[go: up one dir, main page]

JP2003078388A - Elastic wave device and method of manufacturing the same - Google Patents

Elastic wave device and method of manufacturing the same

Info

Publication number
JP2003078388A
JP2003078388A JP2001262512A JP2001262512A JP2003078388A JP 2003078388 A JP2003078388 A JP 2003078388A JP 2001262512 A JP2001262512 A JP 2001262512A JP 2001262512 A JP2001262512 A JP 2001262512A JP 2003078388 A JP2003078388 A JP 2003078388A
Authority
JP
Japan
Prior art keywords
electrode
wave device
acoustic wave
protruding
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001262512A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsunaga
佳典 松永
Atsuhiro Iioka
淳弘 飯岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001262512A priority Critical patent/JP2003078388A/en
Publication of JP2003078388A publication Critical patent/JP2003078388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

(57)【要約】 【課題】 ベアチップ型の弾性波素子を用いた電子部品
において、取り出し電極が湿度や酸素等で腐食する。 【解決手段】 圧電基板1上に、励振電極2と、該励振
電極2に接続された取り出し電極3と、該取り出し電極
3上に形成した突起電極4とを備えた弾性波装置であっ
て、励振電極2、取り出し電極3、及び突起電極4の各
全表面を、突起電極4の先端形状が形成されるように絶
縁性の保護膜5で被覆したことを特徴とする弾性波装置
とする。
(57) [Summary] [PROBLEMS] In an electronic component using a bare chip type elastic wave element, an extraction electrode is corroded by humidity, oxygen, or the like. An acoustic wave device comprising: a piezoelectric substrate; an excitation electrode; an extraction electrode connected to the excitation electrode; and a protruding electrode formed on the extraction electrode. The acoustic wave device is characterized in that the entire surface of each of the excitation electrode 2, the extraction electrode 3, and the projection electrode 4 is covered with an insulating protective film 5 so that the tip shape of the projection electrode 4 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動体通信機器や
テレビ、VTR等に用いられる弾性表面波フィルタ、遅
延線、発信機等に好適に使用される弾性波装置及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave filter used for mobile communication devices, televisions, VTRs, etc., a delay line, an acoustic wave device preferably used for a transmitter, etc. is there.

【0002】[0002]

【従来技術とその課題】近年、電波を利用する移動体通
信機器やテレビ、VTR等の電子機器のフィルタ,遅延
線,発信機等の素子として多くの弾性波素子を備えた電
子部品(以下、弾性波装置)が用いられている。電子機
器は小型・軽量化が進められており、そのため電子機器
に使用される電子部品の小型・軽量化が要求されてい
る。
2. Description of the Related Art In recent years, electronic parts equipped with many acoustic wave elements as elements such as filters, delay lines, transmitters, etc., of electronic equipment such as mobile communication equipment, televisions, and VTRs that use radio waves (hereinafter, referred to as Elastic wave device) is used. Electronic devices are being made smaller and lighter, so that electronic components used in the electronic devices are required to be smaller and lighter.

【0003】現在の弾性波装置はパッケージに実装して
使用されているため、実際に機能する弾性波素子よりも
かなり大きいサイズとなっていた。そこで、パッケージ
に実装しないで使用できるベアチップ型の弾性波装置の
開発が進められている。
Since the current acoustic wave device is mounted on a package for use, the size of the acoustic wave device is considerably larger than that of the acoustic wave device that actually functions. Therefore, the development of a bare chip type acoustic wave device that can be used without being mounted in a package is underway.

【0004】図5はこのようなベアッチップ型の弾性波
装置の一例を示す断面図である。図5において、圧電基
板41の上面に励振電極42と取り出し電極43とが形
成されている。取り出し電極43の一部46を除き、励
振電極42と取り出し電極43は保護膜45に覆われて
いる。保護膜45のない取り出し電極43における領域
46の上にはバンプ44が形成されている。
FIG. 5 is a sectional view showing an example of such a bare chip type acoustic wave device. In FIG. 5, the excitation electrode 42 and the extraction electrode 43 are formed on the upper surface of the piezoelectric substrate 41. Excitation electrode 42 and extraction electrode 43 are covered with protective film 45 except for a part 46 of extraction electrode 43. Bumps 44 are formed on the region 46 of the extraction electrode 43 without the protective film 45.

【0005】上記べアチップ型の弾性波装置は、取り出
し電極43の一部には保護膜45が形成されていない。
さらに、バンプ44には全く保護膜45が存在しないた
め、保護膜45から露出しているこれらの部位が湿気、
酸素等により腐食したり、塵や湿気により取り出し電極
43間が電気的に短絡することがあり、電子部品として
使用できないという問題があった。
In the above-mentioned bare-chip type acoustic wave device, the protective film 45 is not formed on a part of the extraction electrode 43.
Furthermore, since the bump 44 does not have the protective film 45 at all, these portions exposed from the protective film 45 are exposed to moisture,
There is a problem that it cannot be used as an electronic component because it may be corroded by oxygen or the like, or dust or moisture may electrically short-circuit between the extraction electrodes 43.

【0006】そこで本発明は、上記従来の諸問題に鑑み
てなされたものであり、その目的は、特にベアチップ型
の弾性波装置において、励振電極と取り出し電極を全て
保護膜で覆い、突起電極も全て保護膜で覆うか、もしく
は電気的接続を行う一部分のみを除いて保護膜で覆うこ
とにより、パッケージに収納することなく、簡便に且つ
信頼性良く回路基板上に実装可能な弾性波装置及びその
製造方法を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned problems of the related art, and an object thereof is to cover all the excitation electrodes and the extraction electrodes with a protective film and also to provide the protruding electrodes in a bare chip type acoustic wave device. An acoustic wave device that can be mounted on a circuit board easily and reliably without being housed in a package by covering the entire surface with a protective film, or by covering with a protective film except for a part where electrical connection is made, and its It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明の弾性波装置は、
(1):圧電基板上に、励振電極と、該励振電極に接続
された取り出し電極と、該取り出し電極上に形成した突
起電極とを備えた弾性波装置であって、前記励振電極、
前記取り出し電極、及び前記突起電極の各全表面を、前
記突起電極の先端形状が形成されるように絶縁性の保護
膜で被覆したことを特徴とする。
The elastic wave device of the present invention comprises:
(1): An elastic wave device comprising an excitation electrode, an extraction electrode connected to the excitation electrode, and a protruding electrode formed on the extraction electrode on a piezoelectric substrate, the excitation electrode comprising:
The entire surface of each of the extraction electrode and the protruding electrode is covered with an insulating protective film so that the tip shape of the protruding electrode is formed.

