[go: up one dir, main page]

JP2002219585A - Structures and repair methods - Google Patents

Structures and repair methods

Info

Publication number
JP2002219585A
JP2002219585A JP2001015190A JP2001015190A JP2002219585A JP 2002219585 A JP2002219585 A JP 2002219585A JP 2001015190 A JP2001015190 A JP 2001015190A JP 2001015190 A JP2001015190 A JP 2001015190A JP 2002219585 A JP2002219585 A JP 2002219585A
Authority
JP
Japan
Prior art keywords
damaged portion
nickel
metal
iron
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2001015190A
Other languages
Japanese (ja)
Inventor
Shigeki Kasahara
茂樹 笠原
Kazutaka Okamoto
和孝 岡本
Masayuki Doi
昌之 土井
Yasuhisa Aono
泰久 青野
Hisanobu Okamura
久宣 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001015190A priority Critical patent/JP2002219585A/en
Publication of JP2002219585A publication Critical patent/JP2002219585A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

(57)【要約】 (修正有) 【課題】経年化等により表面部にき裂等の損傷を伴った
鉄,ニッケルまたはそれら各々の合金及び溶接金属で構
成される構造物であって、該損傷を補修するための施工
によって割れ等の二次損傷が発生せず、さらに施工に伴
って生じる該損傷近傍の母材の金属組織変化や新たな残
留応力を極力抑制し、損傷導入以前と同程度かそれ以上
の健全性を有する構造物及び前述の状態に復帰させる補
修方法を提供する。 【解決手段】鉄,ニッケルまたはそれら各々の合金及び
溶接金属で構成され、かつ表面部に損傷を伴った構造物
において、該損傷部近傍に治具を当設し、回転ツール3
の挿入による荷重を支えながら摩擦攪拌接合法によって
損傷部または損傷部を除去した後の当て金12を金属的
に接合し、当該構造物を損傷導入以前と同等以上の健全
な状態に復帰させること特徴とする。
(57) [Abstract] (with correction) [PROBLEMS] A structure composed of iron, nickel or their respective alloys and weld metal with damage such as cracks on the surface due to aging, etc. Secondary damage such as cracks does not occur due to the work to repair the damage, and furthermore, the metal structure change and new residual stress of the base metal near the damage caused by the work are suppressed as much as possible, and the same as before the damage was introduced. Provided is a structure having a degree of soundness or higher and a repair method for restoring the aforementioned state. A jig is provided near a damaged portion of a structure made of iron, nickel, or an alloy thereof, and a weld metal, and has a damaged surface portion.
Metallic bonding of the pad 12 after removing the damaged portion or the damaged portion by the friction stir welding method while supporting the load due to the insertion of the metal, and returning the structure to a sound state equal to or more than that before the damage was introduced. Features.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面部に損傷を伴
った構造物及びその補修方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure having a damaged surface portion and a method for repairing the structure.

【0002】[0002]

【従来の技術】原子力,火力,化学プラント等の構造物
を構成する材料は、供用環境に長時間曝されることによ
って表面部に損傷を受けることがある。このような損傷
を残したままこれら構造物を供用することは、損傷の拡
大を招き、ひいては構造物の信頼性の低下につながる。
そのため構造物の表面に損傷が顕在化した場合は速やか
に補修施工を行い、損傷が導入される以前と同等かそれ
以上の状態に復帰させることが望ましいことから、構造
物の部位の状態に適した各種補修技術の開発が進められ
ている。
2. Description of the Related Art Materials constituting structures such as nuclear power plants, thermal power plants, and chemical plants may be damaged on the surface by prolonged exposure to a service environment. The use of these structures while leaving such damages leads to an increase in damage and, consequently, a reduction in the reliability of the structure.
Therefore, if damage is apparent on the surface of the structure, it is desirable to perform repair work promptly and return it to a state equal to or higher than that before the damage was introduced, so it is suitable for the condition of the part of the structure Various repair technologies are being developed.

【0003】構造物の表面に導入された損傷を比較的簡
便に補修する方法として、フィラーワイヤー等の溶接材
料を用いたTIG溶接やレーザ溶接などが広く用いられ
ている。これらを用いることによって導入された損傷部
の表面に肉盛りを施し、損傷導入前と同等の状態に復帰
させることが可能である。しかし、厚さ方向により広範
に対して確実に補修施工を行おうとすると、施工条件に
よっては溶着金属量に対する母材の溶融量を大きく取る
必要があったり、肉盛の層数を増やすなど、手間がかか
るなどの問題があった。さらに溶接に伴う金属の溶融,
凝固プロセスを経ることにより、溶接部近傍に熱的な影
響が付与され、金属組織の変化や施工に伴う変形、また
は施工に伴う残留応力の発生が新たな損傷導入の要因と
なることが懸念される。特に中性子照射を受けることに
よる(n,α)核反応によって、材料の内部にヘリウム
を含有した原子炉圧力容器及び原子炉炉内構造物への溶
接による補修施工においては、溶接時の入熱による母材
の温度上昇及びその領域が大きいとヘリウムが結晶粒界
に拡散してバブルを形成し、粒界強度の低下に起因した
割れを誘発することが知られている。原子炉圧力容器や
炉内構造物のような中性子照射を受けた結果ヘリウム含
有する構造材料の補修溶接割れを防ぐ方法としては、特
開2000−2464に記載があるように、溶接ビード
の高さに対して溶け込み深さをできるだけ小さくし、施
工時の母材への熱影響を低下させる方法が示されてい
る。しかしながら、このような従来の溶接を用いた損傷
の補修方法では溶け込み深さが小さいため、深い領域ま
でき裂が進行したような損傷を補修する場合、き裂のご
く表面近傍の一部を溶接するに留まってしまうためき裂
の大部分が残存してしまい、損傷導入以前と同等かそれ
以上に健全な状態に構造物を復帰させることは難しい。
[0003] As a method for relatively easily repairing damage introduced into the surface of a structure, TIG welding or laser welding using a welding material such as a filler wire is widely used. By using these, the surface of the damaged portion introduced can be overlaid to return to the same state as before the damage was introduced. However, if the repair work is to be performed reliably in a wider area in the thickness direction, depending on the construction conditions, it may be necessary to increase the amount of melting of the base metal relative to the amount of deposited metal, or to increase the number of overlay layers. And other problems. In addition, the melting of metal due to welding,
Through the solidification process, a thermal effect is given to the vicinity of the weld, and there is a concern that changes in the metal structure, deformation due to construction, or the generation of residual stress due to construction may be a factor for introducing new damage. You. In particular, in the repair work by welding to the reactor pressure vessel and the reactor internals containing helium by the (n, α) nuclear reaction due to neutron irradiation, heat input during welding It is known that when the temperature of the base material rises and its area is large, helium diffuses into the crystal grain boundaries to form bubbles and induces cracks due to a decrease in the strength of the grain boundaries. As a method for preventing repair welding cracking of helium-containing structural material as a result of neutron irradiation such as a reactor pressure vessel or a reactor internal structure, as described in JP-A-2000-2464, A method is disclosed in which the penetration depth is made as small as possible to reduce the thermal effect on the base material during construction. However, in the conventional repair method of damage using welding, since the penetration depth is small, when repairing damage such as a crack that has progressed to a deep region, a part of the crack near the very surface is welded. Therefore, most of the cracks remain and it is difficult to return the structure to a sound state equal to or higher than that before the damage was introduced.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、経年
化等により表面部に損傷が顕在化した鉄,ニッケルまた
はそれら各々の合金及び溶接金属で構成される構造物で
あって、該損傷を補修するための施工によって割れ等の
二次損傷が発生せず、さらに施工に伴って生じる該損傷
近傍の母材の金属組織変化や新たな残留応力を極力抑制
し、損傷導入以前と同程度かそれ以上の健全性を有する
構造物及び前述の状態に復帰させる補修方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a structure composed of iron, nickel or their respective alloys and weld metal, whose surface has been clearly damaged due to aging or the like. Secondary damage such as cracks does not occur due to the work for repairing the metal, and furthermore, the metal structure change and new residual stress of the base metal near the damage caused by the work are suppressed as much as possible, and it is about the same as before the damage was introduced. An object of the present invention is to provide a structure having soundness higher than that and a repair method for returning the structure to the above-mentioned state.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、鉄,ニッケルまたはそれらの各々の合
金及び溶接金属で構成される構造物において、表面部に
顕在化した損傷部近傍に治具を当設し、回転ツールの挿
入による荷重を支えながら摩擦攪拌接合法によって該損
傷を補修する。
In order to achieve the above object, according to the present invention, in a structure composed of iron, nickel or their respective alloys, and a weld metal, a structure near a damaged portion that has become apparent on a surface portion is provided. A jig is attached to the joint, and the damage is repaired by a friction stir welding method while supporting the load due to the insertion of the rotating tool.

