[go: up one dir, main page]

JP2002313348A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2002313348A
JP2002313348A JP2001113919A JP2001113919A JP2002313348A JP 2002313348 A JP2002313348 A JP 2002313348A JP 2001113919 A JP2001113919 A JP 2001113919A JP 2001113919 A JP2001113919 A JP 2001113919A JP 2002313348 A JP2002313348 A JP 2002313348A
Authority
JP
Japan
Prior art keywords
current collector
secondary battery
active material
electrode active
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001113919A
Other languages
Japanese (ja)
Other versions
JP4887568B2 (en
Inventor
Chika Kanbe
千夏 神部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001113919A priority Critical patent/JP4887568B2/en
Publication of JP2002313348A publication Critical patent/JP2002313348A/en
Application granted granted Critical
Publication of JP4887568B2 publication Critical patent/JP4887568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide highly safe nonaqueous electrolyte secondary battery having superior cycle characteristics, charge and discharge characteristics and heat radiating characteristics, capable of excellently keeping an initial external form because there is no risk of deformation of the external form caused by a swelling even if charge and discharge is repeatedly carried out. SOLUTION: In this nonaqueous secondary battery, a positive electrode active material layer 1 is disposed face to face with a negative electrode active material layer 2 through a sheet-like porous separator 3, and these positive electrode active material layer 1, the negative electrode active material layer 2, and the porous separator 3 are held between collectors 4 from the outside by the elasticity of the collector having a collector plate 4a and a bonded part 4b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関し、
更に詳しくは、リチウム二次電池あるいはリチウムイオ
ン二次電池等の非水電解液を用いた積層型かつ角型の二
次電池に関するものである。
The present invention relates to a secondary battery,
More specifically, the present invention relates to a stacked secondary battery using a non-aqueous electrolyte such as a lithium secondary battery or a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むに伴い、小型、軽量でかつ高エネルギー密度を
有する非水電解液二次電池に対する期待が高まってきて
いる。また、電池の大型化、軽量化、高容量化に対する
要求も高まってきている。この非水電解液二次電池は、
マンガン酸リチウム、コバルト酸リチウム、ニッケル酸
リチウム等の正極活物質層とシート状の電極とを貼り合
わせた構造の正極シートと、カーボン等の負極活物質層
とシート状の電極とを貼り合わせた構造の負極シートと
を、多孔膜セパレータを介して積層した構造のもので、
小型であるにもかかわらず、4Vを越える起電力が得ら
れることから広く研究が行われている。この非水電解液
二次電池においては、高容量及び安全性の面で従来の二
次電池より優れているという特徴がある。
2. Description of the Related Art In recent years, as devices have become more portable and cordless, expectations for a non-aqueous electrolyte secondary battery having a small size, light weight, and high energy density have increased. Also, demands for larger, lighter, and higher capacity batteries are increasing. This non-aqueous electrolyte secondary battery
A positive electrode sheet having a structure in which a positive electrode active material layer of lithium manganate, lithium cobaltate, lithium nickelate, or the like is bonded to a sheet-like electrode, and a negative electrode active material layer of carbon or the like is bonded to a sheet-like electrode. With a structure in which a negative electrode sheet with a structure is laminated via a porous membrane separator,
Despite its small size, it has been widely studied because an electromotive force exceeding 4 V can be obtained. This nonaqueous electrolyte secondary battery is characterized by being superior to conventional secondary batteries in terms of high capacity and safety.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した非
水電解液二次電池においては、正極シートと負極シート
を多孔膜セパレータを介して積層した構造であるから、
充放電を繰り返し行ううちに膨らみが生じて外形形状が
変形してしまい、初期の外形形状を良好に保持すること
ができないという問題点があった。また、充放電後の容
量維持率を測定することでサイクル特性評価を行うと、
充放電を繰り返すとともに容量維持率が漸次低下する傾
向があるために、充放電を幾度も繰り返すうちに劣化
し、起電力が十分に得られなくなるという問題点があっ
た。また、従来の電極構造では、充放電特性及び放熱特
性が十分でなかったために、蓄熱され易く、信頼性を低
下させる一因になっていた。
The above-described non-aqueous electrolyte secondary battery has a structure in which a positive electrode sheet and a negative electrode sheet are laminated with a porous membrane separator interposed therebetween.
During repeated charging and discharging, the outer shape is deformed due to swelling, and the initial outer shape cannot be maintained well. In addition, when the cycle characteristics are evaluated by measuring the capacity retention ratio after charging and discharging,
Since the capacity retention ratio tends to gradually decrease as charging / discharging is repeated, there is a problem in that deterioration is caused during repeated charging / discharging, and a sufficient electromotive force cannot be obtained. Further, in the conventional electrode structure, charge and discharge characteristics and heat radiation characteristics were not sufficient, so that heat was easily stored, which was one of the causes of lowering reliability.

【0004】本発明は、上記の事情に鑑みてなされたも
のであって、充放電を繰り返し行った場合においても、
膨らみが生じて外形形状が変形するおそれがなく、した
がって、初期の外形形状を良好に保持することができ、
しかも、高い安全性とともに、優れたサイクル特性、充
放電特性及び放熱特性を有する非水電解液系の二次電池
を提供することを目的とする。
[0004] The present invention has been made in view of the above circumstances, and even when charging and discharging are repeatedly performed,
There is no possibility that the outer shape is deformed due to swelling, so that the initial outer shape can be favorably maintained,
Moreover, it is an object of the present invention to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics, charge / discharge characteristics, and heat radiation characteristics as well as high safety.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の目的
を達成するために鋭意検討を重ねた結果、本発明を完成
した。すなわち、本発明の請求項1記載の二次電池は、
正極活物質層と負極活物質層とを対向配置してなる二次
電池において、これらの活物質層を、形状保持可能な厚
みを有しかつ充放電可能な集電体で挟持してなることを
特徴とする。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object, and as a result, completed the present invention. That is, the secondary battery according to claim 1 of the present invention is:
In a secondary battery in which a positive electrode active material layer and a negative electrode active material layer are arranged to face each other, these active material layers are sandwiched by a chargeable / dischargeable current collector having a thickness capable of maintaining a shape. It is characterized by.

【0006】請求項2記載の二次電池は、複数の正極活
物質層及び負極活物質層を、その厚み方向に多孔膜を介
して交互に積層してなる二次電池において、いずれか一
方の極性の最外層の活物質層それぞれに、形状保持可能
な厚みを有しかつ充放電可能な集電体を接続し、この1
対の集電体により前記複数の活物質層を挟持してなるこ
とを特徴とする。
According to a second aspect of the present invention, there is provided a secondary battery in which a plurality of positive electrode active material layers and a plurality of negative electrode active material layers are alternately stacked in a thickness direction thereof with a porous film interposed therebetween. Each of the polar outermost active material layers is connected to a chargeable / dischargeable current collector having a thickness capable of maintaining its shape.
The plurality of active material layers are sandwiched by a pair of current collectors.

【0007】請求項3記載の二次電池は、請求項1また
は2記載の二次電池において、前記集電体は、前記複数
の活物質層を挟持する一対の板状の集電体のそれぞれの
一端部同士が接合され、この接合部分の厚みは板状部分
の厚み以上であることを特徴とする。
A secondary battery according to a third aspect of the present invention is the secondary battery according to the first or second aspect, wherein the current collector is a pair of plate-shaped current collectors sandwiching the plurality of active material layers. Are joined together, and the thickness of the joined portion is not less than the thickness of the plate-shaped portion.

【0008】請求項4記載の二次電池は、請求項1また
は2記載の二次電池において、前記集電体は、板状の集
電体が折り曲げられて断面がコ字状とされ、このコ字状
集電体の弾性により前記複数の活物質層を挟持してなる
ことを特徴とする。
According to a second aspect of the present invention, in the secondary battery according to the first or second aspect, the current collector is formed by bending a plate-shaped current collector to have a U-shaped cross section. The plurality of active material layers are sandwiched by elasticity of a U-shaped current collector.

【0009】請求項5記載の二次電池は、請求項1また
は2記載の二次電池において、前記集電体は、前記複数
の活物質層を収納する袋状とされ、この袋状集電体の弾
性により前記複数の活物質層を挟持してなることを特徴
とする。
A secondary battery according to a fifth aspect of the present invention is the secondary battery according to the first or second aspect, wherein the current collector has a bag shape for accommodating the plurality of active material layers. The plurality of active material layers are sandwiched by elasticity of a body.

【0010】請求項6記載の二次電池は、請求項1ない
し5のいずれか1項記載の二次電池において、前記集電
体は、金属薄板または形状記憶合金薄板であることを特
徴とする。
A secondary battery according to a sixth aspect of the present invention is the secondary battery according to any one of the first to fifth aspects, wherein the current collector is a metal thin plate or a shape memory alloy thin plate. .

【0011】請求項7記載の二次電池は、請求項6記載
の二次電池において、前記金属薄板は、銅薄板またはア
ルミニウム薄板であることを特徴とする。
A secondary battery according to a seventh aspect of the present invention is the secondary battery according to the sixth aspect, wherein the metal thin plate is a copper thin plate or an aluminum thin plate.