【0008】また、(2):圧電基板上に、励振電極
と、該励振電極に接続された取り出し電極と、該取り出
し電極上に形成した突起電極とを備えた弾性波装置であ
って、前記励振電極、前記取り出し電極、及び前記突起
電極の各表面を、前記突起電極の先端部が露出するよう
に絶縁性の保護膜で被覆したことを特徴とする。
(2): An elastic wave device comprising an excitation electrode, an extraction electrode connected to the excitation electrode, and a protruding electrode formed on the extraction electrode on a piezoelectric substrate, Each surface of the excitation electrode, the extraction electrode, and the protruding electrode is covered with an insulating protective film so that the tip of the protruding electrode is exposed.

【0009】さらに、(3):圧電基板上に、励振電極
と、該励振電極に接続された取り出し電極と、該取り出
し電極上に形成した突起電極とを備えるとともに、前記
突起電極が誘電体基板上に形成された外部取り出し電極
に接続されて成り、且つ前記励振電極、前記取り出し電
極、及び前記突起電極の各表面を絶縁性の保護膜で被覆
したことを特徴とする。弾性波装置。
Further, (3): the piezoelectric substrate is provided with an excitation electrode, an extraction electrode connected to the excitation electrode, and a projection electrode formed on the extraction electrode, and the projection electrode is a dielectric substrate. It is characterized in that it is connected to an external extraction electrode formed above, and each surface of the excitation electrode, the extraction electrode, and the projection electrode is covered with an insulating protective film. Elastic wave device.

【0010】特に、(4):(2)の弾性波装置におい
て、前記突起電極の前記保護膜から露出した表面が平面
状であることを特徴とする。
Particularly, in the elastic wave device of (4) :( 2), the surface of the protruding electrode exposed from the protective film is flat.

【0011】また、(5):(1)〜(4)のいずれか
の弾性波装置において、前記圧電基板の一主面上に、前
記励振電極、前記取り出し電極、及び前記突起電極を配
設して成るとともに、前記圧電基板の他主面上に補強基
板を貼着したことを特徴とする。
(5): In the acoustic wave device according to any one of (1) to (4), the excitation electrode, the extraction electrode, and the protruding electrode are arranged on one main surface of the piezoelectric substrate. In addition, a reinforcing substrate is attached to the other main surface of the piezoelectric substrate.

【0012】また、(6):(1)〜(5)のいずれか
の弾性波装置の製造方法において、前記励振電極と、前
記取り出し電極と、前記突起電極とを形成した後に、前
記保護膜を形成することを特徴とする。
(6): In the method for manufacturing an acoustic wave device according to any one of (1) to (5), the protective film is formed after the excitation electrode, the extraction electrode, and the protruding electrode are formed. Is formed.

【0013】また、(7):(1)の弾性波装置から
(2)または(4)の弾性波装置を製造する際に、前記
突起電極の先端部を被覆した保護膜を除去することを特
徴とする。
Further, (7): when manufacturing the elastic wave device of (2) or (4) from the elastic wave device of (1), it is preferable to remove the protective film covering the tip portion of the protruding electrode. Characterize.

【0014】さらに、(8):(3)の弾性波装置の製
造方法において、前記誘電体基板上に形成された外部取
り出し電極に、(1)の弾性波装置の前記突起電極の先
端部を被覆した保護膜を押圧させながら加熱することに
より、前記外部取り出し電極に接触した保護膜を除去す
るとともに、前記外部取り出し電極と前記突起電極とを
接続させることを特徴とする。
Further, (8): in the method of manufacturing an elastic wave device according to (3), the tip of the protruding electrode of the elastic wave device according to (1) is attached to the external extraction electrode formed on the dielectric substrate. By heating the coated protective film while pressing it, the protective film in contact with the external extraction electrode is removed, and the external extraction electrode and the protruding electrode are connected.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
模式的に図示した図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings schematically showing.

【0016】図1は前記(1)の弾性波装置の一例を示
した断面図である。図1において、圧電基板1の一主面
である上面に弾性波を発生させる励振電極2と、これに
電気的に接続された取り出し電極3が形成されている。
取り出し電極3の上には突起電極4が先端部4aが尖塔
形状に形成されている。さらに、励振電極2と、取り出
し電極3と、突起電極4の全表面には突起電極4の先端
形状が形成されるように保護膜5が被覆されている。特
に、この突起電極4が存在している部位は保護膜5の突
出部5aで確認される。
FIG. 1 is a sectional view showing an example of the elastic wave device of (1). In FIG. 1, an excitation electrode 2 for generating an elastic wave and an extraction electrode 3 electrically connected to the excitation electrode 2 are formed on an upper surface which is one main surface of the piezoelectric substrate 1.
On the extraction electrode 3, the protruding electrode 4 and the tip portion 4a are formed in a steeple shape. Further, a protective film 5 is coated on the entire surfaces of the excitation electrode 2, the extraction electrode 3, and the protruding electrode 4 so that the tip shape of the protruding electrode 4 is formed. Particularly, the portion where the protruding electrode 4 is present is confirmed by the protruding portion 5a of the protective film 5.

【0017】この弾性波装置によれば、励振電極2と、
取り出し電極3と、突起電極4とを全て絶縁性の保護膜
5で被覆することにより、これらの部位が湿気、酸素等
により腐食することを極力防止することができる。ま
た、この状態では信号の入出力はできないが、突起電極
4の先端部4aの保護膜(突出部5a)の一部を物理的
なエッチングや破壊、もしくは化学的なエッチング等に
より取り除くことにより容易に信号の入出力が可能とな
る。
According to this acoustic wave device, the excitation electrode 2 and
By covering the extraction electrode 3 and the protruding electrode 4 with the insulating protective film 5, it is possible to prevent corrosion of these parts due to moisture, oxygen or the like as much as possible. Further, although signals cannot be input / output in this state, it is easy to remove a part of the protective film (protruding portion 5a) of the tip portion 4a of the protruding electrode 4 by physical etching, destruction, or chemical etching. It is possible to input and output signals.

【0018】また、図2は前記(2),(4)の弾性波
装置の一例を示す断面図である。図2において、圧電基
板11の上面に励振電極12と、これと電気的に接続さ
れた取り出し電極13が形成されている。取り出し電極
13の上には突起電極14が形成されている。また、突
起電極14の先端部は保護膜15から露出した表面14
aが平面状に形成されている。そしてこの露出部分を除
いて、弾性波素子12と、取り出し電極13と、突起電
極14には保護膜15が被覆されている。
FIG. 2 is a sectional view showing an example of the elastic wave device of the above (2) and (4). In FIG. 2, the excitation electrode 12 and the extraction electrode 13 electrically connected to the excitation electrode 12 are formed on the upper surface of the piezoelectric substrate 11. A protruding electrode 14 is formed on the extraction electrode 13. In addition, the tip of the bump electrode 14 is exposed on the surface 14 exposed from the protective film 15.
a is formed in a planar shape. Except for the exposed portion, the acoustic wave element 12, the extraction electrode 13, and the protruding electrode 14 are covered with a protective film 15.