【0006】また、表面部に顕在化した損傷部近傍を除
去した後に開先を形成し、開先と同等の形状に成形した
当て金をはめ込み、当て金の四辺と既存構造材料の境界
部近傍に治具を当設し、回転ツールの挿入による荷重を
支えながら摩擦攪拌接合法によって当て金と既存構造材
料を接合する。
Further, a groove is formed after removing the vicinity of a damaged portion which has become apparent on the surface portion, and a metal plate formed into a shape equivalent to the groove is fitted into the groove. A jig is attached to the base and the contact metal and the existing structural material are joined by friction stir welding while supporting the load caused by the insertion of the rotating tool.

【0007】また、表面部に顕在化した損傷部近傍を除
去した後に開先を形成し、開先と同等の形状に成形した
当て金をはめ込み、当て金上に治具を当設し、回転ツー
ルの挿入による荷重を支えながら摩擦攪拌接合法によっ
て当て金全体と既存構造材料を接合する。回転ツールを
用いる摩擦攪拌接合では、摩擦熱と塑性流動によって、
フィラーを用いなくても損傷部を補修することができ
る。
Further, a groove is formed after removing the vicinity of the damaged portion that has become apparent on the surface portion, a metal plate having a shape equivalent to the groove is fitted, a jig is provided on the metal plate, and rotation is performed. Weld the entire contact metal and the existing structural material by friction stir welding while supporting the load due to the insertion of the tool. In friction stir welding using a rotating tool, friction heat and plastic flow cause
The damaged portion can be repaired without using a filler.

【0008】上記構造物に施された補修は、平面もしく
は曲率を有する構造物表面への摩擦攪拌接合であっても
よい。
[0008] The repair performed on the structure may be friction stir welding to the surface of the structure having a flat surface or a curvature.

【0009】また、上記構造物において、補修される部
位が鉄,ニッケルまたはそれらの各々の合金及び溶接金
属で構成される原子炉圧力容器及び原子炉炉内構造物で
あってもよい。
In the above structure, the repaired portion may be a reactor pressure vessel or a reactor internal structure composed of iron, nickel or their alloys and weld metals.

【0010】また、上記構造物において、補修される部
位がヘリウムを含有する鉄,ニッケルまたはそれらの各
々の合金及び溶接金属で構成される構造物であってもよ
い。
In the above structure, the portion to be repaired may be a structure composed of helium-containing iron, nickel or their respective alloys and weld metal.

【0011】また、上記構造物において、補修される部
位が中性子照射を受けた鉄,ニッケルまたはそれらの各
々の合金及び溶接金属で構成される構造物であってもよ
い。
In the above-mentioned structure, the portion to be repaired may be a structure composed of neutron-irradiated iron, nickel or their respective alloys and weld metal.

【0012】また、上記構造物を得るための回転ツール
は、ビッカース硬さ相当で550またはそれ以上の硬さ
を有する材料を用いることが望ましい。
It is desirable that a rotating tool for obtaining the above-mentioned structure be made of a material having a hardness equivalent to Vickers hardness of 550 or more.

【0013】また、上記構造物を得るための摩擦攪拌接
合は、空気,不活性ガスまたは水のいずれかの冷却材の
中、または接合部の近傍に前記冷却材によって強制的に
冷却しながら施工することが望ましい。
Further, the friction stir welding for obtaining the above-mentioned structure is performed in the coolant of air, inert gas or water, or in the vicinity of the joint while being forcibly cooled by the coolant. It is desirable to do.

【0014】[0014]

【発明の実施の形態】(実施例1)図1は、表面のき裂
損傷を模擬するスリットを有する試験体の斜視図であ
る。この試験体の材質は、鉄基合金としてSUS304オース
テナイト系ステンレス鋼母材、及びこれをY308ULC フィ
ラーワイヤーを用いてTIG溶接した溶接継手の溶着金
属、並びにSQV2A低合金鋼の3種類とした。またニ
ッケル基合金として、NCF600耐食耐熱超合金母材、及び
これをDNiFeCr−1J溶接棒を用いて被覆アーク
溶接した溶接継手の溶着金属の2種類とした。構造物を
模擬する試験体1の形状は角型であり、その寸法は30
0×100×20mm、またスリットは長さ150mm,幅
0.2mm とし、その深さは3mm及び6mmとした。スリッ
ト2上に回転ツール3を回転方向4に回転させ、施工方
向を示す破線矢印5に移動させながら摩擦攪拌接合し、
スリット部分を金属的に接合した。なおここで用いた回
転ツール3は、前記構造物模擬試験体1より硬い例えば
超硬合金のようなビッカース硬さ相当で550またはそ
れ以上の金属またはセラミックスを基材としており、必
要に応じて回転ツールの耐焼付き性等の施工性向上を目
的とした表面改質処理が施されている。回転ツールの形
状は底部の直径が約10mmの円筒形状のシャフトにピン
が付帯する構造をしており、このピンを表面き裂を模擬
するスリット2の開口部に挿入し、シャフトの肩部すな
わちショルダー部を部材表面に密着させて施工した。本
実施例における施工は、室温,大気中においてツール回
転数1300rpm,接合速度150mm/min で施工し
た。
(Embodiment 1) FIG. 1 is a perspective view of a specimen having a slit simulating surface crack damage. The material of this test piece was three kinds of SUS304 austenitic stainless steel base material as an iron-based alloy, a welded metal of a welded joint obtained by TIG welding this with a Y308ULC filler wire, and SQV2A low alloy steel. As the nickel-based alloy, there were used two kinds of welded metal of a welded joint obtained by NAC600 corrosion-resistant and heat-resistant superalloy base metal and coated arc welding of the base metal with a DNiFeCr-1J welding rod. The shape of the test body 1 that simulates a structure is square, and its size is 30.
The slits were 150 mm in length and 0.2 mm in width, and the depths were 3 mm and 6 mm. Rotating the rotary tool 3 in the rotation direction 4 on the slit 2 and performing friction stir welding while moving to the broken arrow 5 indicating the construction direction,
The slit portion was metallically joined. The rotating tool 3 used here is made of a metal or ceramic having a Vickers hardness equivalent to Vickers hardness of 550 or more, such as a cemented carbide, which is harder than the structure simulation specimen 1, and is rotated as necessary. A surface modification treatment has been applied to improve workability such as seizure resistance of the tool. The shape of the rotary tool is such that a pin is attached to a cylindrical shaft having a bottom diameter of about 10 mm. The shoulder part was adhered to the surface of the member for construction. The work in this embodiment was performed at room temperature and in the atmosphere at a tool rotation speed of 1300 rpm and a welding speed of 150 mm / min.

