[go: up one dir, main page]

JP2002308394A - Operation control method of beverage cooling device - Google Patents

Operation control method of beverage cooling device

Info

Publication number
JP2002308394A
JP2002308394A JP2001111232A JP2001111232A JP2002308394A JP 2002308394 A JP2002308394 A JP 2002308394A JP 2001111232 A JP2001111232 A JP 2001111232A JP 2001111232 A JP2001111232 A JP 2001111232A JP 2002308394 A JP2002308394 A JP 2002308394A
Authority
JP
Japan
Prior art keywords
beverage
cooling
temperature
beverage container
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001111232A
Other languages
Japanese (ja)
Inventor
Tadashi Nagasaki
正 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001111232A priority Critical patent/JP2002308394A/en
Publication of JP2002308394A publication Critical patent/JP2002308394A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Devices For Dispensing Beverages (AREA)
  • Confectionery (AREA)

Abstract

(57)【要約】 【課題】複数の飲料容器を搭載したフローズン飲料ディ
スペンサなどを対象に、小容量な冷凍機の冷却能力を有
効に活かして飲料補給,周囲温度変化などにも即応でき
る運転制御法を提供する。 【解決手段】複数基の飲料容器ごとに内蔵した冷却器を
単一の冷凍機コンデンシングユニットに並列接続して冷
凍サイクルを構成し、冷凍機の運転により各飲料容器に
収容した液体飲料を冷却して所定温度に保冷するように
した飲料冷却装置において、各基の飲料容器ごとに温度
センサを配して飲料温度を検出し、該温度センサの検出
信号を基に、各飲料容器から冷却要求がある運転状態
で、各飲料容器の飲料温度が所定温度以下になるまで
は、各飲料容器の間で冷却器を周期的に切換えて交互冷
却運転し、各飲料容器の飲料温度が所定温度以下であれ
ば各飲料容器の冷却器を同時冷却運転するように運転制
御する。
(57) [Summary] [PROBLEMS] Operation control for a frozen beverage dispenser equipped with a plurality of beverage containers, which can effectively respond to beverage replenishment, changes in ambient temperature, etc. by effectively utilizing the cooling capacity of a small capacity refrigerator. Provide the law. A refrigerator built in each of a plurality of beverage containers is connected in parallel to a single refrigerator condensing unit to configure a refrigeration cycle, and the refrigerator operates to cool liquid beverages contained in each beverage container. In the beverage cooling device configured to keep the temperature at a predetermined temperature, a temperature sensor is arranged for each beverage container to detect a beverage temperature, and a cooling request is issued from each beverage container based on a detection signal of the temperature sensor. In an operating state, until the beverage temperature of each beverage container falls below a predetermined temperature, the cooling device is periodically switched between the beverage containers to perform an alternate cooling operation, and the beverage temperature of each beverage container is below a predetermined temperature. If so, the operation control is performed such that the coolers of the beverage containers are simultaneously cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シロップと削氷を
攪拌してシャーベット状のフローズン飲料を製造するフ
ローズン飲料ディスペンサ、あるいはソフトアイスクリ
ームなどの冷菓製造機に適用する飲料冷却装置の運転制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a beverage cooling device applied to a frozen beverage dispenser for producing a sherbet-shaped frozen beverage by stirring syrup and ice shaving, or a machine for making frozen desserts such as soft ice cream. About.

【0002】[0002]

【従来の技術】頭記したフローズン飲料ディスペンサ
は、シロップと希釈水をタンク内で冷却,攪拌して凍ら
せながら空気を混ぜてシャーベット状のフローズン飲料
を製造するものであり、1台で2種類のフローズン飲料
を製造するフローズン飲料ディスペンサを例に、その全
体構成を図4に、またその飲料系統回路,冷凍サイクル
の冷媒回路をそれぞれ図5,図6に示す。
2. Description of the Related Art The above-mentioned frozen beverage dispenser is for producing a sherbet-shaped frozen beverage by mixing air while cooling, stirring and freezing syrup and dilution water in a tank. FIG. 4 shows an example of a frozen beverage dispenser for producing a frozen beverage, and FIGS. 5 and 6 show a beverage system circuit and a refrigerant circuit of a refrigeration cycle, respectively.

【0003】まず、図4において、1は左右に並置して
ディスペンサ本体に搭載した飲料製造部となる飲料容
器、1aは上蓋、2は各飲料容器1から前方に引出した
開閉レバー付き飲料供給ノズル、3はベンドステージで
あり、各飲料容器1ごとに、その容器内部にはディスペ
ンサ本体に搭載した単一の冷却ユニット(コンプレッ
サ,コンデンサを組合せた冷凍機のコンデンシングユニ
ット)4と組合せて冷凍サイクルを構成する製氷用の冷
却シリンダ(冷却器)5を内蔵しいる。さらに、上蓋1
aの内側には後記のシロップ供給ライン,希釈水供給ラ
インに通じるシロップノズル6が開口している。
First, in FIG. 4, reference numeral 1 denotes a beverage container which is arranged side by side and serves as a beverage production unit mounted on a dispenser main body, 1a is an upper lid, and 2 is a beverage supply nozzle with an opening / closing lever which is drawn forward from each beverage container 1. Reference numeral 3 denotes a bend stage, which is a refrigeration cycle in which each beverage container 1 is combined with a single cooling unit (condensing unit of a refrigerator combining a compressor and a condenser) 4 mounted on a dispenser body inside the container. And a cooling cylinder (cooler) 5 for ice making. Furthermore, top cover 1
A syrup nozzle 6 that opens to a syrup supply line and a dilution water supply line described below is opened inside a.

