JP2002371139A - Reinforcing fiber composition for frp, and frp molded article produced by using the same - Google Patents
Reinforcing fiber composition for frp, and frp molded article produced by using the sameInfo
- Publication number
- JP2002371139A JP2002371139A JP2001180758A JP2001180758A JP2002371139A JP 2002371139 A JP2002371139 A JP 2002371139A JP 2001180758 A JP2001180758 A JP 2001180758A JP 2001180758 A JP2001180758 A JP 2001180758A JP 2002371139 A JP2002371139 A JP 2002371139A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- frp
- reinforced material
- fiber bundle
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Wind Motors (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、繊維強化樹脂(い
わゆるFRP)成形体に用いられる繊維製補強材とこれ
を用いたFRP成形体に関し、更に詳しくは、FRP成
形体を安価に成形できるうえ、複雑で3次元的形状の成
形体にも容易に対応でき、しかも成形体を軽量化し易
く、取り扱いが容易である、FRP用繊維製補強材およ
びこれを用いたFRP成形体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforcing material used for a fiber-reinforced resin (so-called FRP) molded article and an FRP molded article using the same. The present invention relates to a fiber reinforced material for FRP and an FRP molded article using the same, which can easily cope with a molded article having a complicated and three-dimensional shape, and can easily reduce the weight of the molded article and is easy to handle.
【0002】[0002]
【従来の技術】風力発電に用いられる風車用ブレード
は、耐久性と発電効率を高めるため、所定の外面形状に
加えて、大きな遠心力や回転力に耐える高い強度と軽量
性とが要求される。このため、その主桁にはガラス繊維
などの高強度繊維で補強したFRP成形体が多く用いら
れている。2. Description of the Related Art In order to enhance durability and power generation efficiency, wind turbine blades used for wind power generation are required to have not only a predetermined outer surface shape but also high strength and light weight capable of withstanding large centrifugal force and rotational force. . For this reason, FRP molded bodies reinforced with high-strength fibers such as glass fibers are often used for the main girders.
【0003】従来、上記の風車用ブレードの主桁などの
FRP成形体に用いられる繊維製補強材としては、高い
強度を効果的に発揮するガラスロービング等を織成した
ロービングクロスが用いられている。即ち、風車用ブレ
ードの主桁は、先端部側が偏平で細い形状に形成されて
おり、この半割部をFRPで成形したのち他の半割部と
一体化されるが、各半割状の成形体は、例えば、硬化性
樹脂を含浸させたロービングクロスを所定形状の成形型
の内面にバキューム及び/又はインジェクションにより
密着させ、この硬化性樹脂を硬化させることで成形され
る。Hitherto, a roving cloth woven from glass roving or the like which effectively exhibits high strength has been used as a fiber reinforcing material used for an FRP molded body such as a main girder of a wind turbine blade. That is, the main girder of the blade for a windmill is formed in a flat and thin shape at the tip end side, and after forming this half portion by FRP, it is integrated with the other half portions. The molded body is formed by, for example, bringing a roving cloth impregnated with a curable resin into close contact with an inner surface of a mold having a predetermined shape by vacuum and / or injection, and curing the curable resin.
【0004】[0004]
【発明が解決しようとする課題】上記のロービングクロ
スは、平織など一定幅のシート状に織成されていること
から、次のような問題点があった。 上記の成形型に沿わせる場合に成形型からはみ出る部
分はカットされロスとなることから、成形体の製造コス
トが高くつく。 シート状に織成されているため、円筒面を除く3次元
的曲面に沿わせることは困難であり、螺旋形状や曲面の
多い形状など、複雑な形状の成形体への対応が容易でな
い。 成形体には応力が加わる部分に繊維製補強材を多く配
置する必要があるが、ロービングクロスは薄いシート状
であるため、所定形状にカットしたものを多数積層する
必要があり、成形型への配置作業が煩雑であるうえ、カ
ットロスも多くなる。 ロービングクロスは所定幅に織成されて芯材に捲いて
あり、これを引き出してシート状に拡げた状態で所定形
状に切り出す必要があるため、取り扱いが容易でなく、
特に大形の成形体に用いる場合は上記の切断のために広
い作業空間を必要とする。Since the above-mentioned roving cloth is woven into a sheet of a fixed width such as a plain weave, it has the following problems. Since the portion protruding from the mold is cut and lost when it is made to conform to the above-mentioned mold, the manufacturing cost of the molded body is high. Since it is woven in a sheet shape, it is difficult to conform to a three-dimensional curved surface excluding a cylindrical surface, and it is not easy to cope with a molded article having a complicated shape such as a spiral shape or a shape having many curved surfaces. It is necessary to arrange a large amount of fiber reinforcing material in the area where stress is applied to the molded body, but since the roving cloth is in the form of a thin sheet, it is necessary to laminate a large number of pieces cut in a predetermined shape, The arrangement work is complicated, and the cut loss increases. The roving cloth is woven to a predetermined width and wound on a core material, and it is necessary to cut out a predetermined shape in a state where the roving cloth is drawn out and spread in a sheet shape.
In particular, when used for a large-sized molded product, a large working space is required for the above cutting.
【0005】本発明は上記の問題点を解消し、FRP成
形体を安価に成形できるうえ、複雑で3次元的形状の成
形体にも容易に対応でき、しかも成形体を軽量化し易
く、取り扱いが容易である、FRP用繊維製補強材およ
びこれを用いたFRP成形体を提供することを技術的課
題とする。The present invention solves the above-mentioned problems, can form an FRP molded article at low cost, can easily handle a complicated and three-dimensionally shaped molded article, and can easily reduce the weight of the molded article and handle it. It is an object of the present invention to provide a fiber reinforcing material for FRP which is easy and an FRP molded body using the same.
