[go: up one dir, main page]

JP2002303578A - Laser-induced fluorescence analysis method - Google Patents

Laser-induced fluorescence analysis method

Info

Publication number
JP2002303578A
JP2002303578A JP2001107525A JP2001107525A JP2002303578A JP 2002303578 A JP2002303578 A JP 2002303578A JP 2001107525 A JP2001107525 A JP 2001107525A JP 2001107525 A JP2001107525 A JP 2001107525A JP 2002303578 A JP2002303578 A JP 2002303578A
Authority
JP
Japan
Prior art keywords
laser
sample
fluorescence
induced fluorescence
resonance excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001107525A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
裕之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001107525A priority Critical patent/JP2002303578A/en
Publication of JP2002303578A publication Critical patent/JP2002303578A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser induced fluorescence analyzing method capable of easily determining trace amounts of many elements. SOLUTION: In the laser induced fluorescence analyzing method, concentration of an objective element is determined by applying a resonance excitation pulsed laser having an inherent wavelength resonating with the objective element in a sample on the atomized sample and spectrally analyzing a generated quantity of fluorescence. It is characterized by that a pulse time width of the resonance excitation pulsed laser is >=100 fs and <=500 ps as a full width of half maximum. It is favorable that the sample is atomized by one of laser irradiation, heating inside a graphite reactor, high frequency inductively coupled plasma, spark discharge, arc discharge, or glow discharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ誘起を用い
た化学成分定量方法に関するものであり、特に微量成分
の濃度定量に用いられるレーザ誘起蛍光分析方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying chemical components using laser induction, and more particularly to a laser-induced fluorescence analysis method used for quantifying the concentration of trace components.

【0002】[0002]

【従来の技術】レーザ誘起蛍光分析法は、目的原子に共
鳴する波長のレーザを原子化した試料に照射して生じた
励起状態から放出される蛍光を測定する方法である。こ
の分析法は、一般に高感度で選択性の高い分析法として
知られている。このような特徴をもつことから、ppm
レベルあるいはそれ以下のいわゆる極微量元素分析手法
としての研究も数多く行なわれている。
2. Description of the Related Art Laser-induced fluorescence analysis is a method for measuring fluorescence emitted from an excited state generated by irradiating an atomized sample with a laser having a wavelength that resonates with a target atom. This analytical method is generally known as a highly sensitive and highly selective analytical method. Because of these features, ppm
Numerous studies have been conducted as so-called trace element analysis techniques at or below the level.

【0003】しかし、この分析法の定量下限の改善に際
しては、上記に指摘した背景輻射の他に、共鳴励起レー
ザの散乱光が大きな阻害要因となっている。そのため、
レーザの照射方向と蛍光検出方向を工夫して、レーザ散
乱光が検出光学系に入ることを可能な限り軽減する等の
必要があった。しかし、濃度が極微量域であるほど、よ
り高密度に試料原子が存在する原子気体状態をつくりだ
す必要があり、また、この気化した原子に対して相互干
渉体積がより大きくなるように共鳴励起レーザを照射す
る必要が生じてくるが、これは一方でレーザがこれら原
子によって弾性的に散乱される確率をも高めることにな
るのであった。
[0003] However, in improving the lower limit of quantification of this analysis method, scattered light of the resonance excitation laser is a major inhibiting factor in addition to the background radiation mentioned above. for that reason,
It was necessary to reduce the laser scattered light entering the detection optical system as much as possible by devising the laser irradiation direction and the fluorescence detection direction. However, the lower the concentration, the more it is necessary to create an atomic gas state in which the sample atoms are present at a higher density, and the resonance pump laser is used to increase the mutual interference volume for these vaporized atoms. , Which, on the other hand, also increases the probability that the laser will be elastically scattered by these atoms.

【0004】この共鳴励起レーザの散乱の問題は、特開
平8−75651号公報にあるように共鳴励起波長と蛍
光波長が分光器の分解能以上に異なる組み合わせとする
ことによって、解消されるが、このような遷移波長の組
み合わせが利用できる元素は一部に限られ、それ以外の
元素には適用できないという問題があった。
The problem of scattering of the resonance excitation laser can be solved by using a combination in which the resonance excitation wavelength and the fluorescence wavelength are different from each other beyond the resolution of the spectroscope as disclosed in Japanese Patent Application Laid-Open No. 8-75651. There is a problem that elements that can use such a combination of transition wavelengths are limited to a part and cannot be applied to other elements.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決し、励起波長と同一あるいは、これ
に近接した波長の蛍光測定を可能とし、多くの元素の極
微量定量が容易にできるレーザ誘起蛍光分析方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, enables fluorescence measurement at a wavelength that is the same as or close to the excitation wavelength, and enables trace-quantification of many elements. An object of the present invention is to provide a laser-induced fluorescence analysis method that can be easily performed.