【0012】請求項8記載の二次電池は、請求項6記載
の二次電池において、前記形状記憶合金薄板は、ニッケ
ルとチタンを主成分とするNi−Ti系合金薄板である
ことを特徴とする。
According to an eighth aspect of the present invention, in the secondary battery according to the sixth aspect, the shape memory alloy thin plate is a Ni-Ti alloy thin plate containing nickel and titanium as main components. I do.

【0013】請求項9記載の二次電池は、請求項1ない
し8のいずれか1項記載の二次電池において、前記集電
体の厚みは、50μm以上かつ120μm以下であるこ
とを特徴とする。
According to a ninth aspect of the present invention, in the secondary battery according to any one of the first to eighth aspects, the current collector has a thickness of 50 μm or more and 120 μm or less. .

【0014】[0014]

【発明の実施の形態】本発明の二次電池の各実施の形態
について非水電解液二次電池を例に採り説明する。 「第1の実施形態」図1は本発明の第1の実施形態の非
水電解液二次電池を示す断面図であり、図において、符
号1はマンガン酸リチウムを主な活物質とする正極活物
質層、2はカーボンを主な活物質とする負極活物質層、
3はポリエチレン等からなるシート状の多孔膜セパレー
タ、4は正極活物質層1の外側に接続され形状保持可能
な厚みを有しかつ充放電可能な板状の集電体、5は負極
活物質層2に接続される充放電可能な箔状の集電体であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a secondary battery according to the present invention will be described using a nonaqueous electrolyte secondary battery as an example. First Embodiment FIG. 1 is a cross-sectional view showing a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention. In the drawing, reference numeral 1 denotes a positive electrode having lithium manganate as a main active material. An active material layer 2, a negative electrode active material layer mainly composed of carbon,
Reference numeral 3 denotes a sheet-like porous membrane separator made of polyethylene or the like, 4 denotes a plate-shaped current collector which is connected to the outside of the positive electrode active material layer 1 and has a thickness capable of maintaining its shape and is chargeable and dischargeable, and 5 denotes a negative electrode active material. A chargeable / dischargeable foil-shaped current collector connected to the layer 2.

【0015】この非水電解液二次電池は角型電池で、こ
の形状は一例であり、起電力や容量の違いにより様々な
形状を採り得る。また、面積の大小によって厚みも異な
る。集電体4は、正極活物質層1を外側から挟持する一
対の矩形状の集電板4aのそれぞれの一端部同士が溶接
等により接合されて接合部4bとされ、この接合部4b
の中央部が外方に突出して、図2に示すように、矩形状
の端子6とされている。
The non-aqueous electrolyte secondary battery is a prismatic battery, and this shape is merely an example, and can take various shapes depending on the difference in electromotive force and capacity. Further, the thickness differs depending on the size of the area. One end of each of a pair of rectangular current collector plates 4a sandwiching the positive electrode active material layer 1 from outside is joined to each other by welding or the like to form a joint 4b.
The central part of the terminal protrudes outward to form a rectangular terminal 6 as shown in FIG.

【0016】そして、これら集電板4a及び接合部4b
全体の弾性により、多孔膜セパレータ3を介して対向配
置された正極活物質層1及び負極活物質層2を外側から
挟持している。これら正極活物質層1〜集電体5は、端
子6の先端部を除く部分全体がラミネート7により被覆
されている。
The current collecting plate 4a and the joint 4b
Due to the overall elasticity, the positive electrode active material layer 1 and the negative electrode active material layer 2 that are opposed to each other via the porous membrane separator 3 are sandwiched from the outside. The entirety of the positive electrode active material layer 1 to the current collector 5 except for the tip of the terminal 6 is covered with the laminate 7.

【0017】集電体4としては、厚みが50μm以上か
つ120μm以下の金属薄板または形状記憶合金薄板が
好適に用いられる。金属薄板としては、銅(Cu)薄
板、アルミニウム(Al)薄板のいずれかが好ましい。
As the current collector 4, a metal thin plate or a shape memory alloy thin plate having a thickness of 50 μm or more and 120 μm or less is preferably used. As the metal thin plate, one of a copper (Cu) thin plate and an aluminum (Al) thin plate is preferable.

【0018】また、形状記憶合金薄板としては、例え
ば、この二次電池の製造工程中で必要に応じて加熱する
ことにより、記憶された元の形状に戻ることが可能な合
金が好ましく、充放電を繰り返すことで高温になるにし
たがって縮小する方向に変形し、その結果、二次電池の
外形形状を所望の形状に保持するような形状記憶合金薄
板がさらに好ましい。形状記憶合金としては、Ni−T
i合金、Ni−Ti-Cu合金、Ti-In合金等が好適
に用いられる。
As the shape memory alloy thin plate, for example, an alloy capable of returning to a stored original shape by heating as necessary during the manufacturing process of the secondary battery is preferable. By repeating the above, it is more preferable that the shape memory alloy thin plate is deformed in a direction of contracting as the temperature becomes higher, and as a result, the external shape of the secondary battery is maintained in a desired shape. As a shape memory alloy, Ni-T
i-alloy, Ni-Ti-Cu alloy, Ti-In alloy and the like are preferably used.

【0019】ここで、金属薄板または形状記憶合金薄板
の厚みを50μm以上かつ120μm以下とした理由
は、厚みが50μm未満であると、機械的強度が十分で
なく、正極活物質層1〜多孔膜セパレータ3及び集電体
5全体の形状を保持し続けることができず、また、厚み
が120μmを超えると硬すぎて加工が困難になるため
である。
Here, the reason why the thickness of the metal thin plate or the shape memory alloy thin plate is 50 μm or more and 120 μm or less is that if the thickness is less than 50 μm, the mechanical strength is not sufficient and the positive electrode active material layer 1 to the porous film This is because the shape of the entirety of the separator 3 and the current collector 5 cannot be maintained, and if the thickness exceeds 120 μm, processing is difficult due to being too hard.

【0020】この非水電解液二次電池では、集電板4a
及び接合部4bを有する集電体4の弾性により、正極活
物質層1〜多孔膜セパレータ3及び集電体5を外側から
挟持しているので、この集電体4により二次電池の外形
形状を所望の形状に保持することができ、充放電を繰り
返すことで生じる発熱による膨らみ等の変形が生じるお
それがない。
In this non-aqueous electrolyte secondary battery, the current collector plate 4a
The positive electrode active material layer 1 to the porous membrane separator 3 and the current collector 5 are sandwiched from the outside by the elasticity of the current collector 4 having the bonding portion 4b. Can be maintained in a desired shape, and there is no possibility that deformation such as swelling due to heat generation caused by repeated charging and discharging occurs.

【0021】また、外部から衝撃等が加わった場合にお
いても、上記の集電体4が外部からの衝撃等から正極活
物質層1〜多孔膜セパレータ3及び集電体5を保護する
とともに、その外形形状を保持するので、これら正極活
物質層1〜多孔膜セパレータ3及び集電体5は、外部か
ら衝撃等が加わった場合においても変形や損傷が生じる
おそれがない。
Further, even when an external impact or the like is applied, the above-mentioned current collector 4 protects the positive electrode active material layer 1 to the porous membrane separator 3 and the current collector 5 from external impact and the like. Since the external shape is maintained, the positive electrode active material layer 1 to the porous membrane separator 3 and the current collector 5 are not likely to be deformed or damaged even when an external impact or the like is applied.

【0022】また、集電体4として、厚みが50μm以
上かつ120μm以下の金属薄板、特に、Cu薄板、A
l薄板のいずれかを用いることで、サイクル特性評価で
は、充放電を繰り返し行っても容量維持率が低下するお
それがない。したがって、充放電を多数回繰り返しても
劣化のおそれが無く、起電力を十分に確保することがで
きる。また、放熱特性に優れたものとなるので、蓄熱さ
れ難くなり、信頼性を向上させることができる。
The current collector 4 is a thin metal plate having a thickness of 50 μm or more and 120 μm or less, in particular, a Cu thin plate,
By using any one of the thin plates, there is no possibility that the capacity retention ratio is reduced even when charge and discharge are repeatedly performed in the cycle characteristic evaluation. Therefore, even if charging and discharging are repeated many times, there is no risk of deterioration, and a sufficient electromotive force can be secured. Further, since the heat radiation characteristics are excellent, heat is hardly stored, and the reliability can be improved.

【0023】さらに、集電体4として、充放電を繰り返
すことで高温になるにしたがって縮小する方向に変形
し、その結果、二次電池の外形形状を所望の形状に保持
するような形状記憶合金薄板を用いれば、この形状記憶
合金薄板が周囲の温度変化に対応して縮小する方向に変
形することで、二次電池の外形形状を常に所望の形状に
保持し続けることができる。
Further, as the current collector 4, the shape memory alloy is deformed in a direction to be reduced as the temperature becomes higher by repeating charging and discharging, and as a result, the external shape of the secondary battery is maintained in a desired shape. When a thin plate is used, the shape memory alloy thin plate is deformed in a direction in which it shrinks in response to a change in ambient temperature, so that the external shape of the secondary battery can always be maintained in a desired shape.