【0015】図2はSUS304オーステナイト系ステンレス
鋼母材の試験体に対して、前図1に示した要領により摩
擦攪拌接合を大気中で施工した後の施工部近傍の断面拡
大図である。施工前には、前記試験体1の断面に付与さ
れた深さ3mmのスリット2が観察されたが、前記図1に
示したように、回転ツール3を回転方向4に回転させな
がら施工方向を示す破線矢印5に沿って摩擦攪拌接合を
実施したことによって回転ツール3と試験体1の接触に
より生じる摩擦熱と塑性流動現象が生じた結果、スリッ
ト2は接合,封止され、かつ平滑な表面部を形成するこ
とができた。また光学顕微鏡観察によって金属組織を詳
細に観察したところ、接合部6は塑性流動とその後の冷
却過程を経た金属組織を成しており、さらにその周囲に
は幅0.1mm以下の熱影響部の形成が観察された。さらに
この施工によって接合部6、及び熱影響部7に接合欠陥
は観察されなかった。
FIG. 2 is an enlarged cross-sectional view of the vicinity of the working portion after friction stir welding has been performed in the atmosphere on the test specimen of the SUS304 austenitic stainless steel base material according to the procedure shown in FIG. Before the construction, a slit 2 having a depth of 3 mm provided to the cross section of the test specimen 1 was observed. As shown in FIG. 1, the construction direction was changed while rotating the rotating tool 3 in the rotation direction 4. The friction stir welding performed along the dashed arrow 5 shown in the drawing causes frictional heat generated by the contact between the rotating tool 3 and the test piece 1 and a plastic flow phenomenon. As a result, the slit 2 is joined, sealed, and has a smooth surface. A part could be formed. When the metal structure was observed in detail by optical microscopy, the joint 6 formed a metal structure that had undergone plastic flow and subsequent cooling, and a heat-affected zone having a width of 0.1 mm or less was formed around the joint. Was observed. Further, no joint defect was observed in the joint 6 and the heat-affected zone 7 by this construction.

【0016】特に原子炉圧力容器や炉内構造物としてこ
れらの材料が用いられた場合、中性子照射による(n,
α)核反応によってヘリウムが生成することが知られて
おり、溶接等による入熱によってこれらヘリウムが凝集
し、中性子照射材に固有に見られる溶接割れの原因とな
ることが知られている。そこで、本実施例においては、
試験体の材質として、ステンレス鋼母材(SUS304)の他
にステンレス鋼溶接金属(Y308LULC),低合金鋼母材
(SQV2A),ニッケル基合金母材(NFC600)及びニ
ッケル基合金溶接金属(DNiFeCr−1J)の5種類を用いた
試験体を用いて施工部の健全性を評価するとともに、こ
れらにイオン照射によってヘリウムを10appm予備注入
したヘリウム含有の試験体も作製し、健全性を評価し
た。表1は深さ3mmのスリットを前図1に示す方法によ
って施工した後の、試験体の状況についての結果を纏め
たものである。結果を示す記号は次の通りである。
In particular, when these materials are used as a reactor pressure vessel or a reactor internal structure, neutron irradiation (n,
α) It is known that helium is generated by a nuclear reaction, and it is known that these heliums are aggregated by heat input by welding or the like and cause welding cracks inherently observed in neutron irradiation materials. Therefore, in this embodiment,
In addition to the stainless steel base material (SUS304), stainless steel weld metal (Y308LULC), low alloy steel base material (SQV2A), nickel base alloy base material (NFC600) and nickel base alloy weld metal (DNiFeCr- The soundness of the construction part was evaluated using the test specimens using the five types of 1J), and helium-containing test specimens in which helium was preliminarily injected at 10 appm by ion irradiation were also prepared, and the soundness was evaluated. Table 1 summarizes the results of the condition of the test specimen after the slit having a depth of 3 mm was constructed by the method shown in FIG. The symbols indicating the results are as follows.

【0017】◎…接合(溶接)部及び近傍に割れ等の欠
陥は見られず、試験体の巨視的な変形がない ○…接合(溶接)部及び近傍に割れ等の欠陥は見られな
いが、試験体の変形がある △…接合(溶接)部及び近傍に微細な割れが見られ、試
験体の変形がある ×…接合(溶接)できず
◎: No defects such as cracks were found at the joint (weld) and in the vicinity, and no macroscopic deformation of the specimen was observed.… No defects such as cracks were found at the joint (weld) and in the vicinity. , The specimen is deformed △: Fine cracks are observed at and near the joint (weld), and the specimen is deformed ×: The joint (welding) cannot be performed

【0018】[0018]

【表1】 [Table 1]

【0019】表1(a)に示すとおり、本発明に係る摩
擦攪拌接合によって3mm深さのスリットは完全に封止さ
れたが、従来技術による溶接によっては3mm深さのスリ
ットを封止するためには入熱を大きくする必要があるた
め、試験体の変形が大きくなったり微細な溶接欠陥が見
られるなど施工が困難であるとともに、構造物であれば
施工後の変形が拘束されるため残留応力の発生が懸念さ
れる。さらに表1(b)に示すように、ヘリウムを含有す
る試験体に対しても摩擦攪拌接合によって巨視的な変形
なく健全な接合部を得ることができたが、従来技術では
3mm深さのスリットを封止するための適正条件の探索は
非常に難しく、割れや試験体の変形,残留応力発生の懸
念を回避できないことが分かる。
As shown in Table 1 (a), the slit of 3 mm depth was completely sealed by the friction stir welding according to the present invention, but the slit of 3 mm depth was sealed by welding according to the prior art. Since the heat input needs to be large, it is difficult to carry out the work, such as large deformation of the test specimen and fine weld defects. There is concern about the occurrence of stress. Furthermore, as shown in Table 1 (b), a sound joint without macroscopic deformation could be obtained by friction stir welding even on a test piece containing helium, but in the prior art, a slit having a depth of 3 mm was obtained. It is found that it is very difficult to search for appropriate conditions for sealing the steel, and it is not possible to avoid concerns about cracks, deformation of the test specimen, and occurrence of residual stress.

【0020】図3は、SUS304オーステナイト系ステンレ
ス鋼母材試験体に対し、前図1に示した施工と同一条件
で、深さ6mmのスリットに摩擦攪拌接合を実施した後の
接合部近傍の拡大図である。回転ツール3を図1に示す
ように回転方向4に回転させながら施工方向を示す破線
矢印5に沿って摩擦攪拌接合を実施したことによって回
転ツール3と試験体1の接触により生じる摩擦熱と塑性
流動現象が生じた結果、該スリットは表面により近い側
で接合,封止され、かつ平滑な表面部を形成することが
できた。また光学顕微鏡観察によって金属組織を詳細に
観察したところ、接合部6は塑性流動とその後の冷却過
程を経た金属組織を成しており、さらにその周囲には幅
0.1mm 以下の熱影響部の形成が観察された。ただし本
実施例においては、接合部6の下部には未接合のスリッ
ト8が残存したが、未接合スリット8と接合部6の境界
9において、接合部6の健全性を損なう割れ等の発生は
見られなかった。
FIG. 3 is an enlarged view of the vicinity of the joint after performing friction stir welding on a 6 mm deep slit on a SUS304 austenitic stainless steel base material specimen under the same conditions as the construction shown in FIG. FIG. Friction heat and plasticity generated by the contact between the rotating tool 3 and the test piece 1 by performing the friction stir welding along the broken arrow 5 indicating the construction direction while rotating the rotating tool 3 in the rotating direction 4 as shown in FIG. As a result of the flow phenomenon, the slit was joined and sealed on the side closer to the surface, and a smooth surface portion could be formed. When the metal structure was observed in detail by optical microscopy, the joint 6 formed a metal structure that had undergone a plastic flow and a subsequent cooling process. Formation was observed. However, in the present embodiment, the unjoined slit 8 remains in the lower part of the joint 6, but at the boundary 9 between the unjoined slit 8 and the joint 6, cracks or the like that impair the soundness of the joint 6 are not generated. I couldn't see it.

