[go: up one dir, main page]

JP2003083620A - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner

Info

Publication number
JP2003083620A
JP2003083620A JP2001276025A JP2001276025A JP2003083620A JP 2003083620 A JP2003083620 A JP 2003083620A JP 2001276025 A JP2001276025 A JP 2001276025A JP 2001276025 A JP2001276025 A JP 2001276025A JP 2003083620 A JP2003083620 A JP 2003083620A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
compressor
refrigerating
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001276025A
Other languages
Japanese (ja)
Other versions
JP4442068B2 (en
Inventor
Shinichi Wakamoto
慎一 若本
Taijo Murakami
泰城 村上
Masayuki Tsunoda
昌之 角田
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001276025A priority Critical patent/JP4442068B2/en
Publication of JP2003083620A publication Critical patent/JP2003083620A/en
Application granted granted Critical
Publication of JP4442068B2 publication Critical patent/JP4442068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 従来、流量制御手段における冷媒の減圧時に
損失となっていたエネルギーロスを低減させ、高効率な
運転を可能とする冷凍空調装置を提供する。 【解決手段】 凝縮器12出口側にて一部冷媒を分岐
し、膨張動力回収手段13にて膨張させるとともに圧縮
機11の入口側に循環させるバイパス流冷媒ルート42
を設け、この膨張した冷媒により主流冷媒ルートにおけ
る流量制御手段41の入口側の冷媒を過冷却することに
より流量制御手段41における冷媒の減圧時のエネルギ
ーロスを低減させる。
PROBLEM TO BE SOLVED: To provide a refrigeration / air-conditioning apparatus capable of reducing energy loss, which has conventionally been lost when a refrigerant is depressurized in a flow control means, and enabling highly efficient operation. SOLUTION: A bypass flow refrigerant route 42 in which a part of the refrigerant is branched at an outlet side of a condenser 12 and expanded by an expansion power recovery means 13 and circulated to an inlet side of a compressor 11.
The refrigerant at the inlet side of the flow control means 41 in the mainstream refrigerant route is supercooled by the expanded refrigerant, thereby reducing the energy loss of the flow control means 41 when the refrigerant is depressurized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍空調装置に関
し、ことに、主流冷媒とバイパス流冷媒との間で熱交換
を行って主流冷媒を冷却する熱交換器を備えた冷凍空調
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating air conditioner, and more particularly to a refrigerating air conditioner having a heat exchanger for exchanging heat between a mainstream refrigerant and a bypass refrigerant to cool the mainstream refrigerant.

【0002】[0002]

【従来の技術】図9は特開平10−205898号公報
に開示された従来の冷凍装置の構成説明図で、11は圧
縮機、12は凝縮器、13はエゼクタ、14は気液分離
器、15は冷媒ポンプ、16は蒸発器、17は冷媒配管
であり、フロンガスを代表とする冷媒が冷凍サイクル9
を循環する構成につき開示するものである。かかる冷凍
装置は、前述の通り、圧縮機、凝縮器、エゼクタ(エジ
ェクタとも呼ばれる)、気液分離器が環状に接続され、
さらに気液分離器、冷媒ポンプ、蒸発器及びエゼクタが
順次連結接続された構成を有している。かかる冷凍装置
の性能は、各構成要素において如何にロスなく圧力−エ
ンタルピの変換を行うかにより決まるため、各構成要素
におけるエネルギーロスの低減が技術開発の重要なポイ
ントとなる。ことに、断熱膨張により冷媒の圧力を降下
させ動力を回収するエゼクタにおけるエネルギーロスの
低減が冷凍装置の性能向上に対し重要な課題として挙げ
られる。
2. Description of the Related Art FIG. 9 is a structural explanatory view of a conventional refrigerating apparatus disclosed in Japanese Unexamined Patent Publication No. 10-205898, 11 is a compressor, 12 is a condenser, 13 is an ejector, 14 is a gas-liquid separator, Reference numeral 15 is a refrigerant pump, 16 is an evaporator, 17 is a refrigerant pipe, and the refrigerant represented by Freon gas is the refrigeration cycle 9
This disclosure discloses a configuration that circulates. As described above, such a refrigeration system has a compressor, a condenser, an ejector (also called an ejector), and a gas-liquid separator connected in an annular shape,
Furthermore, the gas-liquid separator, the refrigerant pump, the evaporator, and the ejector are sequentially connected and connected. Since the performance of such a refrigeration system is determined by how pressure-enthalpy is converted in each constituent element without loss, reduction of energy loss in each constituent element is an important point in technological development. In particular, reduction of energy loss in the ejector that reduces the pressure of the refrigerant by adiabatic expansion to recover the power is an important issue for improving the performance of the refrigeration system.

【0003】以下、従来の冷凍装置の動作につき図に従
い説明する。かかる冷凍装置においては、まず最初、フ
ロンガス等の冷媒は圧縮機11にて圧縮され高温高圧状
態となり、続いて凝縮器12に導入され液化する。さら
に、凝縮器12て液化された冷媒は、エゼクタ13に導
入され蒸発しながら増速減圧し、気液混合状態となる。
この気液混合状態となった冷媒は、気液分離器14にて
気相と液相に分離され、このうち冷媒蒸気は圧縮機11
へと導かれ、冷凍サイクル9を循環することになる。ま
た、気液分離器14内の冷媒液は冷媒ポンプ15を通
り、蒸発器16に導入され低温低圧状態となる。蒸発器
16から流出した低温低圧の冷媒蒸気は、凝縮器12か
らエゼクタ13に導入され増速減圧した冷媒と一体とな
り、圧縮機11の吸入圧力と等しい圧力まで圧力回復す
る。この圧力回復した冷媒は気液分離器14に流入し、
冷媒蒸気は圧縮機11に戻ることにより冷媒流路を循環
し、冷媒液は冷媒ポンプ15で減圧され蒸発器16にて
気化しエゼクタ13に戻ることによりバイパス流路を循
環することになる。
The operation of the conventional refrigeration system will be described below with reference to the drawings. In such a refrigerating apparatus, a refrigerant such as CFC gas is first compressed by the compressor 11 into a high temperature and high pressure state, and then introduced into the condenser 12 and liquefied. Further, the refrigerant liquefied in the condenser 12 is introduced into the ejector 13 and is accelerated and decompressed while evaporating, and becomes a gas-liquid mixed state.
The refrigerant in the gas-liquid mixed state is separated into a gas phase and a liquid phase by the gas-liquid separator 14, of which the refrigerant vapor is the compressor 11
And is circulated through the refrigeration cycle 9. Further, the refrigerant liquid in the gas-liquid separator 14 passes through the refrigerant pump 15 and is introduced into the evaporator 16 to be in a low temperature and low pressure state. The low-temperature low-pressure refrigerant vapor that has flowed out of the evaporator 16 is integrated with the refrigerant that is introduced from the condenser 12 into the ejector 13 and is accelerated and decompressed, and the pressure is restored to a pressure equal to the suction pressure of the compressor 11. The refrigerant whose pressure has been recovered flows into the gas-liquid separator 14,
The refrigerant vapor circulates in the refrigerant flow path by returning to the compressor 11, and the refrigerant liquid is decompressed by the refrigerant pump 15 and vaporized in the evaporator 16 and returns to the ejector 13 to circulate in the bypass flow path.

