困難にな
る。アルキルクロロシランは、1気圧(0.1MPa)
の下では液体であるため、減圧によって蒸発させたシラ
ンを水素ガス(キャリアガス)で反応容器に運ぶ。この
とき、低すぎる圧力では水素の流量が少なくなってアル
キルクロロシラン:水素混合比の精密な制御が困難にな
り、結果としてコーティング層の層厚にバラツキが生じ
る原因となる。そこで、混合比を精密制御する上から、
アルキルクロロシラン,水素の混合気体の圧力を10k
Pa以上に設定する。
In the thermal decomposition reaction of alkylchlorosilane, Si
When C is deposited, the flow ratio of alkylchlorosilane: hydrogen is adjusted to 60% or less. If the flow ratio exceeds 60%, the amount of alkylchlorosilane becomes too large, and SiC
The formation reaction proceeds excessively, and it becomes difficult to control a very small thickness of the layer. Alkyl chlorosilane is 1 atm (0.1MPa)
Since it is a liquid underneath, the silane evaporated under reduced pressure is transported to the reaction vessel by hydrogen gas (carrier gas). At this time, if the pressure is too low, the flow rate of hydrogen decreases, and it becomes difficult to precisely control the alkylchlorosilane: hydrogen mixture ratio, and as a result, the thickness of the coating layer varies. Therefore, in order to precisely control the mixing ratio,
Pressure of mixed gas of alkylchlorosilane and hydrogen is 10k
Set to Pa or more.

【0013】このようにして繊維プリフォームにSiC
又はCコーティング層が直接形成されるため、繊維プリ
フォームの成形時にコーティング層の剥離・脱落が避け
られない従来法の欠点が解除され、SiC又はCコーテ
ィング層による効果が発現され、後続工程で生成するS
iC相のSiC又はC繊維に対する結合強度が向上し、
熱的・機械的特性に優れたSiC繊維/SiC複合材料
が得られる。
[0013] Thus, the SiC is added to the fiber preform.
Alternatively, since the C coating layer is directly formed, the drawback of the conventional method, in which the coating layer is inevitably peeled and dropped during the molding of the fiber preform, is eliminated, and the effect of the SiC or C coating layer is developed, and it is generated in a subsequent process. S
The bonding strength of the iC phase to SiC or C fiber is improved,
A SiC fiber / SiC composite material having excellent thermal and mechanical properties can be obtained.

【0014】[0014]

【実施例】(CによるSiC繊維の被覆)平織りのSi
C繊維織物を7層重ね合わせることにより、厚さ2mm
のSiC繊維プリフォームを用意した。SiC繊維プリ
フォーム繊維積層体を直径40mmの円盤状に成形し、
反応器に収容した。反応器を0.1Paまで真空吸引し
た後、1200℃に1時間加熱することにより繊維に付
着している樹脂を分解除去した。次いで、反応ガスとし
て流量200cc/分でメタンを反応器に送り込み、反
応器の内圧を14.7kPaまで上げ、メタンの熱分解
性生物であるCをプリフォーム繊維の周りに析出させ
た。炭素を析出させた繊維プリフォームについて、断面
方向の上流側,中心部,下流側及び円周方向の両端及び
中心部の合計9ヶ所で析出したCの層厚を測定した。
EXAMPLES (Coating of SiC fiber with C) Plain weave Si
By stacking 7 layers of C fiber fabric, 2mm thick
Was prepared. Forming a SiC fiber preform fiber laminate into a disc shape with a diameter of 40 mm,
Housed in the reactor. After vacuum suction of the reactor to 0.1 Pa, the resin adhering to the fibers was decomposed and removed by heating to 1200 ° C. for 1 hour. Next, methane was fed into the reactor at a flow rate of 200 cc / min as a reaction gas, the internal pressure of the reactor was increased to 14.7 kPa, and C, which is a pyrolytic product of methane, was precipitated around the preform fibers. With respect to the fiber preform on which carbon was deposited, the layer thickness of C deposited was measured at a total of nine places on the upstream side, the center part, the downstream side in the cross-sectional direction, and both ends and the center part in the circumferential direction.

