JP2003053557A - Joining method and joining structure between dissimilar metals - Google Patents
Joining method and joining structure between dissimilar metalsInfo
- Publication number
- JP2003053557A JP2003053557A JP2001240751A JP2001240751A JP2003053557A JP 2003053557 A JP2003053557 A JP 2003053557A JP 2001240751 A JP2001240751 A JP 2001240751A JP 2001240751 A JP2001240751 A JP 2001240751A JP 2003053557 A JP2003053557 A JP 2003053557A
- Authority
- JP
- Japan
- Prior art keywords
- joining
- aluminum
- joint
- titanium
- titanium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属異種材料間の
接合構造に係り、特に、アルミニウムもしくはアルミ合
金材料とチタンもしくはチタン合金材料など金属異種材
料間の接合および接合構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining structure between dissimilar metal materials, and more particularly, to a joining structure between dissimilar metal materials such as aluminum or aluminum alloy material and titanium or titanium alloy material.
【0002】[0002]
【従来の技術】従来、棒状または管状の異材継手を接合
する場合、摩擦圧接や拡散圧接などの接合方法によって
行っている。そこで、図19に、摩擦圧接の例を示す。2. Description of the Related Art Conventionally, a rod-shaped or tubular dissimilar material joint is joined by a joining method such as friction welding or diffusion welding. Therefore, FIG. 19 shows an example of friction welding.
【0003】異なる金属材料からなり材料特性の異なる
同径の異材継手1、2は、圧接装置のチャック3、4で
掴んだ状態で保持される(図19(a))。一方の異材
継手1を回転させると、摩擦によって接触し合っている
接合面が溶け、軸方向の加圧力Pによりアプセット加圧
すると異材継手1、2は接合される(図19(b))。
このような摩擦圧接では、接合後の軸方向断面は、同径
の異材継手1、2が接合されてそれぞれの材料強度に応
じてバリの量と形状が異なった接合状態を呈する。この
種の継手接合で問題となるのは、接合部の衝撃強度が低
く、信頼性が低いことである。Dissimilar material joints 1 and 2 made of different metal materials and having the same diameter and different material properties are held in a state of being gripped by chucks 3 and 4 of a pressure welding device (FIG. 19 (a)). When one of the dissimilar material joints 1 is rotated, the joint surfaces that are in contact with each other due to friction are melted, and the dissimilar material joints 1 and 2 are joined by upsetting by the axial pressure P (FIG. 19B).
In such friction welding, the dissimilar joints 1 and 2 having the same diameter are joined to each other in the axial cross-section after joining, so that the amount and shape of burrs differ depending on the respective material strengths. The problem with this type of joint joining is that the joint has low impact strength and low reliability.
【0004】この傾向は、摩擦圧接に限らず、冷間圧
接、熱間圧接、拡散接合、爆発接合、鍛接、超音波接
合、ろう付け、はんだ付け、抵抗溶接、接着剤による接
合等、いずれの方法による金属異種材料間の接合構造に
おいても問題となる。This tendency is not limited to friction welding, but may be any of cold welding, hot welding, diffusion welding, explosive welding, forging welding, ultrasonic welding, brazing, soldering, resistance welding, joining with an adhesive, and the like. There is also a problem in the joining structure between different kinds of metals by the method.
【0005】そこで、例えば、金属異種材料部材間の接
合に適用して接合強度を向上させるための従来技術とし
て特開平6−47570号において提案されるている摩
擦圧接法がある。この摩擦圧接法では、熱膨張係数の大
きな方の部材の直径を他方の部材よりも大きくして接合
し、接合界面に発生する残留応力を緩和させることで接
合強度を向上させている。Therefore, for example, there is a friction welding method proposed in Japanese Patent Laid-Open No. 6-47570 as a conventional technique for improving the joining strength by applying it to joining members of different kinds of metals. In this friction welding method, the diameter of the member having the larger thermal expansion coefficient is made larger than that of the other member for joining, and the residual stress generated at the joining interface is relaxed to improve the joining strength.
【0006】特開平4−143085号では、アルミニ
ウム材に対して開先角15度〜45度の凸状にした銅材
を突き合わせて通電加熱により接合し引張り強度を向上
させている。また、特開平1−282166号では、金
属部材とセラミックス部材との接合体において、セラミ
ックス部材の接合界面の周縁部における一部と接合体表
面とのなすセラミックス構成角度を80度以下、または
100度以下に設定することにより熱応力を緩和できる
ことが記載されている。According to Japanese Patent Laid-Open No. 4-143085, a copper material having a convex shape with a groove angle of 15 to 45 degrees is butted against an aluminum material and joined by electrical heating to improve the tensile strength. Further, in Japanese Patent Application Laid-Open No. 1-282166, in a bonded body of a metal member and a ceramic member, a ceramic forming angle formed by a part of a peripheral portion of a bonding interface of the ceramic member and a surface of the bonded body is 80 degrees or less, or 100 degrees. It is described that the thermal stress can be relaxed by setting the following.
【0007】さらに特開平1−282167では、熱膨
張率の異なる部材同士を接合するにあたって、熱膨張率
の小さい方の部材の接合界面縁部を接合界面方向に見て
所定値以上の曲率半径を有する曲面状に形成するするこ
とで熱応力を緩和することが開示されている。Further, in Japanese Patent Laid-Open No. 1-282167, when joining members having different thermal expansion coefficients, a radius of curvature not less than a predetermined value is observed when the joining interface edge of the member having the smaller thermal expansion coefficient is viewed in the joining interface direction. It is disclosed that the thermal stress is relaxed by forming the curved surface.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
接合方法は、いずれも残留応力緩和、熱応力緩和、引張
り強度向上を目的とした方法であって、接合部の衝撃強
度を高め、接合部の信頼性を高めるものではなかった。However, all of the conventional joining methods are intended for relaxation of residual stress, relaxation of thermal stress and improvement of tensile strength. It did not increase reliability.
【0009】とりわけ材料特性の異なる異種材料の接合
においては、接合条件の最適化により、静的な継手強度
に関しては問題がないが、衝撃強度に関しては接合端部
で著しい低下が現れて継手全体として低いことは明かで
ある。Especially in the joining of different materials having different material properties, there is no problem in the static joint strength due to the optimization of the joining conditions, but in the joint strength as a whole, the joint strength is remarkably lowered with respect to the impact strength. It is clear that it is low.
【0010】そこで、本発明の目的は、前記従来技術の
有する問題点を解消し、材料特性の異なる異種材料の接
合において、接合部の衝撃強度を高め、信頼性を高める
ことのできる金属異種材料間の接合方法および接合構造
を提供することにある。Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and in joining dissimilar materials having different material properties, improve the impact strength of the joint and improve the reliability. It is to provide a joining method and a joining structure between the two.
【0011】[0011]
【課題を解決するための手段】前記の目的を達成するた
めに、請求項1に係る発明は、アルミ若しくはアルミ合
金を材料とする第1の部材と、チタン若しくはチタン合
金を材料とする第2の部材を同軸に接合する金属異種材
料間の接合方法において、前記第1部材の端面に凹面か
らなる接合面を、前記第2部材の端面に前記凹面に対応
した凸面からなる接合面を、それぞれ予め形成してお
き、前記接合面同士を突き合わせて前記第1部材と第2
部材を同軸上に保持し、軸方向の加圧を加えながら前記
第1部材と第2部材のうち一方を回転させ、前記第2部
材の接合面の縁部と該第2部材の自由縁とのなす角度が
45〜88°の範囲内になるように摩擦圧接による接合
を行うことを特徴としている。In order to achieve the above object, the invention according to claim 1 comprises a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy. In the method for joining dissimilar metal materials for coaxially joining the members, a joining surface formed of a concave surface on the end surface of the first member, and a joining surface formed of a convex surface corresponding to the concave surface on the end surface of the second member, respectively. It is formed in advance and the joint surfaces are butted to each other so that the first member and the second member
The member is held coaxially, and one of the first member and the second member is rotated while applying an axial pressure so that the edge of the joint surface of the second member and the free edge of the second member are rotated. It is characterized in that the joining is carried out by friction welding so that the angle formed by is within the range of 45 to 88 °.
【0012】この請求項1の発明によれば、アルミ材若
しくはアルミ合金を材料とする第1部材と、チタン若し
くはチタン合金を材料とする第2部材とを摩擦圧接によ
り接合する場合、第1部材の端面の凹面の接合面と第2
部材の端面の凸面の接合面同士を突き合わせて、第2部
材の接合面の縁部と該第2部材の自由縁とのなす角度が
45〜88°の設定範囲内になるように接合すると、材
料特性の特性の異なる第1部材と第2部材の接合部での
衝撃強度を大幅に向上させることができる。According to the invention of claim 1, when the first member made of an aluminum material or an aluminum alloy and the second member made of titanium or a titanium alloy are joined by friction welding, the first member is formed. The concave joint surface of the end face of the and the second
When the joining surfaces of the convex surfaces of the end faces of the members are butted to each other and the joining is performed so that the angle between the edge portion of the joining surface of the second member and the free edge of the second member falls within the setting range of 45 to 88 °, The impact strength at the joint between the first member and the second member having different material properties can be significantly improved.
【0013】請求項2に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合する金属
異種材料間の接合方法において、前記第1部材の端面に
凸面からなる接合面を、前記第2部材の端面に前記凸面
に対応した凹面からなる接合面を、それぞれ予め形成し
ておき、前記接合面同士を突き合わせて前記第1部材と
第2部材を同軸上に保持し、軸方向の加圧を加えながら
前記第1部材と第2部材のうち一方を回転させ、前記第
2部材の接合面の縁部と該第2部材の自由縁とのなす角
度が120〜178°の範囲内になるように摩擦圧接に
よる接合を行うことを特徴としている。According to a second aspect of the present invention, there is provided a joining method for dissimilar metal materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. A joint surface formed of a convex surface on the end surface of the first member, and a joint surface formed of a concave surface corresponding to the convex surface on the end surface of the second member are formed in advance, and the joint surfaces are abutted to each other, and The first member and the second member are coaxially held, and one of the first member and the second member is rotated while applying pressure in the axial direction, and the edge of the joint surface of the second member and the second member are rotated. It is characterized in that the joining is performed by friction welding so that the angle formed by the free edges of the members falls within the range of 120 to 178 °.