【0004】上述のように、従来の冷凍装置において
は、エゼクタ13から流出した冷媒を気液分離器14に
て気液分離し、冷媒蒸気を圧縮機11に戻し、冷媒液を
冷媒ポンプ15及び蒸発器16を通してエゼクタ13へ
と導入する構成としていたため、凝縮器12の出口にお
ける冷媒の過冷却度を大きくすると、エゼクタ13に導
入される冷媒のエンタルピが低下するため、エゼクタ1
3によるエンタルピ増加を低減する効果が低下する。一
方、凝縮器12の出口における冷媒の過冷却度を小さく
すると、エゼクタ13入口でのエンタルピは上昇する
が、これは蒸発器16の出口側のエンタルピの上昇を招
き、蒸発器16の出入口におけるエンタルピ差が減少す
ることを意味する。そのため、所定の冷却能力を得るた
めには冷媒流量を増加させる必要が生じ、圧縮機に投入
する電力量が増大するなど、性能低下を招くことにな
る。このように、従来の冷凍装置は、エゼクタ13に導
入する冷媒のエンタルピを大きくすればエゼクタ13通
過後の圧力損失の増加が生じ、また、小さくすればエゼ
クタ13の効果が減少するという相反する問題を有して
おり、エゼクタを利用した効率的な運転が困難であっ
た。
As described above, in the conventional refrigeration system, the refrigerant flowing out of the ejector 13 is gas-liquid separated by the gas-liquid separator 14, the refrigerant vapor is returned to the compressor 11, and the refrigerant liquid is pumped by the refrigerant pump 15 and. Since the refrigerant is introduced into the ejector 13 through the evaporator 16, if the degree of supercooling of the refrigerant at the outlet of the condenser 12 is increased, the enthalpy of the refrigerant introduced into the ejector 13 decreases, so that the ejector 1
The effect of reducing the increase in enthalpy due to 3 decreases. On the other hand, when the degree of supercooling of the refrigerant at the outlet of the condenser 12 is reduced, the enthalpy at the inlet of the ejector 13 rises, but this causes the enthalpy at the outlet side of the evaporator 16 to rise, and the enthalpy at the outlet and inlet of the evaporator 16 increases. It means that the difference is reduced. Therefore, it is necessary to increase the flow rate of the refrigerant in order to obtain a predetermined cooling capacity, which results in a decrease in performance such as an increase in the amount of electric power supplied to the compressor. As described above, in the conventional refrigeration system, if the enthalpy of the refrigerant introduced into the ejector 13 is increased, the pressure loss after passing through the ejector 13 increases, and if it is decreased, the effect of the ejector 13 decreases. Therefore, it was difficult to operate efficiently using the ejector.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる状況に
鑑みなされたもので、従来、流量制御手段においてロス
となっていたエネルギーを効率的に回収し、高効率な運
転を実現する冷凍空調装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a refrigerating and air-conditioning apparatus that efficiently recovers energy that was conventionally lost in the flow rate control means and realizes highly efficient operation. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明にかかる冷凍空調
装置は、圧縮機、凝縮器、冷媒の圧力を低下させる流量
制御手段および蒸発器を冷媒が順次循環するよう連結し
た主流冷媒ルートと、凝縮器の出口側から冷媒の一部を
分岐し、分岐した冷媒を膨張動力回収手段にて膨張させ
て圧縮機の入口側に戻すバイパス流冷媒ルートと、バイ
パス流冷媒ルートの膨張後の冷媒によって主流冷媒ルー
トにおける流量制御手段の入口側の冷媒を冷却する熱交
換器とを備えたものである。かかる冷凍空調装置は、主
流冷媒ルートにおいて、圧縮機の出口側から凝縮器の入
口側に第2凝縮器と第2圧縮機を順次連結した構成とす
ることができ、膨張動力回収手段としては膨張機を用い
ることができる。
A refrigerating and air-conditioning apparatus according to the present invention comprises a mainstream refrigerant route in which a compressor, a condenser, a flow rate control means for reducing the pressure of the refrigerant, and an evaporator are connected so that the refrigerant circulates sequentially. By bypassing a part of the refrigerant from the outlet side of the condenser, the branched refrigerant is expanded by the expansion power recovery means and returned to the inlet side of the compressor, and by the expanded refrigerant of the bypass flow refrigerant route. And a heat exchanger for cooling the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route. Such a refrigerating and air-conditioning apparatus can be configured such that the second condenser and the second compressor are sequentially connected from the outlet side of the compressor to the inlet side of the condenser in the mainstream refrigerant route. Machine can be used.

【0007】また、本発明にかかる冷凍空調装置は、圧
縮機、凝縮器、冷媒の圧力を低下させる第1流量制御手
段および蒸発器を冷媒が順次循環するよう連結した主流
冷媒ルートと、凝縮器の出口側から冷媒の一部を分岐
し、分岐した冷媒を膨張動力回収手段にて膨張させた
後、膨張した冷媒を気相及び液相に分離する気液分離器
を通して圧縮機の入口側に戻す第1バイパス流冷媒ルー
トと、気液分離器の液相側から冷媒を分岐し、分岐した
冷媒を第2流量制御手段にて膨張させた後、膨張動力回
収手段に戻す第2バイパス流冷媒ルートと、第2バイパ
ス流冷媒ルートの膨張後の冷媒によって主流冷媒ルート
における流量制御手段の入口側の冷媒を冷却する熱交換
器とを備えたものである。かかる膨張動力回収手段とし
ては、エゼクタを用いることができる。
In the refrigerating air-conditioning apparatus according to the present invention, the compressor, the condenser, the first flow rate controlling means for reducing the pressure of the refrigerant, and the evaporator are connected to the mainstream refrigerant route so that the refrigerant circulates sequentially, and the condenser. After branching a part of the refrigerant from the outlet side of the, and expanding the branched refrigerant by the expansion power recovery means, to the inlet side of the compressor through a gas-liquid separator that separates the expanded refrigerant into a gas phase and a liquid phase. A first bypass flow refrigerant route to be returned and a second bypass flow refrigerant which is branched from the liquid phase side of the gas-liquid separator, expanded by the second flow rate control means, and then returned to the expansion power recovery means. And a heat exchanger that cools the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route by the expanded refrigerant of the second bypass flow refrigerant route. An ejector can be used as the expansion power recovery means.

【0008】かかる冷凍空調装置においては、冷媒とし
て二酸化炭素を用いることができる。
In such a refrigerating and air-conditioning apparatus, carbon dioxide can be used as a refrigerant.