【0004】また、前記の冷却シリンダ5は円筒状のエ
バポレータ(内外二重壁の間に冷媒を流し、その内外周
面上に結氷させる)であり、その内外周面上にはオーガ
(エバポレータの表面に結氷した氷をフレーク状に削り
取る刃)を兼ねたスクリュウ式の攪拌羽根51,52を
組合せ、かつ攪拌羽根51,52を駆動モータ7のギア
ボックス7aに連結して回転駆動し、冷却シリンダ5の
表面に結氷した氷を削りとって飲料容器1に収容した飲
料と混合攪拌し、飲料供給ノズル2を開放した際に攪拌
羽根の搬送力でフローズン飲料をノズルから押し出すよ
うにしている。なお、飲料容器1には冷却シリンダ5の
他に、タンク内の飲料量を検知してシロップ,希釈水の
供給を制御する液面レベルスイッチ、およびフローズン
飲料の硬さを検出する硬さ検知機構を装備している。
The cooling cylinder 5 is a cylindrical evaporator (a refrigerant flows between the inner and outer double walls and freezes on the inner and outer peripheral surfaces thereof). An auger (evaporator of the evaporator) is provided on the inner and outer peripheral surfaces thereof. Screw-type stirring blades 51, 52 also serving as blades for shaving ice frozen on the surface into flakes are combined, and the stirring blades 51, 52 are connected to the gear box 7a of the drive motor 7 to rotate and drive. The ice frozen on the surface of 5 is scraped off, mixed with the beverage contained in the beverage container 1 and stirred, and when the beverage supply nozzle 2 is opened, the frozen beverage is pushed out from the nozzle by the conveying force of the stirring blade. In the beverage container 1, in addition to the cooling cylinder 5, a liquid level switch for detecting the amount of the beverage in the tank to control the supply of syrup and dilution water, and a hardness detecting mechanism for detecting the hardness of the frozen beverage Equipped.

【0005】次に、ディスペンサの飲料系統を図5に示
す。図において、Aは前記したディスペンサ本体、Bは
ディスペンサ本体Aに組合せた飲料自動供給ユニット、
8は飲料(濃縮シロップ)を収容したシロップコンテ
ナ、9はシロップコンテナ8に炭酸ガス圧を加えてシロ
ップをプレッシャライズ式に抽出するための炭酸ガスボ
ンベ、10は水道口であり、飲料自動供給ユニットBに
は各基の飲料容器1に配したシロップノズル6とシロッ
プコンテナ8,水道口10との間を結ぶシロップ供給ラ
イン11,および希釈水供給ライン12などが組み込ま
れている。なお、11aはシロップ売切センサ、11b
はシロップフローレギュレータ、11cはシロップバル
ブ、12aは水入口バルブ、12bは送水ポンプ、12
cは希釈水バルブ、12dは水フローレギュレータ、1
2eはサニテーション用水バルブ、12fは逆止弁付き
の三方管継手である。
Next, FIG. 5 shows a beverage system of the dispenser. In the figure, A is the dispenser body described above, B is a beverage automatic supply unit combined with the dispenser body A,
Reference numeral 8 denotes a syrup container containing a beverage (concentrated syrup), 9 denotes a carbon dioxide gas cylinder for applying a carbon dioxide pressure to the syrup container 8 to extract the syrup in a pressure-rise manner, 10 denotes a water tap, and a beverage automatic supply unit B A syrup supply line 11 that connects the syrup nozzle 6 and the syrup container 8 arranged in each of the beverage containers 1 to the water supply port 10, a dilution water supply line 12, and the like are incorporated in the apparatus. 11a is a syrup sold-out sensor, 11b
Is a syrup flow regulator, 11c is a syrup valve, 12a is a water inlet valve, 12b is a water pump, 12
c is a dilution water valve, 12d is a water flow regulator, 1
2e is a water valve for sanitation, and 12f is a three-way pipe joint with a check valve.

【0006】また、図6は前記冷却ユニット4と各飲料
容器1に内蔵した冷却シリンダ5とで構成する冷凍サイ
クルの冷媒回路図であり、冷却ユニット4にはコンプレ
ッサ4a,コンデンサ(凝縮器)4b,ストレーナ4
c,アキュムレータ4dなどを装備し、この冷却ユニッ
ト4に2基の飲料容器1(I,II)に内蔵した冷却シリ
ンダ5がキャピラリチューブ(もしくは膨張弁)13,
冷媒弁14(I,II)およびチエック弁15を介し並列
に接続して冷凍サイクルを構成している。
FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle composed of the cooling unit 4 and a cooling cylinder 5 built in each beverage container 1. The cooling unit 4 includes a compressor 4a and a condenser (condenser) 4b. , Strainer 4
c, an accumulator 4d, etc., and a cooling cylinder 5 built in the two beverage containers 1 (I, II) in the cooling unit 4 includes a capillary tube (or expansion valve) 13,
A refrigeration cycle is configured by connecting the refrigerant valves 14 (I, II) and the check valve 15 in parallel via a check valve 15.