【0006】[0006]
【課題を解決するための手段】本発明は上記課題を解決
するために、例えば本発明の実施の形態を示す図1から
図6に基づいて説明すると、次のように構成したもので
ある。即ち、請求項1の発明はFRP用繊維製補強材に
関し、高強度繊維(2)を引き揃えて形成した繊維束部
(3)と、この繊維束部(3)の周囲に配置された筒状のス
リーブ部(4)とを備え、上記スリーブ部(4)を組み糸
(5)で編組して形成したことを特徴とする。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention will be described with reference to FIGS. 1 to 6 showing an embodiment of the present invention. That is, the invention of claim 1 relates to a fiber reinforcing material for FRP, and a fiber bundle portion formed by aligning high-strength fibers (2).
(3), and a tubular sleeve portion (4) disposed around the fiber bundle portion (3).
It is characterized by being formed by braiding in (5).
【0007】また、請求項10の発明はFRP成形体に
関し、上記のFRP用繊維製補強材(1)を、成形体(7)
に加わる応力の方向に沿って配置し、この繊維製補強材
(1)に含浸させた硬化性樹脂を硬化させて成形したこと
を特徴とする。A tenth aspect of the present invention relates to an FRP molded article, wherein the fiber reinforcing material for FRP (1) is replaced with a molded article (7).
This fiber reinforcement is placed along the direction of the stress
It is characterized in that the curable resin impregnated in (1) is cured and molded.
【0008】[0008]
【作用】上記FRP用繊維製補強材は、高強度繊維を引
き揃えた繊維束部の周囲に筒状のスリーブ部が編組され
ており、断面が略真円の紐状に形成され、例えば巻取リ
ールに巻き取られる。この紐状の繊維製補強材は、ハン
ドレイアップ、RTM、バキューム、又はそれらを組合
せた方法など、従来のロービングクロスと同様の成形方
法でFRP成形体に用いられる。The above-mentioned fiber reinforced material for FRP has a tubular sleeve portion braided around a fiber bundle portion in which high-strength fibers are aligned, and is formed in a string shape having a substantially perfect cross section. It is wound on a take-up reel. The string-shaped fiber reinforcing material is used for an FRP molded body by a molding method similar to a conventional roving cloth, such as hand lay-up, RTM, vacuum, or a combination thereof.
【0009】即ち、この繊維製補強材を成形型に配置す
る手順は、先ず成形型への配置個所に適した長さに切断
され、次いで成形型に沿って、強度が必要とされる方向
に配置される。また、成形体のうち曲げを負担する部位
など、高い応力が加わる個所には上記の繊維製補強材が
必要長さに切断されて集中的に配置される。このとき、
上記の繊維製補強材は紐状であるため、上記の成形型が
複雑な曲面形状であっても自由に曲げられてこの成形型
の表面に沿わされる。上記繊維束部は編組されたスリー
ブ部で束ねてあるので、各高強度繊維がバラけたり絡ま
ったりすることがない。しかもこの高強度繊維は直径方
向の応力を受けると容易に変位し、繊維束部の断面形状
が楕円形や矩形、平板状、U字形などに変形する。この
ため、上記繊維製補強材は、成形型へ押し付けたり、バ
キューム成形で真空引きすることにより、成形型の表面
形状に容易に馴染む。That is, the procedure of disposing the fiber reinforcing material in the molding die is as follows: first, the fiber is cut into a length suitable for the location where the reinforcing material is to be placed in the molding die; Be placed. Further, at a place where high stress is applied, such as a part of the molded body that bears bending, the above-mentioned fiber reinforcing material is cut to a required length and arranged intensively. At this time,
Since the fiber reinforcing material has a string shape, even if the mold has a complicated curved surface, the fiber is freely bent and follows the surface of the mold. Since the fiber bundle is bundled by a braided sleeve, each high-strength fiber does not come apart or become entangled. In addition, the high-strength fiber is easily displaced when subjected to a stress in the diametric direction, and the cross-sectional shape of the fiber bundle is deformed into an elliptical shape, a rectangular shape, a flat shape, a U-shape or the like. For this reason, the fiber reinforcing material is easily adapted to the surface shape of the mold by pressing against the mold or vacuuming by vacuum molding.
【0010】上記の成形型に配置された繊維製補強材に
は、従来のFRP成形と同様、予め硬化性樹脂を含浸さ
せておき、或いは上記配置後に硬化性樹脂を含浸させ、
この硬化性樹脂を硬化させることで所望のFRP成形体
が成形される。[0010] The fiber reinforcing material placed in the above-mentioned molding die is impregnated with a curable resin in advance similarly to the conventional FRP molding, or is impregnated with the curable resin after the above-mentioned arrangement.
By curing this curable resin, a desired FRP molded body is formed.
【0011】上記の繊維束部を形成する高強度繊維は、
引張強度、圧縮強度、及び弾性係数の高い繊維材料が用
いられる。具体的には、ガラス繊維、炭素繊維及びアラ
ミド繊維のうちから選ばれた1種以上の繊維が好まし
い。この高強度繊維は、略平行に引き揃えてあればよ
く、撚りは無いか僅かに撚ったものが好ましい。なお、
上記の繊維束部の太さは用途により設定されるが、例え
ば風車用ブレードの主桁などの大形の成形体には、直径
が10〜30mmのものが、曲げ作業が容易でありしかも
効率良く配置できるので適している。この繊維束部は、
通常、製造時は断面が略真円形状に形成されるが、直径
方向の応力を受けると容易に変形するものであればよ
く、具体的には上記の太さの場合に、例えば6〜8mm程
度の平板状にできるものが好ましい。[0011] The high-strength fibers forming the fiber bundle portion include:
A fiber material having high tensile strength, compressive strength, and elastic modulus is used. Specifically, one or more fibers selected from glass fibers, carbon fibers, and aramid fibers are preferable. The high-strength fibers need only be aligned substantially in parallel, and preferably have no twist or are slightly twisted. In addition,
The thickness of the fiber bundle portion is set according to the application. For example, a large molded body such as a main girder of a windmill blade has a diameter of 10 to 30 mm. It is suitable because it can be arranged well. This fiber bundle part
Normally, the cross section is formed in a substantially perfect circular shape at the time of manufacturing, but any shape may be used as long as it easily deforms when subjected to a stress in the diametric direction. Specifically, in the case of the above-mentioned thickness, for example, 6 to 8 mm What can be made into a flat plate of a degree is preferable.
