JP2002217010A - Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet - Google Patents
Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnetInfo
- Publication number
- JP2002217010A JP2002217010A JP2001011804A JP2001011804A JP2002217010A JP 2002217010 A JP2002217010 A JP 2002217010A JP 2001011804 A JP2001011804 A JP 2001011804A JP 2001011804 A JP2001011804 A JP 2001011804A JP 2002217010 A JP2002217010 A JP 2002217010A
- Authority
- JP
- Japan
- Prior art keywords
- anisotropic
- magnetic powder
- bonded magnet
- powder
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 50
- 230000005415 magnetization Effects 0.000 title claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 13
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 3
- 230000005389 magnetism Effects 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 11
- 229910052748 manganese Inorganic materials 0.000 abstract description 6
- 229910018648 Mn—N Inorganic materials 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 229910002551 Fe-Mn Inorganic materials 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000005121 nitriding Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009776 industrial production Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 241000892865 Heros Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229910017086 Fe-M Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- -1 diaminoaminophenylsulfone Chemical compound 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は広範囲な磁石応用品
分野、例えば各種の回転機、静電現像方式のプリンタや
複写機等に用いるマグネットロール、ボイスコイルモー
タやリニアモータ等に代表される各種のアクチュエー
タ、音響用スピーカ、ブザー、センサー、吸着又は磁界
発生用磁石等に有用であり、2−17型結晶構造相を主相
とする、着磁性を向上した(Sm,La)−Fe−Mn
−N系異方性磁粉、及びそれを用いた異方性ボンド磁石
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide variety of magnet-applied products, for example, various types of rotating machines, magnet rolls used in electrostatic developing type printers and copiers, voice coil motors and linear motors. (Sm, La) -Fe-Mn having a 2-17 type crystal structure phase as a main phase and having improved magnetism, which is useful for an actuator, an acoustic speaker, a buzzer, a sensor, a magnet for attracting or generating a magnetic field, and the like.
The present invention relates to -N-based anisotropic magnetic powder and an anisotropic bonded magnet using the same.
【0002】[0002]
【従来の技術】希土類元素(R)、Fe及び窒素(N)
からなる異方性のR−Fe−N系ボンド磁石の生産が開
始されている。異方性のR−Fe−N系ボンド磁石は異
方性のフェライト焼結磁石に比べて形状自由度に富み、
加工性に優れ、高い磁気特性を有することから、今後各
種磁石応用品分野への採用が検討されている。2. Description of the Related Art Rare earth elements (R), Fe and nitrogen (N)
Production of an anisotropic R—Fe—N bonded magnet made of Anisotropic R-Fe-N bonded magnets have more shape freedom than anisotropic ferrite sintered magnets,
Due to its excellent workability and high magnetic properties, its application to various magnet applications is being studied in the future.
【0003】従来の異方性のR−Fe−N系ボンド磁石
は、例えば特許第2703281号公報に開示されるように、
窒化したSm−Fe−N系合金を平均粒径で約2μmの
単磁区微粒子に粉砕し、次いで前記微粉とバインダーと
を所定比率で配合し、混練し、得られたコンパウンドを
磁場中成形し、作製される。しかし、前記Sm−Fe−
N系磁粉は酸化されやすい他、コンパウンド中への充填
性が悪く実用上有用な最大エネルギー積(BH)maxを得る
ために高い成形圧力を必要とするという問題がある。こ
の問題に対し、特開平8-55712号公報では、一般式Rα
Fe100−α−β−γMnβNγ(但し、Rは希土類
元素の少なくとも1種であり、α,β及びγはそれぞれ
原子%であり、3≦α≦20,0.5≦β≦25,及び17≦γ
≦25である)で表される組成を有し、その主相が少なく
とも前記R,Fe,Mn及びNを成分とする菱面体晶又
は六方晶の結晶構造を有する相であり、平均粒径が10μ
m以上である磁性材料粉末を提案している。この磁性材
料粉末はニュークリエーション型のSm2Fe17N3
化合物とは異なり、過剰に窒素を含有する効果によりピ
ンニング型になっており、かつMnの含有効果により大
粒径の粗粉状態でも高い保磁力が得られるという特徴を
有する。しかし、この磁性粉末とバインダーとを所定比
率で配合し、コンパウンドを作製し、磁場中成形し得ら
れた異方性ボンド磁石は磁場配向性及び着磁性が悪く、
改善が求められていた。磁場中成形における配向磁場強
度は成形方式、成形体の形状及び寸法、磁極数等により
変動するが、概略、平行異方性を付与する場合の配向磁
場強度は0.64〜1.2MA/m(8〜15KOe)程度であり、ラジ
アル異方性又は多極異方性を付与する場合の配向磁場強
度は0.24〜0.64MA/m(3〜8KOe)程度である。工業生
産上、配向磁場強度が低い程成形時のコイルの発熱が少
なく、汎用性のある磁場発生電源、及び成形用金型を採
用できるので実用性が高い。従って、より低い配向磁場
強度で磁場中成形し、所望の方向に良好な異方性(より
高い(BH)max)を付与したボンド磁石成形品を得ること
が望まれている。着磁性は室温の着磁磁界強度:1.9MA/
m(25kOe)以下で着磁したときの(BH)maxで評価され
る。着磁磁場強度を1.9MA/m(25kOe)以下に制限する理
由は、異方性ボンド磁石を所定の磁気回路に組み込んだ
状態で着磁する場合等、工業生産上1.9MA/m(25kOe)超
の着磁磁界強度で着磁することが困難な場合が多いから
である。[0003] A conventional anisotropic R-Fe-N bonded magnet is disclosed in, for example, Japanese Patent No. 2703281.