【0006】[0006]

【課題を解決するための手段】上記課題を以下に示す方
法により解決する。 (1)原子化した試料に、試料中の目的とする元素に共
鳴する固有の波長を有する共鳴励起パルスレーザを照射
して発生させた蛍光光量を分光分析することにより、前
記目的とする元素の濃度を定量するレーザ誘起蛍光分析
法において、前記共鳴励起パルスレーザのパルス時間幅
が、半値全幅として100fs以上500ps以下であるこ
とを特徴とするレーザ誘起蛍光分析方法。 (2)試料の原子化が、レーザ照射、黒鉛炉中の加熱、
高周波誘導結合プラズマ、スパーク放電、アーク放電、
グロー放電のいずれかによってなされることを特徴とす
る前記(1)に記載のレーザ誘起蛍光分析方法。
Means for Solving the Problems The above problems are solved by the following method. (1) Irradiating the atomized sample with a resonance excitation pulse laser having a specific wavelength that resonates with the target element in the sample, and spectrally analyzing the amount of fluorescent light generated thereby to obtain the target element A laser-induced fluorescence analysis method for determining a concentration, wherein a pulse time width of the resonance excitation pulse laser is 100 fs or more and 500 ps or less as a full width at half maximum. (2) Atomization of the sample is performed by laser irradiation, heating in a graphite furnace,
High frequency inductively coupled plasma, spark discharge, arc discharge,
The laser-induced fluorescence analysis method according to (1), wherein the method is performed by any one of glow discharge.

【0007】[0007]

【発明の実施の形態】以下に、本発明について詳細に説
明する。目的元素の外殻電子エネルギー準位のある下準
位から上準位の遷移に共鳴する波長のレーザを照射する
と、光吸収によって上準位に励起される。この励起準位
の寿命は、元の下準位への自然放出係数の逆数で与えら
れる。もし、上準位から元の下準位以外の準位に遷移が
許容されていれば、これら全ての遷移に対する自然放出
係数の和の逆数が励起準位の寿命となる。このようにし
て求められる自然寿命のなかでもレーザ誘起蛍光分析方
法による微量成分定量において最適な遷移の励起状態の
寿命はほとんどの元素に対して、0.1〜100nsの範
囲にある。実際の系では、大気圧であることが多く、ま
たさらに大気圧以上の圧力条件であることもあり、衝突
による無放射遷移等が、通常起こるため、励起状態の寿
命はさらに短くなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. When a laser having a wavelength that resonates with a transition from a lower level to an upper level of the outer electron energy level of the target element is excited, the laser is excited to an upper level by light absorption. The lifetime of this excited level is given by the reciprocal of the spontaneous emission coefficient to the original lower level. If a transition from the upper level to a level other than the original lower level is allowed, the reciprocal of the sum of the spontaneous emission coefficients for all these transitions is the lifetime of the excited level. Among the natural lifetimes thus obtained, the optimum transition excited state lifetime in the determination of trace components by laser-induced fluorescence analysis is in the range of 0.1 to 100 ns for most elements. In an actual system, the pressure is often atmospheric pressure, and sometimes the pressure is higher than the atmospheric pressure. Non-radiative transition or the like due to collision usually occurs, so that the life of the excited state is further shortened.

【0008】従来、レーザ誘起蛍光分析方法に用いられ
るパルスレーザのパルス幅は、半値全幅(FWHM)として5
〜20nsであった。このようなレーザパルス幅では、多
くの場合、共鳴励起レーザの散乱光を時間的に分離する
ことはできなかった。しかし、近年、ピコ秒やフェムト
秒レーザ等の極短パルス幅レーザが開発され、レーザ蛍
光分析に適用することができるようになってきた。
Conventionally, the pulse width of a pulse laser used in a laser-induced fluorescence analysis method is 5% as a full width at half maximum (FWHM).
2020 ns. With such a laser pulse width, in many cases, the scattered light of the resonance excitation laser cannot be temporally separated. However, in recent years, ultra-short pulse width lasers such as picosecond and femtosecond lasers have been developed and can be applied to laser fluorescence analysis.