【0021】本実施例においても、前表1に示したと同
様、5種類の材質から6mm深さのスリットを付与した試
験体を作成し、試験に供した。またイオン照射によって
ヘリウムを予備注入したヘリウム含有の試験体も作製
し、健全性を評価した。表2は深さ6mmのスリットを前
図1に示す方法によって施工した後の、試験体の状況に
ついての結果を纏めたものである。結果を示す記号は前
表1に準拠した。
In this example, as in the case shown in Table 1, test specimens having slits with a depth of 6 mm were prepared from five kinds of materials and subjected to the test. Helium-containing specimens in which helium was pre-injected by ion irradiation were also prepared, and their soundness was evaluated. Table 2 summarizes the results of the condition of the test specimen after the slit having a depth of 6 mm was constructed by the method shown in FIG. The symbols indicating the results conform to Table 1 above.

【0022】[0022]

【表2】 [Table 2]

【0023】表2(a)に示すとおり、本発明に係る摩
擦攪拌接合によって6mm深さのスリットは、より深い位
置のスリットは一部残存するものの、表面に近い部分の
スリットは完全に封止された。一方従来技術による溶接
によっては、摩擦攪拌接合で得られたと同等の深さまで
スリットを封止するためには入熱を大きくする必要があ
るため、試験体の変形が大きくなったり微細な溶接欠陥
が見られるなど、施工が困難であることが分かる。さら
に表2(b)に示すように、ヘリウムを含有する試験体
に対しても摩擦攪拌接合によって巨視的な変形なく健全
な接合部を得ることができたが、従来技術では適正条件
の探索は非常に難しく、割れや試験体の変形を回避でき
ないことが分かる。また、本発明による接合によれば試
験体の変形はほとんど見られず、よって構造物ではこの
変形が拘束されることによって発生する接合部近傍の残
留応力はほとんど抑制されることが期待される。
As shown in Table 2 (a), the slit of 6 mm depth is partially sealed by the friction stir welding according to the present invention, but the slit of the portion near the surface is completely sealed. Was done. On the other hand, with conventional welding, it is necessary to increase the heat input in order to seal the slit to the same depth as that obtained by friction stir welding. As can be seen, it can be seen that the construction is difficult. Furthermore, as shown in Table 2 (b), a sound joint without macroscopic deformation could be obtained by friction stir welding even for a helium-containing test specimen. It turns out that it is very difficult to avoid cracks and deformation of the test specimen. In addition, according to the joining according to the present invention, almost no deformation of the test body is observed, and therefore, it is expected that the residual stress in the vicinity of the joint generated by the restraint of the deformation in the structure is almost suppressed.

【0024】(実施例2)図4は、表面にき裂を伴った
構造物から損傷部を除去し、開先を形成した状態を模擬
する試験体の斜視図であり、表面に模擬開先を伴ってい
る。この試験体の材質は、鉄基合金としてSUS304オース
テナイト系ステンレス鋼母材、及びこれをY308ULC フィ
ラーワイヤーを用いてTIG溶接した溶接継手の溶着金
属、並びにSQV2A低合金鋼の3種類とした。またニ
ッケル基合金として、NCF600耐食耐熱超合金母材、及び
これをDNiFeCr−1J溶接棒を用いて被覆アーク
溶接した溶接継手の溶着金属の2種類とした。構造物を
模擬する試験体10の形状は角型であり、その寸法は3
00×100×20mm、また模擬開先は、長さ150m
m,幅50mmとし、深さは3mm及び深さ6mmの形状とし
た。ここに試験体10に用いた材質と同一の材料から開
先11用の当て金12を挿入する。試験体10と当て金
12の境界に沿って回転ツール3を回転方向4に回転さ
せ、施工方向を示す破線矢印13に移動させながら摩擦
攪拌接合し、試験体10と当て金12を金属的に接合し
た。
Example 2 FIG. 4 is a perspective view of a test piece simulating a state in which a damaged portion is removed from a structure having a crack on the surface to form a groove, and a simulated groove is formed on the surface. Is accompanied. The material of this test piece was three kinds of SUS304 austenitic stainless steel base material as an iron-based alloy, a welded metal of a welded joint obtained by TIG welding this with a Y308ULC filler wire, and SQV2A low alloy steel. Further, as the nickel-based alloy, there were used two types of welded metal of a welded joint obtained by NAC600 corrosion-resistant and heat-resistant superalloy base material and the coated base material obtained by coating and welding the same with a DNiFeCr-1J welding rod. The shape of the test body 10 that simulates a structure is square, and its size is 3
00 × 100 × 20mm, mock groove is 150m long
m, width 50 mm, depth 3 mm and depth 6 mm. Here, a metal plate 12 for the groove 11 is inserted from the same material as the material used for the test body 10. The rotating tool 3 is rotated in the rotation direction 4 along the boundary between the test piece 10 and the metal support 12, and friction stir welding is performed while moving the tool 10 to the dashed arrow 13 indicating the construction direction. Joined.

【0025】図5はSUS304オーステナイト系ステンレス
鋼母材の試験体に深さ3mmの開先11を形成し、そこに
SUS304で製作した当て金12を挿入し、その境界を摩擦
攪拌接合によって接合するプロセスを示す拡大図であ
る。前図1に示したスリット2への施工と同一条件で、
試験体10と当て金12の表面上の境界に沿って摩擦攪
拌接合を実施した。回転ツール3により生じる摩擦熱と
塑性流動現象によって、縦方向突合せ部14に接合部1
5が、接合欠陥もなく、表面部も含めて平滑に形成され
た。また、接合部15の金属組織は、前図2で実施した
観察結果と同等であった。ただし、当て金12の底突合
せ部と試験体の境界16の一部は未接合のまま残存した
が、それらの境界部17において接合部15の健全性を
損なう傾向は見られなかった。
FIG. 5 shows that a groove 3 having a depth of 3 mm was formed on a specimen of a SUS304 austenitic stainless steel base material.
It is an enlarged view which shows the process which inserts the backing metal 12 made from SUS304 and joins the boundary by friction stir welding. Under the same conditions as for the slit 2 shown in FIG.
Friction stir welding was performed along the boundary on the surface of the test body 10 and the backing 12. Due to frictional heat generated by the rotating tool 3 and the plastic flow phenomenon, the joint 1
No. 5 was formed smoothly without any joint defects, including the surface portion. The metal structure of the joint 15 was equivalent to the observation result performed in FIG. However, although a part of the boundary 16 between the bottom butted portion of the backing metal 12 and the specimen remained unbonded, there was no tendency to impair the soundness of the joint 15 at the boundary 17.

【0026】試験体の材質として、ステンレス鋼母材
(SUS304)の他にステンレス鋼溶接金属(Y308LULC),
低合金鋼母材(SQV2A),ニッケル基合金母材(NF
C600)及びニッケル基合金溶接金属(DNiFeCr−1J)の5
種類を用いた。特に原子炉圧力容器や炉内構造物として
これらの材料が用いられた場合、中性子照射による
(n,α)核反応によってヘリウムが生成することが知
られており、溶接等による入熱によってこれらヘリウム
が凝集し、中性子照射材に固有に見られる溶接割れの原
因となることが知られている。そこで、本実施例におい
てはイオン照射によってヘリウムを予備注入したヘリウ
ム含有の試験体も作製し、健全性を評価した。表3は深
さ3mmの当て金を前図4に示す方法によって施工した後
の、試験体の状況についての結果を纏めたものである。
結果を示す記号は前表1に準拠した。
As the material of the specimen, in addition to the stainless steel base material (SUS304), stainless steel weld metal (Y308LULC),
Low alloy steel base material (SQV2A), nickel base alloy base material (NF
C600) and nickel base alloy weld metal (DNiFeCr-1J)
The type was used. It is known that helium is generated by a (n, α) nuclear reaction by neutron irradiation, particularly when these materials are used as a reactor pressure vessel or a reactor internal structure. Has been known to aggregate and cause welding cracks inherent in neutron irradiated materials. Therefore, in the present example, a helium-containing test piece into which helium was preliminarily injected by ion irradiation was also prepared, and its soundness was evaluated. Table 3 summarizes the results of the condition of the test specimen after the 3 mm-deep plate was applied by the method shown in FIG.
The symbols indicating the results conform to Table 1 above.