The nitrided Sm-Fe-N-based alloy is pulverized into single domain fine particles having an average particle size of about 2 μm, and then the fine powder and the binder are blended at a predetermined ratio, kneaded, and the obtained compound is molded in a magnetic field. It is made. However, the Sm-Fe-
N-based magnetic powders are liable to be oxidized, and have poor filling properties into the compound and require high molding pressure to obtain a practically useful maximum energy product (BH) max. To solve this problem, Japanese Patent Application Laid-Open No. 8-55712 discloses a general formula R α
Fe 100-α-β-γ Mn β N γ ( where, R is at least one rare earth element, alpha, is beta and gamma are each atom%, 3 ≦ α ≦ 20,0.5 ≦ β ≦ 25, And 17 ≦ γ
≦ 25), and the main phase is a phase having a rhombohedral or hexagonal crystal structure containing at least R, Fe, Mn and N as components, and having an average particle size of 10μ
m or more are proposed. This magnetic material powder is a nucleation type Sm 2 Fe 17 N 3
Unlike compounds, they have a feature that they are pinned due to the effect of excessively containing nitrogen, and that a high coercive force can be obtained even in the state of coarse particles having a large particle size due to the effect of containing Mn. However, the magnetic powder and the binder are blended at a predetermined ratio, a compound is produced, and the anisotropic bonded magnet obtained by molding in a magnetic field has poor magnetic field orientation and magnetization,
Improvement was required. The orientation magnetic field strength in molding in a magnetic field varies depending on the molding method, the shape and size of the molded body, the number of magnetic poles, and the like. In general, the orientation magnetic field strength when imparting parallel anisotropy is 0.64 to 1.2 MA / m (8 to The orientation magnetic field strength in the case of imparting radial or multipolar anisotropy is about 0.24 to 0.64 MA / m (3 to 8 KOe). In industrial production, the lower the intensity of the orientation magnetic field, the lower the heat generated by the coil during molding, and the versatility of a magnetic field generating power supply and a molding die, so that the practicality is high. Therefore, it is desired to obtain a bonded magnet molded article which is molded in a magnetic field with a lower orientation magnetic field strength and imparts good anisotropy (higher (BH) max) in a desired direction. Magnetization at room temperature: 1.9MA /
It is evaluated by (BH) max when magnetized below m (25 kOe). The reason for limiting the magnetizing magnetic field strength to 1.9 MA / m (25 kOe) or less is that 1.9 MA / m (25 kOe) is required for industrial production, such as when magnetizing with an anisotropic bonded magnet incorporated in a predetermined magnetic circuit. This is because it is often difficult to magnetize with an excessively strong magnetic field strength.
【0004】特開2000−49006号公報には、原子%で、
RαT100−(α+β+γ+δ)MβBγNδ(Rが
Sm及びLaからなりLa含有量が0.05〜1%であり、
TはFe又はFe及びCoであり、MはAl,Ti,
V,Cr,Mn,Cu,Ga,Zr,Nb,Mo,H
f,Ta,W及びZnの群から選択される少なくとも1
種であり、α,β,γ及びδはそれぞれ、6≦α≦15,
0.5≦β≦10,0≦γ≦4,及び4≦δ≦30)で表され
る組成を有し、平均結晶粒径が0.01〜1μmの2−17型
硬質磁性相から実質的になる希土類磁石粉末及びボンド
磁石を開示している。しかし、それらはいずれも等方性
であり、前記磁石粉末粒子がほぼ一定方向に配向した結
晶粒の集合体ではない点で本発明の異方性磁粉とは異な
っている。[0004] Japanese Patent Application Laid-Open No. 2000-49006 discloses that
La content R α T 100- (α + β + γ + δ) M β B γ N δ (R is Sm and La is 0.05 to 1%
T is Fe or Fe and Co, M is Al, Ti,
V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, H
at least one selected from the group consisting of f, Ta, W and Zn
Α, β, γ and δ are respectively 6 ≦ α ≦ 15,
A rare earth element substantially composed of a 2-17 type hard magnetic phase having a composition represented by 0.5 ≦ β ≦ 10, 0 ≦ γ ≦ 4, and 4 ≦ δ ≦ 30) and having an average crystal grain size of 0.01 to 1 μm. A magnet powder and a bonded magnet are disclosed. However, they are all isotropic, and are different from the anisotropic magnetic powder of the present invention in that the magnet powder particles are not an aggregate of crystal grains oriented in a substantially constant direction.
【0005】[0005]
【発明が解決しようとする課題】したがって、本発明が
解決しようとする課題は、着磁性を向上した(Sm,L
a)−Fe−Mn−N系異方性磁粉、及びそれを配合し
てなる異方性ボンド磁石を提供することである。Accordingly, an object of the present invention is to improve the magnetization (Sm, Lm).
a) To provide an -Fe-Mn-N-based anisotropic magnetic powder and an anisotropic bonded magnet obtained by mixing the same.
【0006】[0006]
【課題を解決するための手段】上記課題を解決した本発
明の着磁性を向上した異方性磁粉は、重量百分率で、R
(RはSm及びLaからなり、La含有量が0.1〜5%
である)20〜30%,Mn1〜10%,N4〜7%,及び残部
Feで表される主要成分組成を有し、配向した2−17型
硬質磁性相の結晶粒の集合体からなることを特徴とす
る。Means for Solving the Problems The anisotropic magnetic powder having improved magnetization according to the present invention, which has solved the above-mentioned problems, has a weight percentage of R
(R is composed of Sm and La, La content is 0.1-5%
Having a main component composition represented by 20 to 30%, Mn 1 to 10%, N4 to 7%, and the balance Fe, and consisting of an aggregate of crystal grains of an oriented 2-17 type hard magnetic phase. It is characterized by.
【0007】また本発明の異方性ボンド磁石は、重量百
分率で、R(RはSm及びLaからなり、La含有量が
0.1〜5%である)20〜30%,Mn1〜10%,N4〜7
%,及び残部Feで表される主要成分組成を有し、配向
した2−17型硬質磁性相の結晶粒の集合体からなる、着
磁性を向上した異方性磁粉と、バインダーとから実質的
になることを特徴とする。The anisotropic bonded magnet of the present invention has a weight percentage of R (R is composed of Sm and La, and has a La content of
0.1 to 5%) 20 to 30%, Mn 1 to 10%, N4 to 7
%, And the balance is substantially composed of an anisotropic magnetic powder having improved magnetizability, comprising an aggregate of crystal grains of a 2-17 type hard magnetic phase having a main component composition represented by Fe and a binder. It is characterized by becoming.
【0008】本発明の異方性磁粉の平均粒径は10〜300
μmが好ましい。平均粒径が10μm未満では固有保磁力
HcJ及び(BH)maxが低下し、平均粒径が300μm超では工
業生産上磁粉粒子内部まで完全に窒化するのが困難にな
り、さらに表面性が悪化して磁気回路のギャップの小さ
い用途への適用が困難になる。本発明の異方性磁粉の平
均粒径は20〜200μmがより好ましく、25〜125μmが特
に好ましい。The average particle size of the anisotropic magnetic powder of the present invention is 10 to 300.
μm is preferred. Intrinsic coercivity when average particle size is less than 10μm
If the HcJ and (BH) max decrease, and if the average particle size exceeds 300 μm, it will be difficult to completely nitride the inside of the magnetic powder particles in industrial production, and furthermore, the surface properties will deteriorate and it will be used for applications where the gap of the magnetic circuit is small. It becomes difficult to apply. The average particle size of the anisotropic magnetic powder of the present invention is more preferably from 20 to 200 μm, particularly preferably from 25 to 125 μm.