【0015】図1の測定結果にみられるように、110
0℃以下の反応温度では場所による層厚のバラツキが小
さく、950℃×1時間で析出させたCコーティング層
は16%以内で層厚がばらついているに留まった。ま
た、層厚分布に及ぼすメタン流量の影響を示した図2に
みられるように、メタン流量が少なくなるほど層厚のバ
ラツキが小さくなっていた。更に、ガス圧を15kPa
以下にするとき、層厚のバラツキが数十%以内に留まっ
ていた(図3)。なお、図1ではメタン流量=200c
c/分,圧力=14.7kPa,反応時間=1時間、図
2では反応温度=950℃,ガス圧=14.7kPa,
反応時間=1時間、図3では反応温度=950℃、メタ
ンガス流量=200cc/分,反応時間=1時間と、他
の条件を一定に維持した。
As can be seen from the measurement results of FIG.
At a reaction temperature of 0 ° C. or less, the variation in the layer thickness depending on the location was small, and the thickness of the C coating layer deposited at 950 ° C. × 1 hour varied only within 16%. Further, as shown in FIG. 2 showing the effect of the methane flow rate on the layer thickness distribution, the variation in the layer thickness was smaller as the methane flow rate was smaller. Further, the gas pressure is set to 15 kPa
When the thickness was set below, the variation in the layer thickness was within several tens of percent (FIG. 3). In FIG. 1, the methane flow rate = 200 c
c / min, pressure = 14.7 kPa, reaction time = 1 hour, in FIG. 2, reaction temperature = 950 ° C., gas pressure = 14.7 kPa,
The reaction time was 1 hour, in FIG. 3, the reaction temperature was 950 ° C., the methane gas flow rate was 200 cc / min, and the reaction time was 1 hour.

【0016】以上の結果から、反応温度1100℃以
下,メタン流量300cc/分以下,ガス圧15kPa
以下の反応条件を採用するとき、所定形状に成形された
繊維プリフォームであっても、SiC繊維の周囲に均一
な層厚でコーティング層が形成されることが確認され
る。
From the above results, the reaction temperature is 1100 ° C. or less, the methane flow rate is 300 cc / min or less, and the gas pressure is 15 kPa.
When the following reaction conditions are adopted, it is confirmed that a coating layer having a uniform layer thickness is formed around the SiC fiber even in a fiber preform molded into a predetermined shape.

【0017】(SiCによるSiC繊維の被覆)同様な
SiC繊維プリフォームを反応器にセットし、メチルト
リクロロシラン(反応ガス)と水素(還元性キャリアガ
ス)との混合気体を反応器に導入し、メチルトリクロロ
シランの熱分解で生成したSiCによりSiC繊維を被
覆した。
(Coating of SiC Fiber with SiC) A similar SiC fiber preform is set in a reactor, and a mixed gas of methyltrichlorosilane (reaction gas) and hydrogen (reducing carrier gas) is introduced into the reactor. The SiC fibers were coated with SiC generated by thermal decomposition of methyltrichlorosilane.

【0018】SiCで被覆されたSiC繊維プリフォー
ムについて、同様に9個の測定点でSiCコーティング
層の層厚を測定した。反応温度が1100℃以下になる
と層厚のバラツキが小さく(図4)、メチルトリクロロ
シラン:水素の流量比が60%以下になると層厚のバラ
ツキが小さく(図5)、ガス圧10kPa以上で層厚の
バラツキが小さくなる(図6)結果が得られた。なお、
図4はメチルトリクロロシラン/水素=0.5(体積
比),水素流量=1リットル/分,ガス圧=14.7k
Pa,反応時間=30分、図5は反応温度=1000
℃,水素流量1リットル/分,ガス圧14.7kPa,
反応時間=30分、図6はメチルトリクロロシラン/水
素=0.5(体積比),水素流量=1リットル/分,反
応温度=1000℃,反応時間=30分と、他の反応条
件を一定に維持した場合の結果である。
With respect to the SiC fiber preform coated with SiC, the thickness of the SiC coating layer was similarly measured at nine measurement points. When the reaction temperature is 1100 ° C. or less, the variation in the layer thickness is small (FIG. 4). When the flow rate ratio of methyltrichlorosilane: hydrogen is 60% or less, the variation in the layer thickness is small (FIG. 5). The result that the variation in thickness was small (FIG. 6) was obtained. In addition,
FIG. 4 shows methyltrichlorosilane / hydrogen = 0.5 (volume ratio), hydrogen flow rate = 1 liter / min, gas pressure = 14.7 k
Pa, reaction time = 30 minutes, FIG. 5 shows reaction temperature = 1000
° C, hydrogen flow rate 1 liter / min, gas pressure 14.7 kPa,
Reaction time = 30 minutes, FIG. 6 shows methyltrichlorosilane / hydrogen = 0.5 (volume ratio), hydrogen flow rate = 1 liter / min, reaction temperature = 1000 ° C., reaction time = 30 minutes, and other reaction conditions were constant. This is the result when it is maintained.