【0027】[0027]

【表3】 [Table 3]

【0028】表3(a)に示すとおり、本発明に係る摩
擦攪拌接合によって3mm深さの当て金と試験体は、縦突
合せ部を残存せず、試験体と巨視的な変形も見られず完
全に接合された。なお、底部突合せ部の一部は未接合の
まま残存したが、接合部の健全性には影響しなかった。
一方、従来技術による溶接によっては3mm深さの当て金
を試験体に溶接するためには入熱を大きくする必要があ
るため、試験体の変形が大きくなったり微細な溶接欠陥
が見られるなど、施工が困難であることが分かる。さら
に表3(b)に示すように、ヘリウムを含有する試験体
に対しても摩擦攪拌接合によって巨視的な変形なく健全
な接合部を得ることができたが、従来技術では3mm深さ
の当て金を溶接するための適正条件の探索は非常に難し
く、割れや試験体の変形を回避できないことが分かる。
また、本発明による接合によれば試験体の変形はほとん
ど見られず、よって構造物ではこの変形が拘束されるこ
とによって発生する接合部近傍の残留応力はほとんど抑
制されることが期待される。
As shown in Table 3 (a), the metal plate and the test piece having a depth of 3 mm by the friction stir welding according to the present invention do not have a vertical abutting portion and do not show macroscopic deformation with the test piece. Completely joined. Note that a part of the bottom butted portion remained unjoined, but did not affect the soundness of the joined portion.
On the other hand, in order to weld a 3mm-deep metal plate to a test piece by conventional welding, it is necessary to increase the heat input, so that the test piece is greatly deformed and fine welding defects are observed. It turns out that construction is difficult. Further, as shown in Table 3 (b), even with a helium-containing specimen, a sound joint without a macroscopic deformation could be obtained by friction stir welding. It can be seen that the search for appropriate conditions for welding gold is very difficult, and that cracking and deformation of the specimen cannot be avoided.
In addition, according to the joining according to the present invention, almost no deformation of the test body is observed, and therefore, it is expected that the residual stress in the vicinity of the joint generated by the restraint of the deformation in the structure is almost suppressed.

【0029】図6はSUS304オーステナイト系ステンレス
鋼母材の試験体に深さ6mmの開先を形成し、そこにSUS3
04で製作した当て金18を挿入し、その境界を摩擦攪拌
接合によって接合するプロセスを示す拡大図である。前
図1に示したスリット2への施工と同一条件で、試験体
10と当て金18の表面上の境界に沿って摩擦攪拌接合
を実施した。回転ツール3により生じる摩擦熱と塑性流
動現象によって、縦方向突合せ部19に接合部15が、
接合欠陥もなく、表面部も含めて平滑に形成された。ま
た、接合部15の金属組織は、前図2で実施した観察結
果と同等であった。ただし、当て金18の縦方向突合せ
部と試験体の境界の一部は未接合のまま残存したが、そ
れらの境界部において接合部15の健全性を損なう傾向
は見られなかった。
FIG. 6 shows that a groove having a depth of 6 mm was formed on a specimen of SUS304 austenitic stainless steel base material, and SUS3
It is an enlarged view which shows the process of inserting the backing plate 18 manufactured in 04 and joining the boundary by friction stir welding. Under the same conditions as those for the slit 2 shown in FIG. 1, friction stir welding was performed along the boundary on the surface of the test piece 10 and the metal plate 18. Due to the frictional heat generated by the rotating tool 3 and the plastic flow phenomenon, the joining portion 15 is
There was no joint defect, and the surface was formed smoothly including the surface portion. The metal structure of the joint 15 was equivalent to the observation result performed in FIG. However, although a part of the boundary between the longitudinal butting portion of the backing plate 18 and the test piece remained unbonded, there was no tendency to impair the soundness of the bonded part 15 at the boundary.

【0030】本実施例においても、前表3に示したと同
様、5種類の材質から6mm深さの当て金を付与した試験
体を作成し、試験に供した。またイオン照射によってヘ
リウムを予備注入したヘリウム含有の試験体も作製し、
健全性を評価した。表4は深さ6mmの当て金を前図4に
示す方法によって施工した後の、試験体の状況について
の結果を纏めたものである。結果を示す記号は前表1に
準拠した。
In this example, as shown in Table 3 above, test specimens were prepared from five kinds of materials and provided with a 6 mm deep metal plate. In addition, a helium-containing test specimen in which helium was pre-injected by ion irradiation was also prepared,
The soundness was evaluated. Table 4 summarizes the results of the condition of the test specimen after the 6 mm-deep metal plate was applied by the method shown in FIG. The symbols indicating the results conform to Table 1 above.

【0031】[0031]

【表4】 [Table 4]

【0032】表4(a)に示すとおり、本発明に係る摩
擦攪拌接合によって、より深い位置での縦突合せ部の一
部と底部突合せ部が残存するものの、6mm深さの当て金
は表面から約3mm深さの領域で試験体と巨視的な変形も
見られず完全に接合された。一方、従来技術による溶接
によって摩擦攪拌接合で得られたと同等の深さまで6mm
深さの当て金を試験体に溶接するためには、入熱を大き
くする必要があるため、試験体の変形が大きくなったり
微細な溶接欠陥が見られるなど、施工が困難であること
が分かる。さらに表4(b)に示すように、ヘリウムを
含有する試験体に対しても摩擦攪拌接合によって巨視的
な変形なく健全な接合部を得ることができたが、従来技
術では3mm深さの当て金を溶接するための適正条件の探
索は非常に難しく、割れや試験体の変形を回避できない
ことが分かる。また、本発明による接合によれば試験体
の変形はほとんど見られず、よって構造物ではこの変形
が拘束されることによって発生する接合部近傍の残留応
力はほとんど抑制されることが期待される。
As shown in Table 4 (a), the friction stir welding according to the present invention leaves a part of the vertical butt portion at the deeper position and the bottom butt portion, but the 6 mm-deep abutment is located above the surface. The specimen was completely joined to the specimen at a depth of about 3 mm without any macroscopic deformation. On the other hand, 6 mm to the same depth as that obtained by friction stir welding by welding according to the prior art
It is necessary to increase the heat input in order to weld the metal plate of the depth to the specimen, so it is understood that the construction is difficult, such as large deformation of the specimen and small welding defects. . Further, as shown in Table 4 (b), a sound joint without a macroscopic deformation could be obtained by friction stir welding even for a test piece containing helium, but in the prior art, a contact having a depth of 3 mm was obtained. It can be seen that the search for appropriate conditions for welding gold is very difficult, and that cracking and deformation of the specimen cannot be avoided. Further, according to the joining according to the present invention, almost no deformation of the test specimen is observed, and therefore, it is expected that the residual stress in the vicinity of the joint generated by the restraint of the deformation in the structure is almost suppressed.

【0033】(実施例3)図7は前図5と同様の形状の
試験体10及び当て金12に対して、当て金の表面全体
にわたって摩擦攪拌接合するよう施工方向を示す破線矢
印21に沿って施工した状況の斜視図である。前図2に
示したスリット2への施工と同一条件で、施工線が約1
/4オーバーラップするように施工した。回転ツール3
により生じる摩擦熱と塑性流動現象によって縦方向突合
せ部及び底部突合せ部を含んで接合部が、接合欠陥もな
く、表面部も含めて平滑に形成された。施工によって形
成した接合部の金属組織は、前図2で実施した観察結果
と同等であった。また、前図5の観察で見られた当て金
底部と試験体の界面は、当て金全体を施工することによ
ってすべて接合し、観察されなかった。
(Embodiment 3) FIG. 7 is along a broken line arrow 21 showing a working direction so that friction stir welding is performed on a specimen 10 and a pad 12 having the same shape as that of FIG. FIG. Under the same conditions as for the slit 2 shown in FIG.
It was constructed so as to overlap / 4. Rotation tool 3
Due to the frictional heat and plastic flow phenomenon caused by the above, the joining portion including the longitudinal butting portion and the bottom butting portion was formed smoothly without joining defects and including the surface portion. The metal structure of the joint formed by the construction was equivalent to the observation result performed in FIG. In addition, the interface between the bottom of the backing metal and the specimen, which was observed in the observation in FIG. 5 described above, was completely joined by applying the entire backing metal, and was not observed.