【0007】上記の構成で、シロップ供給ライン11,
および希釈水供給ライン12を通じてディスペンサ本体
Aの各飲料容器1に異なる種類の濃縮シロップと希釈水
を定量ずつ供給し、冷却ユニット4の運転により冷却シ
リンダ5の表面に結氷した氷をオーガ兼用の攪拌羽根5
1,52で削り取りつつ、そのフレーク状の削氷と飲料
とを攪拌することにより飲料容器1内でシャーベット状
のフローズン飲料が製造される。なお、販売待機状態で
はフローズン飲料が攪拌羽根51,52の搬送力により
冷却シリンダ5の内部を経由して飲料容器1の中を循環
しており、ベンドステージ3にカップをセットして飲料
供給ノズル2を開くと、飲料容器1からフローズン飲料
がカップに供給される。また、フローズン飲料の冷却が
進んで所定の硬さを超えた状態になると、運転制御部
(図示せず)が先記した硬さ検知機構の信号を基に冷却
ユニット4の運転を停止し、この状態からフローズン飲
料が溶けはじめてその軟化すると、冷却ユニット4を運
転してフローズン飲料が適正な硬さを維持するように運
転制御する。
In the above configuration, the syrup supply lines 11,
In addition, different types of concentrated syrup and dilution water are supplied to each beverage container 1 of the dispenser main body A through the dilution water supply line 12 by a fixed amount, and the ice formed on the surface of the cooling cylinder 5 is stirred by the operation of the cooling unit 4 as an auger. Feather 5
By stirring the flaked ice and the beverage while shaving them at 1, 52, a sherbet-shaped frozen beverage is produced in the beverage container 1. In the sales standby state, the frozen beverage is circulated in the beverage container 1 via the inside of the cooling cylinder 5 by the conveying force of the stirring blades 51 and 52, and the beverage is supplied to the bend stage 3 by setting a cup. When the container 2 is opened, the frozen beverage is supplied from the beverage container 1 to the cup. Further, when the cooling of the frozen beverage proceeds and exceeds a predetermined hardness, the operation control unit (not shown) stops the operation of the cooling unit 4 based on the signal of the hardness detection mechanism described above, When the frozen beverage starts to melt and soften in this state, the cooling unit 4 is operated to control the operation so that the frozen beverage maintains appropriate hardness.

【0008】ここで、前記のように2基の飲料容器1を
搭載したフローズン飲料ディスペンサについて、従来の
冷却運転制御方法では、ディスペンサの稼働中に双方の
飲料容器1から冷却要求がある場合には、図6の冷媒弁
14(IおよびII)を共に開いて各飲料容器1の冷却シ
リンダ5を同時に冷却運転し、各飲料容器1に収容した
飲料を同時に冷却してフローズン飲料を製造するように
し、冷却運転が進行して各飲料容器1で製造したフロー
ズン飲料が所定の硬度になると、先記した硬さ検知機構
の検知信号で冷却ユニット4を運転停止するようにして
いる。
Here, as described above, with respect to the frozen beverage dispenser on which the two beverage containers 1 are mounted, according to the conventional cooling operation control method, when there is a cooling request from both beverage containers 1 during operation of the dispenser. 6, the cooling valves 5 (I and II) of FIG. 6 are both opened to simultaneously perform the cooling operation of the cooling cylinders 5 of the respective beverage containers 1 so that the beverages contained in the respective beverage containers 1 are simultaneously cooled to produce a frozen beverage. When the cooling operation proceeds and the frozen beverage produced in each beverage container 1 has a predetermined hardness, the operation of the cooling unit 4 is stopped by the detection signal of the hardness detection mechanism described above.

【0009】また、2基の飲料容器1を搭載したディス
ペンサで、新しくフローズン飲料を製造する運転開始時
(各飲料容器1に収容した液体飲料が常温の状態にあ
る)には、冷却ユニット4に大きな冷凍負荷が加わるの
を避けるために、2基の飲料容器1(IおよびII)に装
備した冷却シリンダ5を片方ずつ順に冷却運転してフロ
ーズン飲料を製造し、双方の飲料容器1でフローズン飲
料が製造されたところで、2基の冷却シリンダ5を片側
運転から同時冷却運転に切換えるような運転制御方法が
知られている(特開平11−75705号)。
In addition, when the dispenser equipped with the two beverage containers 1 starts operation for producing a new frozen beverage (the liquid beverage contained in each beverage container 1 is at room temperature), the cooling unit 4 In order to avoid applying a large refrigeration load, the cooling cylinders 5 provided for the two beverage containers 1 (I and II) are cooled one by one in order to produce frozen beverages, and the frozen beverages are produced in both beverage containers 1. After the production of the cooling cylinder, there is known an operation control method in which the two cooling cylinders 5 are switched from one-side operation to simultaneous cooling operation (Japanese Patent Laid-Open No. 11-75705).

【0010】[0010]

【発明が解決しようとする課題】ところで、前記のよう
に2基の各飲料容器1に内蔵した冷却シリンダ5(Iお
よびII)を単一の冷却ユニット4に並列接続し、飲料容
器から冷却要求がある場合に各飲料容器の冷却シリンダ
5を同時冷却運転するようにした従来の運転制御方法で
は次記のような問題点がある。
By the way, as described above, the cooling cylinders 5 (I and II) built in each of the two beverage containers 1 are connected in parallel to a single cooling unit 4, and cooling requests from the beverage containers are made. In the conventional operation control method in which the cooling cylinders 5 of the respective beverage containers are simultaneously cooled when there is a problem, there are the following problems.

【0011】すなわち、フローズン飲料ディスペンサの
稼働中に、飲料売切により片方の飲料容器に多量の液体
飲料(シロップ)を補給すると、一方の飲料容器には冷
えてない液体飲料が、他方の飲料容器には氷温以下に冷
却されたフローズン飲料が入った状態となり、このため
に双方の飲料容器1に収容した飲料の間に大きな温度差
が生じるようになる。このような状況下で各飲料容器に
内蔵した冷却シリンダ5の冷媒弁14を共に開いて同時
冷却運転すると、両方の冷媒弁14(IおよびII)が開
弁しているにもかかわらず、冷媒は各冷却シリンダにお
ける蒸発圧力の差からフローズン飲料が入っている低温
側の冷却シリンダ5に多く流れ、これと相対的に液体飲
料が入っている高温側の冷却シリンダに流れる冷媒量が
少なくなといった現象が生じる。この結果、液体飲料を
補給した方の飲料容器では、冷却シリンダの冷えが極端
に低下してフローズン飲料が製造されないといった不具
合を生じることがある。しかもこのような冷却運転上の
問題は、冷凍機の冷却能力と冷凍負荷との関係から飲料
温度,および周囲の外気温が高いほど生じ易く、夏期な
どように周囲温度が高い状況では、冷凍機のコンデンサ
(風冷式)の凝縮能力も低下することもあって冷凍機の
冷却能力が十分に発揮できなくなる。
That is, when a large amount of liquid beverage (syrup) is replenished to one of the beverage containers by selling the beverage while the frozen beverage dispenser is operating, the uncooled liquid beverage is placed in one beverage container and the other beverage container is placed in the other beverage container. Contains a frozen beverage cooled to below the ice temperature, which causes a large temperature difference between the beverages contained in both beverage containers 1. In such a situation, when the refrigerant valves 14 of the cooling cylinders 5 incorporated in the respective beverage containers are both opened and the simultaneous cooling operation is performed, the refrigerant flows even though both the refrigerant valves 14 (I and II) are open. The amount of refrigerant flowing through the cooling cylinder 5 on the low temperature side containing the frozen beverage and the amount of refrigerant flowing on the cooling cylinder on the high temperature side containing the liquid beverage are relatively small due to the difference in evaporation pressure in each cooling cylinder. A phenomenon occurs. As a result, in the beverage container to which the liquid beverage is replenished, there may be a problem that the cooling of the cooling cylinder is extremely reduced and the frozen beverage is not manufactured. In addition, such a problem in the cooling operation is more likely to occur as the beverage temperature and the ambient outside temperature are higher due to the relationship between the cooling capacity of the refrigerator and the refrigeration load. In some cases, the condenser (air cooling type) also has a reduced condensing ability, so that the cooling ability of the refrigerator cannot be sufficiently exhibited.