【0009】[0009]
【発明の実施の形態】以下に本発明の異方性磁粉の組成
限定理由を説明する。%と単に記しているのは重量百分
率を意味する。R含有量は20〜30%が好ましく、22〜28
がより好ましい。R含有量が20%未満では室温のHcJが3
97.9kA/m(5kOe)未満になり、30%超では(BH)maxが大
きく低下する。RはSm,La及び不可避的R成分から
なり、La含有量は0.1〜5%にするのが好ましく、0.5
〜4%にするのがより好ましい。Y,Ce,Pr,N
d,Pm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb及びLuの群から選択される少なくとも1種が
不可避的R成分に該当する。La含有量が0.1%未満お
よび5%超では(BH)maxの低下が顕著になる。Smミッ
シュメタルやジジム等の安価な混合希土類合金をR用原
料合金として用いるのが実用的である。室温のHcJ≧39
7.9kA/m(5kOe)を得るために、Rに占めるSm比率を5
0原子%以上にするのが好ましく、95原子%以上にする
のがより好ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of the anisotropic magnetic powder of the present invention will be described below. Simply writing% means percent by weight. The R content is preferably 20-30%, and 22-28.
Is more preferred. When the R content is less than 20%, HcJ at room temperature is 3
It becomes less than 97.9 kA / m (5 kOe), and if it exceeds 30%, (BH) max is greatly reduced. R is composed of Sm, La and an unavoidable R component, and the La content is preferably set to 0.1 to 5%.
More preferably, it is set to 44%. Y, Ce, Pr, N
d, Pm, Eu, Gd, Tb, Dy, Ho, Er, T
At least one selected from the group consisting of m, Yb and Lu corresponds to the unavoidable R component. When the La content is less than 0.1% or more than 5%, the decrease in (BH) max becomes remarkable. It is practical to use an inexpensive mixed rare earth alloy such as Sm misch metal or dymium as a raw material alloy for R. Room temperature HcJ ≧ 39
To obtain 7.9 kA / m (5 kOe), the ratio of Sm to R should be 5
It is preferably at least 0 atomic%, more preferably at least 95 atomic%.
【0010】Mn含有量は1〜10%とするのが好まし
く、2〜6%とするのがより好ましい。Mn含有量が1
%未満では保磁力を高める効果が事実上得られず、10%
超では(BH)maxの低下が顕著になる。The Mn content is preferably 1 to 10%, more preferably 2 to 6%. Mn content is 1
%, The effect of increasing the coercive force is virtually not obtained, and
Above that, the decrease in (BH) max becomes remarkable.
【0011】窒素含有量は4〜7%が好ましい。窒素含有
量が4%未満及び7%超ではiHc及び(BH)maxが大きく低下
し、有用な磁気特性を得ることが困難になる。[0011] The nitrogen content is preferably 4 to 7%. If the nitrogen content is less than 4% or more than 7%, iHc and (BH) max are greatly reduced, and it is difficult to obtain useful magnetic properties.
【0012】Feの一部をCoで置換することによりキ
ュリー点、磁化及び耐酸化性が向上するので好ましい。
Co含有量は0.1〜20%とするのが好ましく、1〜10%
とするのがより好ましい。Co含有量が0.1%未満では
実質的な添加効果を得られず、20%超では磁化の低下が
大きくなり好ましくない。またFeの一部をGa,A
l,Zn,Sn,Cr,Ni,Ti,Zr,Hf,V,
Nb,Ta,Mo,W,Pd,C,Si及びGeの群か
ら選択される少なくも1種の元素で置換することにより
磁気特性や耐食性を向上できるので好ましい。これら元
素の含有量の合計は0.5〜10%が好ましい。前記含有量
が0.5%未満では実質的に添加効果が得られず、10%超
では磁化の低下が顕著になる。It is preferable to replace a part of Fe with Co because Curie point, magnetization and oxidation resistance are improved.
The Co content is preferably 0.1-20%, and 1-10%
More preferably, If the Co content is less than 0.1%, a substantial addition effect cannot be obtained, and if it exceeds 20%, the decrease in magnetization is undesirably large. In addition, part of Fe is Ga,
1, Zn, Sn, Cr, Ni, Ti, Zr, Hf, V,
Substitution with at least one element selected from the group consisting of Nb, Ta, Mo, W, Pd, C, Si and Ge is preferable because magnetic properties and corrosion resistance can be improved. The total content of these elements is preferably 0.5 to 10%. If the content is less than 0.5%, the effect of addition is not substantially obtained, and if it exceeds 10%, the decrease in magnetization becomes remarkable.
【0013】本発明の異方性磁粉には製造上混入が避け
られないO,H,C,Al,Si,F,Na,Mg,C
a及びLiの群から選択される少なくも1種の不可避的
不純物元素を合計で5%以下含有することが許容され
る。In the anisotropic magnetic powder of the present invention, O, H, C, Al, Si, F, Na, Mg, C
It is permissible to contain at least one inevitable impurity element selected from the group of a and Li in a total of 5% or less.
【0014】窒化に供するR−Fe−Mn系母合金は、
例えば還元/拡散法、高周波溶解法、アーク溶解法、又
はストリップキャスト法により作製することができる。The R—Fe—Mn base alloy to be subjected to nitriding is as follows:
For example, it can be produced by a reduction / diffusion method, a high-frequency melting method, an arc melting method, or a strip casting method.