【0024】なお、図1では、負極活物質層2の両面に
多孔膜セパレータ3を配置し、多孔膜セパレータ3それ
ぞれの外側に正極活物質層1を配置し、これらを集電体
4により挟持した構成としたが、正極活物質層1と負極
活物質層2とを対向配置し、これらの間に多孔膜セパレ
ータ3を配置し、これらを集電体4により挟持した構成
としてもよい。
In FIG. 1, the porous membrane separators 3 are arranged on both sides of the anode active material layer 2, and the cathode active material layers 1 are arranged outside each of the porous membrane separators 3, and these are sandwiched by the current collector 4. Although the positive electrode active material layer 1 and the negative electrode active material layer 2 are arranged to face each other, the porous membrane separator 3 is arranged between them, and these are sandwiched by the current collector 4.

【0025】「第2の実施形態」図3は本発明の第2の
実施形態の非水電解液二次電池を示す断面図であり、図
において、符号11は最外層の正極活物質層1に接続さ
れ形状保持可能な厚みを有しかつ充放電可能な板状の集
電体、12は最外層を除く正極活物質層1に接続される
充放電可能な箔状の集電体、13は負極活物質層2に入
れ込まれた状態で接続される充放電可能な箔状の集電体
である。
Second Embodiment FIG. 3 is a sectional view showing a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention. In the drawing, reference numeral 11 denotes the outermost positive electrode active material layer 1. A chargeable / dischargeable plate-shaped current collector having a thickness capable of maintaining the shape and connected to the cathode active material layer 12 connected to the positive electrode active material layer 1 excluding the outermost layer; Is a chargeable / dischargeable foil-shaped current collector connected to the negative electrode active material layer 2.

【0026】この非水電解液二次電池は、120mm×
70mmの大きさで、厚みが1.0mm〜5.0mmの
積層型角型電池である。この形状は、一例であり、起電
力や容量の違いにより様々な形状を採り得る。また、面
積の大小によって厚みも異なる。集電体11は、図3及
び図4に示すように、最外層の正極活物質層1を外側か
ら挟持する一対の矩形状の集電板11aのそれぞれの一
端部同士が溶接等により接合されて接合部11bとさ
れ、この接合部11bの中央部が外方に突出して矩形状
の端子6とされている。
This non-aqueous electrolyte secondary battery has a size of 120 mm ×
This is a stacked prismatic battery having a size of 70 mm and a thickness of 1.0 mm to 5.0 mm. This shape is an example, and various shapes can be adopted depending on differences in electromotive force and capacity. Further, the thickness differs depending on the size of the area. As shown in FIGS. 3 and 4, one end of each of a pair of rectangular current collectors 11a sandwiching the outermost positive electrode active material layer 1 from outside is joined to the current collector 11 by welding or the like. The central portion of the joint 11b protrudes outward to form a rectangular terminal 6.

【0027】そして、これら集電板11a及び接合部1
1bの弾性により、正極活物質層1及び負極活物質層2
が多孔膜セパレータ3を介して交互に積層された2〜4
0層(ただし、多孔膜セパレータ3を除く)の積層体を
外側から挟持している。図3では、説明し易くするため
に、正極活物質層1と負極活物質層2を交互に合計12
層重ね合わせた構造としてある。この集電体11及び積
層体は、図5に示すように、端子6を除く部分全体がラ
ミネート7により被覆されている。
The current collector plate 11a and the joint 1
1b, the positive electrode active material layer 1 and the negative electrode active material layer 2
Are alternately laminated with the porous membrane separator 3 interposed therebetween.
A laminate of 0 layers (excluding the porous membrane separator 3) is sandwiched from the outside. In FIG. 3, for ease of explanation, the positive electrode active material layers 1 and the negative electrode active material
It has a layered structure. As shown in FIG. 5, the current collector 11 and the laminate are entirely covered with the laminate 7 except for the terminals 6.

【0028】集電体11としては、上述した集電体4と
全く同様に、厚みが50μm以上かつ120μm以下の
金属薄板または形状記憶合金薄板が好適に用いられる。
この場合の集電体11は、積層体の形状を保持するのに
十分な機械的強度を有するように、その厚みが設定され
る。金属薄板としては、Cu薄板、Al薄板のいずれか
が好適に用いられ、形状記憶合金薄板としては、Ni−
Ti合金薄板、Ni−Ti-Cu合金薄板、Ti-In合
金薄板等が好適に用いられる。
As the current collector 11, a metal sheet or a shape memory alloy sheet having a thickness of 50 μm or more and 120 μm or less is preferably used, just like the current collector 4 described above.
The thickness of the current collector 11 in this case is set so as to have sufficient mechanical strength to maintain the shape of the stacked body. As the metal sheet, any of a Cu sheet and an Al sheet is preferably used, and as the shape memory alloy sheet, Ni-
Ti alloy thin plates, Ni-Ti-Cu alloy thin plates, Ti-In alloy thin plates and the like are preferably used.

【0029】この非水電解液二次電池では、集電板11
a及び接合部11bを有する集電体11の弾性により、
正極活物質層1及び負極活物質層2が多孔膜セパレータ
3を介して交互に積層された積層体を外側から挟持して
いるので、この集電体11により二次電池の外形形状を
所望の形状に保持することができ、充放電を繰り返すこ
とで生じる発熱による膨らみ等の変形が生じるおそれが
ない。また、外部から衝撃等が加わった場合には、上記
の集電体11が外部からの衝撃等から前記積層体を保護
するとともに、その外形形状を保持するので、前記積層
体は、外部から衝撃等が加わった場合においても変形や
損傷が生じるおそれがない。
In this non-aqueous electrolyte secondary battery, the current collector 11
a and the elasticity of the current collector 11 having the joint portion 11b,
Since the positive electrode active material layer 1 and the negative electrode active material layer 2 sandwich a laminated body alternately laminated via the porous membrane separator 3 from the outside, the outer shape of the secondary battery can be adjusted to a desired shape by the current collector 11. The shape can be maintained, and there is no risk of deformation such as swelling due to heat generated by repeated charge and discharge. When an external impact or the like is applied, the current collector 11 protects the laminate from external impact or the like and retains its outer shape. There is no possibility that deformation or damage will occur even in the case of the addition.

【0030】また、集電体11として、厚みが50μm
以上かつ120μm以下の金属薄板、特に、Cu薄板、
Al薄板のいずれかを用いることで、サイクル特性評価
では、充放電を繰り返し行っても容量維持率が低下しな
くなる。これにより、充放電を多数回繰り返しても劣化
のおそれが無く、起電力は十分に確保される。また、放
熱特性に優れたものとなるので、蓄熱され難くなり、信
頼性が向上する。
The current collector 11 has a thickness of 50 μm.
Metal sheet having a thickness of not less than 120 μm or less, in particular, a Cu sheet,
By using any of the Al thin plates, in the cycle characteristic evaluation, the capacity retention rate does not decrease even if charge and discharge are repeated. Thereby, even if charging and discharging are repeated many times, there is no possibility of deterioration, and a sufficient electromotive force is secured. Further, since the heat dissipation characteristics are excellent, heat is hardly stored, and the reliability is improved.

【0031】さらに、集電体11として、充放電を繰り
返すことで高温になるにしたがって縮小する方向に変形
し、その結果、二次電池の外形形状を所望の形状に保持
するような形状記憶合金薄板を用いれば、この形状記憶
合金薄板が周囲の温度変化に対応して縮小する方向に変
形することで、挟持する積層体の外形形状を常に所望の
形状に保持し続けることができ、その結果、二次電池の
外形形状を常に所望の形状に保持し続けることができ
る。
Further, the current collector 11 is deformed in a direction to be reduced as temperature rises by repeating charging and discharging, and as a result, a shape memory alloy which keeps the outer shape of the secondary battery in a desired shape is obtained. When a thin plate is used, the shape memory alloy thin plate is deformed in a direction in which it shrinks in response to a change in ambient temperature, so that the outer shape of the sandwiched laminate can be constantly maintained in a desired shape. As a result, In addition, the external shape of the secondary battery can always be kept in a desired shape.

【0032】次に、本実施形態の非水電解液二次電池に
ついてより詳細に説明する。正極活物質層1を構成する
正極活物質としては、上記のマンガン酸リチウムが好適
に用いられる。一方、負極活物質層2を構成する負極活
物質としては、リチウム、リチウム合金、またはリチウ
ムを吸蔵・放出し得るグラファイト、または非晶質炭素
等の炭素材料が好適に用いられる。多孔膜セパレータ3
は、特に限定されないが、織布、硝子繊維、多孔性合成
樹脂皮膜等を用いることができる。例えば、ポリプロピ
レン、ポリエチレン系の多孔膜が、薄膜でかつ大面積
化、膜強度や膜抵抗の点で好適である。
Next, the non-aqueous electrolyte secondary battery of this embodiment will be described in more detail. As the positive electrode active material constituting the positive electrode active material layer 1, the above-mentioned lithium manganate is suitably used. On the other hand, as the negative electrode active material constituting the negative electrode active material layer 2, a carbon material such as lithium, a lithium alloy, graphite capable of occluding and releasing lithium, or amorphous carbon is preferably used. Porous membrane separator 3
Although not particularly limited, a woven fabric, a glass fiber, a porous synthetic resin film, or the like can be used. For example, a polypropylene or polyethylene porous film is suitable in terms of a thin film, large area, film strength and film resistance.