【0009】[0009]

【発明の実施の形態】実施の形態1 本発明にかかる冷凍空調装置は、例えば、図1に示すよ
うに、圧縮機11、凝縮器12、流量制御手段41、蒸
発器16が冷媒配管で環状に順次接続されており、フル
オロカーボン系または炭化水素系の冷媒が循環する構成
となっている。また、凝縮器12と流量制御手段41の
間には熱交換器40が設置され、さらに凝縮器12と熱
交換器40の間及び蒸発器16と圧縮機11の間がバイ
パス配管42にて連結接続されている。このバイパス配
管42の経路には膨張機13が配置され、バイパス配管
42は膨張機13の設置部の下流側で熱交換器40を通
って、蒸発器16と圧縮機11の間に接続されている。
また、図2はかかる冷凍空調装置の冷凍サイクルを説明
するための圧力−エンタルピ線図であり、図2に示され
たAからFの各点は図1に記載された冷凍空調装置のA
からFの各点に対応し、各位置における圧力−エンタル
ピ状態を表わすものである。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment In a refrigerating and air-conditioning apparatus according to the present invention, for example, as shown in FIG. 1, a compressor 11, a condenser 12, a flow rate control means 41, and an evaporator 16 are annular with refrigerant pipes. And a fluorocarbon-based or hydrocarbon-based refrigerant is circulated. A heat exchanger 40 is installed between the condenser 12 and the flow rate control means 41, and the condenser 12 and the heat exchanger 40 and the evaporator 16 and the compressor 11 are connected by a bypass pipe 42. It is connected. The expander 13 is arranged in the path of the bypass pipe 42, and the bypass pipe 42 is connected between the evaporator 16 and the compressor 11 through the heat exchanger 40 on the downstream side of the installation portion of the expander 13. There is.
2 is a pressure-enthalpy diagram for explaining the refrigerating cycle of the refrigerating and air-conditioning apparatus, and points A to F shown in FIG. 2 are points A of the refrigerating and air-conditioning apparatus shown in FIG.
The pressure-enthalpy state is shown at each position corresponding to each point from F to F.

【0010】以下、かかる冷凍空調装置の動作とその効
果に付き、図2に示した圧力−エンタルピ線図を参照し
つつ説明する。かかる冷凍空調装置においては、冷媒は
圧縮機11の出口で最も高い圧力およびエンタルピを有
している(図中A点)。次に、圧縮機11にて圧縮され
高温高圧状態となった冷媒は、凝縮器12に導かれて凝
縮され、圧力が一定のままエンタルピが低下する(図中
A点→B点)。凝縮器12出口部(図中B点)における
冷媒液の一部は、膨張機13により断熱膨張し低温低圧
の冷媒二相状態に変化する(図中B点→F点)。この低
温低圧の冷媒は熱交換器40にて、凝縮器12から流量
制御手段41へ循環する冷媒液と熱交換して気化し、圧
縮機11の吸入圧力と等しい圧力まで圧力回復して圧縮
機11に戻り(図中F点→E点)、圧縮機11における
動力の一部として利用されることになる。また、凝縮器
12を出た冷媒の残りは、熱交換器40において膨張機
13にて低温低圧となった冷媒と熱交換して冷却された
後(図中B点→C点)、流量制御手段41にて減圧され
低温低圧の気液二層状態の冷媒となり(図中C点→D
点)蒸発器16に導入され,空気などと熱交換して気化
し圧縮機11に戻る(図中D点→E点)。そして、冷媒
は圧縮機11にて圧縮され、高温高圧状態となり(図中
E点→A点)、上述の冷凍サイクルを再び循環すること
になる。
The operation and effects of such a refrigerating and air-conditioning apparatus will be described below with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigerating and air-conditioning apparatus, the refrigerant has the highest pressure and enthalpy at the outlet of the compressor 11 (point A in the figure). Next, the refrigerant compressed in the compressor 11 and brought into a high temperature and high pressure state is guided to the condenser 12 and condensed, and the enthalpy decreases with the pressure kept constant (point A → point B in the figure). Part of the refrigerant liquid at the outlet of the condenser 12 (point B in the figure) is adiabatically expanded by the expander 13 and changes to a low-temperature low-pressure refrigerant two-phase state (point B → point F in the figure). In the heat exchanger 40, the low-temperature low-pressure refrigerant exchanges heat with the refrigerant liquid circulating from the condenser 12 to the flow rate control unit 41 to be vaporized, and the pressure is recovered to a pressure equal to the suction pressure of the compressor 11 to recover the compressor. Returning to 11 (point F → point E in the figure), it will be used as part of the power of the compressor 11. Further, the rest of the refrigerant discharged from the condenser 12 is cooled by exchanging heat with the refrigerant having a low temperature and low pressure in the expander 13 in the heat exchanger 40 (point B → point C in the figure), and then flow rate control. The refrigerant is decompressed by the means 41 and becomes a low-temperature low-pressure gas-liquid two-layer state refrigerant (point C → D in the figure).
(Point) The gas is introduced into the evaporator 16, exchanges heat with air or the like, vaporizes, and returns to the compressor 11 (point D → point E in the figure). Then, the refrigerant is compressed by the compressor 11 to be in a high temperature and high pressure state (point E → point A in the figure), and the above refrigeration cycle is circulated again.

【0011】以上、かかる冷凍空調装置においては熱交
換器により凝縮器から流量制御手段に循環する冷媒を過
冷却することにより、流量制御手段に導入される冷媒の
エンタルピを低減することができる。即ち、流量制御手
段における減圧時に失われていたエネルギーを、蒸発器
を通ることなく圧縮機に循環する冷媒にて回収し、流量
制御手段におけるエネルギーロスの低減による効率UP
により高効率な運転が可能となる。
As described above, in such a refrigeration / air-conditioning system, the enthalpy of the refrigerant introduced into the flow rate control means can be reduced by subcooling the refrigerant circulating from the condenser to the flow rate control means by the heat exchanger. That is, the energy lost at the time of pressure reduction in the flow rate control means is recovered by the refrigerant circulating in the compressor without passing through the evaporator, and the efficiency UP due to the reduction of energy loss in the flow rate control means.
This enables highly efficient operation.

【0012】尚、上記実施の形態ではフルオロカーボン
系または炭化水素系の冷媒を用いたものについて説明し
たが、冷媒として二酸化炭素を用いる冷凍空調装置では
冷凍能力に対する断熱膨張時のエネルギーロスが大き
く、本発明の効果が特に顕著である。かかる効果につ
き、図を用いて説明する。図3は流量制御手段41の入
口温度が35℃、出口温度が10℃における二酸化炭素
の断熱膨張過程における圧力―エンタルピ線図、図4は
流量制御手段41の入口温度が35℃、出口温度が10
℃におけるフルオロカーボン系冷媒の断熱膨張過程にお
ける圧力―エンタルピ線図である。図3、4において、
50、60は35℃の等温線、51、61は等エントロ
ピ線、52、62は10℃の等温線、53、63はエネ
ルギーロス、54、64は冷凍能力を示している。図3
に示した二酸化炭素のエネルギーロス53の方が図4に
示したフルオロカーボン系冷媒のエネルギーロス63よ
りも大きいのは、二酸化炭素が35℃では臨界状態にあ
り、フルオロカーボン系冷媒のような一般的な冷媒とは
異なる特有の性質を有することに起因する。一方、本願
発明は流量制御手段にて生じるエネルギーロスの低減を
目的としたものであるため、かかるエネルギーロスが大
きい二酸化炭素を冷媒として用いた場合には通常のフル
オロカーボン系冷媒を用いる場合より効果的である。
In the above embodiment, a fluorocarbon-based or hydrocarbon-based refrigerant is used. However, a refrigerating and air-conditioning system using carbon dioxide as a refrigerant causes a large energy loss during adiabatic expansion with respect to refrigerating capacity. The effect of the invention is particularly remarkable. Such effects will be described with reference to the drawings. 3 is a pressure-enthalpy diagram in the adiabatic expansion process of carbon dioxide when the inlet temperature of the flow rate control means 41 is 35 ° C. and the outlet temperature is 10 ° C., and FIG. 4 shows the inlet temperature of the flow rate control means 41 is 35 ° C. and the outlet temperature is 10
FIG. 3 is a pressure-enthalpy diagram in the adiabatic expansion process of a fluorocarbon-based refrigerant at ° C. 3 and 4,
50 and 60 are isotherms at 35 ° C., 51 and 61 are isentropic lines, 52 and 62 are isotherms at 10 ° C., 53 and 63 are energy losses, and 54 and 64 are refrigerating capacity. Figure 3
The energy loss 53 of carbon dioxide shown in FIG. 4 is larger than the energy loss 63 of the fluorocarbon-based refrigerant shown in FIG. 4 because carbon dioxide is in a critical state at 35 ° C. This is because it has a unique property different from that of the refrigerant. On the other hand, the present invention is intended to reduce the energy loss that occurs in the flow rate control means, and therefore, when carbon dioxide having such a large energy loss is used as the refrigerant, it is more effective than when using a normal fluorocarbon refrigerant. Is.

