JP2002303637A - Probe pin and contactor having the same - Google Patents
Probe pin and contactor having the sameInfo
- Publication number
- JP2002303637A JP2002303637A JP2001106713A JP2001106713A JP2002303637A JP 2002303637 A JP2002303637 A JP 2002303637A JP 2001106713 A JP2001106713 A JP 2001106713A JP 2001106713 A JP2001106713 A JP 2001106713A JP 2002303637 A JP2002303637 A JP 2002303637A
- Authority
- JP
- Japan
- Prior art keywords
- probe pin
- probe
- tip
- single crystal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 title claims abstract description 165
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 229910021332 silicide Inorganic materials 0.000 claims description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 229910000679 solder Inorganic materials 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007747 plating Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002585 base Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- 229910017392 Au—Co Inorganic materials 0.000 description 1
- -1 Ga As Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 229910025794 LaB6 Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体集積回路等
の電気特性を測定するプローブカードに関し、特に、プ
ローブカードを構成し、前記半導体回路等の電極に接す
る重要部のプローブピン、並びに前記プローブピンが回
路接続されているプローブカードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe card for measuring electrical characteristics of a semiconductor integrated circuit or the like, and more particularly, to a probe card which constitutes a probe card and which is an important part of a probe for contacting an electrode of the semiconductor circuit or the like, and the probe The present invention relates to a probe card having pins connected to a circuit.
【0002】[0002]
【従来の技術】半導体集積回路等の製造工程において
は、一般に半導体ウェハーに多数のチップが形成された
段階で、各チップの電気的特性を測定し、動作特性の良
否判定を行なう。この測定には、多数のプローブピンが
被検査体の電極形状に応じて植設されているプローブカ
ードを用いる。2. Description of the Related Art In a process of manufacturing a semiconductor integrated circuit or the like, generally, at the stage when a large number of chips are formed on a semiconductor wafer, the electrical characteristics of each chip are measured to judge the quality of operation characteristics. For this measurement, a probe card in which a large number of probe pins are implanted according to the electrode shape of the device under test is used.
【0003】一般に、プローブカードは、複数のプロー
ブピンを電極に接触させるために、複数のプローブピン
先端部がつくる仮想的な面の平坦度や、被検査体の電極
の平坦度、更には評価装置に組み込んだ場合の両者の平
行度等の誤差を吸収し、接触抵抗値が安定するのに必要
な荷重を負荷して用いる。そのためプローブピンは、被
検査体と接触する先端部とプローブカードの基板への固
定部分との間が弾性的に撓む様に設計される。このプロ
ーブピンを撓ませる量をオーバードライブと称する。In general, a probe card has a flatness of a virtual surface formed by a plurality of probe pin tips, a flatness of an electrode of an object to be inspected, and an evaluation in order to bring a plurality of probe pins into contact with electrodes. An error such as parallelism between the two when incorporated in a device is absorbed and a load necessary for stabilizing the contact resistance value is applied. For this reason, the probe pins are designed so that the space between the tip portion that comes into contact with the device under test and the portion of the probe card fixed to the substrate is elastically bent. The amount of bending of the probe pin is called overdrive.
【0004】近年の半導体の微細化、高集積化に伴いプ
ローブピンの配置は狭ピッチ化が進んでいる。この場
合、プローブピン先端位置の高精度化が必要であるにも
かかわらず、プローブピンの直径が小さくなり、必要な
オーバードライブを数万乃至数十万回負荷した場合に、
プローブピンの塑性変形が起こり、プローブピン先端の
位置精度が悪くなるという問題があった。更に最近のウ
ェハーテストにおいては、ウェハーを130℃程度まで
加熱した状態でテストする高温測定が普及しており、温
度による位置精度の悪化が問題になっている。[0004] With the recent miniaturization and high integration of semiconductors, the pitch of probe pins has been narrowed. In this case, even though it is necessary to increase the accuracy of the probe pin tip position, when the diameter of the probe pin is reduced and the necessary overdrive is applied for tens of thousands to hundreds of thousands of times,
There is a problem that the plastic deformation of the probe pin occurs and the position accuracy of the tip of the probe pin deteriorates. Further, in recent wafer tests, high-temperature measurement for testing a wafer while it is heated to about 130 ° C. has become widespread, and there has been a problem of deterioration in positional accuracy due to temperature.
【0005】現在、使用されているプローブピンの大半
はWを材料とする線材の一本一本をプリント配線基板に
植設して作製されているが、最近の狭ピッチ、高密度化
への要求に対し、その製造方法及びプローブピン先端位
置精度の両面において対応が困難になりつつある。At present, most of the probe pins used are manufactured by implanting individual wires made of W into a printed wiring board. It is becoming difficult to meet the demands in both aspects of the manufacturing method and probe pin tip position accuracy.
【0006】そこで、VLS成長で形成した針状単結晶
を応用する方法が提案されており(特開平5−1986
36号公報、特開平5−215774号公報、特開平5
−218156号公報参照)、これらの方法によって、
狭ピッチで高密度のプローブカードの製造が容易にな
り、しかも高精度にプローブピンを配置することができ
る様になった。Therefore, a method of applying a needle-like single crystal formed by VLS growth has been proposed (JP-A-5-1986).
No. 36, JP-A-5-215774, JP-A-5-215774
-218156), by these methods,
It has become easy to manufacture a high-density probe card with a narrow pitch, and it is possible to arrange probe pins with high precision.