【0019】前記(2)の弾性波装置によれば、圧電基
板11上に、励振電極12と、励振電極12に接続され
た取り出し電極13と、取り出し電極13上形成されて
いる突起電極14とを少なくとも備えた弾性波装置にお
いて、励振電極12と、取り出し電極13と突起電極1
4とを絶縁性の保護膜15が覆っており、少なくとも突
起電極14の一部が保護膜15から露出していることに
より、圧電基板11上の取り出し電極13を保護膜15
で完全に覆うことができ、且つ突起電極14を介して外
部との信号の取り出しを行うことができる。この結果、
励振電極12と取り出し電極13が完全に露出しないの
で、これらの部位が湿気、酸素等により腐食したり、塵
や湿気により取り出し電極間が電気的に短絡することが
なく、電子部品として安定に使用することができる。
According to the elastic wave device of (2), the excitation electrode 12, the extraction electrode 13 connected to the excitation electrode 12, and the protruding electrode 14 formed on the extraction electrode 13 are provided on the piezoelectric substrate 11. An acoustic wave device including at least an excitation electrode 12, an extraction electrode 13, and a protruding electrode 1
4 is covered with an insulating protective film 15 and at least a part of the protruding electrode 14 is exposed from the protective film 15, so that the lead-out electrode 13 on the piezoelectric substrate 11 is protected by the protective film 15.
Can be completely covered with and the signal can be taken out from the outside through the protruding electrode 14. As a result,
Since the excitation electrode 12 and the take-out electrode 13 are not completely exposed, these parts are not corroded by moisture, oxygen, etc., and the take-out electrodes are not electrically short-circuited due to dust or moisture, and are stably used as electronic parts. can do.

【0020】また、前記(4)の弾性波装置によれば、
突起電極14が保護膜15から露出している箇所は突起
電極14の先端であり、露出している表面14aを平面
にすることにより、弾性波装置を実装する回路基板に、
一般に用いられている平面型の電極パッドを形成するこ
とで、弾性波装置を回路基板に簡単に実装できるように
なる。また、弾性波装置を平面型の電極パッドに実装す
ることにより、弾性波装置の突起電極14で唯一表面が
露出している部分が電極パッドで覆われるため、弾性波
装置が湿気、酸素等により腐食することを極力抑えるこ
とができる。
According to the elastic wave device of the above (4),
The portion where the protruding electrode 14 is exposed from the protective film 15 is the tip of the protruding electrode 14, and by making the exposed surface 14a flat, a circuit board on which the acoustic wave device is mounted can be
By forming a commonly used flat type electrode pad, the acoustic wave device can be easily mounted on the circuit board. Further, by mounting the acoustic wave device on a flat electrode pad, since only the exposed surface of the protruding electrode 14 of the acoustic wave device is covered with the electrode pad, the acoustic wave device is exposed to moisture, oxygen, or the like. Corrosion can be suppressed as much as possible.

【0021】また、図3は前記(5)の弾性波装置の一
例を示す断面図である。図3において、圧電基板21の
一主面である上面に励振電極22とこれに電気的に接続
された取り出し電極23が形成されている。取り出し電
極23の上には突起電極24が形成されている。これら
電極の全表面には図1と同様に保護膜25が被覆されて
いる。なお、図中24aは突起電極24の先端部であ
る。圧電基板21の他方主面である下面に弾性波装置を
補強するための補強基板27が貼り合わされている。
FIG. 3 is a sectional view showing an example of the elastic wave device of the above (5). In FIG. 3, the excitation electrode 22 and the extraction electrode 23 electrically connected to the excitation electrode 22 are formed on the upper surface, which is one main surface of the piezoelectric substrate 21. A protruding electrode 24 is formed on the extraction electrode 23. The entire surface of these electrodes is covered with a protective film 25 as in FIG. In addition, reference numeral 24 a in the drawing denotes a tip portion of the protruding electrode 24. A reinforcing substrate 27 for reinforcing the acoustic wave device is attached to the lower surface that is the other main surface of the piezoelectric substrate 21.

【0022】この弾性波装置によれば、励振電極22
と、取り出し電極23と、突起電極24が同一圧電基板
21面(一主面)に形成され、その圧電基板21の他方
主面である裏面に弾性波装置の強度を増すための補強基
板26が貼着されることにより、弾性波装置全体の機械
的強度が増すとともに、弾性波装置を実装機で掴むとき
の本体の損傷がなくなり、弾性波装置を破損させること
なく回路基板に実装することができる。
According to this elastic wave device, the excitation electrode 22
The lead electrode 23 and the protruding electrode 24 are formed on the same piezoelectric substrate 21 surface (one main surface), and the reinforcing substrate 26 for increasing the strength of the acoustic wave device is provided on the back surface which is the other main surface of the piezoelectric substrate 21. By being attached, the mechanical strength of the entire acoustic wave device is increased, the main body is not damaged when the acoustic wave device is gripped by the mounting machine, and the acoustic wave device can be mounted on the circuit board without damage. it can.

【0023】また、図4は前記(3)の弾性波装置の一
例、及び前記(8)の弾性波装置の製造方法例を説明す
る断面図である。図4において、圧電基板31の下面に
励振電極32と励振電極32と電気的に接続された取り
出し電極33が形成されている。取り出し電極33の上
には突起電極34が形成されている。突起電極34の一
部36を除いて、励振電極32と、取り出し電極33
と、突起電極34には保護膜35が覆っている。
FIG. 4 is a sectional view for explaining an example of the elastic wave device of (3) and an example of a method of manufacturing the elastic wave device of (8). In FIG. 4, an excitation electrode 32 and an extraction electrode 33 electrically connected to the excitation electrode 32 are formed on the lower surface of the piezoelectric substrate 31. A protruding electrode 34 is formed on the extraction electrode 33. Excitation electrode 32 and extraction electrode 33 except for a part 36 of protruding electrode 34.
The protective film 35 covers the protruding electrodes 34.

