JP2003088347A - High-performance freezing apparatus and high- performance freezing method - Google Patents
High-performance freezing apparatus and high- performance freezing methodInfo
- Publication number
- JP2003088347A JP2003088347A JP2001281848A JP2001281848A JP2003088347A JP 2003088347 A JP2003088347 A JP 2003088347A JP 2001281848 A JP2001281848 A JP 2001281848A JP 2001281848 A JP2001281848 A JP 2001281848A JP 2003088347 A JP2003088347 A JP 2003088347A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- frozen
- electric field
- alternating electric
- highly functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007710 freezing Methods 0.000 title claims abstract description 39
- 230000008014 freezing Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005684 electric field Effects 0.000 claims abstract description 76
- 230000003068 static effect Effects 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 238000005057 refrigeration Methods 0.000 claims description 25
- 230000001939 inductive effect Effects 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 235000013305 food Nutrition 0.000 abstract description 21
- 238000003860 storage Methods 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 22
- 238000001816 cooling Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000006378 damage Effects 0.000 description 10
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000013611 frozen food Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000020995 raw meat Nutrition 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/30—Quick freezing
Landscapes
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、食材、食品や生体
等の被冷凍物の冷凍方法に係り、とくに、被冷凍物の細
胞の破壊を抑制し、被冷凍物の鮮度が維持できる、高鮮
度高品質の冷凍品が得られる冷凍方法およびその装置に
関する。なお、本発明でいう、高機能性冷凍とは、被冷
凍物の細胞の破壊を抑制し、鮮度が維持でき、高鮮度高
品質の冷凍品が得られる冷凍方法をいうものとする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of refrigerating a frozen material such as foodstuffs, foods and living organisms, and in particular, it can suppress the destruction of cells of the frozen material and maintain the freshness of the frozen material. The present invention relates to a freezing method and an apparatus for obtaining frozen products of high quality and freshness. The high-functional freezing referred to in the present invention refers to a freezing method in which the destruction of cells of the frozen object can be suppressed, the freshness can be maintained, and a frozen product of high freshness and high quality can be obtained.
【0002】[0002]
【従来の技術】従来から、食材、食品や生体等の被冷凍
物の鮮度を長期にわたって維持して保存する方法として
冷凍保存がある。しかし、従来の冷凍保存方法では、被
冷凍物の色調の変化、味覚の劣化、ドリップ (解凍時の
液汁の流出)の発生等の品質の低下や鮮度の低下を完全
に防止することができなかった。食材、食品や生体等の
被冷凍物には、それらを構成する蛋白質等の分子に拘束
された結合水、およびこれら分子に拘束されずに被冷凍
物内を自由に移動することができる自由水からなる、多
量の水分が含まれている。冷凍時には、この自由水が凍
結し、氷の結晶として成長する。この氷の結晶が粗大化
すると、被冷凍物の細胞が破壊され、食材、食品等では
解凍時にドリップが発生し、生体の元の状態への復元が
困難となる。2. Description of the Related Art Conventionally, there has been freezing storage as a method for maintaining and maintaining the freshness of foods, foods, and living things to be frozen for a long period of time. However, the conventional frozen storage method cannot completely prevent the deterioration of quality such as the change in color tone of the frozen object, the deterioration of taste, the occurrence of drip (flow of juice during thawing) and the deterioration of freshness. It was Foods, foods, living organisms, and other items to be frozen have bound water bound to molecules such as proteins that compose them, and free water that can freely move within the objects to be frozen without being bound by these molecules. Consists of a large amount of water. During freezing, this free water freezes and grows as ice crystals. When the ice crystals become coarse, the cells of the frozen object are destroyed, and dripping occurs in foods, foods, etc., and it becomes difficult to restore the living body to its original state.
【0003】氷結晶の粗大化は、冷凍時に氷結晶生成温
度域を通過する時間が緩慢である場合に発生する。そこ
で、被冷凍物を液体冷媒に浸漬、あるいは被冷凍物に液
体冷媒を散布して、かかる氷結晶生成温度域を速やかに
通過させるべく急速冷却し、氷の結晶の粗大化を抑制す
る方法が考えられる。しかし、被冷凍物を液体冷媒に浸
漬、あるいは被冷凍物に液体冷媒を散布する方法では、
表層は急速冷却が可能となるが、表層に凍結層が形成さ
れる。被冷凍物内部の冷却は、表面からの熱伝達により
律速されるが、表層の凍結層の存在により、内部への熱
伝達が阻害され、内部の冷却が遅れるため、被冷凍物の
内部では氷結晶の粗大化が起きてしまい、氷結晶の粗大
化を防止できないという問題があった。The coarsening of ice crystals occurs when the ice crystals pass through the ice crystal formation temperature region for a slow time during freezing. Therefore, a method of suppressing the coarsening of ice crystals by immersing the frozen object in a liquid refrigerant, or by spraying the liquid refrigerant on the frozen object, rapidly cooling so as to quickly pass through the ice crystal formation temperature range, is proposed. Conceivable. However, in the method of immersing the frozen object in the liquid refrigerant, or spraying the liquid refrigerant to the frozen object,
Although the surface layer can be rapidly cooled, a frozen layer is formed on the surface layer. The cooling of the inside of the frozen object is limited by the heat transfer from the surface, but the presence of the frozen layer on the surface hinders the heat transfer to the inside and delays the cooling of the inside, so that the inside of the frozen object is frozen. There is a problem that the crystal is coarsened and the ice crystal cannot be prevented from coarsening.