【0015】還元/拡散法によりR−Fe−Mn系母合
金を作製する場合の好ましい製造条件を以下に説明す
る。まず、R酸化物粉末、及び平均粒径が約100μmの
Fe粉末及びFe−Mn粉末を用い、本発明の異方性磁
粉に対応するR−Fe−Mn系母合金の主要成分組成に
配合し、さらに前記配合物中のR酸化物が化学反応式上
100%還元される量(化学量論的必要量)の0.5〜2倍に
相当する量の還元剤(金属Ca)を前記配合物に添加
し、混合する。次に混合物を不活性ガス雰囲気中で1000
〜1300℃×1〜20時間加熱し、R酸化物を還元し、次い
で還元したR,Fe及びMnを十分に相互拡散させた後
室温まで冷却する。還元剤の添加量が化学量論的必要量
の0.5倍未満では工業生産上有益な還元反応が実現され
ず、2倍超では最終的に得られる異方性磁粉に残留する
Ca量が増大し磁気特性の低下を招く。また前記加熱条
件が1000℃×1時間未満では工業生産上有益な還元/拡
散反応が進行せず、1300℃×20時間超では還元/拡散反
応炉の劣化が顕著になる。得られた反応生成物を洗浄液
中に投入し、CaO等の反応副生成物を洗い流した後、
脱水及び真空での加熱乾燥を行い、還元/拡散法による
R−Fe−Mn系母合金が得られる。このR−Fe−M
n系母合金には不可避的に所定量のCa,O,及びCが
混入する。Ca含有量は通常0.4重量%以下になり、洗
浄及び乾燥条件を適宜選択することにより0.2重量%以
下にすることができ、特に0.1重量%以下にすることが
できる。酸素含有量は通常0.8重量%以下になり、洗浄
及び乾燥条件を適宜選択することにより0.4重量%以下
にすることができ、特に0.2重量%以下にすることがで
きる。炭素含有量は通常0.3重量%以下になり、洗浄及
び乾燥条件を適宜選択することにより0.2重量%以下に
することができ、特に0.1重量%以下にすることができ
る。Preferred manufacturing conditions for producing an R-Fe-Mn-based master alloy by the reduction / diffusion method will be described below. First, R oxide powder, Fe powder and Fe-Mn powder having an average particle size of about 100 μm were used, and blended into the main component composition of the R-Fe-Mn base alloy corresponding to the anisotropic magnetic powder of the present invention. And the R oxide in the composition is
An amount of the reducing agent (metal Ca) corresponding to 0.5 to 2 times the amount that is reduced by 100% (the stoichiometric requirement) is added to the formulation and mixed. Next, the mixture is placed in an inert gas atmosphere at 1000
Heat at 11300 ° C. × 1-20 hours to reduce the R oxide, and then allow the reduced R, Fe and Mn to sufficiently interdiffuse and then cool to room temperature. If the addition amount of the reducing agent is less than 0.5 times the stoichiometrically required amount, a reduction reaction useful for industrial production is not realized, and if it exceeds 2 times, the amount of Ca remaining in the finally obtained anisotropic magnetic powder increases. This leads to a decrease in magnetic properties. If the heating condition is less than 1000 ° C. × 1 hour, the reduction / diffusion reaction useful for industrial production does not proceed, and if it exceeds 1300 ° C. × 20 hours, the reduction / diffusion reaction furnace is significantly deteriorated. The obtained reaction product is put into a washing solution, and after removing reaction by-products such as CaO,
Dehydration and heat drying in a vacuum are performed to obtain an R-Fe-Mn-based mother alloy by a reduction / diffusion method. This R-Fe-M
Predetermined amounts of Ca, O, and C are inevitably mixed into the n-based master alloy. The Ca content is usually 0.4% by weight or less, and can be reduced to 0.2% by weight or less, particularly 0.1% by weight or less by appropriately selecting washing and drying conditions. The oxygen content is usually 0.8% by weight or less, and can be reduced to 0.4% by weight or less, particularly 0.2% by weight or less by appropriately selecting washing and drying conditions. The carbon content is usually 0.3% by weight or less, and can be reduced to 0.2% by weight or less, particularly 0.1% by weight or less by appropriately selecting washing and drying conditions.
【0016】高周波溶解法、アーク溶解法、又はストリ
ップキャスト法により作製したR−Fe−Mn系母合金
は、不活性ガス(窒素を除く)雰囲気中で1010〜1280℃
×1〜40時間加熱する均質化熱処理を行い、次いで室温
まで冷却することによりαFeやSmFe3等の偏析相
を低減することができる。均質化熱処理の条件が1010℃
×1時間未満ではαFeやSmFe3等の偏析相の固溶
が進まず、1280℃×40時間超では均質化熱処理の効果が
飽和し、Sm等の蒸発による組成ずれが顕著になる。The R-Fe-Mn base alloy prepared by the high frequency melting method, the arc melting method, or the strip casting method, is heated to 1010 to 1280 ° C. in an inert gas (excluding nitrogen) atmosphere.
A segregated phase such as αFe or SmFe 3 can be reduced by performing a homogenizing heat treatment of heating for 1 to 40 hours and then cooling to room temperature. Homogenization heat treatment condition is 1010 ℃
If less than × 1 hour, the solid solution of the segregated phase such as αFe or SmFe 3 does not progress, and if it exceeds 1280 ° C. × 40 hours, the effect of the homogenization heat treatment is saturated, and the composition shift due to evaporation of Sm or the like becomes remarkable.
【0017】窒化について説明する。水素が1〜95体積
%で残部が窒素からなる(水素+窒素)の混合ガス、あ
るいはNH3の体積%が10〜90%で残部水素からなる
(NH 3+水素)の混合ガスの雰囲気中で300〜650℃×
0.1〜30時間加熱するガス窒化を採用するのが好まし
い。ガス窒化の加熱条件は400〜550℃×0.5〜20時間が
より好ましい。300℃×0.1時間未満では窒化が事実上行
われず、650℃×30時間超では逆にRN相やαFe、ア
モルファス相を生成し磁気特性が顕著に低下する。窒化
ガスの圧力は2.0×104〜1.0×106Pa (0.2〜10atm)
が好ましく、5.0×10 4〜5.0×105Pa (0.5〜5atm)
がより好ましい。2.0×104Pa(0.2atm)未満では窒化
反応が非常に遅くなり、1.0×106Pa (10atm)超では
高圧ガス設備によるコスト増を招く。The nitriding will be described. 1 to 95 volumes of hydrogen
% Mixed gas (hydrogen + nitrogen) with the balance being nitrogen
Or NH3By volume is 10-90% and the balance is hydrogen
(NH 3+ Hydrogen) at 300-650 ℃
It is preferable to adopt gas nitriding to heat for 0.1-30 hours
No. The heating conditions for gas nitriding are 400-550 ° C x 0.5-20 hours.
More preferred. Nitrogenation practically takes place below 300 ° C x 0.1 hours
If the temperature exceeds 650 ° C for 30 hours, the RN phase, αFe,
A morphous phase is formed and the magnetic properties are significantly reduced. Nitriding
Gas pressure is 2.0 × 104~ 1.0 × 106Pa (0.2-10atm)
Is preferred, and 5.0 × 10 4~ 5.0 × 105Pa (0.5-5atm)
Is more preferred. 2.0 × 104Nitriding below Pa (0.2atm)
The reaction becomes very slow, 1.0 × 106For Pa (10atm)
High-pressure gas equipment causes cost increase.
【0018】窒化後に、真空雰囲気中又は不活性ガス雰
囲気中(窒素ガスを除く)で300〜600℃×0.5〜50時間
の熱処理を行うと残留磁束密度,HcJ,及び(BH)maxを高
めることができる。こうして得られた異方性磁粉には10
〜1000ppm(重量比)の水素の含有が許容される。After nitriding, heat treatment at 300 to 600 ° C. for 0.5 to 50 hours in a vacuum atmosphere or an inert gas atmosphere (excluding nitrogen gas) increases residual magnetic flux density, HcJ, and (BH) max. Can be. In the anisotropic magnetic powder thus obtained, 10
A hydrogen content of ~ 1000 ppm (weight ratio) is acceptable.