【0033】非水電解液の溶媒としては、通常よく用い
られるもので良く、例えば、カーボネート類、塩素化炭
化水素、エーテル類、ケトン類、ニトリル類等が好適に
用いられる。特に好ましくは、高誘電率溶媒として、エ
チレンカーボネート(EC)、プロピレンカーボネート
(PC)、γ−ブチロラクトン(GBL)等から少なく
とも1種類、低粘度溶媒として、ジエチルカーボネート
(DEC)、ジメチルカーボネート(DMC)、エチル
メチルカーボネート(EMC)、エステル類等から少な
くとも1種類選択し、これらを混合したものが好適に用
いられる。
As the solvent for the non-aqueous electrolyte, those which are commonly used may be used. For example, carbonates, chlorinated hydrocarbons, ethers, ketones, nitriles and the like are preferably used. Particularly preferably, at least one of ethylene carbonate (EC), propylene carbonate (PC), and γ-butyrolactone (GBL) is used as the high dielectric constant solvent, and diethyl carbonate (DEC) and dimethyl carbonate (DMC) are used as the low viscosity solvent. , Ethyl methyl carbonate (EMC), esters and the like, and a mixture thereof is suitably used.

【0034】支持塩としては、LiClO4、LiI、
LiPF6、LiAlCl4、LiBF4、CF3SO3
i等から選択された少なくとも1種類が好適に用いられ
る。電解液及び支持塩は、電池を使用する環境、電池用
途への最適化等を考慮して適宜、選定・調整すれば良い
が、支持塩として、0.8〜1.5MのLiClO 4
LiBF4またはLiPF6を用い、溶媒として、EC+
DEC、PC+DMC、PC+EMCのうち少なくとも
1種を用いるのが望ましい。
As a supporting salt, LiClOFour, LiI,
LiPF6, LiAlClFour, LiBFFour, CFThreeSOThreeL
At least one kind selected from i.
You. Electrolyte and supporting salt are used for battery environment and battery
It is sufficient to select and adjust as appropriate taking into account optimization etc.
Is, as a supporting salt, 0.8 to 1.5 M LiClO Four,
LiBFFourOr LiPF6And EC + as a solvent
At least DEC, PC + DMC, PC + EMC
It is desirable to use one kind.

【0035】非水電解液二次電池の構成としては、角
形、ペーパー型、積層型、円筒型、コイン型など種々の
形状を採用することができる。また、構成部品には、集
電体、絶縁板等があるが、これらは特に限定されるもの
ではなく、上記の形状に応じて適宜選定すればよい。
As the configuration of the nonaqueous electrolyte secondary battery, various shapes such as a rectangular shape, a paper type, a laminated type, a cylindrical type, and a coin type can be adopted. In addition, the components include a current collector, an insulating plate, and the like, but these are not particularly limited, and may be appropriately selected according to the above shape.

【0036】以下、本実施形態の非水電解液二次電池に
ついて、実施例及び比較例によりさらに詳しく説明する
が、本発明はこれら実施例に限定されるものではない。
Hereinafter, the non-aqueous electrolyte secondary battery of this embodiment will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0037】「実施例1」マンガン酸リチウムを主な活
物質とした正極を用いて積層型角型セルを試作した。ま
ず、マンガン酸リチウムおよび導電性付与剤を乾式混合
し、バインダーであるポリフィ化ビニリデン(PVD
F)を溶解させたN−メチル−2−ピロリドン(NM
P)中に均一に分散させスラリーを作製した。次いで、
このスラリーを厚さ25μmのアルミ金属箔上に塗布
後、NMPを蒸発させることにより正極シートとした。
正極中の固形分比率は、マンガン酸リチウム:導電性付
与剤:PVDF=80:10:10(重量%)とした。
Example 1 A laminated square cell was prototyped using a positive electrode containing lithium manganate as a main active material. First, lithium manganate and a conductivity-imparting agent are dry-mixed, and a binder polyvinylidene fluoride (PVD) is used.
F) dissolved in N-methyl-2-pyrrolidone (NM
A slurry was prepared by uniformly dispersing it in P). Then
This slurry was applied on an aluminum metal foil having a thickness of 25 μm, and NMP was evaporated to obtain a positive electrode sheet.
The solid content ratio in the positive electrode was lithium manganate: conductivity imparting agent: PVDF = 80: 10: 10 (% by weight).

【0038】一方、負極シートはカーボン:PVDF=
90:10(重量%)の比率となるように混合しNMP
に分散させ、厚さ20μmの銅箔上に塗布して作製し
た。また、最外層に関しては、厚さ45、50、10
0、125μmの4種類のCu箔集電体からなる電極を
用いた。本電極は、最外層は連続しているものを用い
た。以上のように作製した正極および負極の電極シート
を、厚さ25μmのポリエチレン多孔膜セパレータを介
して積層した。電解液は1MのLiPF6を支持塩と
し、プロピレンカーボネート(PC):ジエチルカーボ
ネート(DEC)=50:50(体積%)の割合で混合
したものを溶媒とした。
On the other hand, the negative electrode sheet is made of carbon: PVDF =
NMP was mixed so as to have a ratio of 90:10 (% by weight).
And applied to a copper foil having a thickness of 20 μm. As for the outermost layer, thicknesses of 45, 50, 10
Electrodes composed of four types of Cu foil current collectors of 0 and 125 μm were used. The present electrode used had an outermost layer that was continuous. The electrode sheets of the positive electrode and the negative electrode prepared as described above were laminated via a polyethylene porous membrane separator having a thickness of 25 μm. The electrolyte used was 1 M LiPF 6 as a supporting salt, and a mixture of propylene carbonate (PC): diethyl carbonate (DEC) in a ratio of 50:50 (vol%) was used as a solvent.

【0039】「比較例1」実施例1と同様にして正極シ
ートを作製した。負極シートはカーボン:PVDF=9
0:10(重量%)の比率となるように混合しNMPに
分散させ、厚さ20μmの銅箔上に塗布して作製した。
セパレータ、電解液は実施例1と同様にした。
Comparative Example 1 A positive electrode sheet was produced in the same manner as in Example 1. The negative electrode sheet is carbon: PVDF = 9
The mixture was mixed so as to have a ratio of 0:10 (% by weight), dispersed in NMP, and applied on a copper foil having a thickness of 20 μm.
The separator and the electrolyte were the same as in Example 1.

【0040】「評価1」実施例1および比較例1で作製
した積層角型セルを用いて、45℃でのサイクル特性評
価を行った。初期充電は1Aで4.2Vまで、放電は5
Aで3.0Vまで行った。表1に実施例1および比較例
1で作製した積層セルの45℃での100、200、3
00Cycle(サイクル)後の容量維持率(%)につ
いて示した。
[Evaluation 1] The cycle characteristics at 45 ° C. were evaluated using the laminated square cells produced in Example 1 and Comparative Example 1. Initial charge is 1A to 4.2V, discharge is 5
A was applied to 3.0 V. Table 1 shows that the stacked cells prepared in Example 1 and Comparative Example 1 were 100, 200, and 3 at 45 ° C.
The capacity retention rate (%) after 00 Cycle (cycle) is shown.

【0041】[0041]

【表1】 [Table 1]

【0042】この表1では、最外層の集電体厚さが12
5μmのものでは、集電体が硬過ぎるために加工が困難
になる。
In Table 1, the thickness of the outermost current collector is 12
In the case of 5 μm, the current collector is too hard, so that processing becomes difficult.

【0043】「実施例2」マンガン酸リチウムを主な活
物質とした正極を用いて積層型角型セルを試作した。ま
ず、マンガン酸リチウムおよび導電性付与剤を乾式混合
し、バインダーであるPVDFを溶解させたN−メチル
−2−ピロリドン(NMP)中に均一に分散させスラリ
ーを作製した。そのスラリーを厚さ25μmのアルミ金
属箔上に塗布後、NMPを蒸発させることにより正極シ
ートとした。正極中の固形分比率はマンガン酸リチウ
ム:導電性付与剤:PVDF=80:10:10(重量
%)とした。
Example 2 A laminated square cell was prototyped using a positive electrode containing lithium manganate as a main active material. First, lithium manganate and a conductivity-imparting agent were dry-mixed, and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder was dissolved to prepare a slurry. The slurry was applied on an aluminum metal foil having a thickness of 25 μm, and NMP was evaporated to obtain a positive electrode sheet. The solid content ratio in the positive electrode was lithium manganate: conductivity imparting agent: PVDF = 80: 10: 10 (% by weight).