【0004】このような問題に対し、例えば、WO/ 0
1-24647 A1号公報には、冷凍対象物に一方向の磁場を作
用させつつ、冷凍対象物の周囲温度をー30〜ー100 ℃に
冷却して急速冷凍するステップと、あるいはさらに冷凍
対象物を1〜5m/sの冷風で冷却するとともに、冷風
に可聴周波数帯の音波を重畳するステップと、あるいは
さらに冷凍対象物に電場を作用させるステップと、を備
えている超急速冷凍方法が提案されている。To address such a problem, for example, WO / 0
1-24647 A1 discloses a step of rapidly freezing by cooling an ambient temperature of a frozen object to -30 to -100 ° C while applying a unidirectional magnetic field to the frozen object, or further frozen object. And a step of superimposing a sound wave in the audible frequency band on the cold air, or a step of further applying an electric field to the object to be frozen are proposed. ing.
【0005】[0005]
【発明が解決しようとする課題】WO/ 01-24647 A1号
公報に記載された技術によれば、被冷凍物の細胞破壊が
抑制され、冷凍後も生に近い味覚で食品を食することが
可能となり、冷凍保存された食品の品質はかなり改善さ
れたといえるが、しかしながら、この技術によっても、
一部の食品では、被冷凍物の細胞破壊を完全に防止する
ことができず、冷凍保存された食品の品質低下が認めら
れるという問題を残していた。According to the technique described in WO / 01-24647 A1, it is possible to suppress the cell destruction of the frozen material and eat the food with a taste close to that of the raw material even after freezing. It is possible, and it can be said that the quality of frozen food has been improved considerably, however, with this technology,
With some foods, it was not possible to completely prevent cell destruction of the material to be frozen, leaving a problem that the quality of frozen foods was observed to deteriorate.
【0006】本発明は、このような実情に鑑みてなされ
たものであり、あらゆる種類の食品、食材あるいは生体
の細胞を破壊することなく冷凍保存することが可能な、
高機能性冷凍装置および高機能性冷凍方法を提案するこ
とを目的とする。The present invention has been made in view of the above circumstances, and it is possible to store frozen foods without destroying all kinds of foods, foods or living cells.
It is an object of the present invention to propose a highly functional refrigerating apparatus and a highly functional refrigerating method.
【0007】[0007]
【課題を解決するための手段】本発明者は、上記した課
題を達成するために、冷凍時に、被冷凍物の細胞破壊を
抑制する方策について鋭意検討した。その結果、本発明
者は、氷結晶の生成する速度が大きい温度域である最大
氷結晶生成温度域を急速冷却することに加えて、氷結晶
の核生成を抑制することが、氷結晶の粗大化防止に有効
であり、被冷凍物の細胞破壊を抑制できることに思い至
った。さらに研究を重ねた結果、本発明者は、被冷凍物
を急速冷却するとともに、被冷凍物に交番電界を作用さ
せることにより、氷結晶の核生成を抑制でき、−10℃以
下まで氷結晶核の生成が起こらず過冷却状態が実現でき
るという知見を得た。とくに、交番電界として周波数:
50Hz〜5MHz の可変周波数交番電界を作用させること
が、氷結晶核の生成抑制には有効であるという結論を得
た。[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventor diligently studied a method for suppressing cell destruction of a frozen material during freezing. As a result, the present inventor can suppress the nucleation of ice crystals in addition to rapidly cooling the maximum ice crystal formation temperature range, which is a temperature range in which the rate of ice crystal formation is high. It was found that it is effective in preventing liquefaction and can suppress cell destruction of frozen objects. As a result of further research, the present inventor rapidly cools the frozen object, and by applying an alternating electric field to the frozen object, the nucleation of ice crystals can be suppressed, and the ice crystal nuclei can be cooled to −10 ° C. or lower. It was found that a supercooled state can be realized without the generation of In particular, the frequency as an alternating electric field:
It was concluded that applying a variable frequency alternating electric field of 50Hz to 5MHz is effective in suppressing the formation of ice crystal nuclei.
【0008】また、被冷凍物に交番電界と磁場とを同時
に作用させると、被冷凍物に含まれる自由水が、食品や
生体の基質である蛋白質や糖質と水和して水和高次構造
体の分子を形成する結合水に移行し、これにより自由水
が減少し、氷結晶の生成確率が減少して、氷結晶の核生
成をさらに抑制することができるという知見も得た。ま
た、本発明者は、被冷凍物を冷却する冷気に、イオン風
を重畳させることにより、熱伝達が促進され被冷凍物の
冷却速度が顕著に向上することを見いだした。Further, when an alternating electric field and a magnetic field are simultaneously applied to the substance to be frozen, free water contained in the substance to be frozen is hydrated with proteins and sugars that are substrates of foods and living bodies, and higher hydration is performed. It was also found that the water is transferred to bound water forming the molecules of the structure, which reduces free water, reduces the probability of ice crystal formation, and further suppresses the nucleation of ice crystals. Further, the present inventor has found that the heat transfer is promoted and the cooling rate of the frozen object is significantly improved by superimposing the ionic wind on the cold air for cooling the frozen object.