【0034】本実施例においても、前表4に示したと同
様、5種類の材質から3mm深さの当て金を付与した試験
体を作成し、試験に供した。またイオン照射によってヘ
リウムを予備注入したヘリウム含有の試験体も作製し、
健全性を評価した。表5は深さ3mmの当て金を前図7に
示す方法によって施工した後の、試験体の状況について
の結果を纏めたものである。結果を示す記号は前表1に
準拠した。
In this example, as in the case shown in Table 4 above, test specimens provided with a metal plate having a depth of 3 mm from five kinds of materials were prepared and subjected to the test. In addition, a helium-containing test specimen in which helium was pre-injected by ion irradiation was also prepared,
The soundness was evaluated. Table 5 summarizes the results of the condition of the test sample after the 3 mm-deep plate was applied by the method shown in FIG. The symbols indicating the results conform to Table 1 above.

【0035】[0035]

【表5】 [Table 5]

【0036】表5(a)に示すとおり、本発明に係る摩
擦攪拌接合によって、3mm深さの当て金と試験体は、縦
突合せ部及び底部突合せ部共に残存せず、巨視的な変形
も見られず完全に接合された。一方、従来技術による溶
接によっては3mm深さの当て金を試験体に溶接するため
には入熱を大きくする必要があるため、試験体の変形が
大きくなったり微細な溶接欠陥が見られるなど、施工が
困難であることが分かる。さらに表5(b)に示すよう
に、ヘリウムを含有する試験体に対しても摩擦攪拌接合
によって巨視的な変形なく健全な接合部を得ることがで
きたが、従来技術では3mm深さの当て金を溶接するため
の適正条件の探索は非常に難しく、割れや試験体の変形
を回避できないことが分かる。また、本発明による接合
によれば試験体の変形はほとんど見られず、よって構造
物ではこの変形が拘束されることによって発生する接合
部近傍の残留応力はほとんど抑制されることが期待され
る。
As shown in Table 5 (a), due to the friction stir welding according to the present invention, the 3 mm-depth metal plate and the test piece did not remain in both the vertical butted portion and the bottom butted portion, and macroscopic deformation was observed. Completely joined. On the other hand, in order to weld a 3mm-deep metal plate to a test piece by conventional welding, it is necessary to increase the heat input, so that the test piece is greatly deformed and fine welding defects are observed. It turns out that construction is difficult. Further, as shown in Table 5 (b), a sound joint without a macroscopic deformation could be obtained by friction stir welding even for a helium-containing specimen, but in the prior art, a 3 mm deep contact was obtained. It can be seen that the search for appropriate conditions for welding gold is very difficult, and that cracking and deformation of the specimen cannot be avoided. In addition, according to the joining according to the present invention, almost no deformation of the test body is observed, and therefore, it is expected that the residual stress in the vicinity of the joint generated by the restraint of the deformation in the structure is almost suppressed.

【0037】以上に示した実施例はいずれも大気中にお
ける自然冷却雰囲気で施工したが、空気,不活性ガス,
水等の冷却材を用いて強制的に冷却し、接合部の冷却速
度をより大きくすることによって更に健全な接合部を形
成することが可能となる。
Although the above-described embodiments were all performed in a natural cooling atmosphere in the atmosphere, air, an inert gas,
By forcibly cooling using a coolant such as water and increasing the cooling rate of the joint, a sounder joint can be formed.

【0038】[0038]

【発明の効果】本発明によれば、表面にき裂等の損傷が
導入された構造物の補修施工に摩擦攪拌接合を用いるこ
とにより、施工に伴う残留応力発生を極力抑制した上で
確実に損傷を封止,接合することで健全な補修部位を有
する構造物及び施工方法を提供することができる。特
に、原子炉圧力容器や炉内構造物等、中性子照射によっ
てヘリウムを含有し、そのため入熱によって中性子照射
材特有の溶接割れが懸念される構造材料の補修に対して
有効な施工方法を提供することができる。
According to the present invention, the use of friction stir welding for repairing a structure having a crack or the like introduced on its surface minimizes the generation of residual stress during construction and ensures reliable repair. By sealing and joining the damage, it is possible to provide a structure having a sound repair site and a construction method. In particular, to provide an effective construction method for repairing structural materials such as reactor pressure vessels and reactor internals that contain helium due to neutron irradiation and that are likely to have welding cracks specific to neutron irradiated materials due to heat input be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のき裂模擬スリット封止への適用を示す
斜視図である。
FIG. 1 is a perspective view showing the application of the present invention to crack-simulated slit sealing.

【図2】本発明を深さ3mmスリット封止に適用した際の
接合部を示す断面図である。
FIG. 2 is a sectional view showing a joint when the present invention is applied to a 3 mm deep slit seal.

【図3】本発明を深さ6mmスリット封止に適用した際の
接合部を示す断面図である。
FIG. 3 is a cross-sectional view showing a joint when the present invention is applied to a 6 mm deep slit seal.

【図4】本発明の当て金接合への適用を示す斜視図であ
る。
FIG. 4 is a perspective view showing the application of the present invention to a metal plate joint.

【図5】本発明を深さ3mm当て金の四辺の接合に適用し
た際の接合部を示す断面図である。
FIG. 5 is a cross-sectional view showing a joint portion when the present invention is applied to the joining of four sides of a 3 mm deep metal plate.

【図6】本発明を深さ6mm当て金の四辺の接合に適用し
た際の接合部を示す断面図である。
FIG. 6 is a cross-sectional view showing a joint portion when the present invention is applied to the joining of four sides of a 6 mm deep metal plate.

【図7】本発明を深さ3mm当て金の表面全体に適用した
際の接合部を示す断面図である。
FIG. 7 is a cross-sectional view showing a joint when the present invention is applied to the entire surface of a 3 mm-deep metal plate.

【符号の説明】[Explanation of symbols]

1…き裂を模擬したスリットを付与した試験体、2…ス
リット、3…回転ツール、4…回転方向、5…スリット
封止施工方向、6…スリットを封止した接合部、7…熱
影響部、8…深さ6mmスリットの未接合部、9…接合部
6とスリット2の境界部、10…き裂除去した後開先を
付与した試験体、11…開先部、12…深さ3mmの当て
金、13…当て金の四辺接合施工方向、14…試験体1
0と当て金12の縦境界部、15…当て金接合部、16
…試験体10と当て金12の底部境界部、17…接合部
15と底部境界16の境界、18…深さ6mmの当て金、
19…試験体10と当て金18の縦境界部、20…当て
金接合部15と縦境界部19の境界、21…当て金の全
面接合施工方向。
DESCRIPTION OF SYMBOLS 1 ... The test piece which provided the slit which simulated the crack, 2 ... Slit, 3 ... Rotating tool, 4 ... Rotation direction, 5 ... Slit sealing working direction, 6 ... Slit sealing joint, 7 ... Heat effect Part, 8: Unjoined part with 6 mm depth slit, 9: Boundary part between joined part 6 and slit 2, 10: Specimen with groove after removal of crack, 11 ... Groove part, 12: Depth 3 mm buckle, 13… four-side joining direction of buckle, 14… test piece 1
Vertical boundary between 0 and backing plate 12, 15 ... backing plate joint, 16
... Bottom boundary between test piece 10 and backing plate 12, 17... Boundary between bonding portion 15 and bottom boundary 16, 18.
Reference numeral 19: a vertical boundary portion between the test piece 10 and the contact metal 18, 20: a boundary between the contact metal joining portion 15 and the vertical boundary portion 19, 21 ... a joining direction of the entire contact metal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 昌之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 岡村 久宣 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4E067 AA03 AA09 BG00 BG01 BG06 BM00 DA17 EA01 EB06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Doi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yasuhisa Aono 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hisanobu Okamura 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. BM00 DA17 EA01 EB06