【0044】一方、負極シートはカーボン:PVDF=
90:10(重量%)の比率となるように混合しNMP
に分散させ、厚さ20μmの銅箔上に塗布して作製し
た。また、最外層に関しては、厚さ80μmのAl箔集
電体からなる電極を用いた。本電極は、最外層は連続し
ているものを用いた。以上のように作製した正極および
負極の電極シートを、厚さ25μmのポリエチレン多孔
膜セパレータを介して積層した。電解液は1MのLiP
6を支持塩とし、プロピレンカーボネート(PC):
ジエチルカーボネート(DEC)=50:50(体積
%)の割合で混合したものを溶媒とした。
On the other hand, the negative electrode sheet is made of carbon: PVDF =
NMP was mixed so that the ratio became 90:10 (% by weight).
And applied to a copper foil having a thickness of 20 μm. For the outermost layer, an electrode made of an 80-μm-thick Al foil current collector was used. The present electrode used had an outermost layer that was continuous. The electrode sheets of the positive electrode and the negative electrode prepared as described above were laminated via a polyethylene porous membrane separator having a thickness of 25 μm. The electrolyte is 1M LiP
Using F 6 as a supporting salt, propylene carbonate (PC):
A mixture of diethyl carbonate (DEC) at a ratio of 50:50 (vol%) was used as a solvent.

【0045】「比較例2」実施例1と同様にして、負極
シートを作製した。正極シートは、厚さ20μmのAl
箔上に活物質を塗布して作製した。セパレータ、電解液
は実施例1と同様にした。
Comparative Example 2 A negative electrode sheet was produced in the same manner as in Example 1. The positive electrode sheet is made of Al having a thickness of 20 μm.
The active material was applied on a foil to produce the film. The separator and the electrolyte were the same as in Example 1.

【0046】「評価2」実施例2および比較例2で作製
した積層角型セルを用いて、室温での釘差し評価を行っ
た。初期充電は1Aで4.2Vまで、放電は5Aで3.
0Vまで行った。表2に実施例2および比較例2で作製
した積層セルの釘差し試験時のセル表面の発熱温度の比
較評価を行った結果を示した。
"Evaluation 2" Using the laminated square cells produced in Example 2 and Comparative Example 2, nailing evaluation was performed at room temperature. Initial charge up to 4.2V at 1A, discharge at 3A at 5A.
It went to 0V. Table 2 shows the results of comparative evaluation of the heat generation temperature on the cell surface during the nailing test of the laminated cells manufactured in Example 2 and Comparative Example 2.

【0047】[0047]

【表2】 [Table 2]

【0048】本実施形態によれば、得られた非水電解液
二次電池は、サイクル特性に優れ、安全性も良好な特性
を示していることが分かった。
According to the present embodiment, it was found that the obtained non-aqueous electrolyte secondary battery exhibited excellent cycle characteristics and good safety.

【0049】「第3の実施形態」図6は本発明の第3の
実施形態の非水電解液二次電池の集電体を示す斜視図で
あり、本実施形態の集電体が上述した第2の実施形態の
集電体と異なる点は、第2の実施形態の集電体11で
は、集電板11aのそれぞれの一端部同士を溶接等によ
り接合して接合部11bとしたのに対し、本実施形態の
集電体21では、最外層の正極活物質層1を外側から挟
持する一対の矩形状の集電板21aのそれぞれの一端部
同士及び他の端部それぞれに形成された1つまたは2つ
以上の接合片同士を溶接等により接合して、それぞれ接
合部21b及び21cとした点である。図6は、集電板
21aの他の端部の2箇所に矩形状の接合片を形成した
例を示してある。
[Third Embodiment] FIG. 6 is a perspective view showing a current collector of a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention. The difference from the current collector of the second embodiment is that, in the current collector 11 of the second embodiment, each end of the current collector plate 11a is joined to each other by welding or the like to form a joint portion 11b. On the other hand, in the current collector 21 of the present embodiment, one end of each of a pair of rectangular current collector plates 21a sandwiching the outermost positive electrode active material layer 1 from the outside and each of the other ends are formed. One or two or more joint pieces are joined by welding or the like to form joints 21b and 21c, respectively. FIG. 6 shows an example in which a rectangular joining piece is formed at two places at the other end of the current collector plate 21a.

【0050】そして、これら集電板21a及び接合部2
1b全体の弾性により、正極活物質層1及び負極活物質
層2が多孔膜セパレータ3を介して交互に積層された積
層体を外側から挟持している。この集電体21において
も、図7に示すように、端子6を除く部分全体がラミネ
ート7により被覆されている。
The current collector plate 21a and the joint 2
Due to the elasticity of the whole 1b, a laminated body in which the positive electrode active material layer 1 and the negative electrode active material layer 2 are alternately laminated via the porous membrane separator 3 is sandwiched from the outside. As shown in FIG. 7, also in the current collector 21, the entire part except the terminal 6 is covered with the laminate 7.

【0051】この非水電解液二次電池においても、第1
及び第2の実施形態の二次電池と同様、集電体21によ
り二次電池の外形形状を所望の形状に保持することがで
き、充放電を繰り返すことで生じる発熱による膨らみ等
の変形が生じるおそれがない。また、外部から衝撃等が
加わった場合には、上記の集電体21が外部からの衝撃
等から前記積層体を保護するとともに、その外形形状を
保持するので、前記積層体は、外部から衝撃等が加わっ
た場合においても変形や損傷が生じるおそれがない。
In this non-aqueous electrolyte secondary battery, the first
In addition, similarly to the secondary battery of the second embodiment, the outer shape of the secondary battery can be maintained in a desired shape by the current collector 21, and deformation such as swelling due to heat generated by repeating charge and discharge occurs. There is no fear. Further, when an impact or the like is applied from the outside, the current collector 21 protects the laminate from an impact or the like from the outside and retains the outer shape thereof. There is no possibility that deformation or damage will occur even in the case of the addition.

【0052】「第4の実施形態」図8は本発明の第4の
実施形態の非水電解液二次電池の集電体を示す斜視図で
あり、本実施形態の集電体が上述した第3の実施形態の
集電体と異なる点は、第3の実施形態の集電体21で
は、集電板21aの一端部を接合した接合部21bの中
央部を外方に突出させて矩形状の端子6としたのに対
し、本実施形態の集電体31では、集電板31aの接合
部31b全体を外方に突出させて長方形状の端子32と
した点である。この集電体31では、第3の実施形態と
同様、一対の矩形状の集電板31aの他の端部に形成さ
れた1つまたは2つ以上の接合片同士を溶接等により接
合して接合部31cとされている。図8は、集電板31
aの他の端部の2箇所に矩形状の接合片を形成した例を
示してある。この集電体31及び積層体は、図9に示す
ように、端子32を除く部分全体がラミネート7により
被覆されている。
[Fourth Embodiment] FIG. 8 is a perspective view showing a current collector of a nonaqueous electrolyte secondary battery according to a fourth embodiment of the present invention. The difference from the current collector of the third embodiment is that, in the current collector 21 of the third embodiment, the central portion of the joining portion 21b in which one end of the current collecting plate 21a is joined is projected outward to make the rectangular shape. In contrast to the shape of the terminal 6, the current collector 31 of the present embodiment is different from the current collector 31 in that the entire joint 31 b of the current collector plate 31 a protrudes outward to form a rectangular terminal 32. In the current collector 31, as in the third embodiment, one or two or more joint pieces formed at the other end of the pair of rectangular current collector plates 31a are joined by welding or the like. The joining portion 31c is provided. FIG. 8 shows the current collector 31.
An example is shown in which a rectangular joint piece is formed at two places at the other end of a. As shown in FIG. 9, the entire current collector 31 and the laminate are covered with the laminate 7 except for the terminals 32.

【0053】この非水電解液二次電池においても、第1
〜第3の実施形態の非水電解液二次電池と同様、集電体
31により二次電池の外形形状を所望の形状に保持する
ことができ、充放電を繰り返すことで生じる発熱による
膨らみ等の変形が生じるおそれがない。また、外部から
衝撃等が加わった場合には、上記の集電体31が外部か
らの衝撃等から前記積層体を保護するとともに、その外
形形状を保持するので、前記積層体は、外部から衝撃等
が加わった場合においても変形や損傷が生じるおそれが
ない。
In this non-aqueous electrolyte secondary battery, the first
As in the non-aqueous electrolyte secondary batteries of the third to third embodiments, the current collector 31 can maintain the outer shape of the secondary battery in a desired shape, and swelling due to heat generation caused by repeated charging and discharging. There is no risk of deformation. Further, when an impact or the like is applied from the outside, the current collector 31 protects the laminate from the impact from the outside and keeps its outer shape, so that the laminate has an impact from the outside. There is no possibility that deformation or damage will occur even in the case of the addition.

【0054】「第5の実施形態」図10は本発明の第5
の実施形態の非水電解液二次電池の集電体を示す斜視図
であり、本実施形態の集電体が上述した第4の実施形態
の集電体と異なる点は、第4の実施形態の集電体31で
は、一対の矩形状の集電板31aのそれぞれの一端部同
士及び他の端部の接合片同士を溶接等により接合して、
それぞれ接合部31b及び31cとしたのに対し、本実
施形態の集電体41では、1枚の矩形状の集電板42を
2つに折り曲げて断面コ字状とし、この断面コ字状の集
電板42の折り曲げ部分を長方形状のフランジ状に機械
加工して端子43とし、他の端部同士を溶接等により接
合して接合部42aとした点である。この集電体41に
おいても端子43を除く部分全体がラミネートにより被
覆されている。
[Fifth Embodiment] FIG. 10 shows a fifth embodiment of the present invention.
FIG. 13 is a perspective view illustrating a current collector of a nonaqueous electrolyte secondary battery according to the fourth embodiment. The difference between the current collector according to the present embodiment and the current collector according to the fourth embodiment is the fourth embodiment. In the current collector 31 in the form, one end of each of a pair of rectangular current collectors 31a and joining pieces of the other end are joined by welding or the like,
In contrast to the junctions 31b and 31c, respectively, in the current collector 41 of the present embodiment, one rectangular current collector plate 42 is bent into two to form a U-shaped cross section, and the U-shaped cross section is formed. The bent portion of the current collector 42 is machined into a rectangular flange to form a terminal 43, and the other ends are joined to each other by welding or the like to form a joint 42a. In the current collector 41 as well, the entire portion except for the terminal 43 is covered with a laminate.