【0019】以上の結果から、メチルトリクロロシラン
/水素の流量比を60体積%以下,ガス圧を10kPa
以上,反応温度を1100℃以下とすることにより、所
定形状に成形された繊維プリフォームであっても、Si
C繊維の周囲に均一な層厚でSiCコーティング層が形
成されることが確認される。
From the above results, the flow rate ratio of methyltrichlorosilane / hydrogen is 60% by volume or less, and the gas pressure is 10 kPa
As described above, by setting the reaction temperature to 1100 ° C. or lower, even if the fiber preform is formed into a predetermined shape, the
It is confirmed that a SiC coating layer having a uniform thickness is formed around the C fibers.

【0020】(SiC繊維/SiC複合材料の製造)層
厚760nmのCコーティング層,SiC(250n
m)+C(380nm)複層のコーティング層,C(8
0nm)+SiC(150nm)+C(70nm)の複
層コーティング層及びSiC(170nm)+C(10
8nm)+SiC(350nm)+C(117nm)の
複層コーティング層を形成した繊維プリフォームについ
て、気相反応浸透法(CVI)で繊維プリフォームの内
部空隙をSiC相で充填した。気相反応浸透法では、同
じ反応器に収容した繊維プリフォームの内部にメチルト
リクロロシラン:水素=1:4(体積比)の混合ガスを
送り込み、反応温度1000℃,圧力13.3kPaの
条件下でメチルトリクロロシランを熱分解反応させ、生
成したSiCを繊維プリフォームの内部空隙に析出させ
た。
(Production of SiC fiber / SiC composite material) A C coating layer having a thickness of 760 nm, SiC (250 n
m) + C (380 nm) multiple coating layers, C (8
0 nm) + SiC (150 nm) + C (70 nm) and SiC (170 nm) + C (10
Regarding the fiber preform on which the multilayer coating layer of 8 nm) + SiC (350 nm) + C (117 nm) was formed, the internal voids of the fiber preform were filled with a SiC phase by a gas phase reactive infiltration method (CVI). In the gas-phase reaction permeation method, a mixed gas of methyltrichlorosilane: hydrogen = 1: 4 (volume ratio) is fed into a fiber preform accommodated in the same reactor, and the reaction temperature is 1000 ° C. and the pressure is 13.3 kPa. To cause a thermal decomposition reaction of methyltrichlorosilane to precipitate the generated SiC in the internal voids of the fiber preform.

【0021】気相反応浸透法を20時間継続することに
より、繊維プリフォームの内部空隙がSiC相で充填さ
れており、SiC繊維/SiCバルクの界面に層間剥離
が検出されなかった(図7)。そのため、作製されたS
iC繊維/SiC複合材料は、曲げ強度に優れ、SiC
繊維/SiC系本来の極めて優れた物性を呈する材料で
あった。以上の実施例では、SiC繊維を使用したが、
SiC繊維に代えてC繊維を用いた場合でも、同様にC
繊維/SiCの界面に層間剥離のない複合材料が作製さ
れた。
By continuing the gas phase reactive infiltration method for 20 hours, the internal voids of the fiber preform were filled with the SiC phase, and no delamination was detected at the SiC fiber / SiC bulk interface (FIG. 7). . Therefore, the S
iC fiber / SiC composite material has excellent bending strength and
The fiber / SiC-based material exhibited extremely excellent physical properties. In the above embodiment, the SiC fiber was used.
Similarly, when C fiber is used instead of SiC fiber,
A composite material without delamination at the fiber / SiC interface was produced.