【0009】本発明は、上記した知見に基づき、さらに
検討を加えてして完成されたものである。すなわち、本
発明の要旨はつぎの通りである。、
(1)冷凍庫と、 該冷凍庫の内部空間に収容されている
被冷凍物に交番電界を作用させる交番電界発生手段と、
を備えることを特徴とする高機能性冷凍装置。
(2)(1)において、前記交番電界が、周波数:50Hz
〜5MHz の可変周波数交番電界であることを特徴とする
高機能性冷凍装置。
(3)(2)において、前記可変周波数交番電界が、連
続的あるいはステップ状に周波数が変化する交番電界で
あることを特徴とする高機能性冷凍装置。
(4)(1)ないし(3)のいずれかにおいて、前記交
番電界発生手段に加え、前記被冷凍物に磁場を作用させ
る磁場発生手段を備えることを特徴とする高機能性冷凍
装置。
(5)(4)において、前記磁場発生手段が、静磁場を
発生する静磁場発生装置および/または変動磁場を発生
する変動磁場発生装置であることを特徴とする高機能性
冷凍装置。
(6)(5)において、前記静磁場発生装置が永久磁石
であり、前記変動磁場発生装置が誘電コイルであること
を特徴とする高機能性冷凍装置。
(7)(5)において、前記静磁場の強さが1〜10000G
aus であり、前記変動磁場の強さが1〜1000Gausである
ことを特徴とする高機能性冷凍装置。
(8)(1)ないし(7)のいずれかにおいて、前記冷
凍庫内の冷気を、前記被冷凍物に送風する送風手段と、
該送風手段により送風される冷気にイオン風を重畳する
イオン風発生装置と、を備えることを特徴とする高機能
性冷凍装置。
(9)(8)において、前記イオン風発生装置が、管状
の正極と、該管状の正極の内部に装入された線状の負極
と、これら正極と負極の間に電圧を印加する電圧発生装
置とを有すことを特徴とする高機能性冷凍装置。
(10)(9)において、前記管状の正極および線状の
負極が、ステンレス鋼製または銀めっきあるいは金めっ
きを施した鋼製であることを特徴とする高機能性冷凍装
置。
(11)(1)ないし(10)のいずれかにおいて、前
記冷凍庫の内壁面が、遠赤外放射吸収能を有する部材で
構成されたことを特徴とする高機能性冷凍装置。
(12)(1)ないし(11)のいずれかにおいて、前
記交番電界発生手段が、前記被冷凍物を挟み込むように
互いに対向して配設される少なくとも1対の電極と、該
電極間に交番電界を印加する交番電界発生装置とを有す
ることを特徴とする高機能性冷凍装置。
(13)(12)において、前記電極は、ステンレス鋼
製または銀めっきあるいは金めっきを施した鋼製平板電
極とし、該平板電極には複数の突起が付与されたことを
特徴とする高機能性冷凍装置。
(14)(6)において、前記永久磁石が、前記冷凍庫
の外壁面または前記被冷凍物を保持する保持具裏側に設
けられ、前記誘電コイルが、前記被冷凍物を保持する保
持具にまたがるようにあるいは前記被冷凍物を保持する
保持具を挟むように、あるいは前記被冷凍物を保持する
保持具を囲むようにして、かつ冷気を妨げないように設
けられることを特徴とする高機能性冷凍装置。
(15)(1)ないし(14)のいずれかにおいて、前
記冷凍庫内の冷気の通路に、 高熱伝導性材料からなるハ
ニカム構造体を備えることを特徴とする高機能性冷凍装
置。
(16)冷凍庫の内部空間に収容されている被冷凍物
に、交番電界を作用させながら、水分の凍結を抑制しつ
つ所定の温度まで急速冷却したのち、該所定の温度で瞬
時に冷凍し、被冷凍物を高鮮度に保持することを特徴と
する高機能性冷凍方法。
(17)(16)において、前記交番電界が、周波数:
50Hz〜5MHz の可変周波数交番電界であることを特徴と
する高機能性冷凍方法。
(18)(17)において、前記周波数を、連続的に変
化させることを特徴とする高機能性冷凍方法。
(19)(15)ないし(18)のいずれかにおいて、
前記交番電界に加え、磁場を作用させることを特徴とす
る記載の高機能性冷凍方法。
(20)(19)において、前記磁場が、静磁場および
/または変動磁場であることを特徴とする請求項17に記
載の高機能性冷凍方法。
(21)(20)において、前記静磁場の強さが1〜10
000Gaus であり、前記変動磁場の強さが1〜1000Gausで
あることを特徴とする高機能性冷凍方法。
(22)(16)ないし(21)のいずれかにおいて、
前記冷凍庫内の冷気にイオン風を重畳させることを特徴
とする高機能性冷凍方法。
(23)(16)ないし(22)のいずれかにおいて、
前記冷凍庫の内壁面が、遠赤外放射吸収能を有する部材
で構成されたことを特徴とする高機能性冷凍方法。
(24)(16)ないし(23)のいずれかにおいて、
前記冷凍庫内の冷気を、高熱伝導性材料からなるハニカ
ム構造体内に通気させることを特徴とする高機能性冷凍
方法。The present invention was completed by further studies based on the above findings. That is, the gist of the present invention is as follows. (1) a freezer, and an alternating electric field generating means for applying an alternating electric field to an object to be frozen stored in the internal space of the freezer,
A high-performance refrigeration apparatus comprising: (2) In (1), the alternating electric field has a frequency of 50 Hz.