【0055】この非水電解液二次電池においても、第1
〜第4の実施形態の非水電解液二次電池と同様、集電体
41により二次電池の外形形状を所望の形状に保持する
ことができ、充放電を繰り返すことで生じる発熱による
膨らみ等の変形が生じるおそれがない。また、外部から
衝撃等が加わった場合には、上記の集電体41が外部か
らの衝撃等から前記積層体を保護するとともに、その外
形形状を保持するので、前記積層体は、外部から衝撃等
が加わった場合においても変形や損傷が生じるおそれが
ない。
In this non-aqueous electrolyte secondary battery, the first
As in the non-aqueous electrolyte secondary batteries of the fourth to fourth embodiments, the outer shape of the secondary battery can be maintained in a desired shape by the current collector 41, and swelling due to heat generated by repeated charge and discharge, There is no risk of deformation. Further, when an impact or the like is applied from the outside, the current collector 41 protects the laminate from the impact or the like from the outside and retains the outer shape thereof. There is no possibility that deformation or damage will occur even in the case of the addition.

【0056】なお、この非水電解液二次電池では、断面
コ字状の集電板42の他の端部同士を溶接等により接合
して接合部42aとしたが、単に、1枚の矩形状の集電
板42を2つに折り曲げて断面コ字状としたものであっ
てもよい。この場合においても、第2の実施形態の非水
電解液二次電池と同様の作用・効果を奏することができ
る。
In this non-aqueous electrolyte secondary battery, the other end of the current collector plate 42 having a U-shaped cross section is joined to each other by welding or the like to form a joint 42a. The shape of the current collector plate 42 may be bent into two to form a U-shaped cross section. Also in this case, the same operation and effect as the non-aqueous electrolyte secondary battery of the second embodiment can be obtained.

【0057】「第6の実施形態」図11は本発明の第6
の実施形態の非水電解液二次電池を示す断面図であり、
本実施形態の非水電解液二次電池が上述した第2の実施
形態の非水電解液二次電池と異なる点は、第2の実施形
態の二次電池では、シート状の多孔膜セパレータ3を介
して正極活物質層1及び負極活物質層2を交互に積層し
たのに対し、本実施形態の二次電池では、負極活物質層
2それぞれを袋状の多孔膜セパレータ51で覆い、正極
活物質層1と、袋状の多孔膜セパレータ51で覆われた
負極活物質層2とを交互に積層した点である。
[Sixth Embodiment] FIG. 11 shows a sixth embodiment of the present invention.
It is a cross-sectional view showing a non-aqueous electrolyte secondary battery of the embodiment,
The difference between the non-aqueous electrolyte secondary battery of the present embodiment and the non-aqueous electrolyte secondary battery of the above-described second embodiment is that, in the secondary battery of the second embodiment, a sheet-like porous membrane separator 3 is provided. While the positive electrode active material layers 1 and the negative electrode active material layers 2 are alternately stacked via the intermediary of the positive electrode active material layer 2, each of the negative electrode active material layers 2 is covered with a bag-shaped porous membrane separator 51 in the secondary battery of the present embodiment. The point is that the active material layers 1 and the negative electrode active material layers 2 covered with the bag-shaped porous membrane separators 51 are alternately laminated.

【0058】この非水電解液二次電池においても、第2
の実施形態の非水電解液二次電池と同様、集電体11に
より二次電池の外形形状を所望の形状に保持することが
でき、充放電を繰り返すことで生じる発熱による膨らみ
等の変形が生じるおそれがない。しかも、負極活物質層
2を袋状の多孔膜セパレータ51で覆った構成であるか
ら、正極活物質層1と負極活物質層2とが良好に分離さ
れた状態となり、電池の寿命を延ばすことができる。
In this non-aqueous electrolyte secondary battery, the second
As in the non-aqueous electrolyte secondary battery of the embodiment, the current collector 11 can maintain the outer shape of the secondary battery in a desired shape, and deformation such as swelling due to heat generated by repeated charging and discharging can be prevented. There is no danger. In addition, since the negative electrode active material layer 2 is covered with the bag-shaped porous membrane separator 51, the positive electrode active material layer 1 and the negative electrode active material layer 2 are in a well-separated state, thereby extending the life of the battery. Can be.

【0059】「第7の実施形態」図12は本発明の第7
の実施形態の非水電解液二次電池を示す断面図であり、
本実施形態の非水電解液二次電池が上述した第2の実施
形態の非水電解液二次電池と異なる点は、第2の実施形
態の二次電池では、最外層の正極活物質層1のみに、形
状保持可能な厚みを有しかつ充放電可能な集電体11を
接続し、最外層を除く正極活物質層1には充放電可能な
箔状の集電体12を接続したのに対し、本実施形態の二
次電池では、最外層を含む全ての正極活物質層1に形状
保持可能な厚みを有しかつ充放電可能な集電体61を接
続した点である。
[Seventh Embodiment] FIG. 12 shows a seventh embodiment of the present invention.
It is a cross-sectional view showing a non-aqueous electrolyte secondary battery of the embodiment,
The difference between the nonaqueous electrolyte secondary battery of the present embodiment and the nonaqueous electrolyte secondary battery of the above-described second embodiment is that, in the secondary battery of the second embodiment, the outermost positive electrode active material layer 1 was connected to a chargeable / dischargeable current collector 11 having a thickness capable of maintaining its shape, and a chargeable / dischargeable foil-shaped current collector 12 was connected to the positive electrode active material layer 1 except for the outermost layer. On the other hand, in the secondary battery of the present embodiment, a current collector 61 having a thickness capable of maintaining its shape and capable of charging and discharging is connected to all the positive electrode active material layers 1 including the outermost layer.

【0060】この集電体61は、最外層の正極活物質層
1の外側に矩形状の集電板11aが接続され、最外層を
除く全ての正極活物質層1に矩形状の集電板11aが入
れ込んだ状態で接続され、これら集電板11aのそれぞ
れの一端部同士が溶接等により接合されて接合部11b
とされている。
The current collector 61 has a rectangular current collector plate 11a connected to the outside of the outermost positive electrode active material layer 1, and a rectangular current collector plate on all the positive electrode active material layers 1 except the outermost layer. 11a are inserted in a state where they are inserted, and one end of each of the current collector plates 11a is joined by welding or the like to form a joint portion 11b.
It has been.

【0061】この集電体61では、これら集電板11a
及び接合部11bの弾性により、正極活物質層1及び負
極活物質層2が多孔膜セパレータ3を介して交互に積層
された積層体を挟持している。集電体61としては、第
2の実施形態と同様、金属薄板、形状記憶合金薄板のい
ずれかが好適に用いられる。
In the current collector 61, these current collector plates 11a
Also, due to the elasticity of the joint portion 11b, a stacked body in which the positive electrode active material layer 1 and the negative electrode active material layer 2 are alternately stacked via the porous membrane separator 3 is sandwiched. As the current collector 61, as in the second embodiment, any one of a metal thin plate and a shape memory alloy thin plate is suitably used.

【0062】この非水電解液二次電池においても、第2
の実施形態の非水電解液二次電池と同様、集電体61に
より二次電池の外形形状を所望の形状に保持することが
でき、充放電を繰り返すことで生じる発熱による膨らみ
等の変形が生じるおそれがない。しかも、最外層を含む
全ての正極活物質層1に集電板11aを接続したので、
最外層のみを集電板11aで挟持する構成と比べて、外
形形状の保持及び発熱による膨らみ等の変形の防止効果
をさらに高めることができる。この効果は、二次電池の
形状が大型化した場合に顕著に現れる効果である。
In this nonaqueous electrolyte secondary battery, the second
Similarly to the non-aqueous electrolyte secondary battery of the embodiment, the current collector 61 can keep the outer shape of the secondary battery in a desired shape, and deformation such as swelling due to heat generated by repeated charging and discharging can be prevented. There is no danger. Moreover, since the current collectors 11a were connected to all the positive electrode active material layers 1 including the outermost layer,
Compared to a configuration in which only the outermost layer is sandwiched between the current collector plates 11a, the effect of maintaining the outer shape and preventing deformation such as swelling due to heat generation can be further enhanced. This effect is remarkable when the size of the secondary battery is increased.

【0063】さらに、集電体61として、充放電を繰り
返すことで高温になるにしたがって縮小する方向に変形
し、その結果、二次電池の外形形状を所望の形状に保持
するような形状記憶合金薄板を用いると、外形形状の保
持及び発熱による膨らみ等の変形の防止効果をさらに高
めることができる。
Further, as the current collector 61, a shape memory alloy which is deformed in a direction to be reduced as the temperature becomes higher by repeating charging and discharging, thereby holding the outer shape of the secondary battery in a desired shape. The use of a thin plate can further enhance the effect of maintaining the external shape and preventing deformation such as bulging due to heat generation.