【0024】突起電極34の一部36は、誘電体基板3
7の上面に形成されている誘電体基板37の取り出し電
極38と機械的、電気的に接続されている。この弾性波
装置及びその製造方法によれば、励振電極32と、取り
出し電極33と、突起電極34とを形成した後で保護膜
35を形成することにより、励振電極32と、取り出し
電極33とを完全に保護膜35で覆うことができる。な
お、突起電極34の保護層の一部を剥がす工程におい
て、剥がされた保護層の付着していた突起電極部分の形
状が変化してもさしつかえない。
A part 36 of the protruding electrode 34 is formed on the dielectric substrate 3
7 is mechanically and electrically connected to the extraction electrode 38 of the dielectric substrate 37 formed on the upper surface of 7. According to this acoustic wave device and the method of manufacturing the same, the excitation electrode 32, the extraction electrode 33, and the protruding electrode 34 are formed, and then the protective film 35 is formed. It can be completely covered with the protective film 35. In the step of peeling off a part of the protective layer of the bump electrode 34, the shape of the bump electrode portion to which the peeled protective layer is attached may be changed.

【0025】また、前記(6)の弾性波装置の製造方法
によれば、きわめて簡便かつ確実に完全な保護構造を有
する弾性波装置を提供することができる。
Further, according to the method (6) for manufacturing an acoustic wave device, it is possible to provide an acoustic wave device having a complete protective structure very simply and surely.

【0026】また、前記(7)の弾性波装置の製造方法
によれば、前記(1)の弾性波装置において、突起電極
と剛体を押し付けることにより、突起電極の先端に積層
されている保護膜を除去することにより、突起電極の先
端の保護膜を取り除くとともに突起電極の先端を平面に
することができ、前記(2)、前記(4)の弾性波装置
の構造を形成することができる。
According to the method of manufacturing an elastic wave device of the above (7), in the elastic wave device of the above (1), by pressing the protruding electrode and the rigid body, the protective film laminated on the tip of the protruding electrode. By removing the above, the protective film on the tip of the protruding electrode can be removed and the tip of the protruding electrode can be made flat, and the structure of the acoustic wave device of (2) and (4) can be formed.

【0027】また、前記(8)の弾性波装置の製造方法
によれば、前記(1)の弾性波装置において、突起電極
と誘電体基板上に積層された取り出し電極を押し付ける
ことにより、突起電極の先端に積層されている保護膜を
破壊すると同時に、突起電極と誘電体基板上に積層され
た取り出し電極とを電気的に接続させることによって、
一つの工程で簡単に前記(1)の弾性波装置を回路基板
に実装することができる。
According to the method of manufacturing an elastic wave device of (8), in the elastic wave device of (1), the protruding electrode and the extraction electrode stacked on the dielectric substrate are pressed to push the protruding electrode. By destroying the protective film laminated on the tip of the at the same time, by electrically connecting the protruding electrode and the extraction electrode laminated on the dielectric substrate,
The elastic wave device (1) can be easily mounted on the circuit board in one step.

【0028】[0028]

【実施例】次に、本発明の弾性波装置の具体例について
説明する。 〔実施例1〕図1に示す本発明の実施例について説明す
る。
EXAMPLES Next, specific examples of the elastic wave device of the present invention will be described. [Embodiment 1] An embodiment of the present invention shown in FIG. 1 will be described.

【0029】圧電材料基板は厚み0.35mmで誘電率
43のタンタル酸リチウムを用いた。圧電材料基板上の
弾性波素子はアルミニウム−銅合金をスパッタ法で製膜
した後、フォトレジストプロセスで加工して作成した。
励振電極の厚みは0.2μmである。取り出し電極は
0.2μmのアルミニウム−銅合金の上に0.6μmの
アルミニウムを積層して作製した。突起電極は、先端が
球状に加工された金ワイヤーを取り出し電極面に押し付
けた後、上部にワイヤーを引きちぎることにより作製し
た。突起電極は、超音波と熱を加えて形成された。形成
条件は超音波周波数60KHz、荷重294mN、温度
150℃である。突起電極作製後、CVDでSiO2膜
を0.02μm積層した。
As the piezoelectric material substrate, lithium tantalate having a thickness of 0.35 mm and a dielectric constant of 43 was used. The acoustic wave device on the piezoelectric material substrate was formed by forming an aluminum-copper alloy film by a sputtering method and then processing it by a photoresist process.
The thickness of the excitation electrode is 0.2 μm. The extraction electrode was produced by laminating 0.6 μm aluminum on a 0.2 μm aluminum-copper alloy. The protruding electrode was produced by taking out a gold wire having a spherical tip and pressing it against the electrode surface, and then tearing the wire off. The protruding electrode was formed by applying ultrasonic waves and heat. The formation conditions are an ultrasonic frequency of 60 KHz, a load of 294 mN, and a temperature of 150 ° C. After the bump electrodes were formed, a SiO2 film was laminated by 0.02 μm by CVD.

【0030】従来の方法では、保護膜を積層した後に取
り出し電極上の保護膜を一部取り除き、その後に突起電
極を形成するため、突起電極と保護膜の間に隙間がで
き、取り出し電極の一部が外気に触れるため、取り出し
電極の腐食の原因となっていた。しかし、本発明の請求
項5のように、突起電極を形成してから保護膜を積層す
ることにより、突起電極の下部にある取り出し電極は外
気に触れない前記(1)の弾性波装置の構造を作り上げ
ることができた。
In the conventional method, the protective film on the take-out electrode is partially removed after the protective film is laminated, and then the protruding electrode is formed. Since the part was exposed to the outside air, it was a cause of corrosion of the take-out electrode. However, as in claim 5 of the present invention, by forming the protruding electrode and then stacking the protective film, the extraction electrode below the protruding electrode does not come into contact with the outside air. Was able to make up.

【0031】このサンプルを温度60℃、湿度90〜9
5%の雰囲気中に1000時間放置した。その後のサン
プルは、弾性波素子、取り出し電極とも表面の変化はな
く、取り出し電極の腐食を防ぐことができた。 〔実施例2〕図2に示す本発明の実施例について説明す
る。
This sample was tested at a temperature of 60 ° C. and a humidity of 90 to 9
It was left to stand in a 5% atmosphere for 1000 hours. Subsequent samples had no change in the surface of both the acoustic wave device and the extraction electrode, and the corrosion of the extraction electrode could be prevented. [Embodiment 2] An embodiment of the present invention shown in FIG. 2 will be described.