【0013】実施の形態2 図5は本発明にかかる冷凍空調装置の構成を表す構成説
明図の一例で、第1圧縮機11、第2凝縮器45、第2
圧縮機46、第1凝縮器12、第1流量制御手段41、
蒸発器16が冷媒配管で環状に順次接続されており、フ
ルオロカーボン系または炭化水素系の冷媒が循環する構
成となっている。また、凝縮器12と第1流量制御手段
41の間には熱交換器40が設置され、さらに凝縮器1
2と熱交換器40の間及び蒸発器16と圧縮機11の間
がバイパス配管42にて連結接続されている。このバイ
パス配管42には膨張機13が設置され、バイパス配管
42は膨張機13の設置部の下流側で熱交換器40を通
って、蒸発器16と圧縮機11の間に接続されている。
また、図6はかかる冷凍空調装置の冷凍サイクルを説明
するための圧力−エンタルピ線図であり、図6中に示さ
れたA’からH’の各点は図5に記載された冷凍空調装
置のA’からH’の各点に対応し、各位置における圧力
−エンタルピ状態を表わすものである。
Embodiment 2 FIG. 5 is an example of a structural explanatory view showing the structure of a refrigerating and air-conditioning apparatus according to the present invention, which is a first compressor 11, a second condenser 45, and a second condenser 11.
Compressor 46, first condenser 12, first flow control means 41,
The evaporator 16 is sequentially connected in an annular shape by a refrigerant pipe, and a fluorocarbon-based or hydrocarbon-based refrigerant is circulated. Further, a heat exchanger 40 is installed between the condenser 12 and the first flow rate control means 41, and further the condenser 1
2 and the heat exchanger 40 and between the evaporator 16 and the compressor 11 are connected and connected by a bypass pipe 42. The expander 13 is installed in the bypass pipe 42, and the bypass pipe 42 is connected between the evaporator 16 and the compressor 11 through the heat exchanger 40 on the downstream side of the installation part of the expander 13.
6 is a pressure-enthalpy diagram for explaining the refrigerating cycle of the refrigerating and air-conditioning apparatus, and points A'to H'shown in FIG. 6 are the refrigerating and air-conditioning apparatus shown in FIG. It represents the pressure-enthalpy state at each position corresponding to each point from A'to H'of.

【0014】以下、かかる冷凍空調装置の動作とその効
果に付き、図6に示した圧力−エンタルピ線図を参照し
つつ説明する。かかる冷凍空調装置においては、冷媒は
第2圧縮機46の出口で最も高い圧力およびエンタルピ
を有している(図中A’点)。次に、第2圧縮機46に
て圧縮され高温高圧状態となった冷媒は、第1凝縮器1
2に導かれて凝縮され、圧力が一定のままエンタルピが
低下する(図中A’点→B’点)。第1凝縮器12出口
部(図中B’点)における冷媒液の一部は、膨張機13
により断熱膨張し低温低圧の冷媒二相状態に変化する
(図中B’点→H’点)。この低温低圧の冷媒は熱交換
器40にて、第1凝縮器12から流量制御手段41へ循
環する冷媒液と熱交換して気化し、第1圧縮機11に戻
り(図中H’点→E’点)、第1圧縮機11における動
力の一部として利用されることになる。第1圧縮機11
に導入された冷媒はまず第一段目の圧縮が行われる(図
中E’点→F’点)。第一段目の圧縮が行われた冷媒
は、続いて第2凝縮器45に導かれて凝縮され、圧力が
一定のままエンタルピが低下する(図中F’点→G’
点)。さらに、第2凝縮器45を出た冷媒は、第2圧縮
機46にて第二段目の圧縮が行われる(図中G’点→
A’点)。また、凝縮器12を出た冷媒の残りは、熱交
換器40において膨張機13にて低温低圧となった冷媒
と熱交換して冷却された後(図中B’点→C’点)、流
量制御手段41にて減圧され低温低圧の気液二層状態の
冷媒となり(図中C’点→D’点)蒸発器16に導入さ
れ、空気などと熱交換して気化し第1圧縮機11に戻る
(図中D’点→E’点)。蒸発器16から第1圧縮機1
1へと戻された冷媒は上述のバイパス配管42から第1
圧縮機11に循環する冷媒同様、第1圧縮機11、第2
凝縮器45および第2圧縮機46を通過することにより
高温高圧状態となり(図中E’点→F’点→G’点→
A’点)、上述の冷凍サイクルを再び循環することにな
る。
The operation and effect of such a refrigerating and air-conditioning apparatus will be described below with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigeration air conditioner, the refrigerant has the highest pressure and enthalpy at the outlet of the second compressor 46 (point A'in the figure). Next, the refrigerant compressed by the second compressor 46 and brought into a high temperature and high pressure state is cooled by the first condenser 1
It is guided to 2 and condensed, and the enthalpy decreases with the pressure kept constant (point A '→ point B'in the figure). Part of the refrigerant liquid at the outlet of the first condenser 12 (point B ′ in the figure) is part of the expander 13
Adiabatically expands and changes to a low-temperature low-pressure refrigerant two-phase state (point B '→ H'in the figure). In the heat exchanger 40, the low-temperature low-pressure refrigerant exchanges heat with the refrigerant liquid circulating from the first condenser 12 to the flow rate control means 41 to be vaporized, and returns to the first compressor 11 (point H ′ in the figure → Point E '), which will be used as part of the power in the first compressor 11. First compressor 11
The refrigerant introduced in the first stage is first compressed (point E ′ → F ′ in the figure). The refrigerant compressed in the first stage is then guided to the second condenser 45 and condensed, and the enthalpy decreases with the pressure kept constant (point F ′ → G ′ in the figure).
point). Further, the refrigerant discharged from the second condenser 45 is compressed in the second stage by the second compressor 46 (point G ′ in the figure →
A'point). The rest of the refrigerant discharged from the condenser 12 is cooled by exchanging heat with the refrigerant that has become low temperature and low pressure in the expander 13 in the heat exchanger 40 (point B ′ → C ′ in the figure). The refrigerant is decompressed by the flow rate control means 41 and becomes a low-temperature low-pressure refrigerant in a gas-liquid two-layer state (point C ′ → D ′ in the figure), which is introduced into the evaporator 16 and heat-exchanges with air or the like to be vaporized and thus the first compressor. Return to 11 (point D '→ E'in the figure). From the evaporator 16 to the first compressor 1
The refrigerant returned to No. 1 from the above-mentioned bypass pipe 42 is the first
Like the refrigerant circulating in the compressor 11, the first compressor 11 and the second compressor 11
A high temperature and high pressure state is achieved by passing through the condenser 45 and the second compressor 46 (point E ′ → F ′ point → G ′ point →
Point A '), the refrigeration cycle described above is circulated again.

