[go: up one dir, main page]

JP2002239342A - Reaction device by corpuscular ray irradiation - Google Patents

Reaction device by corpuscular ray irradiation

Info

Publication number
JP2002239342A
JP2002239342A JP2001037198A JP2001037198A JP2002239342A JP 2002239342 A JP2002239342 A JP 2002239342A JP 2001037198 A JP2001037198 A JP 2001037198A JP 2001037198 A JP2001037198 A JP 2001037198A JP 2002239342 A JP2002239342 A JP 2002239342A
Authority
JP
Japan
Prior art keywords
particle beam
irradiation
reaction vessel
reaction
corpuscular ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001037198A
Other languages
Japanese (ja)
Other versions
JP2002239342A5 (en
Inventor
Takuji Sofugawa
拓司 曽布川
Shinji Nomichi
伸治 野路
Mamoru Nakasuji
護 中筋
Tsutomu Karimata
努 狩俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001037198A priority Critical patent/JP2002239342A/en
Publication of JP2002239342A publication Critical patent/JP2002239342A/en
Publication of JP2002239342A5 publication Critical patent/JP2002239342A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems generated by colliding a corpuscular ray with the thin sealing film stretched over an opening formed in the sidewall of a reaction vessel, in a reaction device by corpuscular ray irradiation for carrying out the required reaction of gas in the reaction vessel by irradiating through the opening the gas in the reaction vessel with the corpuscular ray such as an electron beam. SOLUTION: This reaction device by corpuscular ray irradiation has the reaction vessel 15 and a corpuscular ray irradiation device for irradiating the inside of reactor vessel with the corpuscular ray through an irradiation hole 11 installed on the outside of the reaction vessel and in the sidewall of the reaction vessel. The reaction device is characterized in that the irradiation device is provided with a corpuscular ray irradiation source and an optical system where the corpuscular ray generated in the corpuscular ray irradiation source is oriented to the irradiation hole with the diameter of the corpuscular ray stopped down at the irradiation hole and that the irradiation hole is slightly larger in diameter than the diameter of the stopped corpuscular ray.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子線等の粒子線
のエネルギーによる反応を利用する技術、特に、特に排
煙に含まれる二酸化硫黄や酸化窒素物を電子ビーム照射
によって硫酸アンモニウム、硝酸アンモニウムとして取
り出し、排煙浄化を行うため技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique utilizing a reaction by the energy of a particle beam such as an electron beam. And technology for purifying flue gas.

【0002】[0002]

【従来の技術】従来の脱硫・脱硝装置では、排煙を反応
器に通し、該反応器の側面に設けた電子線入射窓を通し
て電子線を照射するようになっており、該電子線入射窓
はTi(チタン)やSUS(ステンレススティール)の薄膜が
張られて、反応器内部を外部から密封していた。
2. Description of the Related Art In a conventional desulfurization / denitration apparatus, exhaust gas passes through a reactor and is irradiated with an electron beam through an electron beam entrance window provided on a side surface of the reactor. Was coated with a thin film of Ti (titanium) or SUS (stainless steel), and sealed the inside of the reactor from the outside.

【0003】このような装置では、例えばTiが50μm
厚とされ、加速電圧800KV、電子電流500mA程度の電
子線照射を行うとすると、薄膜における温度上昇が激し
く、このため、偏向器に大電流を流し、ビームを振るこ
とによって、薄膜の広い面積に電子線が照射されるよう
にし、これにより単位面積当りの熱発生を少くしてい
た。一方、電子線の加速電圧が低いと、入射窓(薄膜)で
のエネルギー損失が大きくなるので、高加速電圧、小電
流にせざるを得なく、X線の発生が大きかった。
In such an apparatus, for example, Ti has a thickness of 50 μm.
When an electron beam is irradiated at an acceleration voltage of 800 KV and an electron current of about 500 mA, the temperature in the thin film rises sharply.Therefore, a large current is applied to the deflector and the beam is shaken to cover a large area of the thin film. An electron beam was irradiated, thereby reducing heat generation per unit area. On the other hand, when the accelerating voltage of the electron beam was low, the energy loss at the entrance window (thin film) became large, so the high accelerating voltage and small current had to be used, and the generation of X-rays was large.