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】鉄,ニッケルまたはそれら各々の合金によ
り構成される構造物であって、表面部に顕在化した損傷
部を有するものにおいて、前記損傷部が回転ツールを用
いる摩擦攪拌接合法によって補修されていることを特徴
とする構造物。
1. A structure made of iron, nickel or an alloy thereof, and having a damaged portion evident on its surface, wherein the damaged portion is repaired by a friction stir welding method using a rotating tool. A structure characterized by being performed.
【請求項2】鉄,ニッケルまたはそれら各々の合金によ
り構成される構造物であって、表面部に顕在化した損傷
部を有するものにおいて、該損傷部を除去して形成され
た開先に当て金がはめ込まれ、該当て金の周囲が回転ツ
ールを用いる摩擦攪拌接合法によって構造物と金属的に
接合されていることを特徴とする構造物。
2. A structure made of iron, nickel, or an alloy of each of them, which has a damaged portion evident on its surface, is applied to a groove formed by removing the damaged portion. A structure wherein gold is inserted and the perimeter of the metal is metallically joined to the structure by a friction stir welding method using a rotating tool.
【請求項3】鉄,ニッケルまたはそれら各々の合金によ
り構成される構造物であって、表面部に顕在化した損傷
部を有するものにおいて、前記損傷部を除去して形成さ
れた開先に当て金がはめ込まれ、該当て金の表面全体と
該構造部とが回転ツールを用いる摩擦攪拌接合法によっ
て金属的に接合されていることを特徴とする構造物。
3. A structure made of iron, nickel, or an alloy thereof and having a damaged portion evident on a surface portion, wherein the structure is applied to a groove formed by removing the damaged portion. A structure wherein gold is fitted and the entire surface of the gold and the structure are metallically joined by a friction stir welding method using a rotating tool.
【請求項4】鉄,ニッケルまたはそれら各々の合金によ
り構成された原子炉圧力容器或いは/及び原子炉内構造
物を有する原子炉設備であって、表面に顕在化した損傷
部を有するものにおいて、該損傷部が回転ツールを用い
る摩擦攪拌接合法によって補修されていることを特徴と
する原子炉設備。
4. A reactor facility having a reactor pressure vessel or / and a reactor internal structure made of iron, nickel, or an alloy thereof, and having a damaged portion that is evident on its surface. A nuclear reactor facility wherein the damaged portion is repaired by a friction stir welding method using a rotating tool.
【請求項5】鉄,ニッケルまたはそれら各々の合金によ
り構成された原子炉圧力容器或いは/及び原子炉内構造
物を有する原子炉設備であって、表面部に顕在化した損
傷部を有するものにおいて、前記損傷部を除去して形成
された開先に当て金がはめ込まれ、該当て金の周囲が回
転ツールを用いた摩擦攪拌接合法によって構造物材料と
金属的に接合されていることを特徴とする原子炉設備。
5. A reactor facility having a reactor pressure vessel and / or a reactor internal structure made of iron, nickel, or an alloy thereof, and having a damaged portion that becomes apparent on the surface. A metal plate is fitted into the groove formed by removing the damaged portion, and the perimeter of the metal is metallically joined to the structural material by a friction stir welding method using a rotating tool. Reactor equipment.
【請求項6】鉄,ニッケルまたはそれら各々の合金によ
り構成された原子炉圧力容器及び/或いは原子炉内構造
物を有する原子炉設備であって、表面部に顕在化した損
傷部を有するものにおいて、前記損傷部を除去して形成
された開先に当て金がはめ込まれ、該当て金の表面全体
と構造物材料とが回転ツールを用いた摩擦攪拌接合法に
よって金属的に接合されていることを特徴とする原子炉
設備。
6. Reactor equipment having a reactor pressure vessel and / or a reactor internal structure made of iron, nickel or an alloy thereof, and having a damaged portion that is evident on the surface. A metal plate is fitted into a groove formed by removing the damaged portion, and the entire surface of the metal and the structural material are metallically joined by a friction stir welding method using a rotating tool. Nuclear reactor equipment.
【請求項7】請求項1から6のいずれかに記載された構
造物において、平面もしくは曲率を有する構造物表面の
顕在化した損傷部が摩擦攪拌接合によって補修されてい
ることを特徴とする構造物。
7. A structure according to claim 1, wherein the surface of the structure having a flat surface or a curvature has a damaged portion which is repaired by friction stir welding. object.
【請求項8】請求項4から6のいずれかに記載された原
子炉設備において、表面部に顕在化した損傷部を有する
部材がヘリウムを含む鉄,ニッケルまたはそれら各々の
合金によって構成されていることを特徴とする原子炉設
備。
8. A nuclear reactor facility according to claim 4, wherein the member having a damaged portion evident on its surface is made of iron, nickel, or an alloy thereof containing helium. Reactor equipment characterized by the following:
【請求項9】請求項4から6のいずれかに記載された原
子炉設備において、表面部に顕在化した損傷部を有する
部材が中性子照射を受けた鉄,ニッケルまたはそれら各
々の合金によって構成されていることを特徴とする原子
炉設備。
9. A nuclear reactor facility according to claim 4, wherein the member having a damaged portion evident on the surface is made of iron, nickel, or an alloy thereof each of which has been irradiated with neutrons. Reactor equipment characterized by the following:
【請求項10】鉄,ニッケルまたはそれら各々の合金に
よって構成される構造物であって、表面部の顕在化した
損傷部を補修する方法において、前記損傷部に回転ツー
ルを挿入し、該回転ツールの回転に伴って生ずる摩擦熱
と塑性流動によって前記損傷部を補修することを特徴と
する構造物の補修方法。
10. A method for repairing a damaged portion having a surface portion which is made of iron, nickel, or an alloy thereof, wherein a rotating tool is inserted into the damaged portion. Repairing the damaged portion by frictional heat and plastic flow generated by the rotation of the structure.
【請求項11】鉄,ニッケルまたはそれら各々の合金に
よって構成される構造物であって、表面部の顕在化した
損傷部を補修する方法において、前記損傷部を除去した
後に開先を形成し、該開先に当て金をはめ込み、該当て
金と該構造物との界面に回転ツールを挿入し、該回転ツ
ールの回転に伴って生ずる摩擦熱と塑性流動によって該
当て金の周囲を構造物と金属的に接合することを特徴と
する構造物の補修方法。
11. A method for repairing a damaged portion having a surface portion which is made of iron, nickel or an alloy thereof, wherein a groove is formed after removing the damaged portion. A metal plate is fitted into the groove, a rotary tool is inserted into the interface between the metal and the structure, and the periphery of the gold is formed as a structure by friction heat and plastic flow generated by rotation of the rotary tool. A method for repairing a structure, characterized in that it is metallically joined.
【請求項12】鉄,ニッケルまたはそれら各々の合金で
構成される構造物であって、表面部の顕在化した損傷部
を補修する方法において、前記損傷部を除去した後に開
先を形成し、該開先に当て金をはめ込み、該当て金の表
面に回転ツールを押し込んで当て金の表面全体を走らせ
ることにより該当て金の表面全体と構造部とを金属的に
接合することを特徴とする構造物の補修方法。
12. A method for repairing a damaged portion having a surface portion which is made of iron, nickel or an alloy thereof, wherein a groove is formed after removing the damaged portion. Fitting the contact metal into the groove, pressing the rotating tool on the surface of the corresponding metal and running the entire surface of the metal contact, thereby metallically joining the entire surface of the metal and the structural part. To repair structures that do.
【請求項13】鉄,ニッケルまたはそれら各々の合金で
構成された原子炉圧力容器及び/或いは原子炉内構造物
であって、表面部に顕在化した損傷部を有する設備の補
修方法であって、該損傷部に回転ツールを挿入し、該回
転ツールの回転に伴う摩擦熱と塑性流動を利用して該損
傷部を補修することを特徴とする原子炉設備の補修方
法。
13. A method for repairing a reactor pressure vessel and / or a reactor internal structure made of iron, nickel, or an alloy of each of them, the equipment having a damaged portion that has become apparent on its surface. And repairing the damaged portion by inserting a rotating tool into the damaged portion and using frictional heat and plastic flow accompanying rotation of the rotating tool to repair the damaged portion.
【請求項14】鉄,ニッケルまたはそれら各々の合金で
構成される原子炉圧力容器及び/或いは原子炉内構造物
であって、表面部の顕在化した損傷部を補修する方法に
おいて、該損傷部を除去した後に開先を形成し、該開先
に当て金をはめ込み、該当て金と構造物との界面に回転
ツールを挿入し、摩擦攪拌接合によって当て金の周囲を
構造物と金属的に接合することを特徴とする原子炉設備
の補修方法。
14. A method for repairing a damaged portion having a surface portion which is a reactor pressure vessel and / or a reactor internal structure made of iron, nickel, or an alloy thereof. After removing the groove, a groove is formed, a metal plate is fitted into the groove, a rotary tool is inserted into the interface between the metal and the structure, and the periphery of the metal plate is metallically connected to the structure by friction stir welding. A method for repairing nuclear reactor equipment, characterized by joining.
【請求項15】鉄,ニッケルまたはそれら各々の合金で
構成される原子炉圧力容器及び原子炉内構造物であっ
て、表面部の顕在化した損傷部を補修する方法におい
て、該損傷部を除去した後に開先を形成し、該開先に当
て金をはめ込み、該当て金の上から回転ツールを押し込
み、摩擦攪拌接合によって当て金の表面全体と構造物と
を金属的に接合することを特徴とする原子炉設備の補修
方法。
15. A method for repairing a damaged portion of a surface of a reactor pressure vessel and a reactor internal structure made of iron, nickel or an alloy thereof, wherein the damaged portion is removed. After that, a groove is formed, a metal plate is fitted into the groove, a rotating tool is pressed in from the gold, and the entire surface of the metal plate and the structure are metallically joined by friction stir welding. The repair method of the reactor equipment.
【請求項16】請求項10から15のいずれかに記載さ
れた表面損傷部の補修方法において、常温での硬さがビ
ッカース硬さ相当で550またはそれ以上の材料からな
る回転ツールを用い、摩擦攪拌接合法によって該損傷部
を補修することを特徴とする構造物の補修方法。
16. A method for repairing a damaged surface according to any one of claims 10 to 15, wherein a rotating tool made of a material having a hardness at room temperature equivalent to Vickers hardness of 550 or more is used. A method for repairing a structure, wherein the damaged portion is repaired by a stir welding method.
【請求項17】請求項16において、前記摩擦攪拌接合
は、空気,不活性ガス、または水のいずれかの冷却材の
中か、または接合部の近傍を前記冷却材によって強制的
に冷却しながら施工することを特徴とする構造物の補修
方法。
17. The method according to claim 16, wherein the friction stir welding is performed while forcibly cooling the inside of the coolant, or the vicinity of the joint, with the coolant, either of air, an inert gas, or water. A method of repairing a structure characterized by being constructed.
JP2001015190A 2001-01-24 2001-01-24 Structures and repair methods Ceased JP2002219585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015190A JP2002219585A (en) 2001-01-24 2001-01-24 Structures and repair methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015190A JP2002219585A (en) 2001-01-24 2001-01-24 Structures and repair methods