【0012】上記の繊維束部は、高強度繊維の間に繊維
間部材を配置すると、この繊維間部材が硬化性樹脂の浸
入路を形成するため、樹脂の含浸性が向上し、好まし
い。また、上記高強度繊維の間に繊維間部材が配置され
ているので、高強度繊維の直径方向への移動が容易とな
り、繊維製補強材が曲がり易く断面形状が容易に変形さ
れる。なお、上記繊維間部材に緩衝性能がある場合に
は、繊維製補強材に真円への復元力が生じて樹脂の含浸
性が一層向上するうえ、捩れ等のクセ付けが少なくなり
作業性が良好となる。In the above-mentioned fiber bundle portion, it is preferable that an inter-fiber member be disposed between high-strength fibers, since the inter-fiber member forms an infiltration path for the curable resin, so that the impregnation of the resin is improved. In addition, since the inter-fiber member is disposed between the high-strength fibers, the high-strength fibers can be easily moved in the diameter direction, and the fiber reinforcing material is easily bent and the cross-sectional shape is easily deformed. In the case where the inter-fiber member has a cushioning property, a restoring force to a perfect circle is generated in the fiber reinforcing material, so that the resin impregnating property is further improved. It will be good.
【0013】上記繊維間部材には、木綿糸、不撚糸、C
SM、麻糸、ウレタン糸、ビニロン糸など、天然繊維や
合成繊維、無機繊維を用いることができる。これらは毛
羽立ったものなど、硬化性樹脂が含浸し易い材質が好ま
しいが、アンカー効果で硬化性樹脂に接合するものであ
ってもよい。また、上記繊維間部材は、硬化性樹脂の含
浸性や高強度繊維の移動性が良好になればよく、繊維材
料に代えてガラスビーズ、ガラスバルーン、その他の無
機充填材料からなる粉粒体材料を用いることができる。
さらにこの粉粒体材料と上記繊維材料とを組合せて用い
ても良い。The inter-fiber member includes cotton yarn, non-twist yarn, C
Natural fibers, synthetic fibers, and inorganic fibers such as SM, hemp yarn, urethane yarn, and vinylon yarn can be used. These are preferably made of a material which is easily impregnated with the curable resin, such as a fluffy material, but may be a material which is joined to the curable resin by an anchor effect. Further, the inter-fiber member may be any material as long as the impregnating property of the curable resin and the mobility of the high-strength fiber are improved, and instead of the fiber material, glass beads, a glass balloon, or a powder material made of another inorganic filler material Can be used.
Further, the granular material and the fiber material may be used in combination.
【0014】上記の繊維間部材を用いる場合、上記の繊
維束部のうち上記高強度繊維が50重量%以上であるの
が好ましく、70重量%以上であるのがより好ましい。When the above-mentioned inter-fiber member is used, the high-strength fiber in the fiber bundle is preferably at least 50% by weight, more preferably at least 70% by weight.
【0015】上記スリーブ部の編組密度は、上記の繊維
束部の高強度繊維を束ねた状態で、この高強度繊維の直
径方向への変位により繊維束部の断面形状の変形を許容
する粗さであればよく、例えば繊維束部の直径が10〜
30mmである場合、16〜64本の組み糸を編組して形
成される。[0015] The braid density of the sleeve portion is such that the high-strength fibers of the fiber bundle portion are bundled, and the high-strength fibers are displaced in the diametrical direction so that the cross-sectional shape of the fiber bundle portion can be deformed. For example, the diameter of the fiber bundle part is 10
When it is 30 mm, it is formed by braiding 16 to 64 braided yarns.
【0016】上記のスリーブ部を構成する組み糸は特定
の材質に限定されないが、繊維製補強材を急曲部に配置
しても皺や弛みを生じ難いものが好ましい。また、この
組み糸には繊維製補強材の補強効果を高めるため高強度
繊維を用いるのが好ましく、含浸性や繊維製補強材同士
の化学的接合等の観点から、上記繊維束部を構成する高
強度繊維と同種の高強度繊維を用いるのが一層好まし
い。The braid constituting the above-mentioned sleeve portion is not limited to a specific material, but it is preferable that wrinkles and slack do not easily occur even when a fiber-reinforced material is disposed in the sharply curved portion. In addition, it is preferable to use high-strength fibers for the braiding yarn in order to enhance the reinforcing effect of the fiber reinforcing material. From the viewpoint of impregnation, chemical bonding between the fiber reinforcing materials, and the like, the fiber bundle portion is formed. It is more preferable to use the same kind of high-strength fiber as the high-strength fiber.
【0017】なお、上記の繊維製補強材を用いて成形し
たFRP成形体は、上記の繊維製補強材の特性を効果的
に発揮できるように、所定方向に応力が加わるFRP成
形体であればよく、特定の用途のものに限定されない
が、風車用ブレードや、橋梁、大型ドームのパネルな
ど、特に大形の構造物に適している。It is to be noted that the FRP molded article molded using the above-mentioned fiber reinforcing material is an FRP molded article to which a stress is applied in a predetermined direction so that the characteristics of the above fiber reinforcing material can be effectively exhibited. Often suitable for large structures, such as, but not limited to, wind turbine blades, bridges, large dome panels, etc.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明する。図1から図3は本発明のFRP用繊
維製補強材の実施形態を示し、図1は繊維製補強材の一
部破断斜視図、図2は繊維束部の拡大断面図、図3は繊
維製補強材の概略形状を示す断面図である。Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment of a fiber reinforcing material for FRP of the present invention, FIG. 1 is a partially cutaway perspective view of the fiber reinforcing material, FIG. 2 is an enlarged sectional view of a fiber bundle portion, and FIG. It is sectional drawing which shows the general | schematic shape of a reinforcement material.