【0019】本発明の異方性磁粉の主相は2−17型結晶
構造を有する硬質磁性相であり、不可避的に存在するα
Fe及び/又は不純物相(酸化物、炭化物等)以外は2
−17型結晶構造を有する硬質磁性相のみからなるのが好
ましい。室温のHcJ≧397.9kA/m(5kOe)を得るために、
本発明の異方性磁粉に存在するαFeの比率を、平均面
積率で5%以下にする必要があり、3%以下とするのが
好ましく、1%以下とするのが特に好ましい。硬質磁性
相、及び不可避的に存在するαFe等の同定、並びに各
相の面積比率の算出は、電子顕微鏡又は光学顕微鏡等に
より撮影した異方性磁粉の断面組織写真、電子回折結
果、並びにX線回折結果等を考慮して求める。例えば、
対象とする異方性磁粉粒子の断面組織を撮影した透過型
電子顕微鏡写真及びその断面組織の同定結果を符合させ
て求めることができる。The main phase of the anisotropic magnetic powder of the present invention is a hard magnetic phase having a 2-17 type crystal structure.
2 except for Fe and / or impurity phase (oxide, carbide, etc.)
It preferably comprises only a hard magnetic phase having a -17 type crystal structure. To obtain room temperature HcJ ≧ 397.9kA / m (5kOe),
The ratio of αFe present in the anisotropic magnetic powder of the present invention must be 5% or less in average area ratio, preferably 3% or less, particularly preferably 1% or less. The identification of the hard magnetic phase and the unavoidable αFe, etc., and the calculation of the area ratio of each phase are performed by photographing the cross-sectional structure of an anisotropic magnetic powder taken with an electron microscope or optical microscope, electron diffraction results, and X-rays. Determined in consideration of diffraction results and the like. For example,
The cross-sectional structure of the target anisotropic magnetic powder particles can be determined by matching a transmission electron micrograph of the cross-sectional structure with the identification result of the cross-sectional structure.
【0020】ニュークリエーション型のSm2Fe17
N3化合物とは異なり、本発明の異方性磁粉は過剰の窒
素を含有し、ピンニング型の保磁力機構を有している。New Creation Type Sm 2 Fe 17
Unlike the N 3 compound, the anisotropic magnetic powder of the present invention contains an excessive amount of nitrogen and has a pinning type coercive force mechanism.
【0021】本発明の異方性ボンド磁石において、異方
性磁粉:バインダーの配合重量比は、80:20〜98.5:1.
5 が好ましく、95:5〜98:2がより好ましい。前記
配合重量比未満では異方性フェライト焼結磁石以上の(B
H)maxを得ることが困難であり、前記配合重量比超では
(BH)max及び密度が低下する。In the anisotropic bonded magnet of the present invention, the blending weight ratio of anisotropic magnetic powder: binder is from 80:20 to 98.5: 1.
5 is preferable, and 95: 5 to 98: 2 is more preferable. Below the compounding weight ratio, the anisotropic ferrite sintered magnet or more (B
H) It is difficult to obtain max, and if it exceeds the above compounding weight ratio,
(BH) max and density decrease.
【0022】バインダーとして、公知の熱硬化性樹脂、
熱可塑性樹脂、又はゴム材料を用いるのが実用性が高
い。磁場中圧縮成形法による場合は熱硬化性樹脂が好ま
しく、磁場中押出成形法又は磁場中射出成形法による場
合は熱可塑性樹脂が好ましい。また例えば厚み方向に異
方性を付与した厚み0.1〜5mmのシート状成形体をカ
レンダーロール成形する場合は熱硬化性樹脂、熱可塑性
樹脂、又はゴム材料が好ましい。また磁場中圧縮成形に
より本発明のボンド磁石を成形する場合、粘性の低い結
着樹脂を選定することが、0.24〜0.80MA/m (3〜10kO
e)、より好ましくは0.24〜0.48MA/m(3〜6kOe)、特
に好ましくは0.24〜0.40 MA/m(3〜5kOe)という実用
的な配向磁場強度下で磁場中成形し、得られる異方性ボ
ンド磁石に良好な配向度を付与するために重要である。
これは磁場中押出成形又は磁場中射出成形による場合も
同様である。特に、結着樹脂を有機溶媒で希釈し、低粘
性状態とし、これに所定量の異方性磁粉を分散させてス
ラリー化し、このスラリーにより室温の磁場中圧縮成
形、磁場中押出成形、又は磁場中射出成形を行えば良好
な異方性を付与した異方性ボンド磁石が得られる。ある
いは通常のコンパウンドのペレットにより、不活性ガス
雰囲気中、通常100〜350℃の温度で磁場中成形すれば、
良好な異方性を付与した異方性ボンド磁石が得られる。
この場合は異方性磁粉を分散したコンパウンドのペレッ
トが所定温度に加熱されて異方性磁粉の保磁力及び結着
樹脂の粘度が低下し、成形体に良好な異方性が付与でき
る。As the binder, a known thermosetting resin,
Use of a thermoplastic resin or a rubber material is highly practical. A thermosetting resin is preferable when using a compression molding method in a magnetic field, and a thermoplastic resin is preferable when using an extrusion molding method in a magnetic field or an injection molding method in a magnetic field. Further, for example, when a sheet-like molded body having a thickness of 0.1 to 5 mm having anisotropy in the thickness direction is formed by calender roll, a thermosetting resin, a thermoplastic resin, or a rubber material is preferable. When molding the bonded magnet of the present invention by compression molding in a magnetic field, it is necessary to select a binder resin having low viscosity in the range of 0.24 to 0.80 MA / m (3 to 10 kO
e), more preferably 0.24 to 0.48 MA / m (3 to 6 kOe), particularly preferably 0.24 to 0.40 MA / m (3 to 5 kOe). Is important for imparting a good degree of orientation to the magnetically bonded magnet.
The same applies to extrusion in a magnetic field or injection molding in a magnetic field. In particular, the binder resin is diluted with an organic solvent to obtain a low-viscosity state, a predetermined amount of anisotropic magnetic powder is dispersed therein to form a slurry, and the slurry is subjected to compression molding in a magnetic field at room temperature, extrusion molding in a magnetic field, or a magnetic field. By performing medium injection molding, an anisotropic bonded magnet with good anisotropy can be obtained. Alternatively, by molding in a magnetic field at a temperature of usually 100 to 350 ° C. in an inert gas atmosphere using pellets of a normal compound,
An anisotropic bonded magnet with good anisotropy is obtained.