A highly functional refrigeration system characterized by a variable frequency alternating electric field of up to 5 MHz. (3) In the high-performance refrigeration system of (2), the variable frequency alternating electric field is an alternating electric field whose frequency changes continuously or stepwise. (4) In any one of (1) to (3), in addition to the alternating electric field generating means, there is provided a magnetic field generating means for causing a magnetic field to act on the object to be frozen, which is a highly functional refrigerating apparatus. (5) In the high-performance refrigeration system of (4), the magnetic field generating means is a static magnetic field generator that generates a static magnetic field and / or a variable magnetic field generator that generates a variable magnetic field. (6) In the high-performance refrigeration system of (5), the static magnetic field generator is a permanent magnet, and the variable magnetic field generator is an inductive coil. (7) In (5), the strength of the static magnetic field is 1 to 10,000 G
aus, and the strength of the fluctuating magnetic field is 1 to 1000 Gaus. (8) In any one of (1) to (7), a blowing unit that blows the cold air in the freezer to the object to be frozen,
An ion wind generator that superimposes an ion wind on the cool air blown by the blower means. (9) In (8), the ion wind generator generates a voltage by applying a tubular positive electrode, a linear negative electrode inserted inside the tubular positive electrode, and a voltage between the positive electrode and the negative electrode. A high-performance refrigeration system having a device. (10) In the high-performance refrigeration system of (9), the tubular positive electrode and the linear negative electrode are made of stainless steel or silver-plated or gold-plated steel. (11) In the high-performance refrigeration system of any one of (1) to (10), the inner wall surface of the freezer is formed of a member having a far infrared radiation absorption ability. (12) In any one of (1) to (11), the alternating electric field generating means has at least one pair of electrodes arranged to face each other so as to sandwich the object to be frozen, and an alternating electrode between the electrodes. A highly functional refrigerating apparatus, comprising: an alternating electric field generator for applying an electric field. (13) In (12), the electrode is a flat plate electrode made of stainless steel or a steel plate plated with silver or gold, and a plurality of protrusions are provided on the flat plate electrode, which is highly functional. Refrigeration equipment. (14) In (6), the permanent magnet is provided on the outer wall surface of the freezer or on the back side of a holder that holds the object to be frozen, and the inductive coil straddles the holder that holds the object to be frozen. Or a high-performance refrigerating apparatus, which is provided so as to sandwich a holder for holding the frozen object, or to surround the holder for holding the frozen object and not to interfere with cold air. (15) In the high-performance refrigeration apparatus of any one of (1) to (14), a cold air passage in the freezer is provided with a honeycomb structure made of a highly heat-conductive material. (16) The object to be frozen housed in the internal space of the freezer is rapidly cooled to a predetermined temperature while suppressing freezing of water while applying an alternating electric field, and then immediately frozen at the predetermined temperature, A highly functional freezing method, characterized in that an object to be frozen is kept at high freshness. (17) In (16), the alternating electric field has a frequency:
A highly functional refrigeration method characterized by a variable frequency alternating electric field of 50 Hz to 5 MHz. (18) A high-performance refrigeration method as set forth in (17), characterized in that the frequency is continuously changed. (19) In any one of (15) to (18),
In addition to the alternating electric field, a magnetic field is made to act, and the highly functional refrigeration method described in the above. (20) In (19), the high-performance refrigeration method according to claim 17, wherein the magnetic field is a static magnetic field and / or a fluctuating magnetic field. (21) In (20), the strength of the static magnetic field is 1 to 10
000 Gaus and the strength of the varying magnetic field is 1 to 1000 Gaus. (22) In any of (16) to (21),
A high-performance freezing method, characterized in that ion air is superposed on the cold air in the freezer. (23) In any of (16) to (22),
A highly functional freezing method, wherein an inner wall surface of the freezer is formed of a member having a far infrared radiation absorbing ability. (24) In any of (16) to (23),
A highly functional freezing method, characterized in that cold air in the freezer is ventilated into a honeycomb structure made of a highly heat-conductive material.
【0010】[0010]
【発明の実施の形態】本発明の高機能性冷凍装置の一例
を図1に示す。本発明の高機能性冷凍装置は、冷凍庫1
と、 該冷凍庫1の内部空間に収容されている被冷凍物2
に交番電界を作用させる交番電界発生手段3とを備え
る。交番電界発生手段3は、被冷凍物2を挟み込むよう
に互いに対向して配設される少なくとも1対の電極3a,3
b と、該一対の電極3a,3b 間に交番電界を印加する交番
電界発生装置3cとを有し、1対の電極3a,3b を介し、被
冷凍物2に交番電界31を作用させる。本発明では、交番
電界発生装置3cは、周波数発生装置を有し、周波数可変
とすることが好ましく、また、増幅回路を有し、所望の
電界強さ(100 V/cm 〜5000V/cm )を前記した少なく
とも一対の電極に印加することが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows an example of a highly functional refrigerating apparatus of the present invention. The highly functional refrigerating apparatus of the present invention is a freezer 1.
And an object to be frozen 2 stored in the internal space of the freezer 1.
And an alternating electric field generating means 3 for causing an alternating electric field to act. The alternating electric field generating means 3 includes at least one pair of electrodes 3a, 3 arranged to face each other so as to sandwich the frozen object 2 therebetween.
b and an alternating electric field generator 3c for applying an alternating electric field between the pair of electrodes 3a, 3b, and an alternating electric field 31 is applied to the object to be frozen 2 via the pair of electrodes 3a, 3b. In the present invention, the alternating electric field generating device 3c preferably has a frequency generating device and is variable in frequency. Further, the alternating electric field generating device 3c has an amplifying circuit and has a desired electric field strength (100 V / cm to 5000 V / cm). It is preferable to apply the voltage to at least a pair of electrodes described above.