【0019】図1に示すように、この繊維製補強材(1)
は、高強度繊維であるガラスロービング(2)を引き揃え
て形成した繊維束部(3)と、この繊維束部(3)の周囲に
配置された筒状のスリーブ部(4)とからなり、上記スリ
ーブ部(4)はガラス長繊維からなる組み糸(5)で編組し
て形成してある。As shown in FIG. 1, this fiber reinforcing material (1)
Consists of a fiber bundle portion (3) formed by aligning glass rovings (2), which are high-strength fibers, and a cylindrical sleeve portion (4) disposed around the fiber bundle portion (3). The sleeve portion (4) is formed by braiding with a braided yarn (5) made of long glass fiber.
【0020】上記ガラスロービング(2)の材料は長繊維
化できるものであれば何でも良く、例えばEガラス、C
ガラス、Sガラス、ARガラス等があげられる。このガ
ラスロービング(2)は、エポキシ樹脂、不飽和ポリエス
テル樹脂、ジアリルフタレート樹脂などの硬化性樹脂と
それぞれ相溶性、反応性を有するバインダーで被覆され
ており、その太さ(番手)は、例えば呼び径9μmで57
5tex〜呼び径23μmで4400texのものが用
いられる。なお、後述の編組時の作業スペースを小さく
するため、これらのガラスロービングを3〜10本程度
引き揃えてチーズ状にしておいてもよい。なお、この実
施形態では高強度繊維としてガラスロービングを用いた
が、本発明の高強度繊維にはカーボン繊維やアラミド繊
維を用いることができる。The glass roving (2) can be made of any material as long as it can be made into a long fiber.
Glass, S glass, AR glass and the like can be mentioned. The glass roving (2) is coated with a binder having compatibility and reactivity with a curable resin such as an epoxy resin, an unsaturated polyester resin, and a diallyl phthalate resin, respectively. 57 for 9 μm diameter
5 tex to nominal diameter 23 μm and 4400 tex are used. In addition, in order to reduce the working space at the time of braiding described later, about 3 to 10 of these glass rovings may be aligned to form a cheese shape. Although glass roving is used as the high-strength fiber in this embodiment, carbon fiber or aramid fiber can be used as the high-strength fiber of the present invention.
【0021】図2に示すように、上記繊維束部(3)に
は、上記ガラスロービング(2…)間に木綿糸等の繊維材
料からなる繊維間部材(6)がランダムに配置してある。
この繊維間部材(6)の配置により、上記ガラスロービン
グ(2)は繊維束部(3)全体の約70重量%を占めるよう
に設定されている。なお、上記繊維間部材(6)は、ガラ
スロービング(2…)間に規則的に配置してもよい。ま
た、この実施形態では繊維間部材(6)に繊維材料を用い
たが、本発明ではこの繊維間部材にガラスビーズ等の無
機充填材からなる粉粒体材料を用いても良い。As shown in FIG. 2, an inter-fiber member (6) made of a fiber material such as cotton thread is randomly arranged between the glass rovings (2) in the fiber bundle (3). .
By the arrangement of the inter-fiber member (6), the glass roving (2) is set so as to occupy about 70% by weight of the entire fiber bundle (3). The inter-fiber member (6) may be arranged regularly between the glass rovings (2 ...). In this embodiment, a fiber material is used for the inter-fiber member (6). However, in the present invention, a powdery or granular material made of an inorganic filler such as glass beads may be used for the inter-fiber member.
【0022】前記スリーブ部(4)を構成する組み糸(5)
には、例えばJIS R3412に示す、ECG75
1/0、ECG75 1/2、ECG37 1/0、E
CG37 1/2等のガラス糸が用いられ、前記ガラス
ロービングと同種のバインダーが塗付してある。The braided yarn (5) constituting the sleeve part (4)
ECG75 shown in, for example, JIS R3412
1/0, ECG75 1/2, ECG37 1/0, E
A glass thread such as CG371 / 2 is used, and the same kind of binder as the above-mentioned glass roving is applied.
【0023】上記の繊維製補強材(1)は、一般に用いら
れる編組機(組みひも機)を用いて編組される。即ち、上
記のガラスロービング(2)と繊維間部材(6)とを必要個
数並べたクリール等から引き出し、ロープ状に揃えて例
えば外径が10〜30mm程度の繊維束部(3)に形成す
る。このロープ状となった繊維束部(3)を編組機に導い
て、その周囲を包む状態に、上記の組み糸(5)を16〜
64本用いてスリーブ部(4)を形成する。このスリーブ
部(4)で上記の繊維束部(3)が束ねられたのち、紐状に
形成された繊維製補強材(1)は巻取リール等に巻き取ら
れる。The fiber reinforcing material (1) is braided by using a generally used braiding machine (braiding machine). That is, the glass roving (2) and the inter-fiber member (6) are pulled out from a creel or the like in which a required number of them are arranged, and are formed into a rope shape to form a fiber bundle portion (3) having an outer diameter of, for example, about 10 to 30 mm. . The rope-shaped fiber bundle (3) is guided to a braiding machine, and the above-mentioned braided yarn (5) is wrapped around 16-
The sleeve part (4) is formed using 64 pieces. After the fiber bundle (3) is bundled by the sleeve (4), the fiber reinforcing material (1) formed into a string is wound on a take-up reel or the like.
【0024】上記のスリーブ部(4)は、繊維製補強材
(1)を直径方向へ押圧するとガラスロービング(2)が容
易に変位して繊維束部(3)の断面形状が簡単に変形する
程度の緩やかさで編組してある。このため、編組時は図
3(a)に示すように断面が略真円であるが、直径方向に
応力を加えると、図3(b)に示す楕円形や、図3(c)に
示す矩形、図3(d)に示す平板状となり、更には図3
(e)に示すU字形の断面となる。The above-mentioned sleeve part (4) is made of a fiber reinforcing material.
When the (1) is pressed in the diameter direction, the glass roving (2) is easily displaced and the fiber bundle (3) is braided with such a gentleness that the sectional shape thereof is easily deformed. For this reason, at the time of braiding, the cross section is substantially a perfect circle as shown in FIG. 3A, but when a stress is applied in the diametrical direction, the elliptical shape shown in FIG. 3B or the elliptical shape shown in FIG. It becomes a rectangular shape and a flat plate shape as shown in FIG.