In this case, the pellets of the compound in which the anisotropic magnetic powder is dispersed are heated to a predetermined temperature, whereby the coercive force of the anisotropic magnetic powder and the viscosity of the binder resin are reduced, and good anisotropy can be imparted to the molded article.
【0023】本発明の異方性ボンド磁石の成形性、強
度、又は耐酸化性を高めるために、公知の表面改質剤
(シラン系カップリング剤等)、潤滑剤、充填剤及び酸
化防止剤の少なくとも1種をそれらの合計で、本発明の
コンパウンドの総重量に対し2重量%以下添加してもよ
い。また異方性ボンド磁石の耐食性を高めるか、あるい
は磁粉の剥離防止のために、本発明の異方性ボンド磁石
の表面に平均膜厚で0.5〜30μmの耐食性被膜(エポキ
シ樹脂膜等)を被覆することが好ましい。耐食性被膜の
平均膜厚が0.5μm未満では事実上被膜効果が得られ
ず、30μm超では被覆効果が飽和する。In order to enhance the formability, strength, or oxidation resistance of the anisotropic bonded magnet of the present invention, a known surface modifier (such as a silane coupling agent), a lubricant, a filler, and an antioxidant are used. May be added in a total of 2% by weight or less based on the total weight of the compound of the present invention. Further, in order to increase the corrosion resistance of the anisotropic bonded magnet or to prevent the magnetic powder from peeling off, the surface of the anisotropic bonded magnet of the present invention is coated with a corrosion resistant coating (e.g., epoxy resin film) having an average thickness of 0.5 to 30 μm. Is preferred. When the average thickness of the corrosion-resistant coating is less than 0.5 μm, the coating effect is practically not obtained, and when the average thickness exceeds 30 μm, the coating effect is saturated.
【0024】[0024]
【実施例】以下実施例により本発明を説明するが、本発
明はそれら実施例により限定されるものではない。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
【0025】(実施例1)高周波溶解により表1の窒化
磁粉に対応するSm−La−Fe−Mn系母合金溶湯を
作製し、鋳型鋳造した。得られたSm−La−Fe−M
n系母合金インゴットをアルゴンガス雰囲気中、1100℃
で10時間加熱し、次いで室温まで冷却する均質化熱処理
を行った。次にインゴットを窒素ガス雰囲気中で粉砕
し、75μmアンダーに分級した。次にアンモニア35体積
%,水素65体積%の混合気流中で490℃×5時間加熱
し、次いで室温まで冷却し、平均粒径38μm(Sympatec
社製、HEROS・RODOSにより測定)の異方性磁粉を得た。
この異方性磁粉はTh2Zn17型結晶構造の硬質磁性
相と微小なαFeからなり、αFeの平均面積率は0.1
%であった。VSM用の銅容器中に所定量の異方性磁粉
とパラフィンワックスとを充填し、密封した。次いで銅
容器を1.9MA/m(25kOe)の平行磁場を印加したまま80℃
に加熱してパラフィンワックスを溶かし、異方性磁粉を
配向させ、室温まで冷却して磁粉を固定した。次いで最
大印加磁場1.6MA/m(20kOe)のVSMを用いて、室温の磁
気特性を測定した。得られた測定値を100%磁粉のみに
換算した結果を表1に示す。なお、(BH)maxは異方性磁
粉の理論密度を7.65Mg/m3として求めた。(Example 1) A molten Sm-La-Fe-Mn base alloy corresponding to the magnetic nitride powder shown in Table 1 was produced by high-frequency melting, and was cast in a mold. Obtained Sm-La-Fe-M
n-type mother alloy ingot in argon gas atmosphere at 1100 ℃
For 10 hours, and then a homogenizing heat treatment of cooling to room temperature was performed. Next, the ingot was pulverized in a nitrogen gas atmosphere and classified to a size under 75 μm. Next, the mixture was heated in a mixed gas stream of 35% by volume of ammonia and 65% by volume of hydrogen at 490 ° C. × 5 hours, then cooled to room temperature, and average particle size was 38 μm (Sympatec
(Measured by HEROS / RODOS, manufactured by the Company).
This anisotropic magnetic powder is composed of a hard magnetic phase having a Th 2 Zn 17 type crystal structure and minute αFe, and the average area ratio of αFe is 0.1%.
%Met. A copper container for VSM was filled with a predetermined amount of anisotropic magnetic powder and paraffin wax and sealed. Next, the copper container was heated to 80 ° C while a parallel magnetic field of 1.9 MA / m (25 kOe) was applied.
To melt the paraffin wax, orient the anisotropic magnetic powder, and cool to room temperature to fix the magnetic powder. Next, the magnetic properties at room temperature were measured using a VSM having a maximum applied magnetic field of 1.6 MA / m (20 kOe). Table 1 shows the results obtained by converting the obtained measured values into only 100% magnetic powder. Note that (BH) max was determined by setting the theoretical density of the anisotropic magnetic powder to 7.65 Mg / m 3 .
【0026】(比較例1)実施例1で作製した異方性磁
粉を窒素ガスを粉砕媒体とするジェットミルにより平均
粒径4μm(HEROS・RODOSによる)に微粉砕し、次いで
ヘキサンを用いた湿式ボールミルにより平均粒径2μm
(HEROS・RODOSによる)に微粉砕した。得られた微粉に
より以後は実施例1と同様にして微粉の磁気特性を評価
した。結果を表1に示す。Comparative Example 1 The anisotropic magnetic powder prepared in Example 1 was finely pulverized by a jet mill using nitrogen gas as a pulverizing medium to an average particle size of 4 μm (according to HEROS / RODOS), and then wet-processed using hexane. Average particle size 2μm by ball mill
(According to HEROS / RODOS). Thereafter, the magnetic properties of the fine powder were evaluated in the same manner as in Example 1 using the obtained fine powder. Table 1 shows the results.
【0027】(実施例2〜5)表1の各窒化磁粉組成に
対応するSm−La−Fe−Mn系母合金インゴットを
作製した。それらインゴットをそれぞれ用い、以後は実
施例1と同様にして平均粒径10〜300μmの異方性磁粉
を作製し、磁気特性を測定した。これら異方性磁粉はい
ずれもTh2Zn17型結晶構造の硬質磁性相と微小な
αFeからなり、αFeの平均面積率は0.2%以下であ
った。評価結果を表1に示す。(Examples 2 to 5) Sm-La-Fe-Mn based mother alloy ingots corresponding to the respective magnetic nitride powder compositions shown in Table 1 were produced. Using these ingots, anisotropic magnetic powder having an average particle diameter of 10 to 300 μm was prepared in the same manner as in Example 1 and the magnetic properties were measured. Each of these anisotropic magnetic powders was composed of a hard magnetic phase having a Th 2 Zn 17 type crystal structure and minute αFe, and the average area ratio of αFe was 0.2% or less. Table 1 shows the evaluation results.