【0007】上記方法で得られるプローブピンは、被検
査体の電極と接触させオーバードライブを負荷すること
によって、垂直ピンが座屈して撓む構造になっている。
前記プローブピンは必要なオーバードライブを負荷して
も、座屈によって破壊しない様に、細くて長い寸法の、
撓みやすい針状単結晶が用いられており、そのため、被
検査体の電極の面に垂直に加わる荷重は10mN以下と
非常に小さい値となっている。前記プローブピンは、こ
の座屈変形時に、プローブ先端のエッジが被検査体の電
極表面を僅かに引っ掻くことで、前記荷重が小さいにも
かかわらず、金で構成される電極に対しては良好なコン
タクト特性を得ることができている。一方、半導体の電
極は、Alや半田等を基材とした電極が殆どであり、こ
れらの電極表面には酸化膜を有する。前記針状単結晶を
用いたプローブピンでは、荷重が小さく、プローブ先端
が電極表面を引っ掻く寸法が小さいため、酸化膜を破る
ことができず、これらの電極を持つ半導体用途には使用
できないでいた。この問題に対し、針状単結晶の寸法を
調整して、電極の面の垂直方向にかかる荷重を大きくす
ることで対応したが、プローブピンと電極との電気的導
通は確認できたものの、プローブピン先端の導電膜が著
しく変形したり、プローブピンが破損しやすくなり、さ
らにコンタクト回数を重ねると、プローブピン先端に酸
化膜が堆積して導通が取れなくなる等の問題が発生して
いた。The probe pin obtained by the above method has a structure in which the vertical pin buckles and bends when the probe pin is brought into contact with the electrode of the device under test and overloaded.
The probe pins are thin and long, so that they do not break due to buckling even if they load the necessary overdrive.
Since a needle-shaped single crystal that is easily bent is used, the load applied perpendicularly to the surface of the electrode of the test object has a very small value of 10 mN or less. When the buckling deformation, the probe pin slightly scratches the electrode surface of the object to be inspected. Contact characteristics can be obtained. On the other hand, most of semiconductor electrodes are electrodes based on Al, solder, or the like, and these electrode surfaces have an oxide film. In the probe pin using the needle-shaped single crystal, the load is small, and the probe tip has a small dimension to scratch the electrode surface, so that the oxide film cannot be broken, and it cannot be used for semiconductor applications having these electrodes. . To cope with this problem, the size of the needle-shaped single crystal was adjusted to increase the load applied in the direction perpendicular to the surface of the electrode, but electrical continuity between the probe pin and the electrode was confirmed, but the probe pin The conductive film at the tip is remarkably deformed, the probe pin is easily damaged, and when the number of contacts is increased, an oxide film is deposited on the tip of the probe pin to make it impossible to conduct electricity.
【0008】[0008]
【発明が解決しようとする課題】本発明は、表面酸化膜
を有するAlや半田等を基材とした電極とコンタクト可
能な、針状単結晶を用いたプローブカードを提供するこ
とを目的としている。SUMMARY OF THE INVENTION An object of the present invention is to provide a probe card using a needle-like single crystal, which can be brought into contact with an electrode having a surface oxide film and made of Al or solder as a base material. .
【0009】[0009]
【課題を解決するための手段】本発明は、針状単結晶か
らなり、該表面に導電性を付与した半導体計測用の垂直
プローブピンであって、該プローブピンの長手方向に見
た先端のエッジのアールが、0.7μm以下であり、該
プローブピンが座屈して被検査体の電極と接触した時
に、該電極の面の垂直方向にかかる荷重を、該プローブ
ピンの先端が該電極と接触している面積で割った値が
0.03mN/μm2以上、0.30mN/μm2以下
の範囲内にあり、且つ、前記プローブピンの先端面が、
該プローブピンの長手方向の中心線に対に対して87度
以下の傾斜角を有することを特徴とし、又前記プローブ
ピンを有するプローブカードである。SUMMARY OF THE INVENTION The present invention relates to a vertical probe pin for measuring semiconductors, which is made of a needle-like single crystal and has conductivity provided on its surface, wherein the probe pin has a tip as viewed in the longitudinal direction of the probe pin. When the radius of the edge is 0.7 μm or less, when the probe pin buckles and comes into contact with the electrode of the device under test, a load applied in the vertical direction of the surface of the electrode is applied. The value divided by the contact area is in the range of 0.03 mN / μm 2 or more and 0.30 mN / μm 2 or less, and the tip surface of the probe pin is
A probe card having an inclination angle of not more than 87 degrees with respect to a pair at a center line in the longitudinal direction of the probe pin, and having the probe pin.
【0010】または、Siの針状単結晶からなり、少な
くとも該先端部がシリサイドにより導電化した半導体計
測用の垂直プローブピンであることを特徴とし、又前記
プローブピンを有するプローブカードである。A probe card comprising a needle-like single crystal of Si, at least the tip of which is a vertical probe pin for semiconductor measurement, made conductive by silicide, and having the probe pin.
【0011】もしくは、針状単結晶からなり、少なくと
も該先端部をドーピングして導電化した半導体計測用の
垂直プローブピンであることを特徴とし、又前記プロー
ブピンを有するプローブカードである。Alternatively, the probe card is a vertical probe pin for measuring a semiconductor, which is made of a needle-like single crystal and has at least the tip portion doped to be conductive, and has the probe pin.
【0012】[0012]
【発明の実施形態】以下、図をもって本発明を説明す
る。本発明は図1に示されるとおり針状単結晶を導電化
したプローブピン1に関するものである。尚、図1のプ
ローブピンはオーバードライブの負荷により、座屈して
プローブピンの先端面2が電極3と接触している状態を
表している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. The present invention relates to a probe pin 1 having a needle-like single crystal made conductive as shown in FIG. 1 shows a state in which the probe pin buckles due to the overdrive load and the tip end surface 2 of the probe pin is in contact with the electrode 3.
【0013】前記針状単結晶について、その材質は例え
ばVLS成長によって形成されるものが使用でき、具体
的には、Si、LaB6、Ge、α−Al2O3、Ga
As、GaP、MgO、NiO、SiC、InGa等で
ある。このうち、半導体と同じ材質のSiが熱膨張率等
の特性が同じであり、プローブピンの位置精度が高温で
も変化しにくいと言う理由から好ましい。また、一般的
に、針状単結晶の太さは数〜100μmであり、長さは
数百μm〜数mmである。As the material of the needle-like single crystal, a material formed by, for example, VLS growth can be used. Specifically, Si, LaB6, Ge, α-Al2O3, Ga
As, GaP, MgO, NiO, SiC, InGa and the like. Among them, Si of the same material as the semiconductor is preferable because it has the same characteristics such as the coefficient of thermal expansion and the positional accuracy of the probe pin is hardly changed even at a high temperature. In general, the thickness of the acicular single crystal is several to 100 μm, and the length is several hundred μm to several mm.