【0004】本発明は、上記問題点に鑑みなされたもの
で、窓における薄膜を無くすことにより入射窓でのエネ
ルギー損失を無くし、且つ、低加速電圧、大電流を可能
とすることにより低コスト化した装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and eliminates a thin film in a window so as to eliminate energy loss in an entrance window and reduce costs by enabling a low acceleration voltage and a large current. It is an object of the present invention to provide such a device.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、反
応容器と、該反応容器の外側に設定され、反応容器の側
壁に設けられた照射口を通して反応容器内に粒子線を照
射するための粒子線照射装置と、を有し、上記粒子線照
射装置が、粒子線発生源と、該粒子線発生源において発
生された粒子線を、上記反応容器の照射口において直径
が絞られるようにして、同照射口に指向させる光学系を
有し、上記照射口が、上記絞られた粒子線の直径より僅
かに大きい直径を有するようにしたことを特徴とする粒
子線照射反応装置を提供する。
That is, the present invention provides a reaction vessel and an irradiation port provided outside the reaction vessel and provided on a side wall of the reaction vessel for irradiating the inside of the reaction vessel with a particle beam. Having a particle beam irradiation device, the particle beam irradiation device, the particle beam generation source, the particle beam generated in the particle beam generation source, so that the diameter is reduced in the irradiation port of the reaction vessel A particle beam irradiation reaction apparatus having an optical system for directing light to the irradiation port, wherein the irradiation port has a diameter slightly larger than the diameter of the focused particle beam.

【0006】この粒子線照射反応装置では、反応容器の
入射口に薄膜を設けないので、従来技術において、上述
の如く、薄膜を設けることによって生じていたエネルギ
ー損失等の問題を実質的になくすことができる。
In this particle beam irradiation reactor, since no thin film is provided at the entrance of the reaction vessel, it is possible to substantially eliminate the problems such as energy loss caused by providing the thin film in the prior art as described above. Can be.

【0007】粒子線照射装置の上記粒子線発生源は、そ
の粒子加速電圧を50KV〜200KV、粒子線電流を1〜
10Aとすることができる。粒子線照射装置は、粒子発
生源から照射口に指向される粒子線を、同照射口に整合
させる方法は、粒子線が照射口を画定している壁面に入
射して発生されるX線を最小にするようにすることが好
ましい。
The particle beam source of the particle beam irradiation apparatus has a particle acceleration voltage of 50 kV to 200 kV and a particle beam current of 1 kV to 200 kV.
10A. The particle beam irradiation device aligns the particle beam directed from the particle source to the irradiation port with the irradiation port by using X-rays generated when the particle beam is incident on the wall surface defining the irradiation port. It is preferred to minimize it.

【0008】また、反応容器は、粒子線を照射する被照
射ガスを一定方向に通すようにされ、同反応容器を通さ
れる被照射ガスに粒子線を照射することにより、反応を
生じさせるようにすることができる。
[0008] Further, the reaction vessel is adapted to allow the irradiation gas to be irradiated with the particle beam to pass in a predetermined direction, and by irradiating the irradiation gas to be passed through the reaction vessel with the particle beam, a reaction is caused. Can be

【0009】更に、複数の粒子線照射装置を、被照射ガ
スに対し、当該ガスを通す上記一定方向に対して直角方
向で且つそれぞれ異なる方向から粒子線を照射するよう
に設け、粒子線による被照射ガスの反応を効率よく行う
ことができる。
Further, a plurality of particle beam irradiation devices are provided so as to irradiate the gas to be irradiated with the particle beam in a direction perpendicular to the predetermined direction through which the gas passes and from different directions. The reaction of the irradiation gas can be performed efficiently.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につき
説明する。図1は、本発明の電子線照射反応装置の実施
の形態の説明図である。
Embodiments of the present invention will be described below. FIG. 1 is an explanatory diagram of an embodiment of the electron beam irradiation reaction device of the present invention.

【0011】該装置は、電子線を照射して反応させる被
照射ガスを通す反応容器(ダクト)15と、該反応容器の
側壁に設けられた照射口11を通して,電子線を照射す
る電子線照射装置5を有している。該電子線照射装置1
5は、電子銃カソ一ド1と、該カソード1を加熱するフ
ィラメント2とを有し、カソードとフィラメントとの間
には数KVの電圧が印加されて、電子衝撃によって当該カ
ソ一ドが加熱される。カソ一ドから放出された電子線
は、ウエ−ネルト(収束電極)3とアノード4によってほ
ば平行なビームにされ、集束レンズ8に入射されて反応
容器15の照射口11に合焦される。図において、6
は、電子ビームの最外側軌道、7は電子線の軸合わせコ
イルを示す。
The apparatus comprises a reaction vessel (duct) 15 through which an irradiation target gas to be irradiated with an electron beam is reacted and an electron beam irradiation through an irradiation port 11 provided on a side wall of the reaction vessel. It has a device 5. The electron beam irradiation device 1
Reference numeral 5 denotes an electron gun cathode 1 and a filament 2 for heating the cathode 1. A voltage of several KV is applied between the cathode and the filament, and the cathode is heated by electron impact. Is done. The electron beam emitted from the cathode is converted into a substantially parallel beam by a Wehnelt (focusing electrode) 3 and an anode 4, incident on a focusing lens 8 and focused on an irradiation port 11 of a reaction vessel 15. . In the figure, 6
Denotes an outermost trajectory of an electron beam, and 7 denotes an electron beam alignment coil.