【0022】[0022]

【発明の効果】以上に説明したように、本発明において
は、所定形状に成形した繊維プリフォームにSiC又は
Cコーティング層を直接形成しているため、コーティン
グ層形成後に繊維プリフォームを成形する従来法でみら
れたコーティング層の剥離や脱落の虞がなく、SiC又
はC繊維に対するSiCバルクの密着性向上にSiC又
はCコーティング層が有効に使用される。そのため、作
製されたSiC又はC繊維/SiC複合材料は、SiC
又はC繊維/SiCマトリックスの界面に層間剥離がな
く、SiC又はC繊維/SiC系本来の優れた耐熱性,
耐摩耗性を活用し宇宙航空用,原子炉隔壁,熱交換器部
品等の高機能材料として使用される。
As described above, in the present invention, since the SiC or C coating layer is directly formed on the fiber preform formed into a predetermined shape, the conventional fiber preform is formed after forming the coating layer. The SiC or C coating layer is effectively used for improving the adhesion of the SiC bulk to the SiC or C fiber without the risk of the coating layer peeling or falling off as observed by the method. Therefore, the produced SiC or C fiber / SiC composite material is SiC
Or, there is no delamination at the interface of the C fiber / SiC matrix, and the SiC or C fiber / SiC-based original excellent heat resistance,
Utilizing its wear resistance, it is used as a high-performance material for aerospace, reactor bulkheads, heat exchanger parts, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 メタンの熱分解で析出させたCコーティング
層の層厚分布に反応温度が及ぼす影響を表したグラフ
FIG. 1 is a graph showing the effect of reaction temperature on the thickness distribution of a C coating layer deposited by thermal decomposition of methane.

【図2】 メタンの熱分解で析出させたCコーティング
層層厚分布にメタンガス流量が及ぼす影響を表したグラ
FIG. 2 is a graph showing an influence of a methane gas flow rate on a thickness distribution of a C coating layer deposited by thermal decomposition of methane.

【図3】 メタンの熱分解で析出させたCコーティング
層層厚分布に反応ガスの圧力が及ぼす影響を表したグラ
FIG. 3 is a graph showing the effect of the pressure of a reaction gas on the thickness distribution of a C coating layer deposited by thermal decomposition of methane.

【図4】 メチルトリクロロシランの熱分解で析出させ
たSiCコーティング層の層厚分布に反応温度が及ぼす
影響を表したグラフ
FIG. 4 is a graph showing the effect of reaction temperature on the thickness distribution of a SiC coating layer deposited by thermal decomposition of methyltrichlorosilane.

【図5】 メチルトリクロロシランの熱分解で析出させ
たSiCコーティング層の層厚分布にメチルトリクロロ
シラン/水素の流量比が及ぼす影響を表したグラフ
FIG. 5 is a graph showing the effect of the flow rate ratio of methyltrichlorosilane / hydrogen on the thickness distribution of the SiC coating layer deposited by thermal decomposition of methyltrichlorosilane.

【図6】 メチルトリクロロシランの熱分解で析出させ
たSiCコーティング層の層厚分布に反応ガスの圧力が
及ぼす影響を表したグラフ
FIG. 6 is a graph showing the effect of reaction gas pressure on the thickness distribution of a SiC coating layer deposited by thermal decomposition of methyltrichlorosilane.