【0014】図2に示すとおり、前記針状単結晶4を導
電化する目的で、該針状単結晶4の表面に一般的に導電
膜5を設けるが、この導電膜5はAu、Au合金、Cu
等の低電気抵抗の金属をめっき法、蒸着法、スパッタリ
ング法等のいろいろな公知の方法を用いて形成すること
ができる。例えば、めっき法で導電膜を設ける場合に
は、針状単結晶4にNi−PまたはCr等の下地めっき
処理をした後に、低電気抵抗金属であるAu、Au−N
i、Au−Co、Au−Cr、Au−Cu等の表層めっ
きをする方法もある。さらに、前記導電膜5における電
極との接触部分の耐久性を維持する目的で、Pd、P
t、Rh、Ir金属やPdにAg、Cu、Pt、Au等
の金属を添加したPd合金、AgにSn、In、Zn、
Cu等の酸化物を添加したAg合金等の接点材料6をプ
ローブピン先端部にのみ被覆する方法が提案されている
(特開平10−38918号公報、特開2000−22
7440号公報参照)。尚、本発明における導電膜と
は、導電性を示す膜を意味し、その材質を限定するもの
ではない。As shown in FIG. 2, in order to make the needle-shaped single crystal 4 conductive, a conductive film 5 is generally provided on the surface of the needle-shaped single crystal 4, and this conductive film 5 is made of Au or an Au alloy. , Cu
Can be formed by various known methods such as a plating method, a vapor deposition method, and a sputtering method. For example, when the conductive film is provided by a plating method, the needle-like single crystal 4 is subjected to a base plating treatment of Ni-P or Cr or the like, and then Au or Au-N which is a low electric resistance metal.
There is also a method of plating a surface layer of i, Au-Co, Au-Cr, Au-Cu or the like. Further, in order to maintain the durability of the contact portion of the conductive film 5 with the electrode, Pd, P
t, Rh, Ir metal or Pd alloy with Pd added to metals such as Ag, Cu, Pt, Au, etc .; Ag, Sn, In, Zn,
A method has been proposed in which a contact material 6 such as an Ag alloy to which an oxide such as Cu is added is coated only on the tip of the probe pin (Japanese Patent Application Laid-Open Nos. 10-38918 and 2000-22).
No. 7440). The conductive film in the present invention means a film showing conductivity, and the material is not limited.
【0015】前記針状単結晶の表面に導電膜を被覆して
プローブピン1とする場合、該プローブピン1を長手方
向に見た先端のエッジ部のアールが0.7μmより大き
いと、プローブピン先端が電極表面を引っ掻く寸法が小
さく、電極表面の酸化膜を破ることができず、表面酸化
膜を有するAlや半田等を基材とした電極とコンタクト
できない。When the probe pin 1 is formed by covering the surface of the needle-like single crystal with a conductive film, if the radius of the edge of the probe pin 1 in the longitudinal direction is larger than 0.7 μm, the probe pin 1 The tip has a small dimension that scratches the electrode surface, cannot break an oxide film on the electrode surface, and cannot contact an electrode having a surface oxide film, such as Al or solder, as a base material.
【0016】そこで、前記プローブピン1を長手方向に
見た先端のエッジ部のアールを0.7μm以下とする方
法としては、例えば、ラッピングフィルム等でプローブ
ピン先端面2を研磨する方法がある。または、前記プロ
ーブピン1の導電膜を薄くする方法があるが、プローブ
ピン全体の導電膜を薄くすると、プローブピンの電気抵
抗が高くて、コンタクターとして適さなくなる。そこ
で、プローブピン先端部をレジスト等でマスキングし
て、導電膜の厚みをプローブピンの側面では厚く、先端
部では薄くする方法や、プローブピン表面に導電膜を厚
く被覆した後、プローブピン先端部の導電膜の一部をエ
ッチング処理で除去して薄くする方法も可能である。
尚、本発明では、プローブピンを長手方向に見た先端の
エッジ部のアールを0.7μm以下とする方法を上記の
方法に限定するものではない。Therefore, as a method for reducing the radius of the edge of the probe pin 1 in the longitudinal direction to 0.7 μm or less, for example, there is a method of polishing the probe pin tip surface 2 with a wrapping film or the like. Alternatively, there is a method of making the conductive film of the probe pin 1 thinner. However, if the conductive film of the entire probe pin is made thinner, the electric resistance of the probe pin becomes higher, and the probe pin becomes unsuitable as a contactor. Therefore, the tip of the probe pin is masked with a resist or the like so that the thickness of the conductive film is thicker on the side surface of the probe pin and thinner on the tip portion. It is also possible to remove a part of the conductive film by etching to make it thinner.
In the present invention, the method of setting the radius of the edge of the tip of the probe pin in the longitudinal direction to 0.7 μm or less is not limited to the above method.
【0017】また、前記針状単結晶の表面に導電膜を被
覆してプローブピン1とし、該プローブピン1を長手方
向に見た先端のエッジ部のアールが0.7μm以下の場
合、電極3の面の垂直方向の荷重をプローブピンの先端
が電極3と接触している面積で割った値が0.03mN
/μm2より小さいと、プローブピン先端が電極表面を
引っ掻く寸法が小さく、表面酸化膜を有する電極とコン
タクトできない。一方、前記プローブピン1に対し、電
極3の面の垂直方向の荷重をプローブピンの先端が電極
3と接触している面積で割った値が0.30mN/μm
2より大きいと、針状単結晶に被覆した導電膜が著しく
変形したり、プローブピンが破損して、プローブとして
の耐久性が失われる。When the probe pin 1 is formed by coating a conductive film on the surface of the needle-shaped single crystal and the radius of the edge of the probe pin 1 in the longitudinal direction is 0.7 μm or less, the electrode 3 The value obtained by dividing the vertical load on the surface by the area where the tip of the probe pin is in contact with the electrode 3 is 0.03 mN.