【0009】本発明は、これらのレーザのパルス幅が上
記した原子の励起状態の寿命に対して、3〜4桁短いこ
とに着目して、成されたものである。また、本発明は、
主として大気圧あるいはそれ以上の圧力条件下にある実
際の系における励起状態の寿命がおよそ1nsより短くて
も、レーザと同一あるいはこれに数nm以下の波長差で近
接した波長の蛍光を、レーザの散乱光による干渉が少な
く、かつ蛍光を高い効率で測定することを可能とするた
めに検討した結果、到達したものである。
The present invention has been made by paying attention to the fact that the pulse width of these lasers is three to four orders of magnitude shorter than the lifetime of the above-mentioned excited state of atoms. Also, the present invention
Even if the lifetime of the excited state in an actual system mainly under atmospheric pressure or higher pressure conditions is shorter than about 1 ns, the fluorescence of the same wavelength as the laser or a wavelength close to the laser by a wavelength difference of several nm or less is emitted by the laser. This has been achieved as a result of investigations to reduce interference by scattered light and to enable fluorescence to be measured with high efficiency.

【0010】本発明の概念を、図を用いて説明する。い
ま、目的元素のあるひとつの遷移に共鳴する波長のレー
ザを照射して生じた励起状態の寿命が1nsであった場合
の、レーザの強度がピーク(t=0)に至るまでに生成
した励起状態の数密度の時間変化を、その後のレーザ照
射の影響を無視して、レーザのパルス波形とともに図1
に示す。ここで共鳴励起レーザのパルス幅が半値全幅で
1nsである場合、レーザ強度が、ピークに対して1/1
00に減衰した時点で検出器のゲートを開いても蛍光の
検出率は、全蛍光強度の30%弱に過ぎない。
The concept of the present invention will be described with reference to the drawings. Now, when the lifetime of the excited state generated by irradiating a laser having a wavelength that resonates with a certain transition of the target element is 1 ns, the excitation generated until the laser intensity reaches the peak (t = 0). The time change of the number density of the state is ignored along with the pulse waveform of the laser, ignoring the effect of the subsequent laser irradiation.
Shown in Here, when the pulse width of the resonance excitation laser is 1 ns at full width at half maximum, the laser intensity is 1/1 times the peak.
Even if the detector gate is opened at the time of decay to 00, the fluorescence detection rate is only less than 30% of the total fluorescence intensity.

【0011】これに対し、本発明に従って、パルス幅が
500psのレーザを用いた場合、図2のようになり、レ
ーザ強度がピークに対して2桁減衰した時点で検出器の
ゲートを開くと、全蛍光強度の約50%を捕集すること
が可能であり、時間的にレーザ散乱光の干渉を避けつ
つ、高感度な蛍光測定が実現できる。さらに、本発明に
従って、パルス幅100psのレーザを用いるとレーザ強
度が4桁減衰した時点でも約80%の蛍光を捕集でき
る。尚、レーザパルス幅が100fsより短い場合は、蛍
光収率が全体的に低下するので、100fs以上のパルス
幅であることが望ましい。
On the other hand, when a laser having a pulse width of 500 ps is used in accordance with the present invention, the result is as shown in FIG. 2. When the gate of the detector is opened when the laser intensity attenuates by two digits with respect to the peak, Approximately 50% of the total fluorescence intensity can be collected, and high-sensitivity fluorescence measurement can be realized while temporally avoiding interference of laser scattered light. Further, according to the present invention, when a laser having a pulse width of 100 ps is used, about 80% of the fluorescence can be collected even when the laser intensity is attenuated by four digits. When the laser pulse width is shorter than 100 fs, the fluorescence yield is reduced as a whole, so that the pulse width is preferably 100 fs or more.

【0012】本発明の装置構成の一例を図3に示す。図
3の例では、レーザ1から発振されるビームを照射して
試料12の一部を原子化する。この原子化パルスに対し
て一定の時間経過後、共鳴励起レーザ2から発振される
ビームを照射して目的元素の蛍光を誘起する。この蛍光
は、分光分析装置に導かれ蛍光光量が測定される。本発
明のポイントであるパルス幅が1nsより短い共鳴励起レ
ーザとしては、モードロックTi−サファイアレーザ等が
使用できる。
FIG. 3 shows an example of the device configuration of the present invention. In the example of FIG. 3, a part of the sample 12 is atomized by irradiating a beam oscillated from the laser 1. After a certain period of time has elapsed with respect to this atomization pulse, a beam oscillated from the resonance excitation laser 2 is irradiated to induce fluorescence of the target element. This fluorescence is guided to a spectroscopic analyzer, and the amount of fluorescence is measured. A mode-locked Ti-sapphire laser or the like can be used as a resonance excitation laser having a pulse width shorter than 1 ns, which is a point of the present invention.