【0032】圧電材料基板は厚み0.35mmで誘電率
43のタンタル酸リチウムを用いた。圧電材料基板上の
弾性波素子はアルミニウム−銅合金をスパッタ法で製膜
した後、フォトレジストプロセスで加工して作成した。
励振電極の厚みは0.2μmである。取り出し電極は
0.2μmのアルミニウム−銅合金の上に0.6μmの
アルミニウムを積層して作製した。突起電極は、先端が
球状に加工された金ワイヤーを取り出し電極面に押し付
けた後、上部にワイヤーを引きちぎることにより作製し
た。突起電極は、超音波と熱を加えて形成された。形成
条件は超音波周波数60KHz、荷重294mN、温度
150℃である。突起電極作製後、CVDでSiO2膜
を0.02μm積層した。
As the piezoelectric material substrate, lithium tantalate having a thickness of 0.35 mm and a dielectric constant of 43 was used. The acoustic wave device on the piezoelectric material substrate was formed by forming an aluminum-copper alloy film by a sputtering method and then processing it by a photoresist process.
The thickness of the excitation electrode is 0.2 μm. The extraction electrode was produced by laminating 0.6 μm aluminum on a 0.2 μm aluminum-copper alloy. The protruding electrode was produced by taking out a gold wire having a spherical tip and pressing it against the electrode surface, and then tearing the wire off. The protruding electrode was formed by applying ultrasonic waves and heat. The formation conditions are an ultrasonic frequency of 60 KHz, a load of 294 mN, and a temperature of 150 ° C. After the bump electrodes were formed, a SiO2 film was laminated by 0.02 μm by CVD.

【0033】その後、SUS板に突起電極形成面を押し
付けて、突起電極形成面の先端を押しつぶした。その結
果、突起電極先端では、保護膜が剥がれ、突起電極面が
露出した。
Then, the protruding electrode forming surface was pressed against the SUS plate to crush the tip of the protruding electrode forming surface. As a result, the protective film was peeled off at the tip of the bump electrode, and the bump electrode surface was exposed.

【0034】このように前記(7)に示す弾性波装置の
ように、前記突起電極と剛体を押し付けることにより、
前記突起電極の先端に積層されている前記保護膜を破壊
して取り除き、前記(2)の弾性波装置の構造を作り上
げることができた。また、表面が平面のSUS板に突起
電極を押し付けることにより、請求項3に係る構造を作
り上げることができた。
As described above, by pressing the protruding electrode and the rigid body as in the elastic wave device shown in (7) above,
The protective film laminated on the tip of the protruding electrode was destroyed and removed, whereby the structure of the acoustic wave device of (2) could be completed. Moreover, the structure according to claim 3 could be completed by pressing the protruding electrode against the SUS plate having a flat surface.

【0035】このサンプルを温度60℃、湿度90〜9
5%の雰囲気中に1000時間放置した。その後のサン
プルは、弾性波素子、取り出し電極とも表面の変化はな
く、取り出し電極の腐食を防ぐことができた。 〔実施例3〕図3に示す本発明の実施例について説明す
る。
This sample was tested at a temperature of 60 ° C. and a humidity of 90 to 9
It was left to stand in a 5% atmosphere for 1000 hours. Subsequent samples had no change in the surface of both the acoustic wave device and the extraction electrode, and the corrosion of the extraction electrode could be prevented. [Embodiment 3] An embodiment of the present invention shown in FIG. 3 will be described.

【0036】圧電材料基板は厚み0.35mmで誘電率
43のタンタル酸リチウムを用いた。圧電材料基板上の
弾性波素子はアルミニウム−銅合金をスパッタ法で製膜
した後、フォトレジストプロセスで加工して作成した。
励振電極の厚みは0.2μmである。取り出し電極は
0.2μmのアルミニウム−銅合金の上に0.6μmの
アルミニウムを積層して作製した。突起電極は、先端が
球状に加工された金ワイヤーを取り出し電極面に押し付
けた後、上部にワイヤーを引きちぎることにより作製し
た。突起電極は、超音波と熱を加えて形成された。形成
条件は超音波周波数60KHz、荷重294mN、温度
150℃である。突起電極作製後、CVDでSiO2膜
を0.02μm積層した。
As the piezoelectric material substrate, lithium tantalate having a thickness of 0.35 mm and a dielectric constant of 43 was used. The acoustic wave device on the piezoelectric material substrate was formed by forming an aluminum-copper alloy film by a sputtering method and then processing it by a photoresist process.
The thickness of the excitation electrode is 0.2 μm. The extraction electrode was produced by laminating 0.6 μm aluminum on a 0.2 μm aluminum-copper alloy. The protruding electrode was produced by taking out a gold wire having a spherical tip and pressing it against the electrode surface, and then tearing the wire off. The protruding electrode was formed by applying ultrasonic waves and heat. The formation conditions are an ultrasonic frequency of 60 KHz, a load of 294 mN, and a temperature of 150 ° C. After the bump electrodes were formed, a SiO2 film was laminated by 0.02 μm by CVD.

【0037】圧電材料基板の突起電極の形成していない
面に、厚さ0.3mmの酸化アルミニウム基板を張り合
わせた。張り合わせにはエポキシ系接着剤を用いた。
An aluminum oxide substrate having a thickness of 0.3 mm was attached to the surface of the piezoelectric material substrate on which the protruding electrodes were not formed. An epoxy adhesive was used for the bonding.

【0038】この結果、弾性波装置を回路基板に実装す
るときに、裏面のかけが発生することがなくなった。
As a result, when the acoustic wave device is mounted on the circuit board, the back surface is not clogged.

【0039】このように、前記(1)の弾性波装置にお
いて、励振電極と、取り出し電極と、突起電極が同一圧
電基板面内で構成され、その圧電基板の裏面に励振電極
を用いた電子部品の強度を増すための補強基板が貼り合
わされていることを特徴とする本発明の前記(4)の弾
性波装置の構造を作り上げることができた。 〔実施例4〕図4に示す本発明の実施例について説明す
る。
As described above, in the elastic wave device of the above (1), the excitation electrode, the extraction electrode, and the protruding electrode are formed in the same piezoelectric substrate surface, and the electronic component using the excitation electrode on the back surface of the piezoelectric substrate. The structure of the acoustic wave device of the above (4) of the present invention, which is characterized in that a reinforcing substrate for increasing the strength of (1) is attached, can be constructed. [Embodiment 4] An embodiment of the present invention shown in FIG. 4 will be described.

【0040】圧電材料基板は厚み0.35mmで誘電率
43のタンタル酸リチウムを用いた。圧電材料基板上の
弾性波素子はアルミニウム−銅合金をスパッタ法で製膜
した後、フォトレジストプロセスで加工して作成した。
励振電極の厚みは0.2μmである。取り出し電極は
0.2μmのアルミニウム−銅合金の上に0.6μmの
アルミニウムを積層して作製した。突起電極は、先端が
球状に加工された金ワイヤーを取り出し電極面に押し付
けた後、上部にワイヤーを引きちぎることにより作製し
た。突起電極は、超音波と熱を加えて形成された。形成
条件は超音波周波数60KHz、荷重294mN、温度
150℃である。突起電極作製後、CVDでSiO2膜
を0.02μm積層した。
As the piezoelectric material substrate, lithium tantalate having a thickness of 0.35 mm and a dielectric constant of 43 was used. The acoustic wave device on the piezoelectric material substrate was formed by forming an aluminum-copper alloy film by a sputtering method and then processing it by a photoresist process.
The thickness of the excitation electrode is 0.2 μm. The extraction electrode was produced by laminating 0.6 μm aluminum on a 0.2 μm aluminum-copper alloy. The protruding electrode was produced by taking out a gold wire having a spherical tip and pressing it against the electrode surface, and then tearing the wire off. The protruding electrode was formed by applying ultrasonic waves and heat. The formation conditions are an ultrasonic frequency of 60 KHz, a load of 294 mN, and a temperature of 150 ° C. After the bump electrodes were formed, a SiO2 film was laminated by 0.02 μm by CVD.