The U-shaped cross section shown in FIG.
【0025】次に、上記FRP用繊維製補強材を用い
た、風車用ブレードの主桁の成形について説明する。図
4は上記風車用ブレードの主桁の半割部を示し、図4
(a)は半割部の一部を省略した斜視図、図4(b)は半割
部の要部を拡大した断面図である。Next, the formation of the main girder of the wind turbine blade using the above-mentioned fiber reinforced material for FRP will be described. FIG. 4 shows a half part of a main girder of the wind turbine blade.
4A is a perspective view in which a part of a half part is omitted, and FIG. 4B is a cross-sectional view in which a main part of the half part is enlarged.
【0026】図4(a)に示すように、上記の主桁(7)
は、基端部(8)側が圧肉の半円筒状に形成され、先端部
(9)側へ行くに従って少し拡径されたのち先細りとな
り、且つ偏平状態となる形状にしてある。上記の繊維製
補強材(1)は、巻取リールから繰り出されて必要な長さ
に切断され、半割部の外面形状を形成した成形型に沿っ
て、主桁(7)の長さ方向に並べられる。このとき、この
繊維製補強材(1)を軽く押圧して成形型に馴染ませると
よい。As shown in FIG. 4A, the main girder (7)
Is formed in a semi-cylindrical shape with a thicker base end (8),
(9) The shape is such that the diameter increases slightly toward the side and then tapers and becomes flat. The fiber reinforcing material (1) is fed out of a take-up reel, cut to a required length, and cut along a forming die having an outer shape of a half part, in a length direction of the main girder (7). It is arranged in. At this time, the fiber reinforcing material (1) may be lightly pressed to be adapted to the molding die.
【0027】風車用ブレードには上記の先端部(9)側よ
りも基端部(8)側に大きな応力が加わることから、上記
の繊維製補強材(1)はこの基端部(8)側に多く配置さ
れ、先端部(9)側に行くほど配置本数が削減される。即
ち、図4(b)に示すように、一部の繊維製補強材(1)を
短くすることで各部位における配置本数が調整される。
また、配置本数が多い部位では繊維製補強材(1)が複数
層に重ねられ、少ない部位では上記の押圧等により横方
向に拡げられて配置される。Since a larger stress is applied to the wind turbine blade at the base end (8) side than at the tip end (9) side, the fiber reinforcing material (1) is provided at the base end (8). The number is arranged more on the side, and the number of arrangements is reduced toward the tip (9). That is, as shown in FIG. 4 (b), the number of arrangements in each part is adjusted by shortening some of the fiber reinforcements (1).
Further, the fiber reinforcing material (1) is superposed in a plurality of layers in a portion where the number of arrangements is large, and is expanded in a lateral direction by the above-mentioned pressing or the like in a portion where the number is small.
【0028】次いで上記の繊維製補強材(1)に硬化性樹
脂(10)を含浸させ、次いで成形型側からバキュームす
る。これにより、上記硬化性樹脂(10)を含浸させた繊維
製補強材(1)が大気圧に押圧されて成形型の表面に密着
するとともに、過剰の上記硬化性樹脂(10)が排除され
る。なお、上記の硬化性樹脂(10)は、成形型に配置する
前の繊維製補強材(1)に予め含浸させておいてもよい。Next, the above-mentioned fiber reinforcing material (1) is impregnated with a curable resin (10), and then vacuumed from the mold side. As a result, the fiber reinforcing material (1) impregnated with the curable resin (10) is pressed to the atmospheric pressure and adheres to the surface of the molding die, and excess curable resin (10) is eliminated. . The above-mentioned curable resin (10) may be impregnated in advance into the fiber reinforcing material (1) before being placed in the mold.
【0029】上記の押圧やバキューム及び/又はインジ
ェクションにより、各繊維製補強材(1)には直径方向に
押圧力が加わり、断面形状が変形する。即ち、図5(a)
に示すように所定の長さ方向に並べて配置された断面が
円形の繊維製補強材(1)は、図5(b)に示す略正方形
や、図5(c)に示す楕円形、図5(d)に示す平板状な
ど、見かけ上隙間無く配置した状態となる。さらに、図
5(e)に示すように、複数層に重ねた部位では各繊維製
補強材(1)が相互に変形して隙間を埋め合う状態とな
る。また、上記の繊維製補強材(1)は任意の断面形状に
容易に変形できるので、例えば図6に示すように、成形
型(11)の溝部(12)に埋め込んで密着させることも可能で
ある。Due to the above-mentioned pressing, vacuum and / or injection, a pressing force is applied to each fiber reinforcing material (1) in the diametrical direction, and the cross-sectional shape is deformed. That is, FIG.
As shown in FIG. 5, a fiber reinforcing material (1) having a circular cross section and arranged in a predetermined length direction has a substantially square shape shown in FIG. 5B, an elliptical shape shown in FIG. A state is apparently arranged with no gap, such as a flat plate shape shown in (d). Further, as shown in FIG. 5 (e), the fiber reinforcing members (1) are mutually deformed in the portion where the layers are overlapped with each other to fill the gap. Further, since the fiber reinforcing material (1) can be easily deformed into an arbitrary cross-sectional shape, for example, as shown in FIG. is there.
【0030】その後、上記の硬化性樹脂(10)が硬化さ
れ、成形型から取り出されたのち、もう一方の半割部と
一体にされ、主桁(7)が形成される。この主桁(7)の周
囲にはウレタン発泡体等が配置され、その外側にFRP
製の表面が形成されて風車用ブレードにされる。Thereafter, the above-mentioned curable resin (10) is cured, taken out of the mold, and integrated with the other half to form the main girder (7). A urethane foam or the like is arranged around the main girder (7), and an FRP
Surface is formed into a windmill blade.
【0031】上記実施形態では風車用ブレードの主桁の
成形について説明したが、本発明のFRP成形体は、橋
梁の橋げた部や、大形ドームを構成するパネル等にも適
用でき、或いは大小を問わず他の様々なFRP成形体に
適用できることは言うまでも無い。In the above-described embodiment, the formation of the main girder of the wind turbine blade has been described. However, the FRP molded body of the present invention can be applied to a bridge girder of a bridge, a panel constituting a large dome, or the like. It goes without saying that the present invention can be applied to various other FRP molded articles regardless of the type.