【0013】原子化レーザとしては、Qスイッチパルス
Nd:YAGレーザ等が使用でき、適宜レンズ等の集光手段に
より、試料面で1GW/cm2前後の尖頭出力密度を与えるこ
とができればよい。本発明における装置構成のもうひと
つの例を、図4に示す。図4の例では、黒鉛炉13によ
り試料の一部を原子化する。ここに、共鳴励起レーザ
(2)から発振されるビームを照射して目的元素の蛍光
を誘起する。この蛍光は、分光分析装置に導かれ蛍光光
量が測定される。共鳴励起レーザのとしては、上記の例
と同様のものを使用できる。
As an atomization laser, a Q switch pulse is used.
It is sufficient that an Nd: YAG laser or the like can be used, and a peak power density of about 1 GW / cm 2 can be given on the sample surface by a focusing means such as a lens as appropriate. FIG. 4 shows another example of the device configuration in the present invention. In the example of FIG. 4, a part of the sample is atomized by the graphite furnace 13. Here, a beam oscillated from the resonance excitation laser (2) is irradiated to induce fluorescence of the target element. This fluorescence is guided to a spectroscopic analyzer, and the amount of fluorescence is measured. As the resonance excitation laser, the same laser as in the above example can be used.

【0014】[0014]

【実施例】(実施例1)鋼試料を図3に示した装置で分
析し、Tiを定量した。Nd:YAGレーザを試料面に照射し、
適当な時間経過後、パルス幅(FWHM)300psのTiサフ
ァイアレーザの波長をTi原子の共鳴励起の一つである2
93.3nmにチューニングして照射し、同一波長の蛍光
を測定した。その結果、検出限界として約0.1μg/
gを得た。検量線のBEC(バックグラウンド等価含有
率)は、平均で約10μg/gであった。 (比較例1)鋼試料を分析し、Tiを定量した。Nd:YAGレ
ーザを試料面に照射し、適当な時間経過後、パルス幅
(FWHM)1nsのTiサファイアレーザの波長をTi原子の共
鳴励起の一つである293.3nmにチューニングして照
射し、同一波長の蛍光を測定した。その結果、検出限界
は約0.7μg/gを得た。検量線のBEC(バックグ
ラウンド等価含有率)は、平均で約100μg/gであ
った。 (実施例2)鋼試料を図4に示した装置で分析し、Mgを
定量した。鋼試料約1gを酸分解して一定容量に希釈し
た水溶液試料を、黒鉛炉に約5μl滴下し、約10sで
約3000Kまで通電加熱し、原子化した。ここにMg原
子の共鳴励起の一つである285.2nmにチューニング
したパルス幅500fsのTiサファイアレーザを照射し、
同一波長の蛍光を測定した。その結果、検出限界として
約0.01μg/gを得た。検量線のBECは、平均で
約0.1μg/gであった。 (比較例2)鋼試料を分析し、Mgを定量した。鋼試料約
1gを酸分解して一定容量に希釈した水溶液試料を、黒
鉛炉に約5μl滴下し、約10sで約3000Kまで通
電加熱し、原子化した。ここにMg原子の共鳴励起の一つ
である285.2nmにチューニングしたパルス幅0.6
nsのTiサファイアレーザを照射し、同一波長の蛍光を測
定した。その結果、検出限界として約1μg/gを得
た。検量線のBECは、平均で約10μg/gであっ
た。
EXAMPLES (Example 1) A steel sample was analyzed by the apparatus shown in FIG. 3 to quantify Ti. Irradiate the sample surface with Nd: YAG laser,
After an appropriate time, the wavelength of the Ti sapphire laser having a pulse width (FWHM) of 300 ps is set to 2 which is one of the resonance excitation of Ti atoms.
The light was tuned to 93.3 nm and irradiated, and the fluorescence of the same wavelength was measured. As a result, the detection limit was about 0.1 μg /
g was obtained. The BEC (background equivalent content) of the calibration curve was about 10 μg / g on average. (Comparative Example 1) A steel sample was analyzed and Ti was quantified. A sample surface is irradiated with an Nd: YAG laser, and after an appropriate time, the wavelength of a Ti sapphire laser having a pulse width (FWHM) of 1 ns is tuned to 293.3 nm, which is one of resonance excitations of Ti atoms, and irradiated. Fluorescence of the same wavelength was measured. As a result, the detection limit was about 0.7 μg / g. The BEC (background equivalent content) of the calibration curve was about 100 μg / g on average. (Example 2) A steel sample was analyzed by the apparatus shown in Fig. 4 to determine Mg. An aqueous solution sample obtained by acid-decomposing about 1 g of a steel sample and diluting it to a certain volume was dropped into a graphite furnace in an amount of about 5 μl, and heated to about 3000 K in about 10 s to atomize the sample. This is irradiated with a Ti sapphire laser with a pulse width of 500 fs tuned to 285.2 nm, which is one of the resonance excitations of Mg atoms,
Fluorescence of the same wavelength was measured. As a result, about 0.01 μg / g was obtained as the detection limit. The BEC of the calibration curve was about 0.1 μg / g on average. (Comparative Example 2) A steel sample was analyzed and Mg was quantified. About 5 g of an aqueous solution sample obtained by acid decomposition of about 1 g of a steel sample and diluting it to a certain volume was dropped into a graphite furnace, and heated and heated to about 3000 K in about 10 s to atomize. Here, a pulse width of 0.6 tuned to 285.2 nm which is one of the resonance excitations of Mg atoms
Irradiated with Ti sapphire laser of ns, fluorescence of the same wavelength was measured. As a result, a detection limit of about 1 μg / g was obtained. The BEC of the calibration curve was about 10 μg / g on average.