If it is smaller than / μm 2, the dimension at which the tip of the probe pin scratches the electrode surface is too small to make contact with the electrode having the surface oxide film. On the other hand, for the probe pin 1, the value obtained by dividing the vertical load on the surface of the electrode 3 by the area where the tip of the probe pin is in contact with the electrode 3 is 0.30 mN / μm.
If it is larger than 2, the conductive film coated on the needle-shaped single crystal will be significantly deformed, or the probe pin will be damaged, and the durability as a probe will be lost.
【0018】そこで、前記電極3の面の垂直方向の荷重
を、プローブピンの先端が電極3と接触している面積で
割った値を0.03〜0.30mN/μm2の範囲内に
制御するためには、プローブピンを長手方向に見た先端
のエッジ部のアール、またはプローブピンの長さ、また
はプローブピンの直径を調整すればよい。すなわち、電
極3の面の垂直方向の荷重を、プローブピンの先端が電
極3と接触している面積で割った値を小さくするために
は、プローブピンを長手方向に見た先端のエッジ部のア
ールを大きくするか、プローブピンを長くするか、また
は、プローブピンを細くすればよい。逆に、電極3の面
の垂直方向の荷重を、プローブピンの先端が電極3と接
触している面積で割った値を大きくするためには、プロ
ーブピンを長手方向に見た先端のエッジ部のアールを小
さくするか、プローブピンを短くするか、または、プロ
ーブピンを太くすればよい。尚、本発明では、前記電極
3の面の垂直方向の荷重を、プローブピンの先端が電極
3と接触している面積で割った値を制御する方法を限定
するものではない。Therefore, a value obtained by dividing the load in the vertical direction of the surface of the electrode 3 by the area of the tip of the probe pin in contact with the electrode 3 is controlled within the range of 0.03 to 0.30 mN / μm 2. To do so, the radius of the edge of the tip of the probe pin viewed in the longitudinal direction, the length of the probe pin, or the diameter of the probe pin may be adjusted. That is, in order to reduce the value obtained by dividing the load in the vertical direction of the surface of the electrode 3 by the area where the tip of the probe pin is in contact with the electrode 3, the edge of the tip of the probe pin viewed in the longitudinal direction is required. The radius may be increased, the probe pin may be lengthened, or the probe pin may be narrowed. Conversely, in order to increase the value obtained by dividing the vertical load on the surface of the electrode 3 by the area where the tip of the probe pin is in contact with the electrode 3, the edge of the tip of the probe pin viewed in the longitudinal direction is required. May be reduced, the probe pin may be shortened, or the probe pin may be thickened. In the present invention, the method of controlling the value obtained by dividing the load in the vertical direction of the surface of the electrode 3 by the area of the tip of the probe pin in contact with the electrode 3 is not limited.
【0019】前記針状単結晶の表面に導電膜を被覆して
プローブピン1とし、該プローブピン1を長手方向に見
た先端のエッジ部のアールが0.7μm以下で、さらに
電極3の面の垂直方向の荷重をプローブピンの先端が電
極3と接触している面積で割った値が0.03〜0.3
0mN/μm2の範囲内にある場合、該プローブピン1
の長手方向の中心線に対するプローブピン先端面2の傾
斜角が87度を越えると、プローブピンの座屈により、
プローブピン先端と電極が擦れることで、プローブピン
先端部に酸化膜が堆積するため、コンタクトの回数を重
ねるうちに導通不良を起こす。A probe pin 1 is formed by coating the surface of the needle-shaped single crystal with a conductive film. The edge of the tip of the probe pin 1 when viewed in the longitudinal direction is 0.7 μm or less. The value obtained by dividing the load in the vertical direction by the area where the tip of the probe pin is in contact with the electrode 3 is 0.03 to 0.3.
0mN / μm2, the probe pin 1
When the inclination angle of the probe pin tip surface 2 with respect to the longitudinal center line exceeds 87 degrees, buckling of the probe pin causes
When the tip of the probe pin rubs against the electrode, an oxide film is deposited on the tip of the probe pin, and a conduction failure occurs as the number of contacts increases.
【0020】前記針状単結晶を用いた垂直プローブピン
の被検査体への接触面に傾斜をつける方法として、回転
しているディスク状のラッピングテープにプローブピン
を押し込むことにより、プローブピンの少なくとも先端
近傍を曲げ変形させた状態で研磨する方法が提案されて
いる(特開平10−148646号公報参照)。この研
磨材を含有したテープにプローブピンを押し込む量や、
プローブピンの先端近傍を曲げ変形させた状態で研磨す
る時間ならびに円盤の回転速度を調整することで、本発
明の、プローブピンの長手方向の中心線に対するプロー
ブピン先端面2につける傾斜角を87度以下にすること
が、容易に実施できる。尚、本発明では、プローブピン
の長手方向の中心線に対し、プローブピン先端面2に傾
斜角をつける方法を、前記プローブピンの少なくとも先
端近傍を曲げ変形させた状態で研磨する方法に限定する
ものではない。As a method of inclining the contact surface of the vertical probe pin using the needle-shaped single crystal with the object to be inspected, at least the probe pin is pushed into a rotating disk-shaped wrapping tape. A method has been proposed in which polishing is performed in a state where the vicinity of the tip is bent and deformed (see Japanese Patent Application Laid-Open No. 10-148646). The amount of pushing the probe pin into the tape containing this abrasive,
By adjusting the polishing time and the rotational speed of the disk in a state in which the vicinity of the tip of the probe pin is bent and deformed, the inclination angle of the probe pin tip surface 2 with respect to the center line in the longitudinal direction of the probe pin of the present invention can be adjusted to 87. The degree can be easily reduced. Note that, in the present invention, the method of forming an inclination angle on the probe pin tip surface 2 with respect to the center line in the longitudinal direction of the probe pin is limited to the method of polishing at least the vicinity of the tip of the probe pin in a bent state. Not something.