【0014】この請求項2に係る発明によれば、請求項
1の発明とは反対に、第1部材の端面が接合面が凸面
で、第2部材の端面の接合面が凹面の場合には、第1部
材の端面の凸面の接合面と第2部材の端面の凹面の接合
面同士を突き合わせて、第2部材の接合面の縁部と該第
2部材の自由縁とのなす角度が120〜178°の設定
範囲内になるように摩擦圧接により接合すると、請求項
1の発明と同様に材料特性の特性の異なる第1部材と第
2部材の接合部での衝撃強度を大幅に向上させることが
できる。According to the invention of claim 2, contrary to the invention of claim 1, in the case where the end surface of the first member has a convex joint surface and the end surface of the second member has a concave joint surface, , The convex joint surface of the end surface of the first member and the concave joint surface of the end surface of the second member are butted against each other, and the angle formed by the edge portion of the joint surface of the second member and the free edge of the second member is 120. By joining by friction welding so as to fall within the set range of ˜178 °, the impact strength at the joint portion of the first member and the second member having different material properties is greatly improved as in the invention of claim 1. be able to.
【0015】請求項3に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合する金属
異種材料間の接合方法において、前記第1部材と前記第
2部材の平坦な接合面同士を突き合わせて前記第1部材
と第2部材を同軸上に保持し、軸方向の加圧を加えなが
ら前記第1部材と第2部材のうち一方を回転させ、前記
第1部材と第2部材との接合界面と前記第1部材または
第2部材の少なくとも一方の自由縁とのなす角度が90
°未満になるように摩擦圧接による接合を行うことを特
徴としている。According to a third aspect of the present invention, there is provided a method for joining dissimilar metal materials, which coaxially joins a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy. , The flat joining surfaces of the first member and the second member are butted against each other to hold the first member and the second member coaxially, and the first member and the second member while applying axial pressure. One of them is rotated, and the angle formed by the joint interface between the first member and the second member and the free edge of at least one of the first member and the second member is 90.
It is characterized in that the welding is performed by friction welding so that the temperature is less than °.
【0016】この請求項3に係る発明によれば、請求項
1、請求項2の発明とは異なり、第1部材の端面が接合
面、第2部材の端面の接合面がそれぞれ平坦な接合面の
場合には、その平坦な接合面同士を突き合わせて、第2
部材の接合面の縁部と該第2部材の自由縁とのなす角度
が90°未満の設定範囲内になるように摩擦圧接により
接合すると、請求項1および請求項2の発明と同様に材
料特性の特性の異なる第1部材と第2部材の接合部での
衝撃強度を大幅に向上させることができる。According to the invention of claim 3, unlike the inventions of claims 1 and 2, the end surface of the first member is a joint surface, and the end surfaces of the second members are flat joint surfaces. In the case of, the flat joint surfaces are butted against each other, and the second
When the members are joined by friction welding so that the angle formed by the edge of the joint surface of the member and the free edge of the second member falls within the set range of less than 90 °, the material is the same as the inventions of Claims 1 and 2. The impact strength at the joint between the first member and the second member having different characteristics can be significantly improved.
【0017】請求項4に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合する金属
異種材料間の接合方法において、前記第1部材と前記第
2部材の接合面の間に純アルミを介在させた状態で突き
合わせて前記第1部材と第2部材を同軸上に保持し、軸
方向の加圧を加えながら前記第1部材と第2部材のうち
一方を回転させ、摩擦圧接による接合を行うことを特徴
としている。According to a fourth aspect of the present invention, there is provided a joining method for dissimilar metal materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. , The first member and the second member are abutted against each other while pure aluminum is interposed between the joint surfaces of the first member and the second member, and the first member and the second member are coaxially held, and while applying axial pressure, One of the features is that one of the first member and the second member is rotated to perform joining by friction welding.
【0018】この請求項4に係る発明によれば、アルミ
若しくはアルミ合金を材料とする第1の部材の接合面
と、チタン若しくはチタン合金を材料とする第2の部材
の接合面の間に純アルミを介在させて摩擦圧接により接
合することにより、両部材の接合部における引張り強度
を大幅に向上させることができる。According to the invention of claim 4, between the joint surface of the first member made of aluminum or aluminum alloy and the joint surface of the second member made of titanium or titanium alloy, there is pure By joining by friction welding while interposing aluminum, the tensile strength at the joining portion of both members can be greatly improved.
【0019】請求項5に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合した金属
異種材料間の接合構造において、前記第1部材の凹面か
らなる接合面と前記第2部材の前記凹面に対応した凸面
からなる接合面同士を摩擦圧接により接合し、前記第2
部材の接合面の縁部と該第2部材の自由縁とのなす角度
が45〜88°の範囲内にあることを特徴としている。According to a fifth aspect of the present invention, there is provided a joint structure for dissimilar metallic materials, in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. The joining surface formed by the concave surface of the first member and the joining surface formed by the convex surface corresponding to the concave surface of the second member are joined by friction welding,
The angle between the edge of the joint surface of the member and the free edge of the second member is in the range of 45 to 88 °.
【0020】この請求項5に係る発明によれば、アルミ
材若しくはアルミ合金を材料とする第1部材の凹面から
なる接合面と、チタン若しくはチタン合金を材料とする
第2部材の凸面からなる接合面とが摩擦圧接により接合
されて、第2部材の接合面の縁部と該第2部材の自由縁
とのなす角度が45〜88°の設定範囲内になるように
接合された構造とすることにより、材料特性の特性の異
なる第1部材と第2部材の接合部での衝撃強度が大幅に
向上した接合構造にすることができる。According to the fifth aspect of the invention, the joining surface is formed by the concave surface of the first member made of an aluminum material or an aluminum alloy, and the joining surface is formed by a convex surface of the second member made of titanium or a titanium alloy. The surface is joined by friction welding so that the angle between the edge of the joining surface of the second member and the free edge of the second member is within the setting range of 45 to 88 °. As a result, it is possible to obtain a joint structure in which the impact strength at the joint between the first member and the second member having different material properties is significantly improved.
【0021】請求項6に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合した金属
異種材料間の接合構造において、前記第1部材の端面に
凸面からなる接合面と前記第2部材の前記凸面に対応し
た凹面からなる接合面を摩擦圧接により接合し、前記第
2部材の接合面の縁部と該第2部材の自由縁とのなす角
度が120〜179°の範囲内にあることを特徴として
いる。According to a sixth aspect of the present invention, there is provided a joint structure for dissimilar metal materials in which a first member made of aluminum or aluminum alloy and a second member made of titanium or titanium alloy are coaxially joined. A joining surface made of a convex surface and a joining surface made of a concave surface corresponding to the convex surface of the second member are joined to the end surface of the first member by friction welding, and an edge portion of the joining surface of the second member and the second portion. The angle formed by the free edge of the member is in the range of 120 to 179 °.
【0022】この請求項6に係る発明によれば、請求項
5の発明とは反対に、アルミ材若しくはアルミ合金を材
料とする第1部材の凸面からなる接合面と、チタン若し
くはチタン合金を材料とする第2部材の凹面からなる接
合面とを摩擦圧接により接合する場合には、第2部材の
接合面の縁部と該第2部材の自由縁とのなす角度が12
0〜179°の設定範囲内になるように接合された構造
とすることにより、材料特性の特性の異なる第1部材と
第2部材の接合部での衝撃強度が大幅に向上した接合構
造にすることができる。According to the invention of claim 6, contrary to the invention of claim 5, the joining surface formed of the convex surface of the first member made of an aluminum material or an aluminum alloy and titanium or a titanium alloy is used as the material. When joining the concave joint surface of the second member by friction welding, the angle between the edge of the joint surface of the second member and the free edge of the second member is 12
By adopting a structure in which the bonding is performed within the setting range of 0 to 179 °, a bonding structure in which the impact strength at the bonding portion of the first member and the second member having different material characteristics is significantly improved is obtained. be able to.
【0023】請求項7に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合した金属
異種材料間の接合構造において、前記第1部材と前記第
2部材の平坦な接合面同士を摩擦圧接により接合し、そ
の接合界面と前記第1部材または第2部材の少なくとも
一方の自由縁とのなす角度が90°未満であるか、また
は、前記接合界面と前記第1部材または第2部材の少な
くとも一方の自由縁のなす角度が90°で他方の自由縁
のなす角度が90°未満であることを特徴としている。According to a seventh aspect of the present invention, there is provided a joint structure for dissimilar metal materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. When the flat joining surfaces of the first member and the second member are joined by friction welding, and the angle between the joining interface and the free edge of at least one of the first member and the second member is less than 90 °. Or the angle between the joining interface and the free edge of at least one of the first member and the second member is 90 °, and the angle between the other free edge is less than 90 °.
【0024】請求項7に係る発明によれば、アルミ材若
しくはアルミ合金を材料とする第1部材の接合面と、チ
タン若しくはチタン合金を材料とする第2部材の接合面
の関係がそれぞれ平坦な接合面の場合には、その接合界
面と前記第1部材または第2部材の少なくとも一方の自
由縁とのなす角度が90°未満であるか、または、前記
接合界面と前記第1部材または第2部材の少なくとも一
方の自由縁のなす角度が90°で他方の自由縁のなす角
度が90°未満である設定範囲内になるように接合され
た構造とすることにより、材料特性の特性の異なる第1
部材と第2部材の接合部での衝撃強度が大幅に向上した
接合構造にすることができる。According to the invention of claim 7, the relationship between the joint surface of the first member made of an aluminum material or an aluminum alloy and the joint surface of the second member made of titanium or a titanium alloy is flat. In the case of a joining surface, the angle between the joining interface and the free edge of at least one of the first member and the second member is less than 90 °, or the joining interface and the first member or the second member. The members are joined so that the angle formed by at least one free edge of the members is 90 ° and the angle formed by the other free edge is less than 90 °, so that the members have different material properties. 1
It is possible to obtain a joint structure in which the impact strength at the joint between the member and the second member is significantly improved.
【0025】請求項8に係る発明は、アルミ若しくはア
ルミ合金を材料とする第1の部材と、チタン若しくはチ
タン合金を材料とする第2の部材を同軸に接合した金属
異種材料間の接合構造において、前記第1部材と前記第
2部材の接合面同士を摩擦圧接により接合し、両接合面
の間に純アルミが介在していることを特徴としている。According to an eighth aspect of the present invention, there is provided a joint structure for dissimilar metal materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. The joining surfaces of the first member and the second member are joined by friction welding, and pure aluminum is interposed between the joining surfaces.
【0026】この請求項8に係る発明によれば、アルミ
若しくはアルミ合金を材料とする第1の部材の接合面
と、チタン若しくはチタン合金を材料とする第2の部材
の接合面の間に純アルミを介在させて摩擦圧接により接
合された構造とすることにより、両部材の接合部におけ
る引張り強度が大幅に向上した接合構造にすることがで
きる。According to the invention of claim 8, between the joint surface of the first member made of aluminum or an aluminum alloy and the joint surface of the second member made of titanium or a titanium alloy, a pure joint is formed. By adopting a structure in which aluminum is interposed and friction welding is performed, it is possible to obtain a joint structure in which the tensile strength at the joint portion of both members is significantly improved.