【0032】[0032]
【発明の効果】本発明は上記のように構成され作用する
ことから、次の効果を奏する。Since the present invention is constructed and operates as described above, it has the following effects.
【0033】(1)繊維製補強材が紐状に形成されている
ことから、成形型に配置する場合にこの紐状の繊維製補
強材を必要な長さ位置で切断すればよく、前記従来技術
のロービングクロスと異なってカットロスを生じない。
従って、歩留りを向上してFRP成形体の製造コストを
低減させることができる。(1) Since the fiber-reinforced material is formed in a string shape, the fiber-shaped reinforcement material in the form of a string may be cut at a required length when the fiber-reinforced material is placed in a molding die. No cut loss unlike the technical roving cloth.
Therefore, the yield can be improved and the manufacturing cost of the FRP molded body can be reduced.
【0034】(2)繊維製補強材が紐状であるので、成形
型が複雑な曲面形状であっても自由に曲げて成形型の表
面形状に沿わせることができるうえ、繊維束部を編組さ
れたスリーブ部で束ねてあるので、バラけたり絡まった
りすることなく繊維束部の断面形状が変形して成形型の
表面形状に容易に馴染むことから、螺旋形状や曲面の多
い形状など、複雑で3次元的形状の成形体にも容易に対
応することができ、FRP成形体の設計が容易となる。(2) Since the reinforcing material made of fiber is in a string shape, even if the forming die has a complicated curved surface shape, it can be bent freely to conform to the surface shape of the forming die, and the fiber bundle portion is braided. Since the fiber bundles are bundled by the sleeve part that has been deformed, the cross-sectional shape of the fiber bundle part is deformed without becoming loose or entangled, and it easily adapts to the surface shape of the molding die, so complicated shapes such as spiral shapes and many curved surfaces Thus, it is possible to easily cope with a three-dimensionally shaped molded body, and the design of the FRP molded body is facilitated.
【0035】(3)繊維製補強材が紐状であり、所望の長
さに切り出すだけで曲げを負担する部位などの必要個所
へ集中的に簡単に配置できるので、FRP成形体を全体
として容易に軽量化することができる。(3) The fiber-reinforced material is in the form of a string, and can be simply and intensively arranged at a required portion such as a portion that bears bending simply by cutting it to a desired length. The weight can be reduced.
【0036】(4)繊維製補強材は、高強度繊維を引き揃
えて形成した繊維束部の周囲にスリーブ部を組み糸で編
組するだけでよいので、一般に用いられる編組装置を用
いることができ、この繊維製補強材を安価に製造するこ
とができる。(4) For the fiber reinforcing material, it is only necessary to braid the sleeve portion around the fiber bundle portion formed by aligning the high-strength fibers, and a braiding device generally used can be used. Thus, the fiber reinforcing material can be manufactured at low cost.
【0037】(5)繊維製補強材は紐状であり、リールに
巻き取ることができるので取り扱いが容易であるうえ、
前記従来のロービングクロスと異なって線状に引き出さ
れるだけであり、切断のための広い作業空間を必要とし
ない。(5) The fiber reinforcing material is in the form of a string and can be wound around a reel, so that it is easy to handle.
Unlike the conventional roving cloth, it is only drawn linearly and does not require a large working space for cutting.
【0038】(6)上記の繊維束部が高強度繊維間に繊維
間部材を有する場合には、この繊維間部材が硬化性樹脂
の浸入路を形成するため樹脂の含浸性を向上できるう
え、高強度繊維の変位が容易となって繊維製補強材が曲
がり易く断面形状が容易に変形するので、成形型への馴
染みを一層良好にすることができる。また、上記繊維間
部材に緩衝性能がある場合には、繊維製補強材に真円へ
の復元力が生じるので、含浸性能が一層向上するうえ、
捩れ等のクセ付けを少なくでき、作業性を向上させるこ
とができる。(6) When the fiber bundle has an inter-fiber member between high-strength fibers, the inter-fiber member forms an infiltration path for the curable resin, so that the impregnation of the resin can be improved. Since the displacement of the high-strength fiber is facilitated and the fiber-reinforced material is easily bent and the cross-sectional shape is easily deformed, the familiarity with the molding die can be further improved. Further, when the inter-fiber member has a cushioning performance, a restoring force to a perfect circle is generated in the fiber-reinforced material, so that the impregnation performance is further improved,
It is possible to reduce habits such as twisting, and to improve workability.
【図1】本発明のFRP用繊維製補強材の実施形態を示
す、一部破断斜視図である。FIG. 1 is a partially broken perspective view showing an embodiment of a fiber reinforced material for FRP of the present invention.
【図2】繊維束部の拡大断面図である。FIG. 2 is an enlarged sectional view of a fiber bundle portion.
【図3】繊維製補強材の概略形状を示す断面図であり、
図3(a)は編組後の繊維製補強材の断面図、図3(b)〜
図3(e)はそれぞれ直径方向の押圧力で変形した状態の
繊維製補強材の断面図である。FIG. 3 is a sectional view showing a schematic shape of a fiber-reinforced material,
FIG. 3A is a cross-sectional view of the fiber reinforcement after braiding, and FIGS.
FIG. 3E is a cross-sectional view of the fibrous reinforcing member in a state deformed by the pressing force in the diameter direction.
【図4】本発明のFRP成形体を風車ブレードの主桁に
適用した実施形態を示し、図4(a)は主桁の半割部の一
部を省略した斜視図、図4(b)は半割部の要部を拡大し
た断面図である。FIG. 4 shows an embodiment in which the FRP molded body of the present invention is applied to a main girder of a windmill blade, and FIG. 4 (a) is a perspective view in which a part of a half part of the main girder is omitted, and FIG. 4 (b). FIG. 4 is an enlarged sectional view of a main part of a half part.