【0012】また、単一の冷却ユニット4で複数基の冷
却シリンダ5(IおよびII)を同時冷却運転する方式で
は、冷凍機の容量に十分な余裕がないと、飲料の温度条
件によっては冷凍機が過負荷運転となり、このために冷
凍機のコンプレッサに内蔵の過負荷リレーが作動して冷
凍機が停止してしまうといった問題もある。さらに、デ
ィスペンサの運転開始時に2基ある飲料容器1の冷却シ
リンダ5を片方ずつ順に冷却運転して立ち上げる前記の
運転制御方式(特開平11−75705号)では、片方
の飲料容器で先に製造したフローズン飲料が溶けないう
ちに、他方の飲料容器でフローズン飲料を製造する必要
がある。そのためには、冷却ユニットとして短時間で飲
料容器に収容した液体飲料を氷温以下に冷却してフロー
ズン飲料を製造できる冷却能力の大きな冷凍機、つまり
容量の大きな圧縮機が必要であり、このためにディスペ
ンサが大形で高価になる。
Further, in a system in which a plurality of cooling cylinders 5 (I and II) are simultaneously cooled by a single cooling unit 4, if the capacity of the refrigerator is not sufficient, the refrigeration may be limited depending on the temperature condition of the beverage. There is also a problem that the machine is overloaded, which causes an overload relay built into the compressor of the refrigerator to operate and the refrigerator to stop. Furthermore, in the operation control method (Japanese Patent Laid-Open No. 11-75705) in which the cooling cylinders 5 of the two beverage containers 1 are started up one by one at the time of starting operation of the dispenser, one beverage container is first manufactured. It is necessary to produce a frozen beverage in the other beverage container before the frozen frozen beverage is melted. For that purpose, a refrigerator having a large cooling capacity capable of producing a frozen beverage by cooling a liquid beverage contained in a beverage container to an ice temperature or less in a short time as a cooling unit, that is, a compressor having a large capacity is required. In addition, the dispenser becomes large and expensive.

【0013】本発明は上記の点に鑑みなれさたものであ
り、前記した複数基の飲料容器を搭載したフローズン飲
料ディスペンサなどを対象に、小容量な冷凍機の冷却能
力を有効に活かして、冷凍機の過負荷運転を避けつつ飲
料補給,周囲温度変化などにも即応してフローズン飲料
を製造できるように改良した運転制御法を提供すること
を目的とする。
[0013] The present invention has been made in view of the above points, and is intended for a frozen beverage dispenser equipped with a plurality of beverage containers as described above, and effectively utilizes the cooling capacity of a small-capacity refrigerator. It is an object of the present invention to provide an improved operation control method capable of manufacturing a frozen beverage in response to a change of ambient temperature or the like while avoiding overload operation of a refrigerator.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、複数基の飲料容器ごとに内蔵した
冷却器を単一の冷凍機コンデンシングユニットに並列接
続して冷凍サイクルを構成し、冷凍機の運転により各飲
料容器に収容した液体飲料を冷却して所定温度に保冷す
るようにした飲料冷却装置において、各基の飲料容器ご
とに温度センサを配して飲料温度を検出し、各飲料容器
から冷却要求がある場合に、各飲料容器の飲料温度が所
定温度以下になるまでは、各飲料容器の間で冷却器を周
期的に切換えて交互冷却運転し、各飲料容器の飲料温度
が所定温度以下であれば各飲料容器の冷却器を同時冷却
運転するように制御するものとする(請求項1)。
According to the present invention, a refrigeration cycle is provided by connecting a cooler built in each of a plurality of beverage containers to a single refrigerator condensing unit in parallel. In the beverage cooling device configured to cool the liquid beverage contained in each beverage container by operation of the refrigerator and keep the beverage at a predetermined temperature, a temperature sensor is arranged for each of the beverage containers to determine the beverage temperature. Detecting, when there is a cooling request from each beverage container, until the beverage temperature of each beverage container falls below the predetermined temperature, the cooling device is periodically switched between the beverage containers to perform alternate cooling operation, and If the beverage temperature of the container is equal to or lower than the predetermined temperature, the cooling device of each beverage container is controlled to perform the simultaneous cooling operation (claim 1).