【0027】以上の請求項1乃至8の接合方法または接
合構造において、第2部材の材料である上記チタン若し
くはチタン合金は、α合金、α−β合金、β合金のいず
れかであり、好ましくは、α合金は、Ti-0.3Mo-0.8
Ni、Ti-5Al-2.5Sn、Ti-5Al-2.5Sn-ELI、Ti-8A
l-Mo-V、Ti-6Al-2Sn-4Zr-Mo、Ti-6Al-2Nb
-Ta-0.8Mo、Ti-2.25Al-11Sn-5Zr-Mo、Ti-5A
l-5Sn-2Zr-2Mo、α−β合金は、Ti-6Al-4V、Ti
-6Al-4V-ELI、Ti-6Al-6V-2Sn、Ti-8Mn、Ti-7
Al-4Mo、Ti-6Al-2Sn-4Zr-6Mo、Ti-5Al-2Sn-2
Zr-4Mo-4Cr、Ti-6Al-2Sn-2Zr-2Mo-2Cr、Ti-3
Al-2.5V、β合金は、Ti-10V-2Fe-3Al,Ti-13V-
11Cr-3Al,Ti-8Mo-8V-2Fe-3Al,Ti-13V-11.5
Mo-6Zr-4.5Snである。In the above-described joining method or joining structure according to any one of claims 1 to 8, the titanium or titanium alloy as the material of the second member is any one of α alloy, α-β alloy and β alloy, and preferably , Α alloy is Ti-0.3Mo-0.8
Ni, Ti-5Al-2.5Sn, Ti-5Al-2.5Sn-ELI, Ti-8A
l-Mo-V, Ti-6Al-2Sn-4Zr-Mo, Ti-6Al-2Nb
-Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-Mo, Ti-5A
l-5Sn-2Zr-2Mo, α-β alloy is Ti-6Al-4V, Ti
-6Al-4V-ELI, Ti-6Al-6V-2Sn, Ti-8Mn, Ti-7
Al-4Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Sn-2
Zr-4Mo-4Cr, Ti-6Al-2Sn-2 Zr-2Mo-2Cr, Ti-3
Al-2.5V, β alloy is Ti-10V-2Fe-3Al, Ti-13V-
11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-13V-11.5
Mo-6Zr-4.5Sn.
【0028】また、請求項1乃至8の接合方法または接
合構造では、摩擦圧接により生成されるアルミ若しくは
アルミ合金とチタン若しくはチタン合金からなる金属間
化合物の反応層の厚さが20μm以下であることが好ま
しい。これは、金属間化合物の反応層厚さが20μmを
越えると、衝撃強度が低下するためである。Further, in the joining method or the joining structure according to claims 1 to 8, the thickness of the reaction layer of the intermetallic compound formed of aluminum or aluminum alloy and titanium or titanium alloy produced by friction welding is 20 μm or less. Is preferred. This is because the impact strength decreases when the thickness of the reaction layer of the intermetallic compound exceeds 20 μm.
【0029】請求項4または請求項8においては、前記
第1部材と第2部材が、同一の内外径を有するリング状
の部材であれば、前記純アルミの厚さtは、前記第1部
材、第2部材のリング幅Tに対して(t/T)<0.5
であることが好ましい。In the fourth or eighth aspect, if the first member and the second member are ring-shaped members having the same inner and outer diameters, the thickness t of the pure aluminum is the first member. , (T / T) <0.5 with respect to the ring width T of the second member
Is preferred.
【0030】第1部材と第2部材がリング状であると、
引張り強度はリング幅Tと純アルミの厚さtの比が0.
5になるまでは漸減し、0.5以下ではほとんど変化し
ないということが引張り試験の結果から判明しており、
純アルミの厚さtは可及的にリング幅Tに対して薄い方
が引張り強度は大きいので、上記の範囲とする。If the first member and the second member are ring-shaped,
For tensile strength, the ratio of the ring width T to the thickness t of pure aluminum is 0.
It has been found from the results of the tensile test that it gradually decreases until it reaches 5, and it hardly changes at 0.5 or less.
The thickness t of pure aluminum is larger than the ring width T as much as possible, so that the tensile strength is larger.
【0031】また、請求項4または請求項8において
は、前記第1部材と第2部材が、同一の直径の丸棒状の
部材であれば、前記純アルミの厚さtは、前記丸棒の直
径Dに対して(t/D)<0.5であることが好まし
い。Further, in claim 4 or claim 8, if the first member and the second member are round bar-shaped members having the same diameter, the thickness t of the pure aluminum is equal to that of the round bar. It is preferable that (t / D) <0.5 with respect to the diameter D.
【0032】第1部材と第2部材が丸棒状の部材である
と、引張り強度は丸棒の直径Dと純アルミの厚さtの比
が0.5になるまでは漸減し、0.5以下ではほとんど
変化しないということが引張り試験の結果から判明して
おり、上記の範囲とする。When the first member and the second member are round bar-shaped members, the tensile strength gradually decreases until the ratio of the diameter D of the round bar to the thickness t of pure aluminum reaches 0.5, and then becomes 0.5. It is known from the results of the tensile test that there is almost no change below, and it is set to the above range.
【0033】さらに、前記第1部材と第2部材は、同一
の矩形断面の部材であれば、矩形断面の縦方向の長さを
a、横方向の長さをbに対して、前記純アルミの厚さt
は、(t/a)<0.5(a<bの場合)、または(t
/b)<0.5(b<a)であることが好ましい。Further, if the first member and the second member are members having the same rectangular cross section, the length of the rectangular cross section in the vertical direction is a and the length in the horizontal direction is b, and the pure aluminum is used. Thickness t
Is (t / a) <0.5 (when a <b), or (t
It is preferable that /b)<0.5 (b <a).
【0034】第1部材と第2部材が同一の矩形断面の部
材であれば、純アルミの厚さtは、部材の小さい方の幅
に対して薄い方が可及的に引張り強度は大きくなるた
め、上記の範囲とする。If the first member and the second member are members having the same rectangular cross section, the tensile strength is as large as possible when the thickness t of pure aluminum is smaller than the smaller width of the member. Therefore, the above range is set.
【0035】ここで、請求項5乃至8のいずれかの接合
構造を適用できる機械部品としては、他の機構部品に対
して締結される締結部がチタン合金を材料とする部材で
あり、前記締結部以外がアルミ若しくはアルミ合金を材
料とする機械部品、例えば、伝動機構の構成部品を挙げ
ることができる。この機械部品において、前記チタン合
金とアルミ若しくはアルミ合金との継手部に請求項5乃
至8のいずれかの接合構造を採用することにより、接合
部における衝撃強度を高めて十分な信頼性を確保できる
とともに、部品の材料を高価なチタン合金から安価なア
ルミに置き換えることができる。Here, as a machine component to which the joint structure according to any one of claims 5 to 8 can be applied, a fastening portion fastened to another mechanical component is a member made of a titanium alloy, and the fastening is performed. Other than the parts, mechanical parts made of aluminum or aluminum alloy as a material, for example, constituent parts of a transmission mechanism can be mentioned. In this machine part, by adopting the joint structure according to any one of claims 5 to 8 for the joint portion between the titanium alloy and aluminum or aluminum alloy, the impact strength at the joint portion can be increased and sufficient reliability can be secured. At the same time, the material of the component can be replaced with expensive aluminum from inexpensive titanium alloy.
【0036】また、請求項5乃至8のいずれかの接合構
造を適用できる機械部品としては、耐食性を要求される
部分がチタン合金を材料とし、耐食性を要求されない部
分がアルミ若しくはアルミ合金を材料とする機械部品、
例えば、化学プラントで用いられる撹拌機器の回転軸な
どの部品を挙げることができる。この機械部材におい
て、前記チタン合金とアルミ若しくはアルミ合金との継
手部に請求項5乃至8のいずれかの項に記載の接合構造
を採用することにより、耐食性の要求される部分だけチ
タン合金を用いて、耐食性を確保すると同時に耐食性が
要求されない部分の材料を軽量で安価なアルミに置き変
えることができる。Further, as a machine part to which the joint structure according to any one of claims 5 to 8 can be applied, a titanium alloy is used as a portion where corrosion resistance is required, and aluminum or an aluminum alloy is used as a portion where corrosion resistance is not required. Machine parts,
For example, parts such as a rotating shaft of a stirring device used in a chemical plant can be mentioned. In this mechanical member, by using the joint structure according to any one of claims 5 to 8 for the joint portion between the titanium alloy and aluminum or aluminum alloy, only the portion where corrosion resistance is required is made of titanium alloy. Thus, it is possible to secure the corrosion resistance and at the same time replace the material of the part where the corrosion resistance is not required with a lightweight and inexpensive aluminum.
【0037】さらに請求項5乃至8のいずれかの接合構
造を適用できる機械部品としては、電力用遮断器に使用
される接触子周辺部品を挙げることができる。この機械
部品において、耐熱性の要求される部分にチタン合金を
材料とする部材を用い、耐熱性の要求されない部分には
アルミを材料とする部材を用い、これらの部材の接合に
請求項5乃至8のいずれかの項に記載の接合構造を採用
することにより、高温のアークに直接さらされ部分はチ
タン合金とし、それ以外の部分にアルミ材を用いること
ができ、アルミ材に耐熱コーティングを施す必要をなく
すことができる。Further, as the mechanical parts to which the joint structure according to any one of claims 5 to 8 can be applied, there can be mentioned a peripheral part of a contact used in a power breaker. In this mechanical part, a member made of a titanium alloy is used for a portion where heat resistance is required, and a member made of aluminum is used for a portion where heat resistance is not required, and these members are joined together. By adopting the joining structure according to any one of 8 above, a titanium alloy can be used for a portion directly exposed to a high temperature arc, and an aluminum material can be used for other portions, and a heat resistant coating is applied to the aluminum material. You can eliminate the need.
【0038】[0038]
【発明の実施の形態】以下、本発明による金属異種材料
間の接合方法および接合構造の実施形態について、添付
の図面を参照しながら詳細に説明する。
第1実施形態
図1は、本発明の第1実施形態による金属異種材料間の
接合方法を示す図である。参照符号10は、純アルミニ
ウムを材料とする第1の部材(以下、アルミ材という)
で、12は、チタン合金、例えばα−βチタン合金を材
料とする第2の部材である(以下、チタン合金材とい
う)。この実施形態では、アルミ材10、チタン合金材
12ともに同径の丸棒である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a joining method and a joining structure between metallic dissimilar materials according to the present invention will be described in detail below with reference to the accompanying drawings. First Embodiment FIG. 1 is a diagram showing a method for joining metallic dissimilar materials according to a first embodiment of the present invention. Reference numeral 10 is a first member made of pure aluminum (hereinafter referred to as an aluminum material).