【0011】なお、図1には一対の電極のみを示すが、
冷凍庫1の内部空間に収容される被冷凍物2が、トレイ
等で高さ方向に2段以上に積まれる場合には、各段それ
ぞれの被冷凍物2を挟み込むようにそれぞれ一対の電極
を配設することが好ましい。使用する電極は、特に限定
されないが、ステンレス鋼製または銀めっきあるいは金
めっきを施した鋼製平板電極とすることが均一に交番電
界を被冷凍物に付与する観点から、あるいは耐食性と衛
生上の観点から好ましく、また、平板電極には複数の突
起を付与することが、電界エネルギーの放出効率と均一
な電界を与える観点から好ましい。Although only a pair of electrodes is shown in FIG. 1,
When the objects to be frozen 2 housed in the internal space of the freezer 1 are stacked in two or more stages in the height direction on a tray or the like, a pair of electrodes are arranged so as to sandwich the objects to be frozen 2 in each stage. It is preferable to install it. The electrode to be used is not particularly limited, but a flat plate electrode made of stainless steel or silver-plated or gold-plated steel is uniformly applied to the object to be frozen from the viewpoint of corrosion resistance and hygiene. It is preferable from the viewpoint, and it is preferable to provide the plate electrode with a plurality of protrusions from the viewpoint of emitting the electric field energy and providing a uniform electric field.
【0012】本発明では、冷凍庫の内部空間に収容され
ている被冷凍物に、前記した交番電界発生手段により交
番電界を作用させて、水分の凍結を抑制しつつ所定の温
度まで急速冷却したのち、交番電界の作用を停止し、該
所定の温度で瞬時に冷凍する。所定の温度としては−20
〜−40℃の間の温度とすることが好ましい。本発明で
は、作用させる交番電界31は、50Hz〜5MHz の可変周波
数交番電界とすることが好ましい。なお、より好ましく
は250kHz 、3MHz である。生成しかかった氷結晶核を
消滅させるには、必要な電界エネルギーを氷結晶核に有
効に吸収される必要がある。本発明者は、なかでもこれ
に有効な電界エネルギーが周波数250kHz、3MHz の波長
帯にあることを見いだした。In the present invention, the object to be frozen contained in the internal space of the freezer is subjected to an alternating electric field by the above-mentioned alternating electric field generating means to be rapidly cooled to a predetermined temperature while suppressing freezing of water. , The action of the alternating electric field is stopped, and the product is instantly frozen at the predetermined temperature. -20 as the predetermined temperature
It is preferable that the temperature is between -40 ° C. In the present invention, the alternating electric field 31 to be applied is preferably a variable frequency alternating electric field of 50 Hz to 5 MHz. It is more preferable that the frequencies are 250 kHz and 3 MHz. In order to extinguish the ice crystal nuclei that are about to form, the necessary electric field energy must be effectively absorbed by the ice crystal nuclei. The present inventor has found out that the effective electric field energy is in the wavelength band of frequencies 250 kHz and 3 MHz.
【0013】被冷凍物2に可変周波数交番電界31を作用
させながら冷却すると、氷結晶生成温度域で生成しかけ
た氷結晶核に交番電界が作用して、これら生成しかかっ
た氷結晶核を消滅させ、−10℃以下の低温域まで氷結晶
の核生成が抑制された過冷却状態が実現できる。さら
に、氷結晶の生成が抑制されることにより、被冷凍物の
表層の凍結が抑制されて、冷気を内部へ効果的に伝達で
きるようになり、被冷凍物の冷却速度を顕著に増加させ
ることができる。When the object to be frozen 2 is cooled while the variable frequency alternating electric field 31 is applied, the alternating electric field acts on the ice crystal nuclei that are about to be generated in the ice crystal forming temperature range, and these ice crystal nuclei that are about to be generated disappear. As a result, a supercooled state in which nucleation of ice crystals is suppressed can be realized up to a low temperature range of -10 ° C or lower. Further, by suppressing the formation of ice crystals, the freezing of the surface layer of the frozen object can be suppressed, and the cold air can be effectively transmitted to the inside, which significantly increases the cooling rate of the frozen object. You can
【0014】このように、被冷凍物に交番電界を作用さ
せることにより、被冷凍物である、あらゆる種類の食
品、生体等の細胞破壊を防止して冷凍保存することがで
きるようになる。なお、作用させる交番電界は、周波数
50Hz〜5MHz の電界エネルギーを連続的に走査するか、
あるいは周波数を段階的 (ステップ状)に変化させた電
界エネルギーとすることが有効である。−2〜−10℃の
温度帯では周波数250kHzで、また、−30〜ー60℃の温度
帯では周波数3MHz で、氷結晶を消滅させる有効な電界
エネルギーが特に大きくなる。したがって、周波数250k
Hz、3MHz のいずれかの電界エネルギーを単独で付与す
ることも有効である。As described above, by applying an alternating electric field to the object to be frozen, it is possible to prevent the cells to be frozen of all kinds of foods, organisms, etc., which are objects to be frozen, and to store them in a frozen state. The alternating electric field to be applied is the frequency
Continuously scan the electric field energy from 50Hz to 5MHz,
Alternatively, it is effective to use electric field energy with the frequency changed stepwise. The effective electric field energy for extinguishing ice crystals becomes particularly large at a frequency of 250 kHz in the temperature range of −2 to −10 ° C. and at a frequency of 3 MHz in the temperature range of −30 to −60 ° C. Therefore, the frequency 250k
It is also effective to apply electric field energy of either Hz or 3MHz independently.