【0015】また、本発明によれば、前記の運転制御方
法で周囲外気温の影響を抑えるために、外気温センサに
より冷却装置の周囲温度を検出し、周囲温度が所定温度
以上である場合には、各飲料容器の冷却器を交互冷却運
転する(請求項2)。さらに、前記の運転制御方法で、
交互冷却運転時に冷媒の不要な寝込みを防いで冷凍機の
能力を発揮させるために、本発明によれば、各飲料容器
の間で冷却器の冷却運転を切換える際にポンプダウン制
御を行い、いままで冷却運転していた冷却器内に残留し
ている冷媒を冷凍機コンデンシングユニット側に回収す
るようにする(請求項3)。
According to the present invention, the ambient temperature of the cooling device is detected by an ambient temperature sensor in order to suppress the influence of the ambient temperature by the operation control method. Operates the cooling device of each beverage container alternately (claim 2). Further, in the above operation control method,
According to the present invention, pump-down control is performed when switching the cooling operation of the cooler between the beverage containers to prevent unnecessary stagnation of the refrigerant during the alternate cooling operation and to exert the performance of the refrigerator. Refrigerant remaining in the cooler that has been performing the cooling operation until the cooling operation is recovered to the refrigerator condensing unit side.

【0016】上記の運転制御方法によれば、飲料容器へ
の飲料補給直後のように飲料容器に収容した飲料の温度
が高く、また周囲の外気温が高い場合でも、各飲料容器
の各冷却器を周期的に切換えて交互冷却運転することに
より、小容量の冷凍機であっても、その冷却能力以上の
過大な冷凍負荷を加えることなしに各飲料容器に収容し
た飲料を所定の保冷温度まで冷却することができる。こ
の場合に、交互冷却運転での運転サイクルを比較的短い
時間に設定しておけば、先記のフローズン飲料ディスペ
ンサでは、飲料容器内で製造したフローズン飲料が溶け
ないうちに冷却器が次に冷却運転サイクルに入るので品
質維持が図れる。また、この交互冷却運転中は冷却シリ
ンダの切換え時にポンプダウン制御を行うことで、冷媒
の不要な寝込みを防いで冷却器を効果的に冷却運転でき
る。
According to the above-described operation control method, even when the temperature of the beverage contained in the beverage container is high, such as immediately after the beverage is refilled into the beverage container, and when the ambient outside air temperature is high, each of the coolers of each beverage container can be cooled. Even if the refrigerator has a small capacity, the beverage contained in each beverage container can be cooled to a predetermined cooling temperature without applying an excessive refrigeration load exceeding its cooling capacity by alternately performing the cooling operation by periodically switching the cooling capacity. Can be cooled. In this case, if the operation cycle in the alternating cooling operation is set to a relatively short time, in the above-described frozen beverage dispenser, the cooler cools down next before the frozen beverage produced in the beverage container melts. Since it enters the operation cycle, quality can be maintained. Also, during this alternate cooling operation, by performing pump-down control when the cooling cylinder is switched, unnecessary cooling of the refrigerant can be prevented, and the cooler can be effectively cooled.

【0017】そして、飲料の冷却が進んで各容器内の飲
料温度が所定値以下になれば、各飲料容器の冷却器を同
時冷却運転に切換えることで、飲料を適温状態に保冷維
持できるとともに、この同時冷却運転中は冷凍機のポン
プダウン制御は行わないので、その分だけ非冷却となる
ロスタイム,および無駄な電力消費を最小限に抑えて効
率よく冷却運転できる。
When the beverage cools down and the beverage temperature in each container falls below a predetermined value, the cooler of each beverage container is switched to the simultaneous cooling operation so that the beverage can be kept cool at an appropriate temperature, and Since the pump-down control of the refrigerator is not performed during the simultaneous cooling operation, the cooling operation can be efficiently performed by minimizing the loss time in which the refrigerator is not cooled and the unnecessary power consumption.

【0018】[0018]

【発明の実施の形態】以下、フローズン飲料ディスペン
サを例に、本発明の実施の形態を図示実施例に基づいて
説明する。なお、図1,図2は後記の実施例1,2に対
応する運転制御のチャート、図3はその冷媒回路を表し
ており、図3において図6に対応する部材には同じ符号
を付してその説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the drawings, taking a frozen beverage dispenser as an example. 1 and 2 are charts of operation control corresponding to Examples 1 and 2 described later, and FIG. 3 shows a refrigerant circuit thereof. In FIG. 3, members corresponding to FIG. The description is omitted.

【0019】すなわち、図3に示す冷媒回路において
は、フローズン飲料ディスペンサに搭載した左右の飲料
容器1(IおよびII)ごとに、その容器内部に温度セン
サ16を配して各飲料容器1の飲料温度を検出し、さら
に飲料容器1の外側には外気温センサ17を配して外気
温を検出するようにし、これら温度センサの検出温度を
運転制御部(図示せず)に取り込み、これを基に各基の
冷却シリンダ5に通じる冷媒回路に接続した冷媒弁14
(I,II) を後記のように開閉制御して各冷却シリンダ
5を交互冷却/同時冷却の運転モードで冷却する。
That is, in the refrigerant circuit shown in FIG. 3, for each of the left and right beverage containers 1 (I and II) mounted on the frozen beverage dispenser, a temperature sensor 16 is disposed inside the container and the beverage in each beverage container 1 is provided. The temperature is detected, and an outside air temperature sensor 17 is disposed outside the beverage container 1 so as to detect the outside air temperature. The detected temperatures of these temperature sensors are taken into an operation control unit (not shown), and Valve 14 connected to a refrigerant circuit leading to each of the cooling cylinders 5
(I, II) is controlled to open and close as described below to cool each cooling cylinder 5 in the alternate cooling / simultaneous cooling operation mode.