【0041】その後、突起電極面を回路基板の誘電体基
板(酸化アルミニウム)上に積層された取り出し電極
(金/ニッケル/タングステン)面に押し付けた。この
とき、同時に超音波と加熱を加えた。実装条件は、荷重
3920mN、超音波周波数63.5KHz、温度15
0℃とした。その結果、弾性波装置と誘電体基板は機械
的、電気的に接続された。
Thereafter, the protruding electrode surface was pressed against the extraction electrode (gold / nickel / tungsten) surface laminated on the dielectric substrate (aluminum oxide) of the circuit board. At this time, ultrasonic waves and heating were simultaneously applied. Mounting conditions are load 3920mN, ultrasonic frequency 63.5KHz, temperature 15
It was set to 0 ° C. As a result, the acoustic wave device and the dielectric substrate were mechanically and electrically connected.

【0042】前記(8)の弾性波装置の製造方法のよう
に、前記突起電極と誘電体基板上に積層された取り出し
電極を押し付けることにより、前記突起電極の先端に積
層されている前記保護膜を破壊すると同時に、前記突起
電極と誘電体基板上に積層された取り出し電極とを電気
的に接続させることによって、一つの工程で簡単に前記
(1)の弾性波装置を回路基板に実装することができ
た。〔比較例〕本発明に対する比較例として、図5に示
す本発明の比較例について説明する。
As in the method (8) for manufacturing an acoustic wave device, the protective film laminated on the tip of the projecting electrode by pressing the projecting electrode and the extraction electrode laminated on the dielectric substrate. The acoustic wave device of (1) can be easily mounted on a circuit board in one step by electrically connecting the protruding electrode and the extraction electrode laminated on the dielectric substrate at the same time as destroying I was able to. Comparative Example As a comparative example to the present invention, a comparative example of the present invention shown in FIG. 5 will be described.

【0043】圧電材料基板は厚さ0.35mmの誘電率
43のタンタル酸リチウムを用いた。圧電材料基板上の
弾性波素子はアルミニウム−銅合金をスパッタ法で製膜
した後、フォトレジストプロセスで加工して作成した。
励振電極の厚みは0.2μmである。取り出し電極は
0.2μmのアルミニウム−銅合金の上に0.6μmの
アルミニウムを積層して作製した。そして、その上に保
護膜としてCVDを用いてSiO2膜を0.02μm積
層した。その後、フォトレジストプロセスで一部の取り
出し電極上の保護膜を取り除き、ぞの中で取り出し電極
の上に突起電極を形成した。突起電極は、先端が球状に
加工された金ワイヤーを取り出し電極面に押し付けた
後、上部にワイヤーを引きちぎることにより作製した。
突起電極は、超音波と熱を加えて形成された。形成条件
は超音波周波数60KHz、荷重294mN、温度15
0℃である。
As the piezoelectric material substrate, lithium tantalate having a thickness of 0.35 mm and a dielectric constant of 43 was used. The acoustic wave device on the piezoelectric material substrate was formed by forming an aluminum-copper alloy film by a sputtering method and then processing it by a photoresist process.
The thickness of the excitation electrode is 0.2 μm. The extraction electrode was produced by laminating 0.6 μm aluminum on a 0.2 μm aluminum-copper alloy. Then, a SiO 2 film was deposited thereon by 0.02 μm as a protective film by CVD. After that, a part of the protective film on the extraction electrode was removed by a photoresist process, and a protruding electrode was formed on the extraction electrode in the groove. The protruding electrode was produced by taking out a gold wire having a spherical tip and pressing it against the electrode surface, and then tearing the wire off.
The protruding electrode was formed by applying ultrasonic waves and heat. The formation conditions are ultrasonic frequency 60 KHz, load 294 mN, temperature 15
It is 0 ° C.

【0044】このサンプルを温度60℃、湿度90〜9
5%の雰囲気中に1000時間放置した。その後のサン
プルは、励振電極の表面の変化はなかったが、SiO2
に覆われていない取り出し電極部分では、表面の金属光
沢が鈍くなりわずかに白く変色していた。このように、
従来技術では取り出し電極の腐食(酸化)を抑えること
ができない。
This sample was tested at a temperature of 60 ° C. and a humidity of 90 to 9
It was left to stand in a 5% atmosphere for 1000 hours. In the subsequent samples, the surface of the excitation electrode did not change, but SiO2
In the extraction electrode portion not covered with the, the metallic luster on the surface became dull and the color was slightly changed to white. in this way,
The conventional technique cannot suppress the corrosion (oxidation) of the extraction electrode.

【0045】なお、以上はあくまで本発明の実施形態の
例示であって、本発明はこれらに限定されるものではな
く、本発明の要旨を逸脱しない範囲で種々の変更や改良
を加えることは何ら差し支えない。
It should be noted that the above is merely an example of the embodiments of the present invention, and the present invention is not limited to these, and various modifications and improvements may be made without departing from the scope of the present invention. It doesn't matter.

【0046】例えば圧電基板は、タンタル酸リチウム単
結晶以外に、ニオブ酸リチウム単結晶、四ホウ酸リチウ
ム単結晶等、圧電特性を示すものであればどれでも良
い。
For example, the piezoelectric substrate may be any lithium niobate single crystal, lithium tetraborate single crystal, or the like as long as it exhibits piezoelectric characteristics, in addition to the lithium tantalate single crystal.

【0047】誘電体基板材料は、酸化アルミニウム以外
に、ムライト(3Al2O3・2SiO2)、フォルス
テライト(2MgO・SiO2)、ステアタイト(Mg
O・SiO2)、コージライト(2MgO・2Al2O
3・5SiO2)窒化アルミニウム、酸化ジルコニウ
ム、炭化硅素、窒化硅素等の各種セラミック材料、また
有機系材料等の誘電体であれば適用が可能である。
Dielectric substrate materials include mullite (3Al2O3 · 2SiO2), forsterite (2MgO · SiO2), and steatite (Mg) in addition to aluminum oxide.
O.SiO2), cordierite (2MgO.2Al2O)
3.5 SiO2) Various ceramic materials such as aluminum nitride, zirconium oxide, silicon carbide and silicon nitride, and dielectrics such as organic materials can be applied.