【0021】一方、本発明で、Siの針状単結晶の少な
くとも該先端部をシリサイドにより導電化する方法とし
て、シリサイドの対象としたNi、Ti、Co、Pt、
Pdi、Mo、Nb等を、CVD法、スパッタ法、蒸着
法等で前記針状単結晶の表面に堆積させた後に、不活性
ガス雰囲気下でアニールする等の公知の方法でシリサイ
ドを形成する。これにより、前記針状単結晶を導電化す
ることができる。但し、前記針状単結晶の表面全体をシ
リサイド化しても針状単結晶全体の抵抗値が高いため、
針状単結晶の先端部以外の側面に、前記導電化を目的と
した低電気抵抗金属であるAu等の導電膜の形成が必要
である。On the other hand, in the present invention, as a method for making at least the tip portion of the needle-like single crystal of Si conductive with silicide, Ni, Ti, Co, Pt,
After depositing Pdi, Mo, Nb, or the like on the surface of the acicular single crystal by a CVD method, a sputtering method, a vapor deposition method, or the like, silicide is formed by a known method such as annealing in an inert gas atmosphere. Thereby, the needle-shaped single crystal can be made conductive. However, even if the entire surface of the needle-shaped single crystal is silicided, the resistance value of the entire needle-shaped single crystal is high,
It is necessary to form a conductive film, such as Au, which is a low-resistance metal for the purpose of conducting, on a side surface other than the tip portion of the needle-like single crystal.
【0022】さらに、本発明で、針状単結晶の少なくと
も該先端部をドーピングにより導電化する方法として、
ガスドープ法、イオン注入法等のいろいろな公知の方法
を用いて実施することができる。例えば、VLS法で成
長させた針状単結晶の先端を研磨した後に、ガスドープ
可能なCVD装置を用いて、ドーピングしたエピタキシ
ャル層を前記針状単結晶の表面に成長させる。これによ
り、前記針状単結晶を導電化できる。但し、前記針状単
結晶の表面全体にドーピングしたエピタキシャル層を成
長させても針状単結晶全体の抵抗値が高いため、針状単
結晶の先端部以外の側面に、前記導電化を目的とした低
電気抵抗金属であるAu等の導電膜の形成が必要であ
る。Further, in the present invention, as a method for making at least the tip portion of the acicular single crystal conductive by doping,
It can be carried out using various known methods such as a gas doping method and an ion implantation method. For example, after polishing the tip of a needle-like single crystal grown by the VLS method, a doped epitaxial layer is grown on the surface of the needle-like single crystal using a gas-doping CVD apparatus. Thereby, the needle-like single crystal can be made conductive. However, even if an epitaxial layer doped on the entire surface of the needle-shaped single crystal is grown, the resistance of the entire needle-shaped single crystal is high. It is necessary to form a conductive film such as Au which is a low electric resistance metal.
【0023】本発明におけるプローブピンの先端部と
は、前記プローブピンの側面に導電化を目的とした低電
気抵抗金属であるAu等の導電膜を厚く被覆することの
ない、前記ピローブピンを長手方向に見た先端のエッジ
のアールを0.7μm以下にするために薄い導電膜を被
覆したり、シリサイドまたはドーピングにより針状単結
晶を導電化させる領域で、前記プローブピンの最先端か
ら長手方向に200μm以下が好ましい。このピローブ
ピン先端部の長さが200μmより長いと、プローブピ
ンの電気抵抗値が高くなり、前記プローブピンはコンタ
クターには適さなくなる。In the present invention, the tip of the probe pin means that the probe pin does not cover the side face of the probe pin with a conductive film such as Au, which is a metal having a low electrical resistance, for the purpose of making it conductive. In a region where a thin conductive film is coated to reduce the radius of the edge of the tip seen to 0.7 μm or less, or a needle-like single crystal is made conductive by silicide or doping, in the longitudinal direction from the tip of the probe pin. It is preferably 200 μm or less. If the length of the tip of the probe pin is longer than 200 μm, the electric resistance of the probe pin increases, and the probe pin becomes unsuitable for a contactor.
【0024】以下、実施例及び比較例を用いて、本発明
を更に詳細に説明する。 [実施例、比較例] <中間体の準備>提案されている方法(特開平8−30
4456号、特開平9−61462号公報参照)を基
に、以下の方法で針状単結晶をSOI基板上にVLS成
長させた。SOIウェハーの上にフォトリソグラフィー
法を用いて、配線基板と同じパターン形状のAu蒸着膜
を形成した。さらにフォトリソグラフィー法とめっき法
を用いて、針状単結晶を成長させる所定の位置に、Au
バンプを形成した。次に、強酸によるエッチング液を使
うことで、露出している部分のSiの一部を、またAu
のエッチング液を使うことで、Au蒸着膜を、さらに再
度強酸によるエッチング液を使うことで、Auバンプの
下に周辺に比べ凸状のSiの台をもつ、Si薄膜からな
る配線ラインを形成した。この配線ラインをもつ回路基
板を、反応管内で950℃に加熱し、四塩化珪素と水素
の混合ガスを流すことで、Auバンプのあった位置に針
状単結晶を得た。尚、本実施例と比較例では、プローブ
ピンを45μmピッチで450本配置した形状のものを
使用した。上記操作において、Auバンプの大きさを調
整することで針状単結晶の直径を15μmとした、前記
針状単結晶を用いたプローブピン1を有するコンタクタ
ー中間体を準備し、以降の操作の試料とした。Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. [Examples and Comparative Examples] <Preparation of Intermediate> Proposed method (JP-A-8-30)
No. 4456, JP-A-9-61462), a needle-like single crystal was VLS-grown on an SOI substrate by the following method. An Au deposited film having the same pattern shape as that of the wiring substrate was formed on the SOI wafer by photolithography. Further, Au is placed at a predetermined position where a needle-like single crystal is grown by photolithography and plating.