【0020】〔実施例1〕まず、本発明の請求項1,3
に対応する運転制御を図1(a) 〜(c) に示すチャートで
説明する。すなわち、運転制御部では各飲料容器1に収
容した飲料の温度について、例えば氷温(0℃)を所定
冷却温度の閾値として設定しておく。そして、フローズ
ン飲料ディスペンサの運転中に左右の飲料容器1(Iお
よびII) から冷却要求がある場合には、温度センサ16
の検出信号と前記の閾値とを対比して飲料温度が閾値
(0℃)以下であるか否かを判定し、ここで飲料温度が
0℃より高ければ冷却シリンダ5の運転モードを交互冷
却運転として、左右の冷媒弁14(I,II)を図1(b)
で表すように交互に開閉制御して各基の冷却シリンダ5
に冷媒を供給し、その冷凍サイクルにより飲料容器1に
収容した飲料を氷温以下になるまで冷却してフローズン
飲料を製造する。
[Embodiment 1] First, claims 1 and 3 of the present invention will be described.
1 will be described with reference to the charts shown in FIGS. 1 (a) to 1 (c). That is, the operation control unit sets, for example, an ice temperature (0 ° C.) as a threshold value of the predetermined cooling temperature for the temperature of the beverage contained in each beverage container 1. If there is a cooling request from the left and right beverage containers 1 (I and II) during operation of the frozen beverage dispenser, the temperature sensor 16
Is compared with the threshold value to determine whether the beverage temperature is equal to or less than the threshold value (0 ° C.). If the beverage temperature is higher than 0 ° C., the operation mode of the cooling cylinder 5 is changed to the alternate cooling operation. The left and right refrigerant valves 14 (I, II) are shown in FIG.
The opening and closing of the cooling cylinders 5 are alternately controlled as shown by
The frozen beverage is manufactured by supplying a refrigerant to the beverage container 1 and cooling the beverage contained in the beverage container 1 to an ice temperature or lower by the refrigerating cycle.

【0021】この交互冷却運転では、図示のように定周
期で冷媒弁14(I,II)を片方ずつ交互に開いて左右
の冷却シリンダ5に冷媒を間欠的に流すようにし、かつ
冷媒弁14の切換えに際しては、冷却ユニット4のコン
プレッサ4aを継続運転のまま冷媒弁14(IおよびI
I)を一時的に閉じてポンプダウン制御を行い、いまま
で冷却運転していた冷却シリンダ側に残っている冷媒を
冷却ユニット4のコンデンサ4bに回収して冷媒の寝込
みを防ぐようにしている。なお、冷媒弁14の切換え周
期は、飲料容器1で製造中のフローズン飲料が冷却シリ
ンダ5の冷却運転の停止中に溶けないようにするため
に、例えば5分程度に設定する。
In this alternate cooling operation, the refrigerant valves 14 (I, II) are alternately opened one by one at regular intervals, as shown in the figure, so that the refrigerant flows intermittently to the left and right cooling cylinders 5. When the refrigerant valve 14 (I and I) is switched while the compressor 4a of the cooling unit 4 is continuously operated.
I) is temporarily closed to perform pump-down control, and the refrigerant remaining on the cooling cylinder side that has been performing the cooling operation is collected in the condenser 4b of the cooling unit 4 to prevent the refrigerant from stagnation. The switching cycle of the refrigerant valve 14 is set to, for example, about 5 minutes in order to prevent the frozen beverage being manufactured in the beverage container 1 from being melted while the cooling operation of the cooling cylinder 5 is stopped.

【0022】一方、左右の飲料容器1(IおよびII) か
ら冷却要求がある運転状態で、各飲料容器1の飲料温度
が閾値(0℃)以下であれば、冷却運転モードを同時冷
却運転として冷媒弁I,IIを図1(c) のように同時に開
いて冷却運転する。また、前記の交互冷却運転モードで
飲料の冷却が進行し、左右の飲料容器1の飲料温度が共
に閾値である0℃以下の氷温に低下してフローズン飲料
が生成された状態になれば、冷却器5の運転モードを交
互冷却運転から同時冷却運転に切り換えて飲料容器1の
飲料を継続的に冷却する。なお、この同時冷却運転モー
ドでは当然のことながらポンプダウン制御は行わない。
On the other hand, in the operating state where there is a cooling request from the left and right beverage containers 1 (I and II), if the beverage temperature of each beverage container 1 is below the threshold value (0 ° C.), the cooling operation mode is set to the simultaneous cooling operation. The refrigerant valves I and II are simultaneously opened as shown in FIG. In addition, if the cooling of the beverage proceeds in the alternate cooling operation mode, and the beverage temperature of the left and right beverage containers 1 drops to an ice temperature of 0 ° C. or less, which is a threshold, and a frozen beverage is produced, The operation mode of the cooler 5 is switched from the alternate cooling operation to the simultaneous cooling operation to continuously cool the beverage in the beverage container 1. In this simultaneous cooling operation mode, the pump down control is not performed as a matter of course.

【0023】〔実施例2〕次に、本発明の請求項2に対
応する実施例を説明する。この実施例では、先記実施例
1で述べた飲料温度検出用の温度センサ16の他に、図
3の図中に記した外気温センサ17を使ってその検出信
号を運転制御部に取り込み、図2のフローチャートで表
すように運転制御を行うものとする。
[Embodiment 2] Next, a second embodiment of the present invention will be described. In this embodiment, in addition to the temperature sensor 16 for beverage temperature detection described in the first embodiment, an outside air temperature sensor 17 shown in FIG. Operation control is performed as shown in the flowchart of FIG.

【0024】すなわち、運転制御部には外気温の制御条
件として例えば30℃を閾値を設定しておき、ディスペ
ンサの運転中に各飲料容器から冷却要求があった場合
に、各飲料容器の飲料温度が0℃以下であっても、その
時の外気温が閾値である30℃を超えていれば各飲料容
器に内蔵した冷却シリンダを同時冷却運転から交互冷却
運転に切換え、外気温が30℃以下であればそのまま同
時冷却運転を行う。
That is, a threshold value of, for example, 30 ° C. is set as a control condition of the outside air temperature in the operation control unit, and when a cooling request is issued from each beverage container during the operation of the dispenser, the beverage temperature of each beverage container is set. Even if the temperature is below 0 ° C, if the outside air temperature at that time exceeds the threshold value of 30 ° C, the cooling cylinder incorporated in each beverage container is switched from the simultaneous cooling operation to the alternate cooling operation, and when the outside air temperature is below 30 ° C. If so, the simultaneous cooling operation is performed.