【0015】本発明の冷凍装置で使用する交番電界発生
装置3cは、温度センサーからの情報で周波数を調整でき
る構成としてもよい。本発明では、上記した交番電界発
生手段3に加え、被冷凍物に磁場を作用させる磁場発生
手段6を備えることが好ましい。被冷凍物に、交番電界
と磁場とを同時に作用させることにより、被冷凍物に含
まれる自由水が、食品や生体の基質である蛋白質や糖質
と水和して水和高次構造体の分子を形成する結合水に移
行し、このため自由水が減少して、氷結晶の生成確率が
減少し、上記した氷結晶の核生成をさらに抑制すること
ができる。これにより、冷気を被冷凍物の内部へさらに
効果的に伝達できるため、被冷凍物の冷却速度を顕著に
増加することができる。The alternating electric field generating device 3c used in the refrigerating apparatus of the present invention may be constructed so that the frequency can be adjusted by the information from the temperature sensor. In the present invention, in addition to the alternating electric field generating means 3 described above, it is preferable to include a magnetic field generating means 6 for applying a magnetic field to the frozen object. By simultaneously acting an alternating electric field and a magnetic field on the frozen object, the free water contained in the frozen object is hydrated with the protein or sugar that is a substrate of the food or the living body to form a hydrated higher-order structure. It moves to bound water that forms molecules, which reduces free water, reduces the probability of ice crystal formation, and further suppresses the nucleation of ice crystals described above. As a result, the cold air can be more effectively transmitted to the inside of the frozen object, so that the cooling rate of the frozen object can be significantly increased.
【0016】本発明では、磁場発生手段6は、静磁場を
発生する静磁場発生装置6aおよび/または変動磁場を発
生する変動磁場発生装置6bとすることが好ましい。静磁
場発生装置6aとしては永久磁石が、変動磁場発生装置6b
としては誘電コイルが好ましい。静磁場発生装置6aとし
ての永久磁石は、冷凍庫の内部空間に載置される被冷凍
物2に静磁場が作用するように、冷凍庫1の側壁に極性
を揃えて設けられことが好ましい。図1では、鉛直方向
に静磁場が作用するように静磁場発生装置6aが冷凍庫1
の側壁に極性を揃えて設けられた状態が示されている
が、静磁場の方向は水平方向でもよいことはいうまでも
ない。なお、静磁場の強さは1〜10000Gausとすること
が好ましい。静磁場の強さが、1Gaus未満では地磁気に
影響されて静磁場の効果の判別がつきにくくなる。一
方、永久磁石の製造限界を考慮すると、静磁場の上限は
10000Gaus とすることが好ましい。また、静磁場発生装
置6aとしての永久磁石は、被冷凍物1に静磁場が作用す
るように極性を揃えて、被冷凍物1を保持する保持具21
の裏側に設けてもよい。なお、被冷凍物2を保持する保
持具21としては、トレイ、網、ベルト等が例示される。In the present invention, the magnetic field generating means 6 is preferably a static magnetic field generating device 6a for generating a static magnetic field and / or a variable magnetic field generating device 6b for generating a variable magnetic field. A permanent magnet is used as the static magnetic field generator 6a, and a variable magnetic field generator 6b is used.
For this, an inductive coil is preferable. The permanent magnet as the static magnetic field generator 6a is preferably provided with the same polarity on the side wall of the freezer 1 so that the static magnetic field acts on the frozen object 2 placed in the internal space of the freezer. In FIG. 1, the static magnetic field generator 6a is installed in the freezer 1 so that the static magnetic field acts in the vertical direction.
It is shown that the sidewalls are provided with the same polarity, but it goes without saying that the direction of the static magnetic field may be horizontal. The strength of the static magnetic field is preferably 1 to 10,000 Gaus. If the strength of the static magnetic field is less than 1 Gaus, it will be difficult to discriminate the effect of the static magnetic field due to the influence of the geomagnetism. On the other hand, considering the manufacturing limits of permanent magnets, the upper limit of the static magnetic field is
It is preferably 10000 Gaus. In addition, the permanent magnet as the static magnetic field generator 6a has a holder 21 that holds the object to be frozen 1 by aligning the polarities so that the static magnetic field acts on the object to be frozen 1.
It may be provided on the back side of. A tray, a net, a belt or the like is exemplified as the holder 21 for holding the frozen object 2.
【0017】変動磁場発生装置6bとしての誘電コイル
は、一定周波数の交流電流を流すことにより、磁場の方
向が周期的に変動する変動磁場を形成することができ
る。誘電コイルに流す交流電流は、商用周波数:50〜60
Hzの交流電流とすることが好ましく、変動磁場の強さ
は、被冷凍物によって適正値が存在し、これを考慮する
と、1〜1000Gausとすることが好ましい。変動磁場の強
さが1Gaus未満では、地磁気の効果との判別がつきにく
く、一方1000Gausを超えると装置が高価格となり経済上
問題となる。The inductive coil as the fluctuating magnetic field generator 6b can form a fluctuating magnetic field in which the direction of the magnetic field fluctuates periodically by passing an alternating current of a constant frequency. AC current flowing through the induction coil is commercial frequency: 50-60
An alternating current of Hz is preferable, and the strength of the fluctuating magnetic field has an appropriate value depending on the object to be frozen. Considering this, the strength is preferably 1 to 1000 Gaus. If the strength of the fluctuating magnetic field is less than 1 Gaus, it is difficult to distinguish it from the effect of geomagnetism, while if it exceeds 1000 Gaus, the device becomes expensive and becomes an economic problem.