【0048】励振電極、及び取り出し電極の材料におい
ても、アルミニウム−銅合金、アルミニウム以外に金、
銀、銅、プラチナ、アルミニウム、クロム、チタン、タ
ングステン等、またはこれらの複合積層体等が適用可能
であり、特に本発明で制限を受けるものではない。
Also in the materials of the excitation electrode and the extraction electrode, aluminum-copper alloy, gold in addition to aluminum,
Silver, copper, platinum, aluminum, chromium, titanium, tungsten, etc., or a composite laminate of these, etc. are applicable, and are not particularly limited by the present invention.

【0049】また、突起電極に用いるワイヤー材料は、
温度や湿度に対して最も安定な金もしくは金合金が好ま
しいがアルミニウム等、取り出し電極と密着できる金属
であれば適用可能である。
The wire material used for the protruding electrode is
Gold or a gold alloy, which is the most stable against temperature and humidity, is preferable, but any metal that can adhere to the extraction electrode, such as aluminum, can be applied.

【0050】また、突起電極は、ワイヤーを元にして形
成する以外に、半田を印刷もしくは金属含有ペーストを
塗布してもよく、特に形成方法や材料に依存するもので
はない。
Further, the protruding electrode may be formed by printing solder or applying a metal-containing paste, instead of forming it based on the wire, and it does not particularly depend on the forming method and material.

【0051】さらに、圧電基板と補強基板を接合する接
着剤の材質はエポキシ系接着剤の他に、ウレタン系接着
剤、ポリイミド系、シリコーン系等、接着効果があるも
のであれば適用可能であり特に制限はない。
Further, as the material of the adhesive for joining the piezoelectric substrate and the reinforcing substrate, other than epoxy adhesive, urethane adhesive, polyimide adhesive, silicone adhesive, etc. can be applied as long as they have an adhesive effect. There is no particular limitation.

【0052】本発明の弾性波素子を用いた電子部品は、
ベアチップ型として回路基板に実装するのが最も効果的
ではあるが、パッケージに収納してもよく、特に用途が
限定されるものではない。
An electronic component using the acoustic wave device of the present invention is
Although it is most effective to mount it on a circuit board as a bare chip type, it may be housed in a package and its use is not particularly limited.

【0053】保護膜の厚みは、0.01μm〜10μm
の範囲が望ましい。なぜならば0.01μm以下では透
湿性が大きくなり、電極が腐食する可能性があり、ま
た、10μm以上では弾性波素子の損失が大きくなり好
ましくないからである。
The thickness of the protective film is 0.01 μm to 10 μm.
The range of is desirable. This is because if the thickness is 0.01 μm or less, the moisture permeability becomes large and the electrodes may corrode, and if it is 10 μm or more, the loss of the acoustic wave element becomes large, which is not preferable.

【0054】[0054]

【発明の効果】以上のように、本発明の弾性波素子を用
いた電子部品によれば、圧電基板上に、励振電極と、励
振電極に接続された取り出し電極と、取り出し電極上形
成されている突起電極とを少なくとも備えた弾性波装置
であって、励振電極の全てと、取り出し電極の全てと、
突起電極の一部もしくは全てを絶縁性の保護膜で覆うこ
ととした。これにより、ベアチップ型の弾性波装置にお
いても、励振電極と取り出し電極が湿気、酸素等により
腐食することを極力防止でき、さらに、これらの構造は
突起電極の形成後に保護膜を積層することにより簡便に
実現することができる上に、回路基板への実装も高信頼
性で簡便に行うことができる優れた弾性波装置及びその
製造方法を提供できる。
As described above, according to the electronic component using the acoustic wave device of the present invention, the excitation electrode, the extraction electrode connected to the excitation electrode, and the extraction electrode are formed on the piezoelectric substrate. An acoustic wave device including at least a protruding electrode, wherein all of the excitation electrodes and all of the extraction electrodes are
Part or all of the protruding electrode was covered with an insulating protective film. As a result, even in the bare-chip type acoustic wave device, it is possible to prevent the excitation electrode and the extraction electrode from being corroded by moisture, oxygen, etc. as much as possible. In addition, it is possible to provide an excellent acoustic wave device that can be easily realized and highly easily mounted on a circuit board, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る弾性波装置の実施形態を模式的に
説明する断面図である。
FIG. 1 is a cross-sectional view schematically illustrating an embodiment of an acoustic wave device according to the present invention.

【図2】本発明に係る弾性波装置の他の実施形態を模式
的に説明する断面図である。
FIG. 2 is a cross-sectional view schematically illustrating another embodiment of the acoustic wave device according to the present invention.

【図3】本発明に係る弾性波装置の他の実施形態を模式
的に説明する断面図である。
FIG. 3 is a cross-sectional view schematically illustrating another embodiment of the acoustic wave device according to the present invention.

【図4】本発明に係る弾性波装置の他の実施形態を模式
的に説明する断面図である。
FIG. 4 is a cross-sectional view schematically illustrating another embodiment of the acoustic wave device according to the present invention.

【図5】従来の弾性波装置を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional acoustic wave device.

【符号の説明】[Explanation of symbols]

1、11、21、31、41:圧電基板 2、12、22:励振電極 3、13、23:保護膜のある取り出し電極 4、14、24:突起電極 5、15、25:保護膜 16、36:一部の保護膜のない取り出し電極 26:補強基板 37:誘電体基板 38:誘電体基板の取り出し電極 1, 11, 21, 31, 41: Piezoelectric substrate 2, 12, 22: Excitation electrodes 3, 13, 23: Extraction electrode with protective film 4, 14, 24: protruding electrodes 5, 15, 25: protective film 16, 36: Extraction electrode without some protective film 26: Reinforcing board 37: Dielectric substrate 38: Extraction electrode of dielectric substrate

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01L 21/60 H01L 21/92 604J Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) // H01L 21/60 H01L 21/92 604J