【0028】(比較例2〜5)比較例2では実施例2の
異方性磁粉を、比較例3では実施例3の異方性磁粉を、
比較例4では実施例4の異方性磁粉を、比較例5では実
施例5の異方性磁粉を、それぞれ、窒素ガスを粉砕媒体
とするジェットミルにより平均粒径4μm(HEROS・ROD
OSによる)に微粉砕し、次いでヘキサンを用いた湿式ボ
ールミルにより平均粒径2μm(HEROS・RODOSによる)
に微粉砕した。得られた各微粉により以後は実施例1と
同様にして微粉の磁気特性を評価した。結果を表1に示
す。(Comparative Examples 2 to 5) In Comparative Example 2, the anisotropic magnetic powder of Example 2 was used. In Comparative Example 3, the anisotropic magnetic powder of Example 3 was used.
In Comparative Example 4, the anisotropic magnetic powder of Example 4 was used, and in Comparative Example 5, the anisotropic magnetic powder of Example 5 was used, respectively, by a jet mill using nitrogen gas as a pulverizing medium.
OS)) and then a wet ball mill using hexane with an average particle size of 2 μm (according to HEROS / RODOS).
And finely ground. The magnetic properties of the obtained fine powder were evaluated in the same manner as in Example 1 thereafter. Table 1 shows the results.
【0029】(比較例6、7)母合金溶湯組成を変えた
以外は実施例1と同様にして、表1の窒化磁粉に対応す
る主要成分組成のSm−Fe−Mn系母合金インゴット
(比較例6)及びLa過剰組成のSm−La−Fe−M
n系母合金インゴット(比較例7)を作製した。これら
インゴットをそれぞれ用いた以外は実施例1と同様にし
て磁粉の磁気特性を評価した。結果を表1に示す。Comparative Examples 6 and 7 In the same manner as in Example 1 except that the composition of the molten master alloy was changed, an Sm—Fe—Mn based mother alloy ingot having a main component composition corresponding to the magnetic nitride powder in Table 1 (comparative example) Example 6) and Sm-La-Fe-M with La excess composition
An n-type mother alloy ingot (Comparative Example 7) was produced. The magnetic properties of the magnetic powder were evaluated in the same manner as in Example 1 except that each of these ingots was used. Table 1 shows the results.
【0030】[0030]
【表1】 [Table 1]
【0031】表6において、実施例1〜5と比較例1〜
5との比較から、La含有量が1〜5%であり、平均粒
径が10〜300μmの場合に、平均粒径2μmに比べて高
い(BH)max及びHcJが得られることがわかる。また実施例
1〜5と比較例6、7との比較から、同一平均粒径にし
たときに、La含有量が1〜5%の場合に高い(BH)max
及びHcJが得られることがわかる。In Table 6, Examples 1 to 5 and Comparative Examples 1 to
From the comparison with No. 5, it can be seen that when the La content is 1 to 5% and the average particle size is 10 to 300 µm, (BH) max and HcJ higher than the average particle size of 2 µm can be obtained. In addition, from the comparison between Examples 1 to 5 and Comparative Examples 6 and 7, when the La content is 1 to 5%, the (BH) max is high when the average particle diameter is the same.
And HcJ can be obtained.
【0032】(実施例6)実施例2で作製した平均粒径
38μmの異方性磁粉:92.2重量部と、液状エポキシ樹
脂:2.6重量部と、硬化剤(DDS:シ゛アミノシ゛フェニルスルフォン):
2.6重量部、及び有機溶媒のメチルエチルケトン(沸点79.5℃):
2.6重量部を配合し、ミキサーに投入した。次に50r.p.
m.で20分間撹拌しスラリー化した。このスラリーによ
り、室温で、配向磁場強度0.64MA/m(8kOe)の平行磁
場を印加し、5.9×108Pa(6ton/cm2)の成形圧力で
縦10mm,横10mm,長さ10mmの立方体形状の成形体
を圧縮成形した。得られた成形体をアルゴン気流中85℃
で1時間加熱し脱溶媒した。次にアルゴン気流中170℃
で2時間加熱硬化し、本発明の異方性ボンド磁石を得
た。室温、着磁磁場強度1.9MA/m(25kOe)の条件で得ら
れた異方性ボンド磁石の磁気特性を測定した結果、異方
性付与方向の(BH)max=95.5kJ/m3(12MGOe)であり、
異方性付与方向に対し垂直方向の(BH)max=8.0kJ/m
3(1.0MGOe)であった。(Example 6) Average particle size produced in Example 2
38 μm anisotropic magnetic powder: 92.2 parts by weight, liquid epoxy resin: 2.6 parts by weight, and curing agent (DDS: diaminoaminophenylsulfone):
2.6 parts by weight, and organic solvent methyl ethyl ketone (boiling point 79.5 ° C):
2.6 parts by weight were blended and charged into a mixer. Then 50r.p.
The mixture was stirred at m. for 20 minutes to form a slurry. A parallel magnetic field having an orientation magnetic field strength of 0.64 MA / m (8 kOe) was applied to the slurry at room temperature, and a cube having a length of 10 mm, a width of 10 mm and a length of 10 mm was formed at a molding pressure of 5.9 × 10 8 Pa (6 ton / cm 2 ). The shaped body was compression molded. 85 ° C. in an argon stream
For 1 hour to remove the solvent. Next, 170 ° C in an argon stream
For 2 hours to obtain an anisotropic bonded magnet of the present invention. As a result of measuring the magnetic properties of the anisotropic bonded magnet obtained at room temperature and a magnetizing magnetic field strength of 1.9 MA / m (25 kOe), (BH) max in the direction of providing anisotropy = 95.5 kJ / m 3 (12MGOe )
(BH) max = 8.0kJ / m in the direction perpendicular to the direction of providing anisotropy
3 (1.0 MGOe).
【0033】実施例6から、平均粒径38μmの粗粉であ
っても本発明の異方性磁粉は磁場配向性及び着磁性が良
好であり、高性能の異方性ボンド磁石を得られることが
わかる。またこの結果から同時に個々の磁粉粒子はほぼ
一方向に配向していることが判定できる。From Example 6, it can be seen that the anisotropic magnetic powder of the present invention can provide a high-performance anisotropic bonded magnet having good magnetic field orientation and magnetization even with a coarse powder having an average particle size of 38 μm. I understand. From this result, it can be determined at the same time that the individual magnetic powder particles are substantially oriented in one direction.