【0025】この運転制御により、外気温度が高いため
に冷却ユニット4(図3参照)の冷却能力が低下した状
況でも、冷凍機に過大な冷凍負荷をかけることなしに各
飲料容器で製造したフローズン飲料を保冷することがで
きる。なお、この実施例による運転制御方式では、飲料
温度,周囲温度に対する制御上の閾値は、前記した温度
に限定されるものではなく、ディスペンサに搭載した冷
凍機の仕様,飲料ディスペンサの設置場所の周囲環境な
どを勘案して適正な値に設定するものとする。
By this operation control, even if the cooling capacity of the cooling unit 4 (see FIG. 3) is reduced due to the high outside air temperature, the frozen product manufactured in each beverage container without applying an excessive refrigeration load to the refrigerator. The beverage can be kept cool. In the operation control method according to this embodiment, the control thresholds for the beverage temperature and the ambient temperature are not limited to the above-mentioned temperatures, but the specifications of the refrigerator mounted on the dispenser and the surroundings of the installation location of the beverage dispenser. It shall be set to an appropriate value in consideration of the environment.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、各
基の飲料容器ごとに温度センサを配して飲料温度を検出
し、各飲料容器から冷却要求がある場合に、各飲料容器
の飲料温度が所定温度以下になるまでは、各飲料容器の
間で冷却器を周期的に切換えて交互冷却運転し、各飲料
容器の飲料温度が所定温度以下であれば各飲料容器の冷
却器を同時冷却運転するようにしたことにより、飲料容
器への新たな飲料補給などにより飲料温度が高くなった
状態でも、冷凍機の過負荷運転を避けつつ各飲料容器の
飲料を所定の温度まで冷却することができ、これにより
冷却能力が小さな小容量の冷凍機でも対応できて装置の
小形,低コスト化が図れる。
As described above, according to the present invention, a temperature sensor is provided for each of the beverage containers and the beverage temperature is detected. Until the beverage temperature of the beverage container becomes equal to or lower than the predetermined temperature, the cooling device is periodically switched between the beverage containers to perform the alternate cooling operation, and if the beverage temperature of each beverage container is equal to or lower than the predetermined temperature, the cooling device of each beverage container is cooled. Simultaneous cooling operation allows the beverage in each beverage container to be cooled to a predetermined temperature while avoiding overload operation of the refrigerator, even when the beverage temperature becomes high due to new supply of beverage to the beverage container. Accordingly, a small-capacity refrigerator having a small cooling capacity can be used, and the size and cost of the apparatus can be reduced.

【0027】しかも、冷却器の交互冷却運転中は冷却器
の切換え時にポンプダウン制御を行うことで、冷媒の不
要な寝込みを防いで各冷却器を効果的に冷却運転でき、
さらに同時冷却運転中はポンプダウン制御は行わないの
で、トータル的に非冷却のロスタイム,および無駄な電
力消費を最小限に抑えて運転効率の改善が図れる。ま
た、前記の運転制御方法において、外気温センサを追加
して周囲温度を検出し、周囲温度が所定温度以上である
場合には、各飲料容器の冷却器を交互冷却運転すること
により、外気温が高い場合でも冷凍機に過負荷を加えず
に、冷凍機の冷却能力を有効に活かして各飲料容器の飲
料を保冷できる。
In addition, during the alternate cooling operation of the coolers, the pump-down control is performed at the time of switching the coolers, so that unnecessary cooling of the refrigerant can be prevented and each cooler can be effectively cooled.
Further, since the pump-down control is not performed during the simultaneous cooling operation, the non-cooling loss time and unnecessary power consumption can be minimized to improve the operation efficiency. Further, in the operation control method described above, an ambient temperature sensor is added to detect an ambient temperature, and when the ambient temperature is equal to or higher than a predetermined temperature, the cooler of each beverage container is alternately cooled to perform the ambient temperature. Even if the temperature is high, the beverage in each beverage container can be kept cool by effectively utilizing the cooling capacity of the refrigerator without overloading the refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係わるフローズン飲料ディ
スペンサの運転制御の説明図であり、(a) は運転制御の
フローチャート、(b),(c) はそれぞれ冷却器の交互冷却
運転,同時冷却運転の制御動作を表すタイムチャート
FIG. 1 is an explanatory diagram of operation control of a frozen beverage dispenser according to Embodiment 1 of the present invention, (a) is a flowchart of operation control, (b) and (c) are alternate cooling operations of a cooler, Time chart showing control operation of cooling operation

【図2】本発明の実施例2に係わる運転制御のフローチ
ャート図
FIG. 2 is a flowchart of operation control according to a second embodiment of the present invention.

【図3】図1,図2の運転制御に対応する温度センサを
装備したフローズン飲料ディスペンサの冷媒回路図
FIG. 3 is a refrigerant circuit diagram of a frozen beverage dispenser equipped with a temperature sensor corresponding to the operation control of FIGS. 1 and 2;

【図4】本発明の実施対象となるフローズン飲料用ディ
スペンサの構成図
FIG. 4 is a configuration diagram of a dispenser for frozen beverage to which the present invention is applied.

【図5】図4のディスペンサの飲料系統図FIG. 5 is a beverage system diagram of the dispenser of FIG. 4;

【図6】図4のディスペンサに搭載した各飲料容器の冷
却器に対する冷凍サイクルの冷媒回路図
6 is a refrigerant circuit diagram of a refrigeration cycle for a cooler of each beverage container mounted on the dispenser of FIG.