【0015】以上、かかる冷凍空調装置においては、冷
媒の圧縮工程を2段階としたことで、実施の形態1同
様、流量制御手段における低圧化の際に失われていたエ
ネルギーを、蒸発器を通ることなく圧縮機に循環する冷
媒にて回収し、流量制御手段におけるエネルギーロスの
低減による効率UPが図られるとともに、圧縮機に要す
る動力を低減することができ、さらに効率が向上すると
いう利点がある。
As described above, in the refrigerating and air-conditioning apparatus, the refrigerant compression step is performed in two stages, so that the energy lost during the pressure reduction in the flow rate control means passes through the evaporator as in the first embodiment. There is an advantage that efficiency is improved by reducing the energy loss in the flow rate control means by recovering with the refrigerant that circulates in the compressor without any need, and the power required for the compressor can be reduced and the efficiency is further improved. .

【0016】上記実施の形態ではフルオロカーボン系ま
たは炭化水素系の冷媒を用いたものについて説明した
が、冷凍空調装置の冷媒として二酸化炭素を用いた場合
には、実施の形態1と同様に本発明の効果が特に顕著で
好適である。
In the above-mentioned embodiment, the one using the fluorocarbon type or hydrocarbon type refrigerant has been described. However, when carbon dioxide is used as the refrigerant of the refrigerating and air-conditioning apparatus, the present invention is the same as in the first embodiment. The effect is particularly remarkable and suitable.

【0017】実施の形態3 図7は本発明にかかる冷凍空調装置の構成を表す構成説
明図の一例で、圧縮機11、凝縮器12、第1流量制御
手段41、蒸発器16が冷媒配管で環状に順次接続され
ており、フルオロカーボン系または炭化水素系の冷媒が
循環する構成となっている。また、凝縮器12と第1流
量制御手段41の間には熱交換器40が設置され、さら
に凝縮器12と熱交換器40の間及び蒸発器16と圧縮
機11の間が第1バイパス配管42にて連結接続されて
いる。この第1バイパス配管42にはエゼクタ13及び
気液分離器14が設置され、さらに、気液分離器14、
第2流量制御手段43、熱交換器40及びエゼクタ13
が第2バイパス配管44にて接続されている。また、図
8はかかる冷凍空調装置の冷凍サイクルを説明するため
の圧力−エンタルピ線図であり、図8中に示されたaか
らkの各点は図7に記載された冷凍空調装置のaからk
の各点に対応し、各位置における圧力−エンタルピ状態
を表わすものである。
Embodiment 3 FIG. 7 is an example of a constitutional view showing the constitution of a refrigerating and air-conditioning apparatus according to the present invention, in which the compressor 11, the condenser 12, the first flow rate control means 41 and the evaporator 16 are refrigerant pipes. They are sequentially connected in a ring shape, and have a configuration in which a fluorocarbon-based or hydrocarbon-based refrigerant circulates. Further, a heat exchanger 40 is installed between the condenser 12 and the first flow rate control means 41, and further, the first bypass pipe is provided between the condenser 12 and the heat exchanger 40 and between the evaporator 16 and the compressor 11. It is connected and connected at 42. The ejector 13 and the gas-liquid separator 14 are installed in the first bypass pipe 42, and further, the gas-liquid separator 14,
Second flow rate control means 43, heat exchanger 40 and ejector 13
Are connected by the second bypass pipe 44. Further, FIG. 8 is a pressure-enthalpy diagram for explaining the refrigeration cycle of such a refrigerating and air-conditioning apparatus, and points a to k shown in FIG. 8 are points a to k of the refrigerating and air-conditioning apparatus shown in FIG. 7. To k
It represents the pressure-enthalpy state at each position corresponding to each point of.

【0018】以下、かかる冷凍空調装置の動作とその効
果に付き、図8に示した圧力−エンタルピ線図を参照し
つつ説明する。かかる冷凍空調装置においては、冷媒は
圧縮機11の出口で最も高い圧力およびエンタルピを有
している(図中a点)。次に、圧縮機11にて圧縮され
高温高圧状態となった冷媒は、凝縮器12に導かれて凝
縮され、圧力が一定のままエンタルピが低下する(図中
a点→b点)。凝縮器12出口部(図中b点)における
冷媒液の一部は、第1バイパス配管42に導入されエゼ
クタ13に到達し、エゼクタ13にて断熱膨張すること
により低温低圧の冷媒二相状態に変化する(図中b点→
f点。ここでf点はエゼクタにおける冷媒が断熱膨張し
た直後の位置を意味している)。低温低圧の二相状態に
変化した冷媒は、気液分離器14から第2流量制御手段
43及び熱交換器40を通ってエゼクタ13に導入され
る冷媒と混合され、エンタルピ及び圧力が増大する(図
中f点→g点→h点)。このエンタルピ及び圧力が増大
した冷媒は気液分離器14に導入されて気相と液相に分
離され、このうち冷媒蒸気は第1バイパス配管42を通
り、圧縮機11へと循環する(図中h点→e点)。ま
た、気液分離器14において液相となった冷媒(図中h
点→i点)は第2バイパス配管44を通り第2流量制御
手段43へと循環し、圧力が低減される(図中i点→j
点)。この低温低圧となった冷媒蒸気は、熱交換器40
にて凝縮器12から第1流量制御手段41へ流れる冷媒
と熱交換しエンタルピが増大する(図中j点→k点)。
このエンタルピが増大した冷媒は第2バイパス配管44
を通りエゼクタ13に導入され、上述のように凝縮器1
2を出て第1バイパス配管42を通ってエゼクタ13に
導入された高圧の冷媒と混合されエンタルピが低減し、
圧力が増大する(図中k点→g点→h点)。また、凝縮
器12を出た冷媒の残りは、熱交換器40においてエゼ
クタ13にて低温低圧となった冷媒と熱交換して冷却さ
れた後(図中b点→c点)、流量制御手段41にて減圧
され低温低圧の気液二相状態の冷媒となり(図中c点→
d点)蒸発器16に導入され,空気などと熱交換して気
化し圧縮機11に戻る(図中d点→e点)。そして、冷
媒は圧縮機11にて圧縮され、高温高圧状態となり(図
中e点→a点)、上述の冷凍サイクルを再び循環するこ
とになる。
The operation of the refrigerating and air-conditioning apparatus and its effects will be described below with reference to the pressure-enthalpy diagram shown in FIG. In such a refrigeration air conditioner, the refrigerant has the highest pressure and enthalpy at the outlet of the compressor 11 (point a in the figure). Next, the refrigerant compressed by the compressor 11 and brought into a high temperature and high pressure state is guided to the condenser 12 and condensed, and the enthalpy decreases with the pressure kept constant (point a → point b in the figure). Part of the refrigerant liquid at the outlet of the condenser 12 (point b in the figure) is introduced into the first bypass pipe 42, reaches the ejector 13, and undergoes adiabatic expansion in the ejector 13 to become a low-temperature low-pressure refrigerant two-phase state. Change (point b in the figure →
f point. Here, the point f means the position immediately after the adiabatic expansion of the refrigerant in the ejector). The low-temperature low-pressure two-phase refrigerant is mixed with the refrigerant introduced from the gas-liquid separator 14 into the ejector 13 through the second flow rate control means 43 and the heat exchanger 40, and the enthalpy and pressure increase ( (Point f → point g → point h). The refrigerant with increased enthalpy and pressure is introduced into the gas-liquid separator 14 and separated into a gas phase and a liquid phase, of which the refrigerant vapor circulates to the compressor 11 through the first bypass pipe 42 (in the figure). h point → e point). In addition, the refrigerant that has become a liquid phase in the gas-liquid separator 14 (h in the figure
The point → point i) circulates through the second bypass pipe 44 to the second flow rate control means 43, and the pressure is reduced (point i → j in the figure).
point). This low-temperature low-pressure refrigerant vapor is transferred to the heat exchanger 40.
At, the heat exchange with the refrigerant flowing from the condenser 12 to the first flow rate control means 41 causes the enthalpy to increase (point j → point k in the figure).
The refrigerant whose enthalpy has increased is the second bypass pipe 44.
Is introduced into the ejector 13 through the condenser 1 and the condenser 1 as described above.
2, which is mixed with the high-pressure refrigerant introduced into the ejector 13 through the first bypass pipe 42 to reduce the enthalpy,
The pressure increases (point k → point g → point h in the figure). Further, the rest of the refrigerant discharged from the condenser 12 is cooled by exchanging heat with the refrigerant having a low temperature and low pressure in the ejector 13 in the heat exchanger 40 (point b → c in the figure), and then the flow rate control means. It is decompressed at 41 to become a low-temperature low-pressure gas-liquid two-phase refrigerant (point c in the figure →
(Point d) The gas is introduced into the evaporator 16, exchanges heat with air or the like, vaporizes, and returns to the compressor 11 (point d → point e in the figure). Then, the refrigerant is compressed by the compressor 11 to be in a high temperature and high pressure state (point e → point a in the figure), and the above refrigeration cycle is circulated again.