【0012】ここでレンズ8の焦点距離を50mmとする
と、このレンズの球面収差係数と色収差係数は両方共約
50mm位の値となる。ビ一ムを偏向しないので、コマ収
差、像面湾曲、視野非点は無視できる。色収差△Ccと球
面収差△Csは、開口角を10mrad、ΔV/V0=1×10-4
とするとほば次の値となる。
If the focal length of the lens 8 is 50 mm, the spherical aberration coefficient and the chromatic aberration coefficient of this lens are both about 50 mm. Since the beam is not deflected, coma, field curvature, and field astigmatism can be ignored. The chromatic aberration △ Cc and the spherical aberration △ Cs have an aperture angle of 10 mrad and ΔV / V 0 = 1 × 10 -4.
Then, the following values are obtained.

【0013】△Cc=10-2×1×10-4×50mm=0.
5×10-4=0.005μm △Cs=1/4(10-23×50mm=10-6×50mm×1
/4=12.5μm また、空間電荷効果は、ビーム電流I:1A、加速電圧
V:100KV、光路長L:5cm、開口角α:10mradとする
と、次の値となる。
ΔCc = 10 −2 × 1 × 10 −4 × 50 mm = 0.
5 × 10 −4 = 0.005 μm ΔCs = 1/4 (10 −2 ) 3 × 50 mm = 10 −6 × 50 mm × 1
/4=12.5 μm The space charge effect is as follows when the beam current I is 1 A, the acceleration voltage V is 100 KV, the optical path length L is 5 cm, and the aperture angle α is 10 mrad.

【0014】 △Ccs=104/2×(L・I)/(αV3/2)cm =104/2×(5×1)/(10-2×1000003/2)cm =791μm △Cscと△Csの開口角依存性を図2に示す。 △Cscと△
Csとの合計(TOTAL)は図2の曲線となるo 収差の合計(To
tal)は,図2で明らかなようにα=25mradのとき、37
0μmφのビームになる。
[0014] △ Ccs = 10 4/2 × (L · I) / (αV 3/2) cm = 10 4/2 × (5 × 1) / (10 -2 × 100000 3/2) cm = 791μm △ FIG. 2 shows the aperture angle dependence of Csc and ΔCs. △ Csc and △
The sum of Cs (TOTAL) is the curve of FIG.
tal) is 37 when α = 25 mrad, as is clear from FIG.
The beam becomes 0 μmφ.

【0015】従って電子銃電極(ウエ−ネルト3、アノ
ード4)に与える電圧を調整してレンズ8の主面で50
mm×25mrad×2=2.5mmφのビームになる様に調整
し、レンズ8で照射口11に焦点が合うよう調整すれ
ぱ、照射口11でのビーム径を370μmφにできる。
Therefore, the voltage applied to the electron gun electrodes (Wehnelt 3, anode 4) is adjusted so that 50
The beam diameter of the irradiation port 11 can be set to 370 μmφ by adjusting the beam so that the beam becomes mm × 25 mrad × 2 = 2.5 mmφ, and the lens 8 is adjusted to focus on the irradiation port 11.

【0016】ビーム直径の3倍の内径の開口にすれば、
ビームはほとんど開口の内壁面に入射しない。レンズ8
より電子銃側は内径8mmφとし、照射口11の入口で1
mmφの直径とすれば、ビームが照射口に入射する際の照
射口内面に入射することによるエネルギー損失はごく少
なくできる。
If the aperture is three times as large as the beam diameter,
The beam hardly enters the inner wall surface of the aperture. Lens 8
The electron gun side has an inner diameter of 8 mmφ.
With a diameter of mmφ, the energy loss caused by the beam entering the inner surface of the irradiation port when entering the irradiation port can be minimized.