【0034】[0034]
【発明の効果】以上記述の通り、本発明によれば、平均
粒径が10μm以上の大粒径にした場合でも良好な着磁性
を有する異方性磁粉、及びそれを配合してなる高性能の
異方性ボンド磁石を提供することができる。As described above, according to the present invention, anisotropic magnetic powder having good magnetizability even when the average particle size is large, 10 μm or more, and high performance obtained by blending the same. Can be provided.
Claims (4)
らなり、La含有量が0.1〜5%である)20〜30%,M
n1〜10%,N4〜7%,及び残部Feで表される主要成
分組成を有し、配向した2−17型硬質磁性相の結晶粒の
集合体からなることを特徴とする着磁性を向上した異方
性磁粉。1. In a weight percentage, R is 20 to 30% (R is composed of Sm and La and the La content is 0.1 to 5%), M
Improves magnetism, characterized by being composed of an aggregate of crystal grains of an oriented 2-17 type hard magnetic phase having a main component composition represented by n1 to 10%, N4 to 7%, and balance Fe. Anisotropic magnetic powder.
に記載の異方性磁粉。2. The method according to claim 1, wherein the average particle size is 10 to 300 μm.
The anisotropic magnetic powder described in the above.
らなり、La含有量が0.1〜5%である)20〜30%,M
n1〜10%,N4〜7%,及び残部Feで表される主要成
分組成を有し、配向した2−17型硬質磁性相の結晶粒の
集合体からなり、着磁性を向上した異方性磁粉と、バイ
ンダーとから実質的になることを特徴とする異方性ボン
ド磁石。3. In weight percentage, R (R is Sm and La, content of La is 0.1-5%) 20-30%, M
An anisotropic material having a main component composition represented by n1 to 10%, N4 to 7%, and the balance Fe, comprising an aggregate of crystal grains of an oriented 2-17 type hard magnetic phase, and having improved magnetization. An anisotropic bonded magnet, comprising substantially magnetic powder and a binder.
mである請求項3に記載の異方性ボンド磁石。4. An anisotropic magnetic powder having an average particle size of 10 to 300 μm.
The anisotropic bonded magnet according to claim 3, wherein m is m.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001011804A JP2002217010A (en) | 2001-01-19 | 2001-01-19 | Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001011804A JP2002217010A (en) | 2001-01-19 | 2001-01-19 | Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2002217010A true JP2002217010A (en) | 2002-08-02 |
Family
ID=18878895
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001011804A Pending JP2002217010A (en) | 2001-01-19 | 2001-01-19 | Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2002217010A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11167987B2 (en) | 2017-05-17 | 2021-11-09 | Nichia Corporation | Secondary particles for anisotropic magnetic powder and method of producing anisotropic magnetic powder |
| US20220093297A1 (en) * | 2020-09-24 | 2022-03-24 | Toyota Jidosha Kabushiki Kaisha | Sm-Fe-N-BASED MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF |
| US11676748B2 (en) | 2015-12-24 | 2023-06-13 | Nichia Corporation | Anisotropic magnetic powders and method of producing the same |
| US11935676B2 (en) | 2020-09-24 | 2024-03-19 | Toyota Jidosha Kabushiki Kaisha | Sm—Fe—N-based magnetic material and manufacturing method thereof |
-
2001
- 2001-01-19 JP JP2001011804A patent/JP2002217010A/en active Pending
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11676748B2 (en) | 2015-12-24 | 2023-06-13 | Nichia Corporation | Anisotropic magnetic powders and method of producing the same |
| US11167987B2 (en) | 2017-05-17 | 2021-11-09 | Nichia Corporation | Secondary particles for anisotropic magnetic powder and method of producing anisotropic magnetic powder |
| US11685654B2 (en) | 2017-05-17 | 2023-06-27 | Nichia Corporation | Secondary particles for anisotropic magnetic powder |
| US20220093297A1 (en) * | 2020-09-24 | 2022-03-24 | Toyota Jidosha Kabushiki Kaisha | Sm-Fe-N-BASED MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF |
| CN114255947A (en) * | 2020-09-24 | 2022-03-29 | 丰田自动车株式会社 | Sm-Fe-N magnetic material and method for producing same |
| US11935676B2 (en) | 2020-09-24 | 2024-03-19 | Toyota Jidosha Kabushiki Kaisha | Sm—Fe—N-based magnetic material and manufacturing method thereof |
| US12080455B2 (en) * | 2020-09-24 | 2024-09-03 | Toyota Jidosha Kabushiki Kaisha | Sm—Fe—N-based magnetic material and manufacturing method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Hirosawa et al. | High‐coercivity iron‐rich rare‐earth permanent magnet material based on (Fe, Co) 3B‐Nd‐M (M= Al, Si, Cu, Ga, Ag, Au) | |
| US5872501A (en) | Rare earth bonded magnet and rare earth-iron-boron type magnet alloy | |
| JP4805998B2 (en) | Permanent magnet and permanent magnet motor and generator using the same | |
| JPH01103805A (en) | Permanent magnet | |
| WO2004029998A1 (en) | Method for producing r-t-b based rare earth element permanent magnet | |
| JP3715573B2 (en) | Magnet material and manufacturing method thereof | |
| JPH1053844A (en) | (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy | |
| JPH0316761B2 (en) | ||
| JP2004146713A (en) | Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet | |
| JP2853839B2 (en) | Manufacturing method of rare earth permanent magnet | |
| JP2002217010A (en) | Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet | |
| JP3856869B2 (en) | Resin-containing rolled sheet magnet and method for producing the same | |
| JP3391704B2 (en) | Rare earth magnet | |
| JPH08335506A (en) | High coercive force iron base permanent magnet and bonded magnet | |
| JP3645312B2 (en) | Magnetic materials and manufacturing methods | |
| JP2739860B2 (en) | MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM | |
| JP2000049006A (en) | Rare earth magnet material and rare earth bond magnet using it | |
| JP2514155B2 (en) | Method for manufacturing permanent magnet alloy | |
| JP2006080115A (en) | Anisotropic rare earth-iron bond magnet | |
| JP3652752B2 (en) | Anisotropic bonded magnet | |
| JPH0474425B2 (en) | ||
| JP2005272924A (en) | Anisotropic exchange spring magnet material and manufacturing method thereof | |
| JP5235264B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
| JP4934787B2 (en) | Magnetic alloys and bonded magnets | |
| JPH08203714A (en) | Iron-based permanent magnet, manufacture thereof and iron-based permanent magnet alloy powder for bonded magnet and iron-based bonded magnet |