A bump was formed. Next, by using an etching solution with a strong acid, a part of the exposed Si
By using the etchant of (1), an Au vapor-deposited film was formed, and by using the etchant of strong acid again, a wiring line composed of a Si thin film having a convex Si base under the Au bump was formed. . The circuit board having this wiring line was heated to 950 ° C. in a reaction tube, and a mixed gas of silicon tetrachloride and hydrogen was flown to obtain a needle-like single crystal at the position where the Au bump was. In this example and the comparative example, a probe pin having 450 probe pins arranged at a pitch of 45 μm was used. In the above operation, a contactor intermediate having the probe pin 1 using the needle-shaped single crystal was prepared by adjusting the size of the Au bump so that the diameter of the needle-shaped single crystal was 15 μm. And
【0025】<実施例1〜6>ダイヤモンド粒子を含有
する市販のラッピングフィルムを、平坦度の優れた円盤
に貼り合わせ、前記円盤の回転中心を外した位置に、前
記試料中から適宜選択したコンタクター中間体の先端が
接触するように配置した。尚、針状単結晶の長手方向が
前記円盤の回転面と垂直になるように設置した。この接
触した位置から垂直方向にコンタクター中間体を押し下
げ、円盤を回転させることで、針状単結晶を円盤の回転
方向に曲げ変形させながら先端を研磨した。<Examples 1 to 6> A commercially available wrapping film containing diamond particles was attached to a disk having excellent flatness, and a contactor appropriately selected from the samples was placed at a position off the center of rotation of the disk. It was arranged so that the tip of the intermediate was in contact. The needle-like single crystal was installed so that the longitudinal direction was perpendicular to the rotation plane of the disk. By pressing down the contactor intermediate body in the vertical direction from the contact position and rotating the disk, the tip was polished while bending the needle-shaped single crystal in the rotational direction of the disk.
【0026】研磨においては、プローブピンを所定の長
さにするために、コンタクター中間体をラッピングフィ
ルムに接してから2μm下方へ押し下げて20秒間研磨
する作業を繰り返して行った。ラッピングフィルムは平
均粒径0.1μmのダイヤモンド粒子を含む樹脂フィル
ムである。また、円盤の回転数は1000rpmであ
り、ディスクの回転中心から25〜35mm離れた位置
で研磨した。針状単結晶が目標の長さに達した後、押し
下げ量を10μmまたは30μmで5秒間研磨して引き
上げることで、先端面に88度または85度の傾斜角を
持つ針状単結晶を得た。尚、針状単結晶の目標の長さは
1200μmまたは1500μmとした。In the polishing, in order to make the probe pin have a predetermined length, the operation of contacting the contactor intermediate body with the wrapping film and then pushing it down by 2 μm to polish for 20 seconds was repeated. The wrapping film is a resin film containing diamond particles having an average particle size of 0.1 μm. The rotation speed of the disk was 1000 rpm, and polishing was performed at a position 25 to 35 mm away from the rotation center of the disk. After the needle-shaped single crystal reached the target length, the amount of depression was polished at 10 μm or 30 μm for 5 seconds and pulled up to obtain a needle-shaped single crystal having a tilt angle of 88 ° or 85 ° at the tip end surface. . The target length of the acicular single crystal was 1200 μm or 1500 μm.
【0027】次に、アルカリ性浴の無電解Niめっき液
を使用して、前記針状単結晶及び配線ラインの表面にN
i膜を形成した。その後、耐アルカリ性、溶剤可溶のレ
ジストインキでプローブピン先端部をマスキングして、
アルカリ性浴の電解Auめっき液を用いて、プローブピ
ン側面のNi膜の表面に厚さ1μmの導電膜を成膜し
た。さらに、プローブピン先端のレジストインキをキシ
レンで剥離することで、プローブピン先端にNiの導電
膜を持つプローブピンを作成した。Niめっきの時間を
調整することで、Niめっき膜の厚さが0.2μm(実
施例1、3)、ならびに0.6μm(実施例2、4)の
試料をそれぞれ作成した。尚、上記操作で使用しためっ
き液やレジストインキなどの薬品は全て市販品を用い
た。Next, using an electroless Ni plating solution in an alkaline bath, N
An i film was formed. Then, mask the probe pin tip with a resist ink that is alkali-resistant and solvent-soluble,
A 1 μm-thick conductive film was formed on the surface of the Ni film on the side surface of the probe pin using an electrolytic Au plating solution in an alkaline bath. Further, by removing the resist ink at the tip of the probe pin with xylene, a probe pin having a Ni conductive film at the tip of the probe pin was prepared. By adjusting the time of Ni plating, samples having a Ni plating film thickness of 0.2 μm (Examples 1 and 3) and 0.6 μm (Examples 2 and 4) were prepared. In addition, all the chemicals, such as the plating solution and the resist ink, used in the above operation were commercial products.
【0028】さらに、前記針状単結晶にNiを蒸着した
後に、窒素雰囲気下で400℃、30分間アニール処理
をすることで、針状単結晶の表層部をNiシリサイドと
した。その後、実施例1〜4のNi膜形成後と同一の操
作をすることで、プローブピン先端にNiシリサイドを
持つプローブピン(実施例5)を作成した。Further, after Ni was vapor-deposited on the needle-like single crystal, annealing was performed at 400 ° C. for 30 minutes in a nitrogen atmosphere, so that the surface portion of the needle-like single crystal was Ni silicide. Thereafter, by performing the same operation as that after forming the Ni film in Examples 1 to 4, a probe pin having Ni silicide at the tip of the probe pin (Example 5) was formed.
【0029】さらに、前記針状単結晶を四塩化珪素と水
素ならびに水素に対し10ppmのPH3ドープガスを
含む混合ガス雰囲気下で1180℃、10分間の熱処理
を行うことで、前記針状単結晶の表面にPドープSiを
成膜した。その後、実施例1〜4のNi膜形成後と同一
の操作をすることで、プローブピン先端にPドープSi
を持つプローブピン(実施例6)を作成した。Further, the needle-shaped single crystal is subjected to a heat treatment at 1180 ° C. for 10 minutes in a mixed gas atmosphere containing silicon tetrachloride, hydrogen, and a PH3 doping gas of 10 ppm with respect to hydrogen, thereby obtaining a surface of the needle-shaped single crystal. Was formed with P-doped Si. Then, by performing the same operation as that after forming the Ni film in Examples 1 to 4, the P-doped Si
(Example 6) was prepared.