【0015】[0015]

【発明の効果】本発明によれば、励起波長と同一の波長
の蛍光を共鳴励起レーザの散乱光による妨害無しで測定
できるため、レーザ散乱光の空間的な分離に労力を払う
必要性をなくし、高感度のレーザ誘起蛍光分析方法の適
用可能な元素が増え、レーザ誘起蛍光分析方法の適用範
囲を拡げることが可能である。
According to the present invention, fluorescence having the same wavelength as the excitation wavelength can be measured without interference by the scattered light of the resonance excitation laser, so that it is not necessary to pay attention to the spatial separation of the laser scattered light. In addition, the number of elements to which the laser-induced fluorescence analysis method with high sensitivity can be applied increases, and the application range of the laser-induced fluorescence analysis method can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術におけるレーザパルスの時間依存性を
説明するための図である(励起状態の寿命1ns、レーザ
パルス幅1ns)。
FIG. 1 is a diagram for explaining the time dependence of a laser pulse in the related art (1 ns in the excited state and 1 ns in the laser pulse width).

【図2】本発明におけるレーザパルスの時間依存性を説
明するための図である(励起状態の寿命1ns、レーザパ
ルス幅500ps)。
FIG. 2 is a diagram for explaining the time dependence of a laser pulse in the present invention (lifetime of excited state is 1 ns, laser pulse width is 500 ps).

【図3】本発明を適用可能な装置の一例を模式的に示し
た図である。
FIG. 3 is a diagram schematically showing an example of an apparatus to which the present invention can be applied.

【図4】本発明を適用可能な装置の一例を模式的に示し
た図である。
FIG. 4 is a diagram schematically showing an example of an apparatus to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

1…原子化レーザ 2…共鳴励起レーザ 3…パルス発生器 4…分光器 5…光ファイバー 6…レーザ用ミラー 7…レーザ用ミラー 8…制御用コンピュータ 9…集光レンズ 10…光フィルター 11…発光及び蛍光 12…試料 13…黒鉛炉 DESCRIPTION OF SYMBOLS 1 ... Atomization laser 2 ... Resonance excitation laser 3 ... Pulse generator 4 ... Spectroscope 5 ... Optical fiber 6 ... Laser mirror 7 ... Laser mirror 8 ... Control computer 9 ... Condenser lens 10 ... Optical filter 11 ... Emission and Fluorescence 12 ... Sample 13 ... Graphite furnace