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板上に、励振電極と、該励振電極
に接続された取り出し電極と、該取り出し電極上に形成
した突起電極とを備えた弾性波装置であって、前記励振
電極、前記取り出し電極、及び前記突起電極の各全表面
を、前記突起電極の先端形状が形成されるように絶縁性
の保護膜で被覆したことを特徴とする弾性波装置。
1. An elastic wave device comprising a piezoelectric substrate, an excitation electrode, an extraction electrode connected to the excitation electrode, and a protruding electrode formed on the extraction electrode, the excitation electrode comprising: An acoustic wave device, characterized in that the entire surface of each of the extraction electrode and the protruding electrode is covered with an insulating protective film so that the tip shape of the protruding electrode is formed.
【請求項2】 圧電基板上に、励振電極と、該励振電極
に接続された取り出し電極と、該取り出し電極上に形成
した突起電極とを備えた弾性波装置であって、前記励振
電極、前記取り出し電極、及び前記突起電極の各表面
を、前記突起電極の先端部が露出するように絶縁性の保
護膜で被覆したことを特徴とする弾性波装置。
2. An acoustic wave device comprising a piezoelectric substrate, an excitation electrode, an extraction electrode connected to the excitation electrode, and a protruding electrode formed on the extraction electrode, wherein the excitation electrode, An acoustic wave device characterized in that each surface of the extraction electrode and the protruding electrode is covered with an insulating protective film so that a tip portion of the protruding electrode is exposed.
【請求項3】 圧電基板上に、励振電極と、該励振電極
に接続された取り出し電極と、該取り出し電極上に形成
した突起電極とを備えるとともに、前記突起電極が誘電
体基板上に形成された外部取り出し電極に接続されて成
り、且つ前記励振電極、前記取り出し電極、及び前記突
起電極の各表面を絶縁性の保護膜で被覆したことを特徴
とする弾性波装置。
3. A piezoelectric substrate is provided with an excitation electrode, an extraction electrode connected to the excitation electrode, and a projection electrode formed on the extraction electrode, and the projection electrode is formed on a dielectric substrate. An elastic wave device, which is connected to an external extraction electrode, and each surface of the excitation electrode, the extraction electrode, and the protruding electrode is covered with an insulating protective film.
【請求項4】 前記突起電極の前記保護膜から露出した
表面が平面状であることを特徴とする請求項2に記載の
弾性波装置。
4. The acoustic wave device according to claim 2, wherein the surface of the protruding electrode exposed from the protective film is planar.
【請求項5】 前記圧電基板の一主面上に、前記励振電
極、前記取り出し電極、及び前記突起電極を配設して成
るとともに、前記圧電基板の他主面上に補強基板を貼着
したことを特徴とする請求項1乃至4のいずれかに記載
の弾性波装置。
5. The excitation electrode, the lead-out electrode, and the protruding electrode are provided on one main surface of the piezoelectric substrate, and a reinforcing substrate is attached to the other main surface of the piezoelectric substrate. The elastic wave device according to any one of claims 1 to 4, wherein.
【請求項6】 請求項1乃至5のいずれかに記載の弾性
波装置の製造方法であって、前記圧電基板上に、前記励
振電極と、前記取り出し電極と、前記突起電極とを形成
した後に、これら電極表面に前記保護膜を被覆するよう
にしたことを特徴とする弾性波装置の製造方法。
6. The method of manufacturing an acoustic wave device according to claim 1, wherein after forming the excitation electrode, the extraction electrode, and the protruding electrode on the piezoelectric substrate. A method for manufacturing an acoustic wave device, characterized in that the surfaces of these electrodes are covered with the protective film.
【請求項7】 請求項1に記載の弾性波装置から請求項
2または4に記載の弾性波装置を製造する方法であっ
て、前記突起電極の先端部を被覆した保護膜を除去する
ことを特徴とする弾性波装置の製造方法。
7. A method of manufacturing the acoustic wave device according to claim 2 or 4 from the acoustic wave device according to claim 1, wherein the protective film covering the tip of the protruding electrode is removed. A method for manufacturing a characteristic acoustic wave device.
【請求項8】 請求項3に記載の弾性波装置の製造方法
であって、前記誘電体基板上に形成された外部取り出し
電極に、請求項1に記載の弾性波装置の前記突起電極の
先端部を被覆した保護膜を押圧させながら加熱すること
により、前記外部取り出し電極に接触した保護膜を除去
するとともに、前記外部取り出し電極と前記突起電極と
を接続させることを特徴とする弾性波装置の製造方法。
8. The method of manufacturing an acoustic wave device according to claim 3, wherein the tip of the protruding electrode of the acoustic wave device according to claim 1 is attached to an external extraction electrode formed on the dielectric substrate. By heating the protective film covering the portion while pressing it, the protective film in contact with the external extraction electrode is removed, and the external extraction electrode and the projecting electrode are connected to each other. Production method.
JP2001262512A 2001-08-30 2001-08-30 Elastic wave device and method of manufacturing the same Pending JP2003078388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262512A JP2003078388A (en) 2001-08-30 2001-08-30 Elastic wave device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262512A JP2003078388A (en) 2001-08-30 2001-08-30 Elastic wave device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003078388A true JP2003078388A (en) 2003-03-14

Family

ID=19089399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262512A Pending JP2003078388A (en) 2001-08-30 2001-08-30 Elastic wave device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003078388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Composite piezoelectric substrate
KR100766262B1 (en) 2003-10-03 2007-10-15 가부시키가이샤 무라타 세이사쿠쇼 Method of producing surface acoustic wave device and the surface acoustic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766262B1 (en) 2003-10-03 2007-10-15 가부시키가이샤 무라타 세이사쿠쇼 Method of producing surface acoustic wave device and the surface acoustic wave device
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Composite piezoelectric substrate

Similar Documents

Publication Publication Date Title
JP3925133B2 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
US8334737B2 (en) Acoustic wave device and electronic apparatus using the same
JP2002261582A (en) Surface acoustic wave device, method of manufacturing the same, and circuit module using the same
JP2012182604A (en) Elastic wave filter component
JP5269301B2 (en) Surface acoustic wave device
CN101192817A (en) Acoustic device
JPS62173813A (en) Surface acoustic wave element
JP5521417B2 (en) Elastic wave device and electronic device using the same
JP2000165192A (en) Surface acoustic wave device
JP4496652B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2003078388A (en) Elastic wave device and method of manufacturing the same
CN119341496A (en) Elastic wave device and method for manufacturing elastic wave device
JP5338575B2 (en) Elastic wave device and electronic device using the same
JPH1141054A (en) Surface acoustic wave device, method for manufacturing surface acoustic wave device, and connection device
JP2011023929A (en) Acoustic wave device and electronic apparatus using the same
JPH09162691A (en) Device having surface acoustic wave element and its manufacture
JPH0993077A (en) Element composite mounted circuit board
JP3389530B2 (en) Semiconductor device
JP2005136683A (en) Electronic components
JP7508104B2 (en) Acoustic Wave Devices
JP2746813B2 (en) Package for storing semiconductor elements
JP3250941B2 (en) Wiring board
JP2962924B2 (en) Electronic component storage package
JP5794778B2 (en) Electronic equipment
JPH0613479A (en) Package for storing surface-mounted electronic components