Here, 12 is a second member made of a titanium alloy, for example, an α-β titanium alloy (hereinafter referred to as a titanium alloy material). In this embodiment, both the aluminum material 10 and the titanium alloy material 12 are round bars having the same diameter.
【0039】図1(a)において、アルミ材10の端面
には、接合面となる凹面11が予め形成されており、チ
タン合金材12の端面にも、凸面11に対応した凹面1
3からなる接合面が予め形成されている。この例ではこ
れらの凹面11、凸面13ともに所定の曲率でなめらか
に湾曲する曲面である。In FIG. 1A, a concave surface 11 to be a joint surface is formed in advance on the end surface of the aluminum material 10, and the concave surface 1 corresponding to the convex surface 11 is also formed on the end surface of the titanium alloy material 12.
A joint surface composed of 3 is formed in advance. In this example, both the concave surface 11 and the convex surface 13 are curved surfaces that are smoothly curved with a predetermined curvature.
【0040】アルミ材10とチタン合金材12は、圧接
装置のチャック3、4で掴んだ状態で同軸上に保持され
る。そして、図1(b)に示すように、一方のアルミ材
10を回転させながら、チタン合金材10に突き当て軸
方向の加圧力Pによりアプセット加圧すると摩擦によっ
て接触し合っている接合面同士が溶融し、アルミ材10
とチタン合金材12は一体に接合される。The aluminum material 10 and the titanium alloy material 12 are coaxially held in a state of being gripped by the chucks 3 and 4 of the pressure welding device. Then, as shown in FIG. 1B, when one aluminum material 10 is rotated, the titanium alloy material 10 is abutted against the titanium alloy material 10 and upset pressure is applied by a pressing force P in the axial direction. Melts, aluminum material 10
And the titanium alloy material 12 are integrally joined.
【0041】図2(a)は、アルミ材10とチタン合金
材12との接合部断面を示す。この図2(a)に示され
るように、アルミ材10とチタン合金材12との接合界
面においてチタン合金材12の接合面を基準にして、そ
の凹曲面状の接合面の縁部14がチタン合金材12の自
由縁15と一定の範囲の鋭角θ1をなすような接合構造
になっている。この角度θ1は、45〜88°の角度設
定範囲内にあることが好ましい。FIG. 2A shows a cross section of the joint between the aluminum material 10 and the titanium alloy material 12. As shown in FIG. 2A, at the joining interface between the aluminum material 10 and the titanium alloy material 12, the edge portion 14 of the joining surface of the concave curved surface is made of titanium based on the joining surface of the titanium alloy material 12. The joining structure is such that the free edge 15 of the alloy material 12 forms an acute angle θ1 within a certain range. This angle θ1 is preferably within the angle setting range of 45 to 88 °.
【0042】次に、図2(b)は、アルミ材10とチタ
ン合金材12との接合界面において、チタン合金材12
の接合面の縁部14がチタン合金材12の自由縁15と
所定の範囲の鈍角θ2をなすような接合構造の例を示
す。この場合の角度θ2は、120〜179°の角度設
定範囲内にあることが好ましい。このようにチタン合金
材12の接合面の縁部14と自由縁15のなす角度θ2
を鈍角に設定する場合には、図2(a)の接合構造とは
逆に、アルミ材10の端面には凹面を、チタン合金材1
2には凸面を予め形成しておく。摩擦圧接の仕方は、図
1に示したのと同様である。Next, FIG. 2B shows that the titanium alloy material 12 is formed at the joint interface between the aluminum material 10 and the titanium alloy material 12.
An example of the joining structure in which the edge portion 14 of the joining surface forms an obtuse angle θ2 within a predetermined range with the free edge 15 of the titanium alloy material 12 will be shown. The angle θ2 in this case is preferably within the angle setting range of 120 to 179 °. Thus, the angle θ2 formed by the edge 14 and the free edge 15 of the joining surface of the titanium alloy material 12 is
2 is set to an obtuse angle, contrary to the joining structure of FIG.
2 has a convex surface formed in advance. The method of friction welding is the same as that shown in FIG.
【0043】図2(c)、図2(d)に示すように、図
2(a)、図2(b)とは異なり、接合面をなす凸面が
平坦な端面をもつアルミ材10と、この凸面に対応した
凹面を接合面として有するチタン合金材12との摩擦圧
接にあっても同様な接合構造とすることができる。図2
(c)の方は、チタン合金材12の接合面の縁部14が
チタン合金材12の自由縁15となす角θ1が45〜8
8°の範囲にある接合構造で、図2(d)はチタン合金
材12の接合面の縁部14がチタン合金材12の自由縁
15となす角θ2が120〜179°の範囲にある接合
構造である。As shown in FIGS. 2 (c) and 2 (d), unlike the case of FIGS. 2 (a) and 2 (b), an aluminum material 10 having a flat end surface with a convex convex surface forming a joint surface, Even in the case of friction welding with the titanium alloy material 12 having a concave surface corresponding to the convex surface as a bonding surface, a similar bonding structure can be obtained. Figure 2
In the case of (c), the angle θ1 formed by the edge portion 14 of the joining surface of the titanium alloy material 12 and the free edge 15 of the titanium alloy material 12 is 45 to 8.
FIG. 2D shows a joining structure in the range of 8 °, in which the angle θ2 formed by the edge portion 14 of the joining surface of the titanium alloy material 12 and the free edge 15 of the titanium alloy material 12 is in the range of 120 to 179 °. It is a structure.
【0044】なお、自由縁15と上記の範囲内の角度を
なすチタン合金材12の接合面の縁部14は、チタン合
金材12の直径Dに対して5%以上の範囲で形成されて
いれば問題はない。The edge 14 of the joining surface of the titanium alloy material 12 that makes an angle within the above range with the free edge 15 is formed in a range of 5% or more with respect to the diameter D of the titanium alloy material 12. If there is no problem.
【0045】次に、図3は、チタン合金材の接合面の縁
部と自由縁のなす角度θを30°から5°間隔で180
°まで変えた試験片を製作し、その試験片について引張
り試験を行った結果を示す図である。図4は、同様の試
験片で衝撃試験を行った結果を示す図である。Next, FIG. 3 shows that the angle θ between the edge of the joining surface of the titanium alloy material and the free edge is 180 ° at intervals of 5 ° from 30 °.
It is a figure which shows the result of having produced the test piece which changed to ° and performing the tensile test about the test piece. FIG. 4 is a diagram showing a result of an impact test performed on the same test piece.
【0046】図3に示されるように、引張り強度は、チ
タン合金材の接合面の縁部と自由縁のなす角度θに関係
なく一定値を示したが、衝撃強度については、図4に示
されるように角度θが45°から88°の間、120°
から179°の間で、高い衝撃強度の値を示した。な
お、図19の従来の接合構造は、この図4ではθが90
°の場合に相当するもので、上記の角度の範囲内で接合
面の縁部と自由縁のなす角度を設定することで、アルミ
−チタン合金継手の衝撃強度を大幅に向上させることが
可能となる。As shown in FIG. 3, the tensile strength showed a constant value regardless of the angle θ between the edge of the joining surface of the titanium alloy material and the free edge, but the impact strength is shown in FIG. As shown in the figure, the angle θ is 120 ° between 45 ° and 88 °.
A high impact strength value was shown in the range from to 179 °. Incidentally, in the conventional joining structure of FIG. 19, θ is 90 in FIG.
This is equivalent to the case of °, and it is possible to greatly improve the impact strength of the aluminum-titanium alloy joint by setting the angle between the edge of the joint surface and the free edge within the above range of angles. Become.
【0047】以上は、本発明を丸棒形状の金属異種材料
間の接合に適用した実施の形態であるが、次に、管状の
金属異種材料間の接合に本発明を適用する実施形態につ
いて図5を参照しながら説明する。The above is the embodiment in which the present invention is applied to the joining between different rod-shaped metallic dissimilar materials. Next, the embodiment in which the present invention is applied to the joining between tubular metallic dissimilar materials will be described. This will be described with reference to FIG.
【0048】図5において、20はアルミを材料とする
管状のアルミ材であり、22はチタン合金を材料とする
管状のチタン合金材である。アルミ材20とチタン合金
材22は、同一の内径、外径である。In FIG. 5, 20 is a tubular aluminum material made of aluminum, and 22 is a tubular titanium alloy material made of titanium alloy. The aluminum material 20 and the titanium alloy material 22 have the same inner diameter and outer diameter.
【0049】図5(a)は、アルミ材20とチタン合金
材22との接合界面においてチタン合金材22の接合面
を基準にして、その凹曲面状の接合面の外周縁部14a
と内周縁部14bのそれぞれがチタン合金材22の外周
部の自由縁15a、内周部の自由縁15bと一定の範囲
の鋭角θ1をなすような接合構造になっている。この角
度θ1は、図2(a)、図2(c)の接合構造と同様に
45〜88°の角度設定範囲内に設定することで衝撃強
度を大幅に向上させることができる。FIG. 5A shows the outer peripheral edge portion 14a of the concave joint surface of the titanium alloy material 22 as a reference at the joint interface between the aluminum material 20 and the titanium alloy material 22.
The inner peripheral edge portion 14b and the inner peripheral edge portion 14b have a joining structure in which the free edge 15a of the outer peripheral portion and the free edge 15b of the inner peripheral portion of the titanium alloy material 22 form an acute angle θ1 within a certain range. By setting this angle θ1 within the angle setting range of 45 to 88 ° similarly to the joint structure of FIGS. 2A and 2C, the impact strength can be significantly improved.
【0050】このような管状のアルミ材20とチタン合
金材22を摩擦圧接するには、アルミ材20の端面に
は、接合面となる凸面が、チタン合金材12の端面には
凸面に対応した凹面が予め形成されているのは、図2の
場合と同様である。このような凹凸面は、所定の曲率で
なめらかに湾曲する曲面であってもよい。In order to frictionally weld such a tubular aluminum material 20 and titanium alloy material 22 to each other, the end surface of the aluminum material 20 corresponds to a convex surface to be a joint surface, and the end surface of the titanium alloy material 12 corresponds to a convex surface. The concave surface is formed in advance as in the case of FIG. Such an uneven surface may be a curved surface that smoothly curves with a predetermined curvature.