【0019】以上、かかる冷凍空調装置においては、エ
ゼクタにて膨張された冷媒を気液分離器にて分離し、第
2流量制御手段にて再度膨張させ、冷媒をさらに低温低
圧化することにより、凝縮器から流量制御手段に循環す
る冷媒をより効率的に過冷却することができる。即ち、
主流冷媒ルートの流量制御手段における減圧時に失われ
ていたエネルギーを、第2バイパス流冷媒ルートを循環
する、より低温低圧な冷媒にて効率的に回収することに
より、流量制御手段におけるエネルギーロスの低減によ
る効率UPが図れ、実施の形態1および2と同様に効率
的な冷凍空調装置の運転が可能となる。
As described above, in such a refrigerating and air-conditioning apparatus, the refrigerant expanded by the ejector is separated by the gas-liquid separator and expanded again by the second flow rate control means to further reduce the temperature and pressure of the refrigerant, The refrigerant that circulates from the condenser to the flow rate control unit can be subcooled more efficiently. That is,
Energy lost in the flow rate control means of the mainstream refrigerant route is efficiently recovered by the lower temperature and low pressure refrigerant circulating in the second bypass flow refrigerant route, thereby reducing energy loss in the flow rate control means. As a result, the efficiency can be increased, and the refrigerating and air-conditioning apparatus can be operated efficiently as in the first and second embodiments.

【0020】上記実施の形態ではフルオロカーボン系ま
たは炭化水素系の冷媒を用いたものについて説明した
が、冷凍空調装置の冷媒として二酸化炭素を用いた場合
には、実施の形態1および2と同様に本発明の効果が特
に顕著で好適である。
In the above-mentioned embodiment, the case where the fluorocarbon-based or hydrocarbon-based refrigerant is used has been described. However, when carbon dioxide is used as the refrigerant of the refrigerating and air-conditioning apparatus, the same method as in the first and second embodiments is used. The effect of the invention is particularly remarkable and preferable.

【0021】[0021]

【発明の効果】以上、本発明にかかる冷凍空調装置は、
圧縮機、凝縮器、冷媒の圧力を低下させる流量制御手段
および蒸発器を冷媒が順次循環するよう連結した主流冷
媒ルートと、凝縮器の出口側から冷媒の一部を分岐し、
分岐した冷媒を膨張動力回収手段にて膨張させて圧縮機
の入口側に戻すバイパス流冷媒ルートと、バイパス流冷
媒ルートの膨張後の冷媒によって主流冷媒ルートにおけ
る流量制御手段の入口側の冷媒を冷却する熱交換器とを
備えたもので、凝縮器から流量制御手段へ供給される冷
媒を、膨張動力回収手段により低温化された冷媒により
過冷却することで流量制御手段におけるエネルギーロス
を低減することができ、高効率に稼動する冷凍空調装置
が実現できる。また、主流冷媒ルートにおいて、圧縮機
の出口側から凝縮器の入口側に第2凝縮器と第2圧縮機
を順次連結した場合には、冷媒の圧縮工程を2段階とす
ることにより圧縮機に要する動力が低減され、効率がよ
り向上し好適である。さらに膨張動力回収手段として膨
張機を用いた場合には冷媒の膨張を簡易かつ高効率に行
うことができさらに好適である。
As described above, the refrigerating and air-conditioning apparatus according to the present invention is
Compressor, condenser, flow rate control means for reducing the pressure of the refrigerant and a mainstream refrigerant route connected to the evaporator to sequentially circulate the refrigerant, and part of the refrigerant is branched from the outlet side of the condenser,
Cooling the refrigerant on the inlet side of the flow rate control means on the mainstream refrigerant route by the bypass flow refrigerant route that expands the branched refrigerant by the expansion power recovery means and returns it to the compressor inlet side, and the expanded refrigerant on the bypass flow refrigerant route And a heat exchanger for reducing the energy loss in the flow control means by supercooling the refrigerant supplied from the condenser to the flow control means by the refrigerant whose temperature has been lowered by the expansion power recovery means. Therefore, it is possible to realize a refrigerating air-conditioning system that operates with high efficiency. Further, in the mainstream refrigerant route, when the second condenser and the second compressor are sequentially connected from the outlet side of the compressor to the inlet side of the condenser, the refrigerant compression process is performed in two stages to make the compressor The required power is reduced and the efficiency is further improved, which is preferable. Furthermore, when an expander is used as the expansion power recovery means, the expansion of the refrigerant can be performed easily and highly efficiently, which is more preferable.