【0030】上記操作で得たコンタクターについて、プ
ローブピンを側面方向から走査型電子顕微鏡観察して、
プローブピン長手方向の中心線に対する傾斜角度である
テーパ角度と、プローブピンを長手方向に見た先端のエ
ッジ部のアールを測定した。また、市販のロードセルを
用いてプローブピン先端にかかる荷重を測定した。この
後、後述のプロービング耐久性試験を行い、Alベタウ
ェハーとの接触抵抗の変動を調べ、更に1万回コンタク
ト後のプローブピン先端の変形を観察した。この結果を
表1に示す。尚、プロービング耐久試験はAlベタウェ
ハーにオーバードライブを40μmで負荷し、サイクル
タイム175msec、コンタクト時間125msec
の条件で行った。Alベタウェハー上のプローブピンと
の接触痕の光学顕微鏡写真を撮り、写真より測定した前
記接触痕の面積を、プローブピンの先端が電極3と接触
している面積とした。この値で前記プローブピン先端に
かかる荷重を割って、接触部の単位面積荷重を算出し
た。接触抵抗の変動は、市販のデジタルマルチメーター
を用いて、コンタクト回数100回に1回の割合で、A
lベタウェハーとの抵抗を測定し、100回の測定値の
ばらつきの最大値を示した。また、ピン先の変形は光学
顕微鏡(倍率400倍)で観察した。With respect to the contactor obtained by the above operation, the probe pin was observed with a scanning electron microscope from the side, and
The taper angle, which is the inclination angle with respect to the center line in the longitudinal direction of the probe pin, and the radius of the edge of the tip when the probe pin was seen in the longitudinal direction were measured. The load applied to the tip of the probe pin was measured using a commercially available load cell. Thereafter, a probing durability test described later was performed to examine the change in the contact resistance with the Al solid wafer, and further, the deformation of the tip of the probe pin after 10,000 times of contact was observed. Table 1 shows the results. In the probing durability test, an overdrive was applied to an Al solid wafer at 40 μm, a cycle time was 175 msec, and a contact time was 125 msec.
Was performed under the following conditions. An optical microscope photograph of the contact mark with the probe pin on the Al solid wafer was taken, and the area of the contact mark measured from the photograph was defined as the area where the tip of the probe pin was in contact with the electrode 3. The load applied to the tip of the probe pin was divided by this value to calculate the unit area load of the contact portion. Using a commercially available digital multimeter, the change in the contact resistance was measured at the rate of A once every 100 contacts.
The resistance with the l-solid wafer was measured, and the maximum value of the dispersion of the measured values for 100 times was shown. The deformation of the pin tip was observed with an optical microscope (400 magnification).
【0031】[0031]
【表1】実施例 [Table 1] Examples
【0032】<比較例1〜3>前記コンタクター中間体
から適宜選択して、針状単結晶の先端面に、針状単結晶
の長手方向の中心線に対し、88度の傾斜角をつけた試
料を用いて、実施例3と同一の操作を行うことで試料を
準備した(比較例1)。また、実施例1〜4と同一の操
作を行い、Niめっきの処理時間を調整することで、N
iめっき膜の厚さを2.0μmとした試料を準備した
(比較例2)。針状単結晶の目標長さを2800μmと
800μmとして研磨した針状単結晶を実施例2と同一
の操作を行なうことでそれぞれ試料を準備した(比較例
3、4)。これらの操作で得られたコンタクターを、実
施例1〜6と同一の評価を行った。その結果を表2に示
す。比較例1では、試験開始時に導通は確認できたが、
コンタクト回数が増えることで、デジタルマルチメータ
ーの表示値は1MΩ以上となって、導通が確保できなく
なった。一方、比較例2と比較例3においては、試験開
始時からデジタルマルチメーターの表示値は1MΩ以上
となり、電気的な導通は確認できなかった。さらに比較
例4については、電極との数十回のコンタクトにより、
プローブピンの一部が折れて電極と接触できなくなっ
た。また、1万回のコンタクト後に折れていなかったプ
ローブピンの先端は著しく変形していた。<Comparative Examples 1 to 3> The tip of the needle-shaped single crystal was appropriately selected from the contactor intermediates, and an inclination angle of 88 degrees was formed with respect to the longitudinal center line of the needle-shaped single crystal. A sample was prepared by performing the same operation as in Example 3 using the sample (Comparative Example 1). In addition, the same operation as in Examples 1 to 4 was performed to adjust the Ni plating treatment time, so that N
A sample in which the thickness of the i-plated film was 2.0 μm was prepared (Comparative Example 2). Samples were prepared by polishing the needle-shaped single crystal with the target lengths of 2800 μm and 800 μm and performing the same operation as in Example 2 (Comparative Examples 3 and 4). The same evaluation as in Examples 1 to 6 was performed on the contactors obtained by these operations. Table 2 shows the results. In Comparative Example 1, conduction was confirmed at the start of the test,
Due to the increase in the number of contacts, the display value of the digital multimeter became 1 MΩ or more, and conduction could not be secured. On the other hand, in Comparative Examples 2 and 3, the display value of the digital multimeter became 1 MΩ or more from the start of the test, and electrical continuity could not be confirmed. Further, in Comparative Example 4, several tens of contacts with the electrode
A part of the probe pin was broken and could not contact the electrode. In addition, the tip of the probe pin that had not been broken after 10,000 contacts was significantly deformed.
【0033】[0033]
【表2】比較例 [Table 2] Comparative example
【0034】[0034]
【発明の効果】本発明の針状単結晶を用いたプローブピ
ンならびにコンタクターは、実施例から明らかなよう
に、表面酸化膜を有する電極と電気的に導通が確認で
き、その接触抵抗値の変動も小さく、1万回のオーバー
ドライブを負荷してもプローブピンの先端の変形が少な
い特徴を有しているため、有用である。As is clear from the examples, the probe pin and the contactor using the needle-shaped single crystal of the present invention can be electrically connected to the electrode having the surface oxide film, and the contact resistance varies. It is useful because it has a characteristic that the tip of the probe pin is less deformed even when the overdrive is applied 10,000 times.