【0051】図5(b)は、接合面の凹凸の関係を図5
(a)とは反対にしたもので、この場合、チタン合金2
0の接合面の外周縁部14aと内周縁部14bのそれぞ
れがチタン合金材22の外周部の自由縁15a、内周部
の自由縁15bとなすθ2は、120〜179°の範囲
内に設定されている。 次に、図6に示すのは、
これまで説明した実施形態とは異なり、アルミ材10と
チタン合金材12をそれぞれ平坦な接合面同士で接合し
た接合構造を示している。図6(a)並びに図6(b)
に示されるように、この接合構造では、アルミ材10と
チタン合金12は同径の部材で、両者の接合界面16
と、アルミ材10の自由縁17a、チタン合金材12の
自由縁17bのそれぞれとなす角度θ1が共に90°未
満になるように摩擦圧接によって接合されている。この
接合構造の場合、図6(a)のように、接合界面16と
90°未満の角度をなすアルミ材10の自由縁17a、
チタン合金材12の自由縁17bがそれぞれ真っ直ぐに
傾斜するようになっていてもよく、また、図6(b)の
ように、湾曲する曲面であってもよい。FIG. 5B shows the relationship between the unevenness of the joint surface.
The reverse of (a), in this case titanium alloy 2
The outer peripheral edge portion 14a and the inner peripheral edge portion 14b of the joint surface of 0 respectively form the free edge 15a of the outer peripheral portion and the free edge 15b of the inner peripheral portion of the titanium alloy material 22, and θ2 is set within the range of 120 to 179 °. Has been done. Next, as shown in FIG.
Unlike the embodiments described so far, a joining structure is shown in which the aluminum material 10 and the titanium alloy material 12 are joined together with their respective flat joining surfaces. 6 (a) and 6 (b)
As shown in FIG. 3, in this joint structure, the aluminum material 10 and the titanium alloy 12 are members having the same diameter, and the joint interface 16 between them is
And the free edge 17a of the aluminum material 10 and the free edge 17b of the titanium alloy material 12 are both joined by friction welding so that the angle .theta.1 is less than 90 degrees. In the case of this joint structure, as shown in FIG. 6A, the free edge 17a of the aluminum material 10 that makes an angle of less than 90 ° with the joint interface 16,
The free edges 17b of the titanium alloy material 12 may each be inclined straightly, or may be a curved surface as shown in FIG. 6 (b).
【0052】図6(c)並びに図6(d)に示すのは、
アルミ材10とチタン合金材12の接合界面16とアル
ミ材10の自由縁17aのなす角度は直角であるのに対
して、接合界面16とチタン合金材12の自由縁17b
のなす角度θ1は、90°未満になっている。この場合
は、アルミ材10の方が、チタン合金材12よりも直径
の大きな場合の接合構造であって、チタン合金材12の
方がアルミ材10よりも直径が大きな場合は、チタン合
金材12の自由縁17bと接合界面16のなす角度が直
角で、アルミ材10と自由縁17aと接合界面16のな
す角度が90°未満となる。FIGS. 6C and 6D show that
The joining interface 16 between the aluminum material 10 and the titanium alloy material 12 and the free edge 17a of the aluminum material 10 form a right angle, whereas the joining interface 16 and the free edge 17b of the titanium alloy material 12 form a right angle.
The angle θ1 formed by is less than 90 °. In this case, the aluminum material 10 has a larger joint diameter than the titanium alloy material 12, and the titanium alloy material 12 has a larger diameter than the aluminum material 10. The angle between the free edge 17b and the bonding interface 16 is a right angle, and the angle between the aluminum material 10, the free edge 17a and the bonding interface 16 is less than 90 °.
【0053】以上のような図6(a)乃至図6(d)の
ような接合構造によっても、図 に示すような従来の接
合構造に比べて大幅に衝撃強度を向上させ得ることがで
きた。Even with the joint structure as shown in FIGS. 6 (a) to 6 (d), the impact strength can be significantly improved as compared with the conventional joint structure as shown in the figure. .
【0054】なお、図7は、図6の接合構造をともに管
状のアルミ材10とチタン合金材12に適用した接合構
造を示している。接合すべき部材が管状であっても図6
の場合と同じように接合してその衝撃強度を向上させる
ことができる。FIG. 7 shows a joint structure in which the joint structure of FIG. 6 is applied to a tubular aluminum material 10 and a titanium alloy material 12. Even if the members to be joined are tubular, FIG.
The impact strength can be improved by joining in the same manner as in the above.
【0055】次に、図8は、以上図1乃至図7により説
明した実施形態において、摩擦圧接によってアルミ材と
チタン合金材の接合界面に生成される金属間化合物の反
応層厚さと衝撃強度の関係を示すグラフである。Next, FIG. 8 shows the reaction layer thickness and impact strength of the intermetallic compound generated at the joining interface between the aluminum material and the titanium alloy material by friction welding in the embodiment described with reference to FIGS. It is a graph which shows a relationship.
【0056】この図8から了解されるように、金属間化
合物の反応層厚さが20μmを越えると、衝撃強度が低
下する。したがって、摩擦圧接を行うについては、金属
間化合物の反応層の厚さは20μm以下になるようにす
ることで、接合継手の信頼性を確保できる。As can be understood from FIG. 8, when the reaction layer thickness of the intermetallic compound exceeds 20 μm, the impact strength decreases. Therefore, regarding friction welding, the reliability of the bonded joint can be secured by setting the thickness of the reaction layer of the intermetallic compound to 20 μm or less.
【0057】また、本実施形態によるアルミ材とチタン
合金の接合構造では、接合部の電気抵抗が高いと通電時
に接合部が加熱し、接合界面の金属間化合物の反応層が
成長して20μmを越えて衝撃強度が低下するため、接
合部の電気抵抗は母材の電気抵抗と同等であることが望
ましい。Further, in the joining structure of the aluminum material and the titanium alloy according to the present embodiment, if the electrical resistance of the joining portion is high, the joining portion is heated during energization, and the reaction layer of the intermetallic compound at the joining interface grows to 20 μm. Since the impact strength decreases beyond that, it is desirable that the electrical resistance of the joint be equal to that of the base material.
【0058】また、接合部の衝撃強度が母材以下である
と接合部での破断が生じるおそれがあるため、接合部の
衝撃強度は母材と同等であることが望ましい。If the impact strength of the joint is less than or equal to the base material, fracture may occur at the joint, so the impact strength of the joint is preferably the same as that of the base material.
【0059】さらに、アルミ材とチタン合金を接合した
後に、接合部に熱処理を加え接合部の硬度を母材の硬さ
まで高めるようにしてもよい。Further, after joining the aluminum material and the titanium alloy, heat treatment may be applied to the joint to increase the hardness of the joint to the hardness of the base material.
【0060】第2実施形態次に、図9、図11、図13
は、本発明の第2実施形態による金属異種材料間の接合
構造を示す図である。この第2実施形態は、アルミ材1
0とチタン合金材12の接合面の間に純アルミ20を介
在させた状態で突き合わせて両者を同軸上に保持し、軸
方向の加圧を加えながら前記第1部材と第2部材のうち
一方を回転させて摩擦圧接により接合した接合構造を有
して点で共通する実施の形態である。Second Embodiment Next, FIG. 9, FIG. 11 and FIG.
FIG. 8 is a diagram showing a bonding structure between different kinds of metals according to the second embodiment of the present invention. In this second embodiment, the aluminum material 1
0 and the titanium alloy material 12 are abutted against each other with pure aluminum 20 interposed therebetween and held coaxially with each other, and one of the first member and the second member is applied while applying axial pressure. It is an embodiment common to the point that it has a joining structure in which is rotated and joined by friction welding.
【0061】図9は、アルミ材10、チタン合金材12
の両者とも内外径同一の環状の部材同士の接合構造を示
している。アルミ材10の接合面とチタン合金材12の
接合面に介在される純アルミ20については、その厚さ
tのアルミ材10のリング幅Tに対する比が引張り強度
と次のような関係があることが判明している。FIG. 9 shows an aluminum material 10 and a titanium alloy material 12
Both of them show a joining structure of annular members having the same inner and outer diameters. Regarding the pure aluminum 20 interposed between the joint surface of the aluminum material 10 and the joint surface of the titanium alloy material 12, the ratio of the thickness t to the ring width T of the aluminum material 10 has the following relationship with the tensile strength. Is known.
【0062】図10は、リング幅Tに対して純アルミ2
0の厚さを変えた試料について引張り試験を行った結果
を示している。この図10からわかるように、引張り強
度はリング幅Tと純アルミ20の厚さtの比が0.5に
なるまでは漸減し、0.5以下ではほとんど変化しな
い。したがって、純アルミ20の厚さtは、可及的にリ
ング幅に対して薄い方が引張り強度は大きく、厚さの上
限は、(t/T)<0.5の範囲内であることが望まし
い。FIG. 10 shows pure aluminum 2 with respect to the ring width T.
The result of having carried out the tensile test about the sample which changed the thickness of 0 is shown. As can be seen from FIG. 10, the tensile strength gradually decreases until the ratio of the ring width T and the thickness t of the pure aluminum 20 reaches 0.5, and hardly changes below 0.5. Therefore, the thickness t of the pure aluminum 20 is larger when the thickness t is smaller than the ring width as much as possible, and the upper limit of the thickness is within the range of (t / T) <0.5. desirable.
【0063】図11は、アルミ材10、チタン合金材1
2の両者とも同一の直径をもった丸棒状の部材同士の接
合構造を示している。アルミ材10の接合面とチタン合
金材12の接合面に介在される純アルミ20について
は、その厚さtの丸棒の直径Dに対するの比が変わる
と、図12に示すように引張り強度が変化することが判
明している。FIG. 11 shows an aluminum material 10 and a titanium alloy material 1.
Both of the two show a joint structure of round bar-shaped members having the same diameter. With respect to the pure aluminum 20 interposed between the joint surface of the aluminum material 10 and the joint surface of the titanium alloy material 12, when the ratio of the thickness t to the diameter D of the round bar changes, the tensile strength is changed as shown in FIG. It is known to change.
【0064】この図12からわかるように、引張り強度
は丸棒の直径Dに対する純アルミ20の厚さtの比が
0.5になるまでは漸減し、0.5以下ではほとんど変
化しない。したがって、純アルミ20の厚さtは、可及
的に丸棒の直径Dに対して薄い方が引張り強度は大き
く、厚さの上限は、(t/D)<0.5の範囲内である
ことが望ましい。As can be seen from FIG. 12, the tensile strength gradually decreases until the ratio of the thickness t of the pure aluminum 20 to the diameter D of the round bar reaches 0.5, and hardly changes below 0.5. Therefore, as for the thickness t of the pure aluminum 20, the thinner the diameter D of the round bar as much as possible, the larger the tensile strength is, and the upper limit of the thickness is within the range of (t / D) <0.5. Is desirable.
【0065】次に、図13は、アルミ材10、チタン合
金材12の両者とも縦方向の幅a、横方向の幅bの矩形
断面を有する部材同士の接合構造を示している。アルミ
材10の接合面とチタン合金材12の接合面に介在され
る純アルミ20については、その厚さtと、幅aまたは
bのいずれか小さい方の比が変わると、図14に示すよ
うに引張り強度が変化することが判明している。Next, FIG. 13 shows a joining structure of members each having a rectangular cross section with a vertical width a and a horizontal width b for both the aluminum material 10 and the titanium alloy material 12. As for the pure aluminum 20 interposed between the joint surface of the aluminum material 10 and the joint surface of the titanium alloy material 12, when the ratio of the thickness t and the width a or b, whichever is smaller, changes, as shown in FIG. It has been found that the tensile strength changes.