Publications (1)

Publication Number Publication Date
JP2002219585A true JP2002219585A (en) 2002-08-06

Family

ID=18881783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015190A Ceased JP2002219585A (en) 2001-01-24 2001-01-24 Structures and repair methods

Country Status (1)

Country Link
JP (1) JP2002219585A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repair method and repair device
JP2007333741A (en) * 2006-06-16 2007-12-27 Areva Np How to repair the bottom head penetration of a reactor vessel
JP2009018348A (en) * 2008-10-29 2009-01-29 Nippon Light Metal Co Ltd Method and structure for joining thick materials
WO2011019447A1 (en) * 2009-08-13 2011-02-17 The Boeing Company Incremental forging
JP4916879B2 (en) * 2003-08-04 2012-04-18 エスアイアイ・メガダイアモンド・インコーポレーテッド Crack repair system and method using friction stir welding for materials including metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys
US8323427B1 (en) 2009-09-14 2012-12-04 The Boeing Company Engineered shapes from metallic alloys
JP2012236205A (en) * 2011-05-11 2012-12-06 Shinshu Univ Method for repairing mold
JP5180471B2 (en) * 2004-04-30 2013-04-10 株式会社総合車両製作所 Metal joining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916879B2 (en) * 2003-08-04 2012-04-18 エスアイアイ・メガダイアモンド・インコーポレーテッド Crack repair system and method using friction stir welding for materials including metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys
JP5180471B2 (en) * 2004-04-30 2013-04-10 株式会社総合車両製作所 Metal joining method
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repair method and repair device
JP2007333741A (en) * 2006-06-16 2007-12-27 Areva Np How to repair the bottom head penetration of a reactor vessel
JP2009018348A (en) * 2008-10-29 2009-01-29 Nippon Light Metal Co Ltd Method and structure for joining thick materials
WO2011019447A1 (en) * 2009-08-13 2011-02-17 The Boeing Company Incremental forging
US8323427B1 (en) 2009-09-14 2012-12-04 The Boeing Company Engineered shapes from metallic alloys
JP2012236205A (en) * 2011-05-11 2012-12-06 Shinshu Univ Method for repairing mold

Similar Documents

Publication Publication Date Title
KR20190017687A (en) Method of repairing superalloys
Yurioka et al. Recent developments in repair welding technologies in Japan
CN110076526B (en) Manufacturing process of three-layer stainless steel and carbon steel composite steel pipe
JP3079902B2 (en) Welding repair method for reactor internals
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
JP2002219585A (en) Structures and repair methods
JPH03243286A (en) Joining method for clad tube
JP3530395B2 (en) Welding methods, welded joints and welded structures
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
JP5538079B2 (en) Clad steel material joining method and structure
JP4660875B2 (en) Replacement method for RPV nozzle joint members
JP4929096B2 (en) Overlay welding method for piping
JP2000275384A (en) Repair method of reactor pressure vessel
JP2001205449A (en) Joint structure and joining method between steel and titanium plate
JP2595114B2 (en) Preventive maintenance of neutron flux monitor housing
Thang et al. WPS Design of Dissimilar Metal Welds between Austenitic Stainless Steel and Carbon Steel for Building Thermal Power Plants
JPH07116886A (en) Method for improving the quality of metal parts by spot welding
Eun Welding and heat treatment requirements in Shop and Field
JP2006015380A (en) Alloy for repair-welding of hard build-up welding part and repair-welding method
JPH03145501A (en) Steam control valve component, improved valve component, and valve component repair method
JP2000312969A (en) External Buttering Method for Welded Joint
Cofie et al. Effectiveness of stainless steel buffer layer to address hot cracking during weld overlay repair of dissimilar metal alloy 82/182 welds with stainless steel piping
JP2014079800A (en) Repair method for clad material
Akume Fundamentals of Weld Repair
JP2000230996A (en) Repair method of reactor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20070213