【図7】 繊維プリフォームの内部空隙を気相反応浸透
法によりSiCマトリックスを充填させたSiC繊維/
SiC複合材料の組織を示す顕微鏡写真
FIG. 7 shows that the internal voids of the fiber preform are filled with a SiC matrix by a gas phase reactive infiltration method.
Micrograph showing structure of SiC composite material

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/56 101L 35/80 B C (72)発明者 加藤 雄大 京都府宇治市五ヶ庄 京都大学エネルギー 理工学研究所内 (72)発明者 荒木 弘 茨城県つくば市千現一丁目2番1号 文部 科学省金属材料技術研究所内 (72)発明者 野田 哲二 茨城県つくば市千現一丁目2番1号 文部 科学省金属材料技術研究所内 Fターム(参考) 4G001 BA22 BA60 BA76 BA77 BA86 BB22 BB60 BB86 BC72 BD01 BD12 BE31 4G032 AA52 BA02 GA08 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C04B 35/56 101L 35/80 BC (72) Inventor Yuta Kato Gokasho, Uji City, Kyoto Prefecture Kyoto University Energy Science and Engineering Research (72) Inventor Hiroshi Araki 1-2-1, Sengen, Tsukuba, Ibaraki Prefectural Ministry of Education, Culture, Sports, Science and Technology Ministry of Science and Technology (72) Inventor Tetsuji Noda 1-1-2, Sengen, Tsukuba, Ibaraki Pref. 4G001 BA22 BA60 BA76 BA77 BA86 BB22 BB60 BB86 BC72 BD01 BD12 BE31 4G032 AA52 BA02 GA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応器に収容されたSiC又はC繊維プ
リフォームの反応ガス供給側と排気側とを同じ一定圧力
に維持し、炭化水素ガスを供給しながら、圧力20kP
a以下,最高反応温度1100℃の条件下で炭化水素ガ
スを熱分解し、熱分解生成物であるCをSiC又はC繊
維の周りに析出させることを特徴とするSiC又はC繊
維のC被覆方法。
1. A pressure of 20 kP while a hydrocarbon gas is supplied while maintaining a reaction gas supply side and an exhaust side of a SiC or C fiber preform accommodated in a reactor at the same constant pressure.
a) A method for C coating SiC or C fibers, wherein hydrocarbon gas is thermally decomposed under conditions of a maximum reaction temperature of 1100 ° C. and C as a pyrolysis product is deposited around SiC or C fibers. .
【請求項2】 反応器に収容されたSiC又はC繊維プ
リフォームの反応ガス供給側と排気側とを同じ一定圧力
に維持し、アルキルクロロシラン/水素の流量比率が6
0%以下の混合ガスを供給しながら、圧力10kPa以
上,最高反応温度1100℃の条件下でアルキルクロロ
シランを熱分解し、熱分解生成物であるSiCをSiC
又はC繊維の周りに析出させることを特徴とするSiC
又はC繊維のSiC被覆方法。
2. The reaction gas supply side and the exhaust side of the SiC or C fiber preform accommodated in the reactor are maintained at the same constant pressure, and the flow ratio of alkylchlorosilane / hydrogen is 6%.
While supplying a mixed gas of 0% or less, the alkylchlorosilane is thermally decomposed under the conditions of a pressure of 10 kPa or more and a maximum reaction temperature of 1100 ° C., and the thermal decomposition product SiC is converted to SiC.
Or SiC characterized by being deposited around C fibers
Or a method of coating C fibers with SiC.
JP2001007141A 2001-01-16 2001-01-16 Method for C or SiC coating of SiC or C fiber Pending JP2002211985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007141A JP2002211985A (en) 2001-01-16 2001-01-16 Method for C or SiC coating of SiC or C fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007141A JP2002211985A (en) 2001-01-16 2001-01-16 Method for C or SiC coating of SiC or C fiber

Publications (1)

Publication Number Publication Date
JP2002211985A true JP2002211985A (en) 2002-07-31

Family

ID=18874929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007141A Pending JP2002211985A (en) 2001-01-16 2001-01-16 Method for C or SiC coating of SiC or C fiber

Country Status (1)