【0066】この図14からわかるように、引張り強度
は、部材の小さい方の幅(ここでは縦方向の幅aとす
る)に対する純アルミ20の厚さtの比が0.5になる
までは漸減し、0.5以下ではほとんど変化しない。し
たがって、純アルミ20の厚さtは、可及的に部材の小
さい方の幅に対して薄い方が引張り強度は大きく、厚さ
の上限は、(t/a)<0.5の範囲内であることが望
ましい(横方向の幅bの方が小さい場合であれば(t/
b)<0.5)。As can be seen from FIG. 14, the tensile strength is until the ratio of the thickness t of the pure aluminum 20 to the smaller width of the member (here, the width a in the vertical direction) becomes 0.5. It gradually decreases, and hardly changes at 0.5 or less. Therefore, as for the thickness t of the pure aluminum 20, the thinner the width of the member is, the thinner the tensile strength is, and the upper limit of the thickness is within the range of (t / a) <0.5. Is desirable (if the width b in the horizontal direction is smaller, (t /
b) <0.5).
【0067】なお、図9、図11、図13の実施形態に
おいて、接合面に介在される純アルミ20は、上記した
厚さの板状のもの摩擦圧接する際に両接合面の間に挟む
ようにしてもよいし、あらかじめアルミ材10またはチ
タン合金材12のどちらか一方の端面に、上述した厚さ
に純アルミを肉盛りしてから摩擦圧接するようにしても
よい。あらかじめ純アルミを肉盛りする方法としては、
摩擦圧接、冷間圧接、熱間圧接、拡散圧接、爆発圧接、
鍛接、超音波接合、ろう付け、はんだ付け、抵抗溶接、
溶融金属注入、鋳継ぎ、接着剤による接着等、いずれの
方法を用いても同様の効果を示す。In the embodiments shown in FIGS. 9, 11, and 13, the pure aluminum 20 interposed on the joint surface is a plate-like member having the above-mentioned thickness and is sandwiched between both joint surfaces when friction-welding. Alternatively, the aluminum material 10 or the titanium alloy material 12 may be preliminarily overlaid with pure aluminum to the end face of either one of the aluminum material 10 and the titanium alloy material 12 and then friction-welded. As a method of overlaying pure aluminum in advance,
Friction welding, cold welding, hot welding, diffusion welding, explosion welding,
Forge welding, ultrasonic bonding, brazing, soldering, resistance welding,
The same effect can be obtained by using any method such as molten metal injection, casting, and adhesive bonding.
【0068】以上、純アルミニウム材とチタン合金との
接合を例に挙げて、本発明の第1実施形態と第2実施形
態を説明したが、純アルミニウム材の替わりにアルミ合
金を用い、チタン合金として、α−β合金以外に、純チ
タン、α合金、β合金を用いこれらを組み合わせた異種
金属材料間の接合に適用できることはもちろんである。The first and second embodiments of the present invention have been described above by taking the joining of the pure aluminum material and the titanium alloy as an example. However, the aluminum alloy is used instead of the pure aluminum material, and the titanium alloy is used. As a matter of course, in addition to the α-β alloy, pure titanium, α alloy, and β alloy can be used to join the dissimilar metal materials by combining them.
【0069】ここで、α合金としては、Ti-0.3Mo-0.
8Ni、Ti-5Al-2.5Sn、Ti-5Al-2.5Sn-ELI、Ti-8
Al-Mo-V、Ti-6Al-2Sn-4Zr-Mo、Ti-6Al-2
Nb-Ta-0.8Mo、Ti-2.25Al-11Sn-5Zr-Mo、Ti-
5Al-5Sn-2Zr-2Mo等がある。Here, as the α alloy, Ti-0.3Mo-0.
8Ni, Ti-5Al-2.5Sn, Ti-5Al-2.5Sn-ELI, Ti-8
Al-Mo-V, Ti-6Al-2Sn-4Zr-Mo, Ti-6Al-2
Nb-Ta-0.8Mo, Ti-2.25Al-11Sn-5Zr-Mo, Ti-
5Al-5Sn-2Zr-2Mo and the like.
【0070】α−β合金としては、Ti-6Al-4V、Ti-
6Al-4V-ELI、Ti-6Al-6V-2Sn、Ti-8Mn、Ti-7A
l-4Mo、Ti-6Al-2Sn-4Zr-6Mo、Ti-5Al-2Sn-2Z
r-4Mo-4Cr、Ti-6Al-2Sn-2Zr-2Mo-2Cr、Ti-3A
l-2.5V等がある。As the α-β alloy, Ti-6Al-4V, Ti-
6Al-4V-ELI, Ti-6Al-6V-2Sn, Ti-8Mn, Ti-7A
l-4Mo, Ti-6Al-2Sn-4Z r-6Mo, Ti-5Al-2Sn-2Z
r-4Mo-4Cr, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-3A
There are l-2.5V etc.
【0071】β合金には、Ti-10V-2Fe-3Al,Ti-13
V-11Cr-3Al,Ti-8Mo-8V-2Fe-3Al,Ti-13V-1
1.5Mo-6Zr-4.5Sn等がある。For the β alloy, Ti-10V-2Fe-3Al, Ti-13
V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Ti-13V-1
There are 1.5Mo-6Zr-4.5Sn, etc.
【0072】第3実施形態図15乃至図18は、本発明
を適用したアルミ材料の部材とチタン合金材料の部材と
の接合構造を有する機械部品の例を示す図である。Third Embodiment FIGS. 15 to 18 are views showing an example of a mechanical component having a joint structure of a member made of an aluminum material and a member made of a titanium alloy to which the present invention is applied.
【0073】図15は、広く産業機械において、動力部
からの回転を他の機構に伝達するための伝動機構を構成
する部品を示す。FIG. 15 shows components constituting a power transmission mechanism for transmitting the rotation from the power unit to another mechanism in a wide range of industrial machines.
【0074】図15において、例えば30が駆動側の機
構と連結される締結部であり、31が従動側の機構と連
結される締結部である。駆動側の締結部30と従動側の
締結部31は、2本の伝達ロッド32により連結されて
いる。締結部30、31はチタン合金を材料に用い、伝
達ロッド32はアルミを材料としている。締結部30、
31には、伝達ロッド32との接合のために継手部30
a、31aが一体に形成されている。このような締結部
30、31の継手部30a、31aと伝達ロッド32と
の接合には、上述した図2(b)または図2(d)で説
明した摩擦圧接による接合構造が採用されており、チタ
ン合金からなる継手部30a、31aの凸曲面状の接合
面の縁部が当該継手部30a、30bの自由縁となす角
が120〜179°の範囲内になるような接合構造にな
っている。この場合、継手部30a、31aの接合面を
凹面にすることで、図2(a)または図2(c)のよう
に接合面の縁部が当該継手部30a、30bの自由縁と
なす角を45〜88°の範囲とする接合構造としてもよ
い。In FIG. 15, for example, 30 is a fastening portion connected to the drive side mechanism, and 31 is a fastening portion connected to the driven side mechanism. The driving-side fastening portion 30 and the driven-side fastening portion 31 are connected by two transmission rods 32. The fastening portions 30 and 31 are made of titanium alloy, and the transmission rod 32 is made of aluminum. Fastening part 30,
31 includes a joint portion 30 for joining with the transmission rod 32.
a and 31a are integrally formed. For joining the joint portions 30a and 31a of the fastening portions 30 and 31 and the transmission rod 32, the joining structure by the friction welding described with reference to FIG. 2B or 2D described above is adopted. The joint structure is such that the edges of the convex curved joint surfaces of the joint portions 30a and 31a made of titanium alloy and the free edges of the joint portions 30a and 30b form an angle of 120 to 179 °. There is. In this case, by making the joint surfaces of the joint portions 30a and 31a concave, the angle formed by the edge of the joint surface with the free edge of the joint portions 30a and 30b as shown in FIG. 2A or 2C. May be in the range of 45 to 88 °.
【0075】従来のアルミとチタン合金とを摩擦圧接に
よる接合構造は、衝撃強度が低く信頼性が低いため、こ
の種の伝動部品の継手部に採用できなかったが、本発明
による接合構造は十分な衝撃強度が得られるため、本発
明を衝撃強度の要求される伝動部品の継手部に適用する
ことが可能となり、これにより継手部30a、31bと
伝達ロッドとの接合部における衝撃強度を高めて十分な
信頼性を確保できるとともに、部品の材料を高価なチタ
ン合金から安価なアルミに置き換え、この図15の部品
では約30%の低コスト化を実現することが可能とな
る。The conventional joining structure by friction welding of aluminum and titanium alloy cannot be used for the joint portion of this kind of transmission component because of its low impact strength and low reliability, but the joining structure according to the present invention is sufficient. Since it is possible to obtain a high impact strength, the present invention can be applied to a joint portion of a transmission component that requires an impact strength, thereby increasing the impact strength at the joint portion between the joint portions 30a and 31b and the transmission rod. Sufficient reliability can be ensured, and the cost of the component shown in FIG. 15 can be reduced by replacing the expensive titanium alloy with inexpensive aluminum as the material of the component.
【0076】図16は、化学プラントなどで用いられる
原材料の混合、分散、撹拌機器の回転軸に本発明の接合
構造を適用した例を示す。図16において、回転軸の先
端には、羽根33が設けられ、この羽根によって原料を
混合し撹拌する。回転軸は、原料と直接接触する第1軸
部34と、原材料とは接触することが少ない部分第2軸
部35とからなり、第1軸部34は耐食性の強いチタン
合金を材料し、第2軸部35はアルミニウムを材料とし
ている。そして、第1軸部34と第2軸部35の接合に
上述した図2(b)または図2(d)で説明した摩擦圧
接による接合構造が採用されており、チタン合金からな
る第1軸部34の凸曲面状の接合面の縁部が当該第1軸
部34の自由縁となす角が120〜179°の範囲内に
なるような接合構造になっている。この場合、第1軸部
34の接合面を凹面にすることで、図2(a)または図
2(c)のように接合面の縁部が当該軸部34の自由縁
となす角を45〜88°の範囲とする接合構造としても
よい。FIG. 16 shows an example in which the joining structure of the present invention is applied to the rotating shaft of a mixing, dispersing and stirring apparatus for raw materials used in a chemical plant or the like. In FIG. 16, a blade 33 is provided at the tip of the rotary shaft, and the blade mixes and stirs the raw materials. The rotating shaft is composed of a first shaft portion 34 that comes into direct contact with the raw material and a partial second shaft portion 35 that rarely comes into contact with the raw material, and the first shaft portion 34 is made of a titanium alloy having strong corrosion resistance. The biaxial portion 35 is made of aluminum. Then, the joining structure by the friction welding described in FIG. 2 (b) or FIG. 2 (d) is adopted for joining the first shaft portion 34 and the second shaft portion 35, and the first shaft made of titanium alloy is used. The joining structure is such that the edge of the convex curved joining surface of the portion 34 forms an angle with the free edge of the first shaft portion 34 within the range of 120 to 179 °. In this case, by making the joint surface of the first shaft portion 34 a concave surface, the edge of the joint surface forms an angle of 45 with the free edge of the shaft portion 34 as shown in FIG. 2A or 2C. A junction structure having a range of up to 88 ° may be used.