【0064】以上、本発明の二次電池の各実施の形態に
ついて非水電解液二次電池を例に採り説明してきたが、
具体的な構成は上記の各実施形態に限定されるものでは
なく、本発明の要旨を逸脱しない範囲で設計の変更等が
可能である。例えば、第2の実施形態の非水電解液二次
電池では、積層体の層数を2〜40層としたが、積層体
の層数は要求される起電力や容量の大きさにより適宜設
定すればよい。
As described above, each embodiment of the secondary battery of the present invention has been described by taking a non-aqueous electrolyte secondary battery as an example.
The specific configuration is not limited to each of the above embodiments, and a design change or the like can be made without departing from the gist of the present invention. For example, in the nonaqueous electrolyte secondary battery of the second embodiment, the number of layers of the stacked body is set to 2 to 40, but the number of layers of the stacked body is appropriately set according to the required electromotive force and the magnitude of the capacity. do it.

【0065】また、この非水電解液二次電池では、接合
部11bの中央部を外方に突出させて矩形状の端子6と
したが、端子6はその機能を満足するものであればよ
く、その位置や形状は必要に応じて適宜変更可能であ
る。例えば、接合部11bの中央部以外の部分を外方に
突出させて端子としてもよく、接合部11b全体を外方
に突出させて端子としてもよい。
In this non-aqueous electrolyte secondary battery, the central portion of the joint portion 11b is projected outward to form a rectangular terminal 6, but the terminal 6 may be any terminal as long as it satisfies its function. The position and shape can be appropriately changed as needed. For example, a portion other than the central portion of the joint portion 11b may be protruded outward to form a terminal, or the entire joint portion 11b may be protruded outward to form a terminal.

【0066】また、第7の実施形態の非水電解液二次電
池では、最外層を含む全ての正極活物質層1に矩形状の
集電板11aを接続したが、全ての正極活物質層1に集
電板11aを接続しない構成、例えば、ある正極活物質
層1に集電板を接続し、隣接する正極活物質層1に集電
箔を接続するというように、集電板と集電箔を交互に接
続した構成としてもよい。
In the non-aqueous electrolyte secondary battery of the seventh embodiment, the rectangular current collector plate 11a is connected to all the positive electrode active material layers 1 including the outermost layer. 1, a current collector plate is connected to a certain positive electrode active material layer 1, and a current collector foil is connected to an adjacent positive electrode active material layer 1, for example. It is good also as a structure which connected the electrofoil alternately.

【0067】[0067]

【発明の効果】以上説明した様に、本発明の二次電池に
よれば、正極活物質層及び負極活物質層を、形状保持可
能な厚みを有しかつ充放電可能な集電体で挟持したの
で、充放電を繰り返し行った場合においても、膨らみ等
の変形が生じるおそれがなく、外形形状を良好に保持す
ることができる。また、外部から衝撃等が加わった場合
においても、上記の集電体が外部からの衝撃等から前記
積層体を保護するとともに、その外形形状を保持するの
で、前記積層体は、外部から衝撃等が加わった場合にお
いても変形や損傷が生じるおそれがない。
As described above, according to the secondary battery of the present invention, the positive electrode active material layer and the negative electrode active material layer are sandwiched between the chargeable and dischargeable current collectors having a thickness capable of maintaining the shape. Therefore, even when charge and discharge are repeatedly performed, there is no possibility that deformation such as swelling occurs, and the external shape can be favorably maintained. Further, even when an external impact or the like is applied, the current collector protects the laminate from external impact or the like and retains its outer shape. There is no possibility that deformation or damage will occur even in the case of adding.

【0068】また、集電体として厚みが50μm以上か
つ120μm以下の金属薄板、特に、銅薄板、アルミニ
ウム薄板のいずれかを用いるので、サイクル特性評価で
は、充放電を繰り返し行っても容量維持率が低下しなく
なり、充放電を多数回繰り返しても劣化のおそれが無
く、起電力を十分に確保することができる。また、放熱
特性に優れたものとなるので、蓄熱され難くなり、信頼
性を向上させることができる。
In addition, since a metal thin plate having a thickness of 50 μm or more and 120 μm or less, particularly one of a copper thin plate and an aluminum thin plate, is used as the current collector, the capacity retention rate is not affected by repeated charge and discharge in the cycle characteristic evaluation. It does not decrease, and there is no risk of deterioration even if charging and discharging are repeated many times, and a sufficient electromotive force can be secured. Further, since the heat radiation characteristics are excellent, heat is hardly stored, and the reliability can be improved.

【0069】以上により、充放電を繰り返し行った場合
においても、膨らみが生じて外形形状が変形するおそれ
がなく、したがって、初期の外形形状を良好に保持する
ことができ、しかも、高い安全性とともに、優れたサイ
クル特性、充放電特性及び放熱特性を有する非水電解液
系の二次電池を提供することができる。
As described above, even when charge / discharge is repeatedly performed, there is no possibility that the outer shape is deformed due to swelling. Therefore, the initial outer shape can be favorably maintained, and high safety can be achieved. And a non-aqueous electrolyte secondary battery having excellent cycle characteristics, charge / discharge characteristics, and heat radiation characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態の非水電解液二次電
池を示す断面図である。
FIG. 1 is a sectional view showing a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.

【図2】 本発明の第1の実施形態の非水電解液二次電
池の外観形状を示す平面図である。
FIG. 2 is a plan view showing an external shape of the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.

【図3】 本発明の第2の実施形態の非水電解液二次電
池を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a non-aqueous electrolyte secondary battery according to a second embodiment of the present invention.

【図4】 本発明の第2の実施形態の非水電解液二次電
池の集電体を示す斜視図である。
FIG. 4 is a perspective view illustrating a current collector of a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.

【図5】 本発明の第2の実施形態の非水電解液二次電
池の外観形状を示す平面図である。
FIG. 5 is a plan view illustrating an external shape of a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.

【図6】 本発明の第3の実施形態の非水電解液二次電
池の集電体を示す斜視図である。
FIG. 6 is a perspective view illustrating a current collector of a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention.

【図7】 本発明の第3の実施形態の非水電解液二次電
池の外観形状を示す平面図である。
FIG. 7 is a plan view showing an external shape of a nonaqueous electrolyte secondary battery according to a third embodiment of the present invention.

【図8】 本発明の第4の実施形態の非水電解液二次電
池の集電体を示す斜視図である。
FIG. 8 is a perspective view showing a current collector of a nonaqueous electrolyte secondary battery according to a fourth embodiment of the present invention.

【図9】 本発明の第4の実施形態の非水電解液二次電
池の外観形状を示す平面図である。
FIG. 9 is a plan view showing the external shape of a nonaqueous electrolyte secondary battery according to a fourth embodiment of the present invention.

【図10】 本発明の第5の実施形態の非水電解液二次
電池の集電体を示す斜視図である。
FIG. 10 is a perspective view showing a current collector of a nonaqueous electrolyte secondary battery according to a fifth embodiment of the present invention.

【図11】 本発明の第6の実施形態の非水電解液二次
電池を示す断面図である。
FIG. 11 is a sectional view showing a non-aqueous electrolyte secondary battery according to a sixth embodiment of the present invention.

【図12】 本発明の第7の実施形態の非水電解液二次
電池を示す断面図である。
FIG. 12 is a sectional view showing a non-aqueous electrolyte secondary battery according to a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極活物質層 2 負極活物質層 3 多孔膜セパレータ 4 板状の集電体 4a 集電板 4b 接合部 5 箔状の集電体 6 端子 7 ラミネート 11 集電体 11a 集電板 11b 接合部 12、13 箔状の集電体 21 集電体 21a 集電板 21b、21c 接合部 31 集電体 31a 集電板 31b、31c 接合部 32 端子 41 集電体 42 集電板 42a 接合部 43 端子 51 袋状の多孔膜セパレータ 61 集電体 DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Porous membrane separator 4 Plate-shaped current collector 4a Current collector 4b Junction 5 Foil-shaped current collector 6 Terminal 7 Laminate 11 Current collector 11a Current collector 11b Joint 12, 13 foil-shaped current collector 21 current collector 21a current collector 21b, 21c junction 31 current collector 31a current collector 31b, 31c junction 32 terminal 41 current collector 42 current collector 42a junction 43 terminal 51 bag-shaped porous membrane separator 61 current collector