【0018】誘電コイルは、冷凍庫の側壁に設けてもよ
いが、変動磁場が被冷凍物2に効果的に作用するよう
に、被冷凍物2により近接して、被冷凍物2を保持する
保持具にまたがるようにあるいは被冷凍物2を保持する
保持具を挟むように、あるいは被冷凍物2を保持する保
持具を囲むようにして、かつ冷気を妨げないように設け
ることが好ましい。The inductive coil may be provided on the side wall of the freezer, but it holds the object to be frozen 2 closer to the object to be frozen 2 so that the fluctuating magnetic field effectively acts on the object to be frozen 2. It is preferable that it is provided so as to straddle the tools, sandwich the holder for holding the frozen object 2, or surround the holder for holding the frozen object 2 so as not to interfere with cold air.
【0019】被冷凍物2を保持する保持具を囲むように
誘電コイルを配設する場合には、図1、図3に示すよう
に、誘電コイルの巻線が被冷凍物2および保持する保持
具を囲み、かつ冷気の動きを妨げないように、誘電コイ
ル6bを配設することがとくに好ましい。誘電コイル6b
を、図1、図3に示すような配置で被冷凍物2により近
接して設置することにより、変動磁場が被冷凍物に均一
にしかも有効に作用するようになり、氷結晶の核生成を
さらに抑制することができる。When the dielectric coil is arranged so as to surround the holder for holding the frozen object 2, as shown in FIGS. 1 and 3, the winding of the dielectric coil holds the frozen object 2 and the holding object. It is particularly preferable to dispose the inductive coil 6b so as to surround the tool and not to hinder the movement of cold air. Inductive coil 6b
1 and 3 are placed closer to the object to be frozen 2 in the arrangement as shown in FIGS. 1 and 3, the fluctuating magnetic field acts uniformly and effectively on the object to be frozen, and the nucleation of ice crystals is prevented. It can be further suppressed.
【0020】図1、図3では変動磁場が、被冷凍物2の
水平方向に作用するように、誘電コイルを配設している
が、本発明ではこれに限定されるものではない。被冷凍
物に作用する変動磁場の方向を、静磁場と平行になるよ
うにしても静磁場に直交する方向にしてもよいことはい
うまでもない。本発明では、被冷凍物の細胞破壊を防止
するために、上記したような交番電界あるいはさらに磁
場を被冷凍物に作用させて、氷結晶核の生成を抑制する
ことに加えてさらに、氷結晶が粗大化する速度が大き
い、最大氷結晶生成温度域を速やかに通過させるべく急
速に冷却することが、好ましい。そのため、本発明で
は、被冷凍物を冷却する冷気にイオン風を重畳させる、
イオン風発生装置4を備えることが好ましい。イオン風
発生装置は、被冷凍物を冷却する冷気が循環する場所で
あれば、その設置場所は限定されない。1 and 3, the inductive coil is arranged so that the fluctuating magnetic field acts in the horizontal direction of the object to be frozen 2, but the present invention is not limited to this. It goes without saying that the direction of the fluctuating magnetic field acting on the frozen object may be parallel to or perpendicular to the static magnetic field. In the present invention, in order to prevent cell destruction of the frozen object, an alternating electric field or a magnetic field as described above is applied to the frozen object to suppress generation of ice crystal nuclei, It is preferable to cool rapidly so as to quickly pass through the maximum ice crystal formation temperature range in which the rate of coarsening is high. Therefore, in the present invention, the ionic wind is superposed on the cold air for cooling the frozen object,
It is preferable to include the ion wind generator 4. The installation location of the ion wind generator is not limited as long as the cold air for cooling the frozen object circulates.
【0021】被冷凍物を冷却する冷気は、冷凍手段5に
より発生させられ、冷凍庫1内部に設けられた送風手段
6により送風され被冷凍物2に供給される。本発明で
は、この送風手段6により送風された冷気に、イオン風
発生装置4により発生されたマイナスの空気イオンから
なるイオン風を重畳させることが好ましい。イオン風を
重畳させた冷気を被冷凍物に供給すると、被冷凍物への
直接熱伝達を促進し、被冷凍物からの抜熱が促進され被
冷凍物の急速な温度低下が助長される。Cold air for cooling the frozen object is generated by the freezing means 5, blown by the blowing means 6 provided inside the freezer 1, and supplied to the frozen object 2. In the present invention, it is preferable that the cool air blown by the blower 6 is superposed with the ion wind composed of the negative air ions generated by the ion wind generator 4. When the cold air on which the ionic wind is superposed is supplied to the frozen object, the direct heat transfer to the frozen object is promoted, the heat removal from the frozen object is promoted, and the rapid temperature decrease of the frozen object is promoted.
【0022】送風手段6により送風され被冷凍物2に供
給される冷気は、対流熱伝達を促進させるため、1〜5
m/sの風速とすることが好ましい。冷気の風速が1m
/s未満では、対流熱伝達が不十分となり急速な温度降
下を達成できなくなる。一方、冷気の風速が5m/sを
超えると、被冷凍物の表面に形成される水膜が蒸発し
て、被冷凍物が酸化されやすくなる。The cold air blown by the blower means 6 and supplied to the object to be frozen 2 is 1 to 5 in order to promote convective heat transfer.