【0017】図1においては、照射口11で1mmφ、レ
ンズ8の位置で10mmφとし、その間は直線的に内径が
変化するようにした。反応容器15の周りには低真空側
差動排気管10、及び、その外側の差動排気管9が設け
られており、低真空側差動排気管10はメカニカルブー
スター、 ロータリーポンプ等の低真空用ポンプが接続
され、差動排気管9にはタ一ボ分子ポンプ等の高真空用
ポンプに接続してあり、反応容器から漏れるガスの排気
をしている。
In FIG. 1, the diameter of the irradiation port 11 is 1 mmφ, and the position of the lens 8 is 10 mmφ, during which the inner diameter changes linearly. A low vacuum side differential exhaust pipe 10 and a differential exhaust pipe 9 outside the low vacuum side differential exhaust pipe 10 are provided around the reaction vessel 15, and the low vacuum side differential exhaust pipe 10 is provided with a low vacuum such as a mechanical booster or a rotary pump. The differential pump 9 is connected to a high vacuum pump such as a turbo molecular pump to exhaust gas leaking from the reaction vessel.

【0018】反応容器15の照射口11の対向面にX線
検出器16が設けられており、 電子線が照射口11に
入射して発生するX線を検出するようにしてある。この
X線の発生量が最小になるよう、軸合せ装置7やレンズ
8の励磁電流の調整が行われる。また、照射口11の近
傍には、50KVの電極14が設けられており、入射した
電子線がすぐに反応ダクト15の入射口近くに入るのを
防ぐようにしてある。
An X-ray detector 16 is provided on the surface of the reaction vessel 15 facing the irradiation port 11 so as to detect X-rays generated when an electron beam enters the irradiation port 11. The excitation current of the axis aligning device 7 and the lens 8 is adjusted to minimize the amount of X-rays generated. An electrode 14 of 50 KV is provided near the irradiation port 11 so as to prevent the incident electron beam from immediately entering the reaction duct 15 near the entrance.

【0019】また入射口の対向面には+100KVの電極
17が設けられており、煙と衝突してエネルギ一を失っ
た電子線でもさらに活性をもてる様にしてある。電子ビ
ームのエネルギーが小さい場合で、例えば、ビーム直径
が数μmである場合、照射口の途中に小さな空間を設
け、そこを100L/s程度の排気速度のターボ分子ポン
プで排気すれば、10-2Pa程度の圧力にできるので、一
段の差動排気部で充分に電子ビームを窓無しで大気中に
取り出すことができる。また、照射口を、例えば5μm
幅で200μm長さ、厚さ0.5mmや、50μm幅で20
0μm長さ、厚さ370mm等のスリットにすることも可
能であり、電子ビームをスリットに合わせて振ることも
可能である。
An electrode 17 of +100 KV is provided on the opposite surface of the entrance so that the electron beam which has lost energy due to collision with smoke can be activated. When the energy of the electron beam is small, for example, when the beam diameter is several μm, if a small space is provided in the middle of the irradiation port and the space is evacuated by a turbo molecular pump with an exhaust speed of about 100 L / s, 10 − Since the pressure can be set to about 2 Pa, the electron beam can be sufficiently taken out to the atmosphere without a window by the one-stage differential pumping section. The irradiation port is, for example, 5 μm
200 μm in width, 0.5 mm in thickness and 20 in 50 μm width
A slit having a length of 0 μm, a thickness of 370 mm, or the like can be formed, and the electron beam can be shaken in accordance with the slit.

【0020】図3には、本発明の他の実施形態に係る電
子線照射反応装置(排気処理装置)の全体の概略が示さ
れている。この装置においては、800KWの照射量を得
るため、200KV×1Aの電子線照射装置5を4個、互
いに離して配置してある。高圧電源31は−100KV×
1A とし、レンズ電流、 軸合せコイル、 電子銃電極も
用意した。正の電極用電源として34を設け、+100
KV、4Aとし、4つの電極14に接続した。33はメカ
ニカルブースターポンプであり、32はタ一ポ分子ポン
プである。
FIG. 3 schematically shows an entire electron beam irradiation reaction apparatus (exhaust processing apparatus) according to another embodiment of the present invention. In this apparatus, in order to obtain an irradiation amount of 800 KW, four 200 KV × 1 A electron beam irradiation apparatuses 5 are arranged apart from each other. High voltage power supply 31 is -100KV ×
The current was set to 1A, and a lens current, an alignment coil, and an electron gun electrode were also prepared. 34 is provided as a positive electrode power supply, and +100
KV, 4 A, and connected to four electrodes 14. 33 is a mechanical booster pump, and 32 is a tap molecular pump.