【0077】従来のアルミとチタン合金とを摩擦圧接に
よる接合構造は、衝撃強度が低く信頼性が低いため、こ
の種の撹拌機器の回転軸に採用できなかったが、本発明
による接合構造は十分な衝撃強度が得られるため、撹拌
機器の回転軸の接合に適用することができ、耐食性の要
求される部分だけチタン合金を用いて、耐食性を確保す
ると同時に回転軸の材料を軽量で安価なアルミに置き変
え、全体として約30%の低コスト化を達成することが
できる。The conventional joining structure by friction welding of aluminum and titanium alloy cannot be used for the rotating shaft of this kind of stirring equipment because of its low impact strength and low reliability, but the joining structure according to the present invention is sufficient. It can be applied to join the rotating shafts of agitating equipment because of its high impact strength. Titanium alloy is used only for the parts where corrosion resistance is required, and at the same time, the rotating shaft is made of lightweight and inexpensive aluminum. It is possible to achieve cost reduction of about 30% as a whole.
【0078】次に、図17は、電力用遮断機に使用され
る駆動部からの動力を他の機構に伝達するための伝動機
構を構成する部品を示す。Next, FIG. 17 shows parts constituting a power transmission mechanism for transmitting power from a drive unit used in a power breaker to another mechanism.
【0079】図17において、例えば36が駆動側の機
構と連結される締結部であり、37が従動側の機構と連
結される締結部である。駆動側の締結部36と従動側の
締結部37は、2本の伝達ロッド38により連結されて
いる。締結部36、37はチタン合金を材料に用い、伝
達ロッド38はアルミを材料としている。締結部36、
37には、伝達ロッド38との接合のために継手部36
a、37aが一体に形成され、この継手部36a、37
aと伝達ロッド38との接合に本発明の接合構造が適用
されている。その接合構造自体は、図15と同様であり
その詳細な説明は省略する。In FIG. 17, for example, 36 is a fastening portion connected to the drive side mechanism, and 37 is a fastening portion connected to the driven side mechanism. The driving-side fastening portion 36 and the driven-side fastening portion 37 are connected by two transmission rods 38. The fastening portions 36 and 37 are made of titanium alloy, and the transmission rod 38 is made of aluminum. Fastening portion 36,
37 includes a joint portion 36 for joining with the transmission rod 38.
a and 37a are integrally formed, and the joint portions 36a and 37a
The joining structure of the present invention is applied to the joining of a and the transmission rod 38. The joint structure itself is the same as that in FIG. 15, and the detailed description thereof will be omitted.
【0080】このような伝動機構部品の継手部30a、
31bと伝達ロッドとの接合部に本発明を適用すること
で、衝撃強度を高めて十分な信頼性を確保できるととも
に、部品の材料を高価なチタン合金から安価なアルミに
置き換え、約20%の低コスト化を実現することが可能
となる。The joint portion 30a of the transmission mechanism component,
By applying the present invention to the joint portion between 31b and the transmission rod, it is possible to increase the impact strength and ensure sufficient reliability, and replace the expensive titanium alloy with inexpensive aluminum as the material of the component, and It becomes possible to realize cost reduction.
【0081】図18は、電力用遮断器に使用される接触
子周辺部品に本発明による接合構造を適用した例を示
す。FIG. 18 shows an example in which the joint structure according to the present invention is applied to the contactor peripheral parts used in a power circuit breaker.
【0082】この種の接触子が開閉する接触子周辺部品
は、高温のアークに直接さらされるためにアルミ材に耐
熱コーティングを施す必要がいり、高価格になるなどの
問題があった。そこで、アークに直接晒される部材39
にチタン合金を材料に使用し、その他のアークに晒され
ない部材40にはアルミを材料に使用し、部分39、4
0との接合に本発明を適用した。すなわち、摩擦圧接に
より部分39の接合面の縁部が部材当該39の自由縁と
なす角が120〜179°の範囲内になるような接合構
造とした。これにより、接触子周辺部品の大幅な軽量化
と低コスト下を達成することが可能となった。The peripheral parts of the contact, which are opened and closed by this kind of contact, are directly exposed to a high-temperature arc, so that it is necessary to apply a heat-resistant coating to the aluminum material, and there is a problem that the cost becomes high. Therefore, the member 39 that is directly exposed to the arc
Titanium alloy is used for the material, and aluminum is used for the other members 40 that are not exposed to the arc.
The present invention was applied to the joining with 0. That is, the joining structure is such that the angle of the edge of the joining surface of the portion 39 with the free edge of the member 39 is within the range of 120 to 179 ° by friction welding. As a result, it has become possible to achieve a significant reduction in the weight of the parts around the contact and a reduction in cost.
【0083】[0083]
【発明の効果】以上の説明から明らかなように、本発明
によれば、アルミとチタン合金など材料特性の異なる異
種材料の接合において、接合部の衝撃強度を高め、信頼
性を高めることが可能となる。As is apparent from the above description, according to the present invention, it is possible to enhance the impact strength of the joint portion and enhance the reliability in joining dissimilar materials having different material properties such as aluminum and titanium alloy. Becomes
【図1】本発明の一実施形態による接合方法の概略説明
図。FIG. 1 is a schematic explanatory view of a joining method according to an embodiment of the present invention.
【図2】本発明の第1の実施形態による接合構造の接合
部断面を示す図。FIG. 2 is a view showing a cross section of a joint portion of the joint structure according to the first embodiment of the present invention.
【図3】図2の接合構造を有する試料についての引張り
試験の結果を示す図。FIG. 3 is a diagram showing the results of a tensile test on a sample having the bonded structure of FIG.
【図4】図2の接合構造を有する試料についての衝撃試
験の結果を示す図。FIG. 4 is a view showing a result of an impact test on a sample having the joint structure of FIG.
【図5】本発明を管状の部材同士の接合に適用した実施
形態の接合部断面を示す図。FIG. 5 is a view showing a cross section of a joint portion of an embodiment in which the present invention is applied to join tubular members together.
【図6】本発明による他の接合構造の接合部断面を示す
図。FIG. 6 is a view showing a cross section of a joint portion of another joint structure according to the present invention.
【図7】図6の接合構造を管状の部材同士に適用した実
施形態の接合部断面を示す図。7 is a view showing a cross section of a joint portion of an embodiment in which the joint structure of FIG. 6 is applied to tubular members.
【図8】接合界面の金属間化合物の厚さと衝撃強度の関
係を示す図。FIG. 8 is a diagram showing the relationship between the thickness of the intermetallic compound at the joint interface and the impact strength.
【図9】本発明の第2の実施形態による接合構造を示す
図。FIG. 9 is a diagram showing a joining structure according to a second embodiment of the present invention.
【図10】図9の接合構造において、接合面に介在する
純アルミの(厚さt/リング幅T)と引張り強度の関係
を示す図。10 is a diagram showing a relationship between (thickness t / ring width T) and tensile strength of pure aluminum interposed in a joint surface in the joint structure of FIG.
【図11】本発明の第2の実施形態による接合構造を丸
棒同士の接合に適用した例を示す図。FIG. 11 is a view showing an example in which the joining structure according to the second embodiment of the present invention is applied to joining round bars.
【図12】図11の接合構造において、接合面に介在す
る純アルミの(厚さt/丸棒直径D)と引張り強度の関
係を示す図。FIG. 12 is a diagram showing a relationship between (thickness t / diameter D of round bar) of pure aluminum and tensile strength interposed in the joint surface in the joint structure of FIG. 11.
【図13】本発明の第2の実施形態による接合構造を矩
形断面の部材同士の接合に適用した例を示す図。FIG. 13 is a view showing an example in which the joining structure according to the second embodiment of the present invention is applied to joining members having rectangular cross sections.
【図14】図13の接合構造において、接合面に介在す
る純アルミの(厚さt/部材の幅)と引張り強度の関係
を示す図。14 is a diagram showing a relationship between (thickness t / width of member) and tensile strength of pure aluminum interposed in the joint surface in the joint structure of FIG.
【図15】本発明の接合構造を有する伝動機構部品を示
す図。FIG. 15 is a diagram showing a power transmission mechanism component having the joining structure of the present invention.
【図16】本発明の接合構造を有する撹拌機器の回転軸
を示す図。FIG. 16 is a view showing a rotating shaft of a stirring device having a joint structure of the present invention.
【図17】本発明の接合構造を有する電力遮断器の伝動
機構部品を示す図。FIG. 17 is a diagram showing a transmission mechanism component of a power breaker having a joint structure of the present invention.
【図18】本発明の接合構造を有する電力遮断器の接触
子周辺部品を示す図。FIG. 18 is a view showing components around a contactor of a power breaker having a joint structure of the present invention.
【図19】従来の摩擦圧接接合の概略説明図。FIG. 19 is a schematic explanatory view of conventional friction welding.