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 AS02 CC03 CC20 EE01 EE05 HH03 HH05 5H029 AJ02 AJ05 AJ12 AK03 AL06 AL07 AL12 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 BJ12 CJ03 DJ07 DJ11 EJ01 HJ04 HJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H017 AA03 AS02 CC03 CC20 EE01 EE05 HH03 HH05 5H029 AJ02 AJ05 AJ12 AK03 AL06 AL07 AL12 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 BJ12 CJ03 DJ07 DJ11 EJ01 HJ04 HJ12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質層と負極活物質層とを対向配
置してなる二次電池において、 これらの活物質層を、形状保持可能な厚みを有しかつ充
放電可能な集電体で挟持してなることを特徴とする二次
電池。
1. A secondary battery in which a positive electrode active material layer and a negative electrode active material layer are arranged to face each other, wherein these active material layers are formed of a current collector having a thickness capable of maintaining a shape and capable of being charged and discharged. A secondary battery characterized by being sandwiched.
【請求項2】 複数の正極活物質層及び負極活物質層
を、その厚み方向に多孔膜を介して交互に積層してなる
二次電池において、 いずれか一方の極性の最外層の活物質層に、形状保持可
能な厚みを有しかつ充放電可能な集電体を接続し、この
集電体により前記複数の活物質層を挟持してなることを
特徴とする二次電池。
2. A secondary battery in which a plurality of positive electrode active material layers and a plurality of negative electrode active material layers are alternately stacked in the thickness direction with a porous film interposed therebetween, wherein an outermost active material layer having one of the polarities is provided. A current collector having a thickness capable of maintaining its shape and capable of being charged and discharged, and the plurality of active material layers sandwiched between the current collectors.
【請求項3】 前記集電体は、前記複数の活物質層を挟
持する一対の板状の集電体のそれぞれの一端部同士が接
合され、この接合部分の厚みは板状部分の厚み以上であ
ることを特徴とする請求項1または2記載の二次電池。
3. The current collector is formed by joining one end of each of a pair of plate-shaped current collectors sandwiching the plurality of active material layers, and the thickness of the joined portion is equal to or greater than the thickness of the plate-shaped portion. The secondary battery according to claim 1, wherein:
【請求項4】 前記集電体は、板状の集電体が折り曲げ
られて断面がコ字状とされ、このコ字状集電体の弾性に
より前記複数の活物質層を挟持してなることを特徴とす
る請求項1または2記載の二次電池。
4. The current collector is formed by bending a plate-shaped current collector to have a U-shaped cross section and sandwiching the plurality of active material layers by the elasticity of the U-shaped current collector. The secondary battery according to claim 1, wherein:
【請求項5】 前記集電体は、前記複数の活物質層を収
納する袋状とされ、この袋状集電体の弾性により前記複
数の活物質層を挟持してなることを特徴とする請求項1
または2記載の二次電池。
5. The current collector is formed in a bag shape accommodating the plurality of active material layers, and the plurality of active material layers are sandwiched by the elasticity of the bag-shaped current collector. Claim 1
Or the secondary battery according to 2.
【請求項6】 前記集電体は、金属薄板または形状記憶
合金薄板であることを特徴とする請求項1ないし5のい
ずれか1項記載の二次電池。
6. The secondary battery according to claim 1, wherein the current collector is a metal sheet or a shape memory alloy sheet.
【請求項7】 前記金属薄板は、銅薄板またはアルミニ
ウム薄板であることを特徴とする請求項6記載の二次電
池。
7. The secondary battery according to claim 6, wherein the metal sheet is a copper sheet or an aluminum sheet.
【請求項8】 前記形状記憶合金薄板は、ニッケルとチ
タンを主成分とするNi−Ti系合金薄板であることを
特徴とする請求項6記載の二次電池。
8. The secondary battery according to claim 6, wherein the shape memory alloy sheet is a Ni—Ti alloy sheet mainly composed of nickel and titanium.
【請求項9】 前記集電体の厚みは、50μm以上かつ
120μm以下であることを特徴とする請求項1ないし
8のいずれか1項記載の二次電池。
9. The secondary battery according to claim 1, wherein the current collector has a thickness of 50 μm or more and 120 μm or less.
JP2001113919A 2001-04-12 2001-04-12 Secondary battery Expired - Lifetime JP4887568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001113919A JP4887568B2 (en) 2001-04-12 2001-04-12 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001113919A JP4887568B2 (en) 2001-04-12 2001-04-12 Secondary battery

Publications (2)

Publication Number Publication Date
JP2002313348A true JP2002313348A (en) 2002-10-25
JP4887568B2 JP4887568B2 (en) 2012-02-29

Family

ID=18965075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001113919A Expired - Lifetime JP4887568B2 (en) 2001-04-12 2001-04-12 Secondary battery

Country Status (1)

Country Link
JP (1) JP4887568B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP2007511055A (en) * 2003-11-21 2007-04-26 エルジー・ケム・リミテッド Electrochemical batteries with improved safety
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
JP2011040407A (en) * 2007-10-10 2011-02-24 Panasonic Corp Lithium ion secondary battery
KR101072681B1 (en) 2008-07-30 2011-10-11 엔이씨 에너지 디바이스 가부시키가이샤 Laminate secondary battery
JP2013526776A (en) * 2010-05-18 2013-06-24 エンパイア テクノロジー ディベロップメント エルエルシー Ultracapacitors using phase change materials
JP2018014266A (en) * 2016-07-21 2018-01-25 トヨタ自動車株式会社 Lithium ion secondary battery
CN114039084A (en) * 2021-10-22 2022-02-11 西安交通大学 High-safety polymer flexible package lithium ion battery
DE102020131528A1 (en) 2020-11-27 2022-06-02 Audi Aktiengesellschaft Battery, automobile and battery assembly method
WO2025042202A1 (en) * 2023-08-22 2025-02-27 주식회사 엘지에너지솔루션 Electrode current collector, lithium secondary battery comprising same, battery module, and battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264863A (en) * 1987-04-21 1988-11-01 Japan Storage Battery Co Ltd Sealed nickel-cadmium storage battery and its manufacture
JPH10270048A (en) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH10312824A (en) * 1997-03-12 1998-11-24 Sanyo Electric Co Ltd Rectangular battery
JPH11167922A (en) * 1997-12-05 1999-06-22 Mitsubishi Materials Corp Surface-treated copper foil and battery electrode using the same
JP2002246007A (en) * 2001-02-19 2002-08-30 Yuasa Corp Batteries with stacked electrode groups

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264863A (en) * 1987-04-21 1988-11-01 Japan Storage Battery Co Ltd Sealed nickel-cadmium storage battery and its manufacture
JPH10312824A (en) * 1997-03-12 1998-11-24 Sanyo Electric Co Ltd Rectangular battery
JPH10270048A (en) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH11167922A (en) * 1997-12-05 1999-06-22 Mitsubishi Materials Corp Surface-treated copper foil and battery electrode using the same
JP2002246007A (en) * 2001-02-19 2002-08-30 Yuasa Corp Batteries with stacked electrode groups

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
US7625668B2 (en) 2003-11-05 2009-12-01 Sony Corporation Anode and battery
US8304105B2 (en) 2003-11-21 2012-11-06 Lg Chem, Ltd. Electrochemical cell having an improved safety
JP2007511055A (en) * 2003-11-21 2007-04-26 エルジー・ケム・リミテッド Electrochemical batteries with improved safety
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP2011040407A (en) * 2007-10-10 2011-02-24 Panasonic Corp Lithium ion secondary battery
KR101072681B1 (en) 2008-07-30 2011-10-11 엔이씨 에너지 디바이스 가부시키가이샤 Laminate secondary battery
JP2013526776A (en) * 2010-05-18 2013-06-24 エンパイア テクノロジー ディベロップメント エルエルシー Ultracapacitors using phase change materials
US9123477B2 (en) 2010-05-18 2015-09-01 Empire Technology Development Llc Ultracapacitors employing phase change materials
JP2018014266A (en) * 2016-07-21 2018-01-25 トヨタ自動車株式会社 Lithium ion secondary battery
DE102020131528A1 (en) 2020-11-27 2022-06-02 Audi Aktiengesellschaft Battery, automobile and battery assembly method
CN114039084A (en) * 2021-10-22 2022-02-11 西安交通大学 High-safety polymer flexible package lithium ion battery
WO2025042202A1 (en) * 2023-08-22 2025-02-27 주식회사 엘지에너지솔루션 Electrode current collector, lithium secondary battery comprising same, battery module, and battery pack

Also Published As

Publication number Publication date
JP4887568B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
CN103069633B (en) Electrode assembly with novel structure and manufacturing method for the same
JP6246901B2 (en) Nonaqueous electrolyte battery and battery pack
CN105190945B (en) Thin battery
US20110070477A1 (en) Stack type battery
JP2019096476A (en) Series laminate type all-solid battery
JPH11162443A (en) Assembled battery
JP6460418B2 (en) Secondary battery
JP5552398B2 (en) Lithium ion battery
KR20060059716A (en) Lithium secondary battery
WO2016051645A1 (en) Flexible battery
US20190348644A1 (en) High power battery and battery case
JP6122213B1 (en) Non-aqueous electrolyte battery, battery pack and automobile
JPH1167281A (en) Battery
JP4887568B2 (en) Secondary battery
WO2004097971A1 (en) Stacked lithium secondary battery and its fabrication
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP2010232011A (en) Secondary battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JPH10172607A (en) Sheet-like lithium secondary battery
JPH11111337A (en) Polymer electrolyte secondary battery
WO2003100901A1 (en) Lithium secondary battery and its fabrication
JP4557329B2 (en) Battery terminal
JP2000311691A (en) Nonaqueous electrolyte battery
JP2016009547A (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080508

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4887568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

EXPY Cancellation because of completion of term