【0022】かかる冷凍空調装置は、圧縮機、凝縮器、
冷媒の圧力を低下させる第1流量制御手段および蒸発器
を冷媒が順次循環するよう連結した主流冷媒ルートと、
凝縮器の出口側から冷媒の一部を分岐し、分岐した冷媒
を膨張動力回収手段にて膨張させた後、膨張した冷媒を
気相及び液相に分離する気液分離器を通して圧縮機の入
口側に戻す第1バイパス流冷媒ルートと、気液分離器の
液相側から冷媒を分岐し、分岐した冷媒を第2流量制御
手段にて膨張させた後、膨張動力回収手段に戻す第2バ
イパス流冷媒ルートと、第2バイパス流冷媒ルートの膨
張後の冷媒によって主流冷媒ルートにおける流量制御手
段の入口側の冷媒を冷却する熱交換器とを備えた場合に
は、凝縮器から第1流量制御手段へ供給される冷媒を、
第2流量制御手段によりさらに低温かつ低圧力化された
冷媒を用いて過冷却することで第1流量制御手段におけ
るエネルギーロスをより効率よく低減するとともに、こ
の冷媒の冷却により回収したエネルギーを利用して冷媒
のエンタルピを増大させて膨張動力回収手段に導入し気
液分離器を通して圧縮機に戻すことにより圧縮機におけ
る運転効率を向上させることができ、さらに高効率に稼
動する冷凍空調装置が実現できる。また、膨張動力回収
手段としてエゼクタを用いた場合には、冷媒を低コスト
かつ効率的に膨張させることができ、好適である。
Such a refrigerating and air-conditioning system includes a compressor, a condenser,
A mainstream refrigerant route in which the first flow rate control means for reducing the pressure of the refrigerant and the evaporator are connected so that the refrigerant circulates sequentially;
A part of the refrigerant is branched from the outlet side of the condenser, the branched refrigerant is expanded by the expansion power recovery means, and then the inlet of the compressor is passed through a gas-liquid separator that separates the expanded refrigerant into a gas phase and a liquid phase. The first bypass flow refrigerant route returning to the side and the second bypass branching the refrigerant from the liquid phase side of the gas-liquid separator, expanding the branched refrigerant by the second flow rate control means, and then returning to the expansion power recovery means When a flow refrigerant route and a heat exchanger for cooling the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route with the expanded refrigerant of the second bypass flow refrigerant route are provided, the first flow rate control from the condenser The refrigerant supplied to the means,
By supercooling by using the refrigerant whose temperature and pressure are lowered by the second flow rate control means, the energy loss in the first flow rate control means is more efficiently reduced, and the energy recovered by cooling this refrigerant is used. By increasing the enthalpy of the refrigerant and introducing it into the expansion power recovery means and returning it to the compressor through the gas-liquid separator, the operating efficiency of the compressor can be improved, and a refrigerating and air-conditioning system that operates with high efficiency can be realized. . Moreover, when an ejector is used as the expansion power recovery means, the refrigerant can be expanded efficiently at low cost, which is preferable.

【0023】かかる冷凍空調装置は、冷媒が二酸化炭素
である場合には、流量制御手段によるロスが効果的に低
減でき、好適である。
Such a refrigerating and air-conditioning apparatus is suitable because the loss due to the flow rate control means can be effectively reduced when the refrigerant is carbon dioxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる冷凍空調装置の構成を示す構
成説明図である。
FIG. 1 is a configuration explanatory view showing a configuration of a refrigerating and air-conditioning apparatus according to the present invention.

【図2】 本発明にかかる冷凍空調装置に対応した圧力
−エンタルピ線図である。
FIG. 2 is a pressure-enthalpy diagram corresponding to the refrigerating and air-conditioning apparatus according to the present invention.

【図3】 二酸化炭素を冷媒として用いた場合の圧力−
エンタルピ線図である。
[Fig. 3] Pressure when carbon dioxide is used as a refrigerant-
It is an enthalpy diagram.

【図4】 フルオロカーボン系の冷媒を用いた場合の圧
力−エンタルピ線図である。
FIG. 4 is a pressure-enthalpy diagram when a fluorocarbon-based refrigerant is used.

【図5】 本発明にかかる冷凍空調装置の構成を示す構
成説明図である。
FIG. 5 is a configuration explanatory view showing a configuration of a refrigerating and air-conditioning apparatus according to the present invention.

【図6】 本発明にかかる冷凍空調装置に対応した圧力
−エンタルピ線図である。
FIG. 6 is a pressure-enthalpy diagram corresponding to the refrigerating and air-conditioning apparatus according to the present invention.

【図7】 本発明にかかる冷凍空調装置の構成を示す構
成説明図である。
FIG. 7 is a configuration explanatory view showing a configuration of a refrigerating and air-conditioning apparatus according to the present invention.

【図8】 本発明にかかる冷凍空調装置に対応した圧力
−エンタルピ線図である。
FIG. 8 is a pressure-enthalpy diagram corresponding to the refrigerating and air-conditioning apparatus according to the present invention.

【図9】 従来の冷凍装置の構成を示す構成説明図であ
る。
FIG. 9 is a configuration explanatory view showing a configuration of a conventional refrigeration system.

【符号の説明】 9 冷凍サイクル、11 圧縮機、12 凝縮器、13
エゼクタ、14 気液分離器、15 冷媒ポンプ、1
6 蒸発器、17 冷媒配管、40 熱交換器、41
流量制御手段(第1流量制御手段)、42 バイパス配
管(第1バイパス配管)、43 第2流量制御手段、4
4 第2バイパス配管、45 第2凝縮器、46 第2
圧縮機、50 35℃の等温線、51 等エントロピ
線、52 10℃の等温線、53 エネルギーロス、5
4 冷凍能力、60 35℃の等温線、61 等エント
ロピ線、62 10℃の等温線、63 エネルギーロ
ス、64 冷凍能力。
[Explanation of symbols] 9 refrigeration cycle, 11 compressor, 12 condenser, 13
Ejector, 14 gas-liquid separator, 15 refrigerant pump, 1
6 evaporator, 17 refrigerant piping, 40 heat exchanger, 41
Flow rate control means (first flow rate control means), 42 bypass piping (first bypass piping), 43 second flow rate control means, 4
4 2nd bypass piping, 45 2nd condenser, 46 2nd
Compressor, 50 35 ° C isotherm, 51 isentropic line, 52 10 ° C isotherm, 53 energy loss, 5
4 refrigerating capacity, 60 35 ° C isotherm, 61 isentropic curve, 62 10 ° C isotherm, 63 energy loss, 64 refrigerating capacity.