【図5】成形型へ並べた状態の繊維製補強材の概略形状
を示す断面図であり、図5(a)は押圧力を加えていない
状態の繊維製補強材の断面図、図5(b)〜図5(e)はそ
れぞれ直径方向の押圧力で変形した状態の繊維製補強材
の断面図である。FIG. 5 is a cross-sectional view showing a schematic shape of a fiber-reinforced material arranged in a molding die, and FIG. 5 (a) is a cross-sectional view of the fiber-reinforced material in a state where no pressing force is applied; 5 (b) to 5 (e) are cross-sectional views of the fiber-reinforced material deformed by the pressing force in the diameter direction.
【図6】成形型の溝部に埋め込まれた状態の繊維製補強
材の断面図である。FIG. 6 is a cross-sectional view of a fibrous reinforcing material embedded in a groove of a molding die.
1…FRP用繊維製補強材、2…高強度繊維(ガラスロ
ービング)、3…繊維束部、4…スリーブ部、5…組み
糸、6…繊維間部材、7…FRP成形体(風車用ブレー
ドの主桁)。DESCRIPTION OF SYMBOLS 1 ... Fiber reinforcement material for FRP, 2 ... High-strength fiber (glass roving), 3 ... Fiber bundle part, 4 ... Sleeve part, 5 ... Braided yarn, 6 ... Inter-fiber member, 7 ... FRP molded body (Windmill blade Main digits).
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 101:00 B29C 67/14 X (72)発明者 田渕 嘉人 京都府京都市右京区西院43番1 春栄ハイ ツ215 Fターム(参考) 3H078 AA02 BB21 CC02 4F072 AA04 AA07 AB03 AB06 AB09 AB10 AB15 AB30 AB33 AD03 AD23 AD38 AL17 4F205 AA36 AD16 AD18 AD20 AH04 AH47 HA19 HA33 HA44 HB01 HC01 HC02 HC07 HC10 HC14 HC16 HC17 HM01 4L046 AA05 AA24 BA05 BB00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08L 101: 00 B29C 67/14 X (72) Inventor Yoshito Tabuchi 43 Saiin, Ukyo-ku, Kyoto-shi, Kyoto No. 1 Chun-Ei Heights 215 F-term (reference) 3H078 AA02 BB21 CC02 4F072 AA04 AA07 AB03 AB06 AB09 AB10 AB15 AB30 AB33 AD03 AD23 AD38 AL17 4F205 AA36 AD16 AD18 AD20 AH04 AH47 HA19 HA33 HA44 HB01 HC01 HC02 HC07 HC10 HC14 HC01 HC01 HC02 HC07 HC10 HC14 HC AA24 BA05 BB00
Claims (13)
維束部(3)と、この繊維束部(3)の周囲に配置された筒
状のスリーブ部(4)とを備え、上記スリーブ部(4)を組
み糸(5)で編組して形成したことを特徴とする、FRP
用繊維製補強材。1. A fiber bundle (3) formed by aligning high-strength fibers (2), and a tubular sleeve (4) disposed around the fiber bundle (3). FRP characterized in that said sleeve portion (4) is formed by braiding with a braided yarn (5).
Fiber reinforcement for use.
維(2)が、ガラス繊維、炭素繊維及びアラミド繊維のう
ちから選ばれた1種以上の繊維からなる、請求項1に記
載のFRP用繊維製補強材。2. The high-strength fiber (2) forming the fiber bundle portion (3) comprises at least one fiber selected from glass fiber, carbon fiber and aramid fiber. The fiber reinforced material for FRP according to the above.
mmである、請求項1または請求項2に記載のFRP用繊
維製補強材。3. The fiber bundle (3) has a diameter of 10 to 30.
The fiber reinforced material for FRP according to claim 1 or 2, which is mm.
の繊維束部(3)の高強度繊維(2)を束ねた状態で、この
高強度繊維(2)の直径方向への変位により繊維束部(3)
の断面形状の変形を許容する粗さである、請求項1から
3のいずれか1項に記載のFRP用繊維製補強材。4. The braid density of the sleeve portion (4) is such that the high-strength fibers (2) of the fiber bundle portion (3) are bundled together and the high-strength fibers (2) are displaced in the diameter direction. The fiber bundle part (3)
The fiber reinforced material for FRP according to any one of claims 1 to 3, which has a roughness that allows deformation of the cross-sectional shape of the FRP.
組み糸(5)を編組して形成した、請求項4に記載のFR
P用繊維製補強材。5. The FR according to claim 4, wherein the sleeve portion (4) is formed by braiding 16 to 64 braided yarns (5).
Fiber reinforcement for P.
維(2…)間に繊維間部材(6)を有する、請求項1から5
のいずれか1項に記載のFRP用繊維製補強材。6. The fiber bundle part (3) has inter-fiber members (6) between the high-strength fibers (2...).
The fiber reinforced material for FRP according to any one of the above.
度繊維(2)が50重量%以上である、請求項6に記載の
FRP用繊維製補強材。7. The fiber reinforced material for FRP according to claim 6, wherein the high-strength fiber (2) in the fiber bundle portion (3) is 50% by weight or more.
る、請求項6または請求項7に記載のFRP用繊維製補
強材。8. The fiber reinforced material for FRP according to claim 6, wherein the inter-fiber member (6) is made of a fiber material.
なる、請求項6または請求項7に記載のFRP用繊維製
補強材。9. The fiber reinforced material for FRP according to claim 6, wherein the inter-fiber member (6) is made of a granular material.
のFRP用繊維製補強材(1)を、成形体(7)に加わる応
力の方向に沿って配置し、この繊維製補強材(1)に含浸
させた硬化性樹脂を硬化させて成形したことを特徴とす
る、FRP成形体。10. The fiber reinforced material (1) for FRP according to any one of claims 1 to 9, which is arranged along the direction of the stress applied to the molded body (7). An FRP molded product obtained by curing and molding the curable resin impregnated in (1).
桁である、請求項10に記載のFRP成形体。11. The FRP formed body according to claim 10, wherein the formed body is a main girder of a blade for a windmill.
10に記載のFRP成形体。12. The FRP molding according to claim 10, wherein the molding (7) is a bridge.