Country Link
JP (1) JP2002211985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111229A (en) * 2018-03-22 2019-10-02 (주) 데크카본 Method of manufacturing silicon carbide fiber with controlled specific elctrical resistivity
WO2023171621A1 (en) * 2022-03-07 2023-09-14 株式会社Ihi Method for covering fiber body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264964A (en) * 1988-03-18 1989-10-23 Toyo Tanso Kk Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JPH03223165A (en) * 1990-01-26 1991-10-02 Mitsubishi Electric Corp Manufacturing method of C/C composite material by composite gas phase impregnation method
JPH03223180A (en) * 1990-01-26 1991-10-02 Ishikawajima Harima Heavy Ind Co Ltd Composite material manufacturing method
JPH04272803A (en) * 1991-02-28 1992-09-29 Kawasaki Heavy Ind Ltd Molding method for heat-resistant composite material
JPH08198679A (en) * 1995-01-18 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing three-dimensional fiber reinforced composite material component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264964A (en) * 1988-03-18 1989-10-23 Toyo Tanso Kk Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JPH03223165A (en) * 1990-01-26 1991-10-02 Mitsubishi Electric Corp Manufacturing method of C/C composite material by composite gas phase impregnation method
JPH03223180A (en) * 1990-01-26 1991-10-02 Ishikawajima Harima Heavy Ind Co Ltd Composite material manufacturing method
JPH04272803A (en) * 1991-02-28 1992-09-29 Kawasaki Heavy Ind Ltd Molding method for heat-resistant composite material
JPH08198679A (en) * 1995-01-18 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing three-dimensional fiber reinforced composite material component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111229A (en) * 2018-03-22 2019-10-02 (주) 데크카본 Method of manufacturing silicon carbide fiber with controlled specific elctrical resistivity
KR102076864B1 (en) * 2018-03-22 2020-03-17 (주) 데크카본 Method of manufacturing silicon carbide fiber with controlled specific elctrical resistivity
WO2023171621A1 (en) * 2022-03-07 2023-09-14 株式会社Ihi Method for covering fiber body
JPWO2023171621A1 (en) * 2022-03-07 2023-09-14

Similar Documents

Publication Publication Date Title
US9296660B2 (en) Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
JP5117862B2 (en) Manufacturing method of ceramic matrix composite member
US6284357B1 (en) Laminated matrix composites
Li et al. ZrB2 particles reinforced glass coating for oxidation protection of carbon/carbon composites
CN114044679A (en) High-toughness ultrahigh-temperature ceramic matrix composite and preparation method thereof
JP6755670B2 (en) Ceramic matrix composite article and its forming method
CN105408288A (en) Method for manufacturing composite parts by low melting point impregnation
Liang et al. Microstructure and properties of 2D-Cf/SiC composite fabricated by combination of CVI and PIP process with SiC particle as inert fillers
CN106966745B (en) A kind of method that pressure sintering prepares thermostructural composite
US11702369B2 (en) Method of fabricating a ceramic composite
EP3650424A1 (en) Accelerated cvi densification of cmc through infiltration
CN107445640A (en) A kind of manufacture method of C/SiC novel mechanical sealing rings
CN111825471A (en) A method for preparing continuous carbon fiber toughened ultra-high temperature ceramic matrix composites by electrophoretic deposition
EP2933353B1 (en) Method for producing fiber-reinforced composites
JP2002211980A (en) SiC or C fiber / SiC composite material and method for producing the same
Mao et al. Controllable Preparation and Forming Mechanism of Bamboo-Shaped SiC Nanowires Reinforced SiC Dense Coating
CN103757603B (en) A kind of preparation method of zirconium diboride coating
JP2004175605A (en) Oxidation resistant C / C composite and method for producing the same
JP2002211985A (en) Method for C or SiC coating of SiC or C fiber
JP4707854B2 (en) Method for producing high-strength SiC fiber / SiC composite material
Kim et al. Thermal shock resistance of TaC/SiC coatings on carbon/carbon composites by the CVD process
JP2002211984A (en) Method for producing SiC or C fiber / SiC composite material
Naslain Processing of non-oxide ceramic matrix composites: an overview
CN113748096A (en) Method for manufacturing CMC component
CN109996774A (en) Composite component comprising an interphase layer comprising aluminium-doped boron nitride

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330