フロントページの続き (72)発明者 角田 昌之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 畝崎 史武 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continued front page    (72) Inventor Masayuki Tsunoda             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. (72) Inventor Fumitake Unezaki             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、冷媒の圧力を低下させ
る流量制御手段および蒸発器を冷媒が順次循環するよう
連結した主流冷媒ルートと、前記凝縮器の出口側から冷
媒の一部を分岐し、分岐した冷媒を膨張動力回収手段に
て膨張させて前記圧縮機の入口側に戻すバイパス流冷媒
ルートと、当該バイパス流冷媒ルートの膨張後の冷媒に
よって前記主流冷媒ルートにおける前記流量制御手段の
入口側の冷媒を冷却する熱交換器とを備えた冷凍空調装
置。
1. A mainstream refrigerant route connecting a compressor, a condenser, a flow control means for reducing the pressure of the refrigerant and an evaporator so that the refrigerant circulates sequentially, and a part of the refrigerant is branched from the outlet side of the condenser. The bypass flow refrigerant route that expands the branched refrigerant by the expansion power recovery means and returns it to the inlet side of the compressor, and the flow rate control means in the main flow refrigerant route by the expanded refrigerant of the bypass flow refrigerant route. A refrigerating and air-conditioning apparatus comprising: a heat exchanger that cools the refrigerant on the inlet side.
【請求項2】 前記主流冷媒ルートにおいて、前記圧縮
機の出口側から前記凝縮器の入口側に第2凝縮器と第2
圧縮機が順次連結されてなる請求項1に記載の冷凍空調
装置。
2. In the mainstream refrigerant route, a second condenser and a second condenser are provided from an outlet side of the compressor to an inlet side of the condenser.
The refrigerating and air-conditioning apparatus according to claim 1, wherein the compressors are sequentially connected.
【請求項3】 前記膨張動力回収手段が膨張機である請
求項1または2に記載の冷凍空調装置。
3. The refrigerating and air-conditioning apparatus according to claim 1, wherein the expansion power recovery means is an expander.
【請求項4】 圧縮機、凝縮器、冷媒の圧力を低下させ
る第1流量制御手段および蒸発器を冷媒が順次循環する
よう連結した主流冷媒ルートと、前記凝縮器の出口側か
ら冷媒の一部を分岐し、分岐した冷媒を膨張動力回収手
段にて膨張させた後、膨張した冷媒を気相及び液相に分
離する気液分離器を通して前記圧縮機の入口側に戻す第
1バイパス流冷媒ルートと、前記気液分離器の液相側か
ら冷媒を分岐し、分岐した冷媒を第2流量制御手段にて
膨張させた後、前記膨張動力回収手段に戻す第2バイパ
ス流冷媒ルートと、当該第2バイパス流冷媒ルートの膨
張後の冷媒によって前記主流冷媒ルートにおける前記流
量制御手段の入口側の冷媒を冷却する熱交換器とを備え
た冷凍空調装置。
4. A mainstream refrigerant route in which a compressor, a condenser, a first flow rate control means for reducing the pressure of the refrigerant, and an evaporator are connected so that the refrigerant circulates sequentially, and a part of the refrigerant from the outlet side of the condenser. And a first bypass flow refrigerant route for returning the branched refrigerant to the inlet side of the compressor through a gas-liquid separator for separating the expanded refrigerant into a gas phase and a liquid phase after the expanded refrigerant is expanded by the expansion power recovery means. A second bypass flow refrigerant route for branching the refrigerant from the liquid phase side of the gas-liquid separator, expanding the branched refrigerant by the second flow rate control means, and then returning it to the expansion power recovery means; (2) A refrigerating and air-conditioning apparatus comprising: a heat exchanger that cools the refrigerant on the inlet side of the flow rate control means in the mainstream refrigerant route by the expanded refrigerant in the bypass flow refrigerant route.
【請求項5】 前記膨張動力回収手段が、エゼクタであ
る請求項4に記載の冷凍空調装置。
5. The refrigerating and air conditioning apparatus according to claim 4, wherein the expansion power recovery means is an ejector.
【請求項6】 前記冷媒が二酸化炭素である請求項1か
ら5のいずれかに記載の冷凍空調装置。
6. The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerant is carbon dioxide.
JP2001276025A 2001-09-12 2001-09-12 Refrigeration air conditioner Expired - Lifetime JP4442068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276025A JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276025A JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2003083620A true JP2003083620A (en) 2003-03-19
JP4442068B2 JP4442068B2 (en) 2010-03-31

Family

ID=19100794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276025A Expired - Lifetime JP4442068B2 (en) 2001-09-12 2001-09-12 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4442068B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416232A1 (en) * 2002-10-31 2004-05-06 Matsushita Electric Industrial Co., Ltd. High pressure determining method in a refrigeration cycle system
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
WO2008013105A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Air conditioner
JP2008139014A (en) * 2006-12-01 2008-06-19 Commissariat A L'energie Atomique Vapor compression device and method for executing transcritical cycle relative thereto
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
JP2009512190A (en) * 2005-10-05 2009-03-19 アメリカン パワー コンバージョン コーポレイション Sub-cooling unit for cooling system and method
JP2009299911A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration device
US8181480B2 (en) 2006-09-11 2012-05-22 Daikin Industries, Ltd. Refrigeration device
ITUA20163047A1 (en) * 2016-04-11 2016-07-11 Giuseppe Verde OPERATOR THERMAL MACHINE

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854283B2 (en) 2002-10-31 2005-02-15 Matsushita Electric Industrial Co., Ltd. Determining method of high pressure of refrigeration cycle apparatus
EP1416232A1 (en) * 2002-10-31 2004-05-06 Matsushita Electric Industrial Co., Ltd. High pressure determining method in a refrigeration cycle system
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
JP2007003171A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector operated cycle
US8347641B2 (en) 2005-10-05 2013-01-08 American Power Conversion Corporation Sub-cooling unit for cooling system and method
CN103002711B (en) * 2005-10-05 2015-07-22 施耐德电气公司 Sub-cooling unit for cooling system and method
KR101391344B1 (en) * 2005-10-05 2014-05-26 슈나이더 일렉트릭 아이티 코포레이션 Sub-cooling unit for cooling system and method
JP2009512190A (en) * 2005-10-05 2009-03-19 アメリカン パワー コンバージョン コーポレイション Sub-cooling unit for cooling system and method
CN103002711A (en) * 2005-10-05 2013-03-27 美国能量变换公司 Sub-cooling unit for cooling system and method
WO2008013105A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Air conditioner
US8181480B2 (en) 2006-09-11 2012-05-22 Daikin Industries, Ltd. Refrigeration device
JP2008139014A (en) * 2006-12-01 2008-06-19 Commissariat A L'energie Atomique Vapor compression device and method for executing transcritical cycle relative thereto
JP2008215773A (en) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp Air conditioner
JP2009299911A (en) * 2008-06-10 2009-12-24 Hitachi Appliances Inc Refrigeration device
ITUA20163047A1 (en) * 2016-04-11 2016-07-11 Giuseppe Verde OPERATOR THERMAL MACHINE
WO2017179083A1 (en) * 2016-04-11 2017-10-19 Verde Giuseppe Thermal operating machine

Also Published As

Publication number Publication date
JP4442068B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US7818978B2 (en) Vapour compression device and method of performing an associated transcritical cycle
EP1939548A1 (en) Co2 refrigerator
JP2001221517A (en) Supercritical refrigeration cycle
US20120234026A1 (en) High efficiency refrigeration system and cycle
JP5049889B2 (en) Refrigeration equipment
JP2002228275A (en) Supercritical steam compression refrigerating cycle
CN111114244B (en) Device for climate control system of motor vehicle and method for operating the device
JP2000161805A (en) Refrigeration equipment
KR20160091107A (en) Cooling Cycle Apparatus for Refrigerator
KR101811957B1 (en) Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
JP4971877B2 (en) Refrigeration cycle
JP4442068B2 (en) Refrigeration air conditioner
WO2009107617A1 (en) Refrigeration device
JP2002022298A (en) Refrigeration cycle apparatus and control method thereof
CN111795452B (en) Air conditioning system
JP2009228972A (en) Refrigerating device
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP5895662B2 (en) Refrigeration equipment
TWI851069B (en) System for use in single-stage cooling cycle and single stage cooling method
JP2007057156A (en) Refrigeration cycle
KR101724226B1 (en) Natural gas liquefaction process
KR101743296B1 (en) A refrigerant system
EP2806234B1 (en) Refrigeration device
JP4326004B2 (en) Air conditioner
JP4814823B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term