【符号の説明】[Explanation of symbols]

1 飲料容器 4 冷却ユニット(冷凍機コンデンシングユニット) 4a コンプレッサ 4b コンデンサ(凝縮器) 5 冷却シリンダ(冷却器) 14 冷媒弁 16 飲料温度検出用の温度センサ 17 外気温センサ Reference Signs List 1 beverage container 4 cooling unit (refrigerator condensing unit) 4a compressor 4b condenser (condenser) 5 cooling cylinder (cooler) 14 refrigerant valve 16 temperature sensor for detecting beverage temperature 17 outside temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B67D 1/08 B67D 1/08 A Fターム(参考) 3E082 AA02 AA04 AA06 BB07 CC02 CC04 CC09 CC10 EE03 4B014 GB22 GB23 GP12 GT13 GT14 GT20 GY03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B67D 1/08 B67D 1/08 A F-term (Reference) 3E082 AA02 AA04 AA06 BB07 CC02 CC04 CC09 CC10 EE03 4B014 GB22 GB23 GP12 GT13 GT14 GT20 GY03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数基の飲料容器ごとに内蔵した冷却器を
単一の冷凍機コンデンシングユニットに並列接続して冷
凍サイクルを構成し、冷凍機の運転により各飲料容器に
収容した液体飲料を冷却して所定温度に保冷するように
した飲料冷却装置において、各基の飲料容器ごとに温度
センサを配して飲料温度を検出し、各飲料容器から冷却
要求がある場合に、各飲料容器の飲料温度が所定温度以
下になるまでは、各飲料容器の間で冷却器を周期的に切
換えて交互冷却運転し、各飲料容器の飲料温度が所定温
度以下であれば各飲料容器の冷却器を同時冷却運転する
ことを特徴とする飲料冷却装置の運転制御方法。
A refrigerator built in each of a plurality of beverage containers is connected in parallel to a single refrigerator condensing unit to form a refrigeration cycle, and the liquid beverages stored in each beverage container are operated by the refrigerator. In a beverage cooling device that is cooled and kept at a predetermined temperature, a temperature sensor is arranged for each beverage container of each base to detect the beverage temperature, and when there is a cooling request from each beverage container, each beverage container is cooled. Until the beverage temperature falls below the predetermined temperature, the cooling device is periodically switched between the beverage containers to perform an alternate cooling operation.If the beverage temperature of each beverage container is below the predetermined temperature, the cooling device of each beverage container is turned on. An operation control method for a beverage cooling device, comprising performing simultaneous cooling operation.
【請求項2】請求項1記載の運転制御方法において、外
気温センサにより周囲温度を検出し、周囲温度が所定温
度以上である場合には、各飲料容器の冷却器を交互冷却
運転することを特徴とする飲料冷却装置の運転制御方
法。
2. The operation control method according to claim 1, wherein the ambient temperature is detected by an outside air temperature sensor, and when the ambient temperature is equal to or higher than a predetermined temperature, the cooling device of each beverage container is alternately cooled. A method for controlling the operation of a beverage cooling device.
【請求項3】請求項1または2記載の運転制御方法にお
いて、各飲料容器の間で冷却器の冷却運転を切換える際
にポンプダウン制御を行い、いままで冷却運転していた
冷却器内に残留している冷媒を冷凍機コンデンシングユ
ニット側に回収するようにしたことを特徴とする飲料冷
却装置の運転制御方法。
3. The operation control method according to claim 1, wherein pump down control is performed when the cooling operation of the cooler is switched between the beverage containers, and the pump remains in the cooler that has been performing the cooling operation. A method for controlling the operation of a beverage cooling device, comprising recovering a used refrigerant to a refrigerator condensing unit.
JP2001111232A 2001-04-10 2001-04-10 Operation control method of beverage cooling device Withdrawn JP2002308394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111232A JP2002308394A (en) 2001-04-10 2001-04-10 Operation control method of beverage cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111232A JP2002308394A (en) 2001-04-10 2001-04-10 Operation control method of beverage cooling device

Publications (1)

Publication Number Publication Date
JP2002308394A true JP2002308394A (en) 2002-10-23

Family

ID=18962869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111232A Withdrawn JP2002308394A (en) 2001-04-10 2001-04-10 Operation control method of beverage cooling device

Country Status (1)

Country Link
JP (1) JP2002308394A (en)

Similar Documents

Publication Publication Date Title
US9062902B2 (en) Defrost control for multiple barrel frozen product dispensers
US9528740B1 (en) Adaptive beater and scraper speed control for frozen product dispenser
US7617693B2 (en) Water purifying system and apparatus for simultaneously making ice and cold water using one evaporator
US7059141B2 (en) Combined ice and beverage dispenser and icemaker
US4754609A (en) High efficiency method and apparatus for making and dispensing cold carbonated water
US8196423B2 (en) Automatic recovery system for frozen product machines
JP5458730B2 (en) Beverage supply equipment
JP2002308394A (en) Operation control method of beverage cooling device
JP5219356B2 (en) Cold water supply device
JP2002228326A (en) Cooling operation control method for frozen beverage dispenser
JP2011031918A (en) Beverage dispenser
JP4288550B2 (en) Operation method of ice storage type beverage cooling device
JP2589161B2 (en) Frozen dessert production equipment
JP2000316482A (en) Confectionery production arrangement
JP4428524B2 (en) Dispenser
JP2002203275A (en) Operation control method of ice storage type beverage cooling device
JP2003231593A (en) Ice-storage-type beverage dispenser
JP3942314B2 (en) Frozen confectionery manufacturing equipment
JP2001252024A (en) Device for producing frozen sweet
JP2018071847A (en) Method of operating cooling system
JPH08178486A (en) Auger ice machine
JPH05308906A (en) Method for reusing mix remained in ice candy-producing machine
JP2001025362A (en) Apparatus for producing frozen dessert
JP2003111562A (en) Apparatus for producing frozen dessert
JPH0436153A (en) Supercooling-protection apparatus for soft icecream freezer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100329