【0021】[0021]

【発明の効果】上述の通り、本発明では、入射窓11に
は、従来の装置のように薄膜を設けないので、従来薄膜
において生じていたエネルギー損失を無くすことができ
ると共に、加速電圧を200KV 以下と小さくできるの
で低コストの電源とすることができる。
As described above, according to the present invention, the entrance window 11 is not provided with a thin film unlike the conventional apparatus, so that the energy loss caused in the conventional thin film can be eliminated and the acceleration voltage can be reduced to 200 KV. Since the power supply can be reduced to the following, a low-cost power supply can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施の形態の電子線照射反応
装置の概要を示す断面図である。
FIG. 1 is a sectional view showing an outline of an electron beam irradiation reaction apparatus according to an embodiment of the present invention.

【図2】図2は、ビームの収束をどの程度細くできるか
を示すグラフである。
FIG. 2 is a graph showing how narrow beam convergence can be achieved.

【図3】図3は、本発明の他の実施形態に係る電子線照
射反応装置の概要示す図である。
FIG. 3 is a diagram schematically showing an electron beam irradiation reaction device according to another embodiment of the present invention.

【図4】図4は、図3の装置における電源配線図であ
る。 1:電子銃カソ―ド 2:フィラメント 3:集束電極(ウエーネルト) 4:アノード 5:照射装置 6:ビーム最外側軌道 7:軸合せコイル 8:集束レンズ 9:差動排気用排管 10:低真空側差動排気排管 11:照射口 12:煙流れ方向 13:電子線平均軌道 14:負電極 15:ダクト 16:X線検出器 17:正高圧電極 31:電子銃等用電源 32:タ―ボ分子ポンプ 33:メカニカルブースターポンプ 34:正高圧電源
FIG. 4 is a power supply wiring diagram in the device of FIG. 3; 1: Electron gun cathode 2: Filament 3: Focusing electrode (Wehnelt) 4: Anode 5: Irradiation device 6: Beam outermost track 7: Alignment coil 8: Focusing lens 9: Differential exhaust tube 10: Low Vacuum-side differential exhaust pipe 11: Irradiation port 12: Smoke flow direction 13: Electron beam average trajectory 14: Negative electrode 15: Duct 16: X-ray detector 17: Positive high voltage electrode 31: Power supply for electron gun etc. 32: Data -Molecular pump 33: Mechanical booster pump 34: Positive high voltage power supply