10 アルミ材(第1部材) 12 チタン合金材(第2部材) 14 接合面縁部 15 自由縁 10 Aluminum material (first member) 12 Titanium alloy material (second member) 14 Edge of joint surface 15 Free edge
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 剛 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 須 山 章 子 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 伊 藤 義 康 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 4E067 AA05 AA12 AA26 AB03 AD03 BG00 DA13 EA08 EB00 EC05 EC06 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Tsuyoshi Udagawa 2-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ceremony Company Toshiba Hamakawasaki Factory (72) Inventor Akiko Suyama 2-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ceremony Company Toshiba Hamakawasaki Factory (72) Inventor Yoshiyasu Ito 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office F-term (reference) 4E067 AA05 AA12 AA26 AB03 AD03 BG00 DA13 EA08 EB00 EC05 EC06
Claims (8)
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合する金属異種材料間の接合方法に
おいて、 前記第1部材の端面に凹面からなる接合面を、前記第2
部材の端面に前記凹面に対応した凸面からなる接合面
を、それぞれ予め形成しておき、 前記接合面同士を突き合わせて前記第1部材と第2部材
を同軸上に保持し、 軸方向の加圧を加えながら前記第1部材と第2部材のう
ち一方を回転させ、前記第2部材の接合面の縁部と該第
2部材の自由縁とのなす角度が45〜88°の範囲内に
なるように摩擦圧接による接合を行うことを特徴とする
金属異種材料間の接合方法。1. A method for joining between dissimilar metallic materials, wherein a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined together. The end surface has a concave joining surface,
Joining surfaces made of convex surfaces corresponding to the concave surfaces are formed in advance on the end surfaces of the members, and the joining surfaces are butted to hold the first member and the second member coaxially, and the axial pressing force is applied. While rotating one of the first member and the second member while adding the angle, the angle between the edge of the joint surface of the second member and the free edge of the second member is within the range of 45 to 88 °. A method for joining dissimilar metal materials, characterized in that the joining is performed by friction welding as described above.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合する金属異種材料間の接合方法に
おいて、 前記第1部材の端面に凸面からなる接合面を、前記第2
部材の端面に前記凸面に対応した凹面からなる接合面
を、それぞれ予め形成しておき、 前記接合面同士を突き合わせて前記第1部材と第2部材
を同軸上に保持し、 軸方向の加圧を加えながら前記第1部材と第2部材のう
ち一方を回転させ、前記第2部材の接合面の縁部と該第
2部材の自由縁とのなす角度が120〜178°の範囲
内になるように摩擦圧接による接合を行うこと、を特徴
とする金属異種材料間の接合方法。2. A method for joining between dissimilar metallic materials for coaxially joining a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy, comprising: The joining surface formed of a convex surface on the end surface is referred to as the second
Joining surfaces, which are concave surfaces corresponding to the convex surfaces, are formed in advance on the end surfaces of the members, and the joining surfaces are butted to hold the first member and the second member coaxially, and the axial pressing force is applied. While one of the first member and the second member is rotated while adding, the angle between the edge of the joint surface of the second member and the free edge of the second member is within the range of 120 to 178 °. A method for joining dissimilar metal materials, wherein the joining is performed by friction welding as described above.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合する金属異種材料間の接合方法に
おいて、 前記第1部材と前記第2部材の平坦な接合面同士を突き
合わせて前記第1部材と第2部材を同軸上に保持し、 軸方向の加圧を加えながら前記第1部材と第2部材のう
ち一方を回転させ、前記第1部材と第2部材との接合界
面と前記第1部材または第2部材の少なくとも一方の自
由縁とのなす角度が90°未満になるように摩擦圧接に
よる接合を行うことを特徴とする金属異種材料間の接合
方法。3. A method for joining between dissimilar metallic materials, wherein a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined together. The flat joining surfaces of the second member are butted against each other to hold the first member and the second member coaxially, and one of the first member and the second member is rotated while applying axial pressure. And, the joining by friction welding is performed so that an angle formed by a joining interface between the first member and the second member and a free edge of at least one of the first member and the second member is less than 90 °. Method for joining dissimilar metal materials.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合する金属異種材料間の接合方法に
おいて、 前記第1部材と前記第2部材の接合面の間に純アルミを
介在させた状態で突き合わせて前記第1部材と第2部材
を同軸上に保持し、 軸方向の加圧を加えながら前記第1部材と第2部材のう
ち一方を回転させ、摩擦圧接による接合を行うことを特
徴とする金属異種材料間の接合方法。4. A joining method between metallic dissimilar materials which coaxially joins a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy, wherein: The first member and the second member are held coaxially by abutting against each other with pure aluminum interposed between the joining surfaces of the second member, and the first member and the second member are pressed while applying axial pressure. A method for joining dissimilar metal materials, characterized in that one of the members is rotated to perform joining by friction welding.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合した金属異種材料間の接合構造に
おいて、 前記第1部材の凹面からなる接合面と前記第2部材の前
記凹面に対応した凸面からなる接合面同士を摩擦圧接に
より接合し、前記第2部材の接合面の縁部と該第2部材
の自由縁とのなす角度が45〜88°の範囲内にあるこ
とを特徴とする金属異種材料間の接合構造。5. A joint structure between metallic dissimilar materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined. A joining surface made of a concave surface and a joining surface made of a convex surface corresponding to the concave surface of the second member are joined by friction welding to form an edge portion of the joining surface of the second member and a free edge of the second member. A joint structure between dissimilar metal materials, wherein the angle is in the range of 45 to 88 °.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合した金属異種材料間の接合構造に
おいて、 前記第1部材の端面に凸面からなる接合面と前記第2部
材の前記凸面に対応した凹面からなる接合面を摩擦圧接
により接合し、前記第2部材の接合面の縁部と該第2部
材の自由縁とのなす角度が120〜179°の範囲内に
あることを特徴とする金属異種材料間の接合構造。6. A joint structure between dissimilar metal materials in which a first member made of aluminum or an aluminum alloy and a second member made of titanium or a titanium alloy are coaxially joined to each other. A joining surface made of a convex surface and a joining surface made of a concave surface corresponding to the convex surface of the second member are joined to each other by friction welding, and an edge portion of the joining surface of the second member and a free edge of the second member are joined. A joint structure between different kinds of metal, wherein the angle formed is in the range of 120 to 179 °.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合した金属異種材料間の接合構造に
おいて、 前記第1部材と前記第2部材の平坦な接合面同士を摩擦
圧接により接合し、その接合界面と前記第1部材または
第2部材の少なくとも一方の自由縁とのなす角度が90
°未満であるか、または、前記接合界面と前記第1部材
または第2部材の少なくとも一方の自由縁のなす角度が
90°で他方の自由縁のなす角度が90°未満であるこ
とを特徴とする金属異種材料間の接合構造。7. A joint structure between dissimilar metallic materials in which a first member made of aluminum or an aluminum alloy is coaxially joined to a second member made of titanium or a titanium alloy, and the first member is The flat joint surfaces of the second member are joined by friction welding, and the angle between the joint interface and the free edge of at least one of the first member and the second member is 90.
Or less than 90 °, or an angle between the joining interface and a free edge of at least one of the first member and the second member is 90 °, and an angle between the other free edge is less than 90 °. Metal joint structure between dissimilar materials.
1の部材と、チタン若しくはチタン合金を材料とする第
2の部材を同軸に接合した金属異種材料間の接合構造に
おいて、 前記第1部材と前記第2部材の接合面同士を摩擦圧接に
より接合し、両接合面の間に純アルミが介在しているこ
とを特徴とする金属異種材料間の接合構造。8. A joint structure between metallic dissimilar materials in which a first member made of aluminum or an aluminum alloy is coaxially joined to a second member made of titanium or a titanium alloy, and the first member is A joining structure between dissimilar metal materials, wherein joining surfaces of the second member are joined together by friction welding, and pure aluminum is interposed between the joining surfaces.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001240751A JP2003053557A (en) | 2001-08-08 | 2001-08-08 | Joining method and joining structure between dissimilar metals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001240751A JP2003053557A (en) | 2001-08-08 | 2001-08-08 | Joining method and joining structure between dissimilar metals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003053557A true JP2003053557A (en) | 2003-02-26 |
Family
ID=19071311
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001240751A Pending JP2003053557A (en) | 2001-08-08 | 2001-08-08 | Joining method and joining structure between dissimilar metals |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003053557A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008136557A1 (en) * | 2007-05-08 | 2008-11-13 | Young Sik Shin | Binding pipe body and binding method of pipe body used of brazing |
| US7841507B2 (en) * | 2008-07-07 | 2010-11-30 | Engineered Products Switzerland Ltd. | Fusion welding process to join aluminum and titanium |
| WO2012059079A3 (en) * | 2010-11-01 | 2012-06-28 | Otto Bock Healthcare Gmbh | Friction weld connection comprising a component which has a larger material cross-section than the second component |
| WO2020122620A1 (en) * | 2018-12-12 | 2020-06-18 | 주식회사 포스코 | Electrode tip for spot welding, and method for manufacturing same |
-
2001
- 2001-08-08 JP JP2001240751A patent/JP2003053557A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008136557A1 (en) * | 2007-05-08 | 2008-11-13 | Young Sik Shin | Binding pipe body and binding method of pipe body used of brazing |
| US7841507B2 (en) * | 2008-07-07 | 2010-11-30 | Engineered Products Switzerland Ltd. | Fusion welding process to join aluminum and titanium |
| WO2012059079A3 (en) * | 2010-11-01 | 2012-06-28 | Otto Bock Healthcare Gmbh | Friction weld connection comprising a component which has a larger material cross-section than the second component |
| WO2020122620A1 (en) * | 2018-12-12 | 2020-06-18 | 주식회사 포스코 | Electrode tip for spot welding, and method for manufacturing same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7383975B2 (en) | Fracture resistant friction stir welding tools | |
| JP2001314981A (en) | Treatment method for metal member | |
| EP1504133B1 (en) | Method of manufacturing rivets having high strength and formability | |
| JP5502759B2 (en) | Exhaust turbocharger | |
| JP2010036230A (en) | Friction stir treating method of dissimilar material joining part, and friction stir welding method of dissimilar material | |
| JPS63251127A (en) | Combined construction of members with different thermal expansion and combining method thereof | |
| JP4148152B2 (en) | Friction spot joint structure | |
| KR20020045485A (en) | Method of joining different metal materials by friction welding | |
| JP2003053557A (en) | Joining method and joining structure between dissimilar metals | |
| JP3445579B2 (en) | Bonding structure between dissimilar metal hollow members and bonding method thereof | |
| JP2002283070A (en) | Friction stir welding method for dissimilar metal materials | |
| JPH02157403A (en) | Joining of turbine wheel made of titanium aluminum alloy | |
| Krivtsun et al. | Solid-state welding | |
| JP2003266182A (en) | Friction stir welding method for dissimilar metal materials | |
| JP2011005507A (en) | Method and device for joining metallic members and structure in joined part of metallic members | |
| JP2015205329A (en) | Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool | |
| JP3132602B2 (en) | Manufacturing method of friction welding valve | |
| JP2006224146A (en) | Method for joining different kinds of material | |
| JPH11315973A (en) | Welding method for steel materials with different compositions | |
| JP2003088964A (en) | Joint structure of ceramic dispersed iron-based alloy and its manufacturing method | |
| JPS635887A (en) | How to join pipes made of different materials | |
| JP2013501623A (en) | Method and apparatus for bonding oxide dispersion strengthened noble metal sheets using forge welding | |
| JP2005271016A (en) | Friction welding method of steel pipe and aluminum alloy hollow member | |
| JP2003112270A (en) | Joining structure and joining method for dissimilar metal materials | |
| JP2005288457A (en) | Ultrasonic joining method for different kinds of metals and ultrasonic joined structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Effective date: 20040806 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050726 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060809 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081119 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090122 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090807 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091211 |