ネルである、請求項10に記載のFRP成形体。13. The FRP molded body according to claim 10, wherein said molded body (7) is a panel constituting a dome.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001180758A JP2002371139A (en) | 2001-06-14 | 2001-06-14 | Reinforcing fiber composition for frp, and frp molded article produced by using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001180758A JP2002371139A (en) | 2001-06-14 | 2001-06-14 | Reinforcing fiber composition for frp, and frp molded article produced by using the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2002371139A true JP2002371139A (en) | 2002-12-26 |
Family
ID=19021125
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001180758A Pending JP2002371139A (en) | 2001-06-14 | 2001-06-14 | Reinforcing fiber composition for frp, and frp molded article produced by using the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2002371139A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006161669A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Blade member |
| WO2009095175A3 (en) * | 2008-02-02 | 2010-05-27 | Nordex Energy Gmbh | Rotor blade for wind power plants |
| JP2010159049A (en) * | 2009-01-07 | 2010-07-22 | Ge Aviation Systems Ltd | Composite spar |
| JP2015073412A (en) * | 2013-10-04 | 2015-04-16 | 三菱電機株式会社 | Coil for electrical equipment and coil manufacturing method for electrical equipment |
| CN105821578A (en) * | 2016-05-20 | 2016-08-03 | 广东亚太新材料科技有限公司 | Fiber braided hose with filling core |
| JP2017036519A (en) * | 2015-08-07 | 2017-02-16 | 日本毛織株式会社 | Braid structure for reinforcement and composite material using the same |
| CN108005846A (en) * | 2017-11-28 | 2018-05-08 | 中国人民解放军国防科技大学 | Main bearing beam for large wind power blades, hybrid spar composite wind power blades and preparation method thereof |
| EP2112374B2 (en) † | 2008-04-21 | 2018-10-17 | Siemens Aktiengesellschaft | Crack detection system |
| CN115613208A (en) * | 2022-09-30 | 2023-01-17 | 内蒙古乾源科技有限责任公司 | A kind of brittle fiber rope and its production process |
-
2001
- 2001-06-14 JP JP2001180758A patent/JP2002371139A/en active Pending
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006161669A (en) * | 2004-12-07 | 2006-06-22 | Toray Ind Inc | Blade member |
| WO2009095175A3 (en) * | 2008-02-02 | 2010-05-27 | Nordex Energy Gmbh | Rotor blade for wind power plants |
| EP2112374B2 (en) † | 2008-04-21 | 2018-10-17 | Siemens Aktiengesellschaft | Crack detection system |
| JP2010159049A (en) * | 2009-01-07 | 2010-07-22 | Ge Aviation Systems Ltd | Composite spar |
| JP2015073412A (en) * | 2013-10-04 | 2015-04-16 | 三菱電機株式会社 | Coil for electrical equipment and coil manufacturing method for electrical equipment |
| JP2017036519A (en) * | 2015-08-07 | 2017-02-16 | 日本毛織株式会社 | Braid structure for reinforcement and composite material using the same |
| CN105821578A (en) * | 2016-05-20 | 2016-08-03 | 广东亚太新材料科技有限公司 | Fiber braided hose with filling core |
| CN108005846A (en) * | 2017-11-28 | 2018-05-08 | 中国人民解放军国防科技大学 | Main bearing beam for large wind power blades, hybrid spar composite wind power blades and preparation method thereof |
| CN108005846B (en) * | 2017-11-28 | 2019-11-12 | 中国人民解放军国防科技大学 | Main bearing beam and hybrid wing spar composite wind power blade for large wind power blade and preparation method thereof |
| CN115613208A (en) * | 2022-09-30 | 2023-01-17 | 内蒙古乾源科技有限责任公司 | A kind of brittle fiber rope and its production process |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100766954B1 (en) | Fiber-reinforced polymer reinforcing bars with self-impregnated protrusions and manufacturing method | |
| JP5619399B2 (en) | Molding method for fiber reinforced plastic structure and fiber reinforced plastic structure | |
| CN103210129B (en) | Structural warp knit sheet and laminate thereof | |
| JP6138045B2 (en) | Method for producing high-weight carbon fiber sheet for RTM method and RTM method | |
| WO2011039828A1 (en) | Fabric for fiber-reinforced composite material, process for producing same, structure constituted of fiber-reinforced composite material, and process for producing same | |
| JP2002371139A (en) | Reinforcing fiber composition for frp, and frp molded article produced by using the same | |
| CN110914045A (en) | Method for producing a part made of composite material and composite part obtained thereby | |
| JP5808598B2 (en) | Joint structure of wooden members | |
| JP6751836B2 (en) | Manufacturing method of fiber reinforced resin structure | |
| JP2008007871A (en) | Reinforcing fiber sheet | |
| JP6278488B2 (en) | VaRTM reinforcing fiber sheet | |
| JP5801129B2 (en) | Method of joining wooden members | |
| JP2011073402A (en) | Preform of fiber-reinforced composite material and method for manufacturing the same | |
| JP2017227059A (en) | Junction structure | |
| JP2017201090A (en) | Seismic reinforcement | |
| JP2013028029A (en) | High-strength fiber wire material for reinforcing wooden member, and joint structure of wooden member using the same | |
| JP5132326B2 (en) | Carbon fiber tape material for concrete repair and reinforcement | |
| JP6061568B2 (en) | Method for producing reinforced fiber sheet for VaRTM and method for molding fiber reinforced plastic structure | |
| JP6705958B1 (en) | Fiber rod binding tool and fiber rod binding method | |
| WO2012014605A1 (en) | Fiber substrate and fiber-reinforced composite material | |
| JP2024134334A (en) | Fiber structures and fiber-reinforced composite materials | |
| JP4802044B2 (en) | Reinforcing fiber sheet | |
| JP2008127148A (en) | Fiber bundle assembly, manufacturing method thereof, and tank | |
| JP2015117442A (en) | Reinforcing fiber woven fabric and method for producing the same | |
| JP3844525B2 (en) | 3D prestressed concrete construction method |