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21K 5/04 B01D 53/34 129C ZAB (72)発明者 中筋 護 東京都大田区羽田旭町11番1号 荏原マイ スター株式会社内 (72)発明者 狩俣 努 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D002 AA02 AA12 BA09 GA01 GB20 4G075 AA03 AA37 AA42 BA01 BA05 CA38 CA65 DA02 EA05 EB01 EB34 EC21 FA01 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G21K 5/04 B01D 53/34 129C ZAB (72) Inventor Mamoru Nakasuji 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Mai Star Co., Ltd. (72) Inventor Tsutomu Karima 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation (reference) 4D002 AA02 AA12 BA09 GA01 GB20 4G075 AA03 AA37 AA42 BA01 BA05 CA38 CA65 DA02 EA05 EB01 EB34 EC21 FA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】反応容器と、 該反応容器の外側に設定され、反応容器の側壁に設けら
れた照射口を通して反応容器内に粒子線を照射するため
の粒子線照射装置と、 を有し、 上記粒子線照射装置が、粒子線発生源と、該粒子線発生
源において発生された粒子線を、上記反応容器の照射口
において直径が絞られるようにして、同照射口に指向さ
せる光学系とを有し、 上記照射口が、上記絞られた粒子線の直径より僅かに大
きい直径を有するようにしたことを特徴とする粒子線照
射反応装置。
Claims: 1. A reaction vessel, and a particle beam irradiation device that is set outside the reaction vessel and irradiates a particle beam into the reaction vessel through an irradiation port provided on a side wall of the reaction vessel, The particle beam irradiation device, a particle beam generation source, the particle beam generated in the particle beam generation source, so that the diameter of the irradiation port of the reaction vessel is narrowed, and an optical system for directing to the irradiation port Wherein the irradiation port has a diameter slightly larger than the diameter of the focused particle beam.
【請求項2】上記粒子線照射装置の上記粒子線発生源
が、その粒子加速電圧を50KV〜200KVとされ、粒子
線電流が1〜10Aとされたことを特徴とする請求項1
に記載の粒子線照射反応装置。
2. The particle beam generator according to claim 1, wherein said particle beam generator has a particle acceleration voltage of 50 KV to 200 KV and a particle beam current of 1 to 10 A.
3. The particle beam irradiation reaction device according to item 1.
【請求項3】上記粒子線照射装置が、粒子発生源から上
記照射口に指向される粒子線を、上記照射口に軸合わせ
する方法は、粒子線が照射口を画定している壁面に入射
して発生されるX線を最小にするようにしたことを特徴
とする請求項1若しくは2のいずれかに記載の粒子線照
射反応装置。
3. The method of aligning a particle beam directed from a particle source to the irradiation port with the irradiation port by the particle beam irradiation apparatus, wherein the particle beam is incident on a wall surface defining the irradiation port. 3. The particle beam irradiation reactor according to claim 1, wherein X-rays generated by the irradiation are minimized.
【請求項4】上記反応容器が、粒子線を照射する被照射
ガスを一定方向に通すようにされていることを特徴とす
る請求項1ないし3のいずれかに記載の粒子線照射反応
装置。
4. The particle beam irradiation reaction apparatus according to claim 1, wherein said reaction vessel is adapted to pass a gas to be irradiated with a particle beam in a predetermined direction.
【請求項5】複数の粒子線照射装置を、被照射ガスに対
し、当該ガスを通す上記一定方向に対して直角方向で且
つそれぞれ異なる方向から粒子線を照射するように、設
けたことを特徴とする請求項1ないし3のいずれかに記
載の粒子線反応装置。
5. A plurality of particle beam irradiation devices are provided so as to irradiate a gas to be irradiated with a particle beam in a direction perpendicular to the predetermined direction through which the gas passes and in directions different from each other. The particle beam reactor according to any one of claims 1 to 3, wherein
JP2001037198A 2001-02-14 2001-02-14 Reaction device by corpuscular ray irradiation Pending JP2002239342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037198A JP2002239342A (en) 2001-02-14 2001-02-14 Reaction device by corpuscular ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037198A JP2002239342A (en) 2001-02-14 2001-02-14 Reaction device by corpuscular ray irradiation

Publications (2)

Publication Number Publication Date
JP2002239342A true JP2002239342A (en) 2002-08-27
JP2002239342A5 JP2002239342A5 (en) 2004-12-24

Family

ID=18900365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037198A Pending JP2002239342A (en) 2001-02-14 2001-02-14 Reaction device by corpuscular ray irradiation

Country Status (1)

Country Link
JP (1) JP2002239342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526971A (en) * 2006-02-14 2009-07-23 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Electron beam irradiator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526971A (en) * 2006-02-14 2009-07-23 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Electron beam irradiator

Similar Documents

Publication Publication Date Title
JP5687001B2 (en) X-ray generator
WO2002037526A9 (en) Electron beam apparatus and method for manufacturing semiconductor device comprising the apparatus
CN104008942B (en) Laser ion source and heavy particle beam therapeutic apparatus
JP2008103326A (en) Method and apparatus for focusing and deflecting electron beam of x-ray device
TWI748477B (en) Electron beam device and control method of electron beam device
CN218036511U (en) An X-ray photoelectron spectrometer
JP2024540157A (en) High-intensity laser-produced plasma source and method for generating and collecting radiation
JP2002239342A (en) Reaction device by corpuscular ray irradiation
JP2004342583A (en) Electrically-charged particle beam device for testing or treating sample
JP4796791B2 (en) Charged particle beam apparatus and charged particle beam image generation method
JP4874780B2 (en) Scanning electron microscope
JP2003518252A (en) X-ray microscope with soft X-ray X-ray source
JPH11169438A (en) Electron beam irradiation device
JP2001239131A (en) Desulfurization/denitration equipment and boiler equipment
JP2004170353A (en) Electron beam irradiation device and its irradiation method
JP2002040200A (en) Electron beam irradiation apparatus for fine wires and method for manufacturing optical fiber using the same
JPH06338280A (en) Environmental control type scanning electron microscope
JPH04192246A (en) Environment control type scanning microscope
JPH01265443A (en) X-ray aligner
WO2010109647A1 (en) Multicolumn electronic beam lithography mask retainer and multicolumn electronic beam lithography system
JPS63274049A (en) Scanning type electron microscope
JP2011238435A (en) Electron accelerator
JPH04206199A (en) negative ion beam source
JP2001099999A (en) Electron beam radiator
JP2007026987A (en) Charged particle beam device and charged particle beam image generation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070330