【図1】本発明のプローブピンが座屈した状態で電極と
接触している状態を示す断面図FIG. 1 is a sectional view showing a state in which a probe pin of the present invention is in contact with an electrode in a buckled state.
【図2】従来のプローブピンの一例を示す断面図FIG. 2 is a sectional view showing an example of a conventional probe pin.
1 針状単結晶を用いたプローブピン 2 プローブピン先端面 3 電極 4 針状単結晶 5 導電膜 6 接点材料 1 Probe pin using needle-like single crystal 2 Probe pin tip surface 3 Electrode 4 Needle-like single crystal 5 Conductive film 6 Contact material
Claims (4)
与した半導体計測用の垂直プローブピンであって、該プ
ローブピンの長手方向に見た先端のエッジのアールが、
0.7μm以下であり、該プローブピンが座屈して被検
査体の電極と接触した時に、該電極の面の垂直方向にか
かる荷重を、該プローブピンの先端が該電極と接触して
いる面積で割った値が0.03〜0.30mN/μm2
の範囲であり、且つ、前記プローブピンの先端面が、該
プローブピンの長手方向の中心線に対して87度以下の
傾斜角を有することを特徴とするプローブピン。1. A vertical probe pin for semiconductor measurement which is made of a needle-shaped single crystal and has conductivity provided on its surface, wherein the edge of the tip of the probe pin viewed in the longitudinal direction has a radius of:
0.7 μm or less, and when the probe pin buckles and comes into contact with the electrode of the test object, the load applied in the vertical direction of the surface of the electrode is the area where the tip of the probe pin is in contact with the electrode. 0.03 to 0.30 mN / μm 2
And the tip end surface of the probe pin has an inclination angle of 87 degrees or less with respect to a longitudinal center line of the probe pin.
性を付与した半導体計測用の垂直プローブピンであっ
て、該プローブピンの少なくとも先端部をシリサイドで
導電化したことを特徴とするプローブピン。2. A vertical probe pin for semiconductor measurement which is made of a needle-like single crystal of Si and has a surface provided with conductivity, wherein at least the tip of the probe pin is made conductive with silicide. Probe pin to
与した半導体計測用の垂直プローブピンであって、該プ
ローブピンの少なくとも先端部がドーピングして導電化
した針状単結晶であることを特徴とするプローブピン。3. A vertical probe pin for semiconductor measurement which is made of a needle-like single crystal and has conductivity provided on the surface thereof, wherein at least the tip of the probe pin is doped and made conductive by a needle-like single crystal. A probe pin, characterized in that there is a probe pin.
求項3記載のプローブピンを有するプローブカード。4. A probe card having the probe pins according to claim 1, 2, 3 or 4.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001106713A JP2002303637A (en) | 2001-04-05 | 2001-04-05 | Probe pin and contactor having the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001106713A JP2002303637A (en) | 2001-04-05 | 2001-04-05 | Probe pin and contactor having the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2002303637A true JP2002303637A (en) | 2002-10-18 |
Family
ID=18959168
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001106713A Pending JP2002303637A (en) | 2001-04-05 | 2001-04-05 | Probe pin and contactor having the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2002303637A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7078921B2 (en) | 2001-12-25 | 2006-07-18 | Sumitomo Electric Industries, Ltd. | Contact probe |
| JP2018159718A (en) * | 2018-07-12 | 2018-10-11 | 東京特殊電線株式会社 | Probe and probe contact method |
-
2001
- 2001-04-05 JP JP2001106713A patent/JP2002303637A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7078921B2 (en) | 2001-12-25 | 2006-07-18 | Sumitomo Electric Industries, Ltd. | Contact probe |
| JP2018159718A (en) * | 2018-07-12 | 2018-10-11 | 東京特殊電線株式会社 | Probe and probe contact method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5763879A (en) | Diamond probe tip | |
| US5773987A (en) | Method for probing a semiconductor wafer using a motor controlled scrub process | |
| US9116173B2 (en) | Contact probe having carbon film on surface thereof | |
| JP2004093355A (en) | Pd alloy based probe pin and probe pin device using the same | |
| JP3222179B2 (en) | Circuit measuring terminal and method of manufacturing the same | |
| JP3550157B2 (en) | Manufacturing method of circuit measurement terminals | |
| US7393773B2 (en) | Method and apparatus for producing co-planar bonding pads on a substrate | |
| KR100319130B1 (en) | Fine cantilever probe for measuring electrical characteristics of semiconductor wafers | |
| TWI513982B (en) | Electrical contact components and inspection connection devices | |
| US9459282B2 (en) | Electrical contact member | |
| JP2002303637A (en) | Probe pin and contactor having the same | |
| JP3606685B2 (en) | Probe pin and contactor having the same | |
| TWI223369B (en) | Semiconductor device having pad | |
| JP3587488B2 (en) | Contactor and manufacturing method thereof | |
| JP4663040B2 (en) | Probe cards and how to use them | |
| Wang et al. | Fabrication and characterization of the Pd-silicided emitters for field-emission devices | |
| US7005880B1 (en) | Method of testing electronic wafers having lead-free solder contacts | |
| KR20000059206A (en) | Vertically moving probe and probe card | |
| JP4100772B2 (en) | Circuit board and manufacturing method thereof | |
| JP2000227440A (en) | Probe pin and contactor having the same | |
| JP3156874B2 (en) | Circuit measuring terminal and method of manufacturing the same | |
| JPH11271358A (en) | Circuit board and its manufacture, and probe card | |
| JPH05215774A (en) | Circuit measuring terminal and manufacturing method thereof | |
| JPH10160757A (en) | Probe pin and probing method | |
| JP3599485B2 (en) | Contactor and manufacturing method thereof |