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子化した試料に、試料中の目的とする
元素に共鳴する固有の波長を有する共鳴励起パルスレー
ザを照射して発生させた蛍光光量を分光分析することに
より、前記目的とする元素の濃度を定量するレーザ誘起
蛍光分析法において、前記共鳴励起パルスレーザのパル
ス時間幅が、半値全幅として100fs以上500ps以下
であることを特徴とするレーザ誘起蛍光分析方法。
1. The method according to claim 1, wherein the atomized sample is irradiated with a resonance excitation pulse laser having a specific wavelength that resonates with a target element in the sample, and the amount of fluorescence generated by the irradiation is spectrally analyzed. A laser-induced fluorescence analysis method for quantifying the concentration of an element, wherein a pulse time width of the resonance excitation pulse laser is 100 fs or more and 500 ps or less as a full width at half maximum.
【請求項2】 試料の原子化が、レーザ照射、黒鉛炉中
の加熱、高周波誘導結合プラズマ、スパーク放電、アー
ク放電、グロー放電のいずれかによってなされることを
特徴とする請求項1に記載のレーザ誘起蛍光分析方法。
2. The method according to claim 1, wherein the atomization of the sample is performed by any of laser irradiation, heating in a graphite furnace, high-frequency inductively coupled plasma, spark discharge, arc discharge, and glow discharge. Laser-induced fluorescence analysis method.
JP2001107525A 2001-04-05 2001-04-05 Laser-induced fluorescence analysis method Withdrawn JP2002303578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107525A JP2002303578A (en) 2001-04-05 2001-04-05 Laser-induced fluorescence analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107525A JP2002303578A (en) 2001-04-05 2001-04-05 Laser-induced fluorescence analysis method

Publications (1)

Publication Number Publication Date
JP2002303578A true JP2002303578A (en) 2002-10-18

Family

ID=18959835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107525A Withdrawn JP2002303578A (en) 2001-04-05 2001-04-05 Laser-induced fluorescence analysis method

Country Status (1)

Country Link
JP (1) JP2002303578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846390B2 (en) 2006-03-30 2010-12-07 King Fahd University Of Petroleum And Minerals Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846390B2 (en) 2006-03-30 2010-12-07 King Fahd University Of Petroleum And Minerals Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence
US8045154B2 (en) 2006-03-30 2011-10-25 King Fahd University Of Petroleum And Minerals Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence
US8263000B2 (en) 2006-03-30 2012-09-11 King Fahd University Of Petroleum & Minerals Apparatus and method for measuring concentrations of fuel mixtures using depth-resolved laser-induced fluorescence

Similar Documents

Publication Publication Date Title
Gomba et al. Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces
Winefordner et al. Novel uses of lasers in atomic spectroscopyPresented at the 2000 Winter Conference on Plasma Spectrochemistry, Fort Lauderdale, FL, USA, January 10–15, 2000.. Plenary Lecture
Butcher et al. Laser-excited atomic fluorescence spectrometry in flames, plasmas and electrothermal atomisers. A review
Mao et al. Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy
CA2296623C (en) Method and apparatus for materials analysis by enhanced laser induced plasma spectroscopy
Kuzuya et al. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy
US20180335388A1 (en) Method for improving detective sensitivity on carbon element in laser-induced breakdown spectroscopy
Lo et al. ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions
US7700929B2 (en) Remote laser assisted biological aerosol standoff detection in atmosphere
Khalil et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy
Wang et al. Sensitive analysis of copper in water by LIBS–LIF assisted by simple sample pretreatment
CN116223481A (en) Multi-element multi-spectral line spectrum enhanced laser-induced breakdown spectroscopy measurement method
JP2009288068A (en) Analyzing method and analyzer
Kang et al. Sensitive elemental analysis with high repetition rate laser-ablation spark-induced breakdown spectroscopy combined with lock-in signal detection
Núñez et al. Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation
CN108593631B (en) Method for detecting molecular free radical spectrum by aerosol-assisted laser probe
Nicolodelli et al. Laser-induced breakdown spectroscopy of environmental and synthetic samples using non-intensified CCD: optimization of the excitation wavelength
JP2002303578A (en) Laser-induced fluorescence analysis method
Remy et al. Real sample analysis by ETA-LEAFS with background correction: application to gold determination in river water
Polek et al. High-resolution spectroscopy of uranium laser-produced plasma using saturated absorption spectroscopy
Lindner et al. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry
JP4625428B2 (en) Method and apparatus for analyzing component of molten metal in refining furnace
JP2001356096A (en) Remote monitoring method and apparatus in smelting furnace
Majidi et al. Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry
JP2008292170A (en) Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701