The wind speed is preferably m / s. The wind speed of cold air is 1m
If it is less than / s, convective heat transfer will be insufficient and rapid temperature drop cannot be achieved. On the other hand, when the wind speed of the cool air exceeds 5 m / s, the water film formed on the surface of the frozen object is evaporated and the frozen object is easily oxidized.
【0023】イオン風発生装置4は、図2に示すよう
に、管状の正極4aと、この管状の正極4aの内部に装入さ
れた線状の負極4bと、これら正極4aと負極4bの間に電圧
を印加する電圧発生装置4cとを有することが好ましい。
正極および負極の間には、10000 V/cm 以下, 好ましく
は7000V/cm 以下の電圧を印加することが好ましい。こ
れにより、冷気 (空気)は、負極でマイナスにイオン化
される。マイナスのイオンは正極に引付けられるため、
イオン化していな 空気も同伴して引付けられることに
よりイオン風が発生する。As shown in FIG. 2, the ion wind generator 4 includes a tubular positive electrode 4a, a linear negative electrode 4b inserted inside the tubular positive electrode 4a, and a space between the positive electrode 4a and the negative electrode 4b. It is preferable to have a voltage generator 4c for applying a voltage to the.
It is preferable to apply a voltage of 10000 V / cm or less, preferably 7000 V / cm or less between the positive electrode and the negative electrode. As a result, the cold air (air) is negatively ionized at the negative electrode. Since negative ions are attracted to the positive electrode,
Ion wind is generated when air that is not ionized is also attracted.
【0024】発明のイオン風発生装置4では、管状の正
極4aと、その内部に装入した線状の負極4bとを組み合わ
せることが好ましく、冷気へのイオン風重畳が効率よく
行える。なお、管状の正極4aおよび線状の負極4bは、同
一材料で作製することが好ましく、ステンレス鋼製また
は銀めっきあるいは金めっきを施した鋼製とすることが
腐食防止および衛生上の観点からより好ましい。In the ion wind generator 4 of the present invention, it is preferable to combine the tubular positive electrode 4a and the linear negative electrode 4b charged therein, so that the ion wind can be superposed on the cool air efficiently. The tubular positive electrode 4a and the linear negative electrode 4b are preferably made of the same material, and it is preferable to use stainless steel or silver-plated or gold-plated steel from the viewpoint of corrosion prevention and hygiene. preferable.
【0025】また、本発明では、冷気を発生する冷凍手
段5は、圧縮機53、凝縮器54、膨張弁52、冷却パイプ
(蒸発器)51とが連結され冷媒が循環する、通常公知の
冷凍サイクルがいずれも適用できる。なお、膨張弁52、
冷却パイプ (蒸発器)51は冷凍庫1の内部空間に設置さ
れ、冷気の発生に寄与する。また、被冷凍物の急速な温
度低下を助長するために、本発明では、冷凍庫の内壁面
を、遠赤外放射吸収能を有する部材で構成することが好
ましい。本発明では、内壁面に遠赤外放射吸収能を有す
る材料を内壁面にコーティングしてもよく、また、内壁
面にプレート状の遠赤外放射吸収能を有する部材を配設
してもよい。これにより、被冷凍物から放射される輻射
熱(遠赤外線)を速やかに吸収することができ、被冷凍
物の温度低下を速やかに達成する助けとなる。内壁面に
配設された遠赤外放射吸収能を有する部材により、被冷
凍物の温度と内壁面との温度差ΔTの4乗に比例した被
冷凍物の熱が吸収され、被冷凍物の急速冷却に大きく寄
与できる。なお、本発明でいう、遠赤外放射吸収能を有
する部材は、 5〜1000μmの波長帯での遠赤外線放射吸
収率が95%以上である材料をいうものとし、例えば、シ
リカ、 アルミナ、酸化鉄等のセラミックスが例示でき
る。Further, in the present invention, the refrigerating means 5 for generating cold air is the compressor 53, the condenser 54, the expansion valve 52, the cooling pipe.
Any conventionally known refrigeration cycle in which the (evaporator) 51 is connected and the refrigerant circulates can be applied. The expansion valve 52,
The cooling pipe (evaporator) 51 is installed in the internal space of the freezer 1 and contributes to the generation of cold air. In addition, in the present invention, it is preferable that the inner wall surface of the freezer is made of a member having a far infrared radiation absorption ability in order to promote a rapid temperature decrease of the frozen object. In the present invention, the inner wall surface may be coated with a material having far-infrared radiation absorbing ability, and a plate-like member having far-infrared radiation absorbing ability may be arranged on the inner wall surface. . Thereby, the radiant heat (far-infrared ray) radiated from the frozen object can be promptly absorbed, and it helps to achieve the temperature reduction of the frozen object promptly. The member having far-infrared radiation absorption ability disposed on the inner wall surface absorbs heat of the target material to be frozen, which is proportional to the fourth power of the temperature difference ΔT between the temperature of the target material and the inner wall surface. It can greatly contribute to rapid cooling. In the present invention, the member having far infrared radiation absorption ability refers to a material having a far infrared radiation absorption rate of 95% or more in a wavelength band of 5 to 1000 μm, and examples thereof include silica, alumina, and oxide. Ceramics such as iron can be exemplified.
【0026】また、さらに、本発明では、冷凍庫内の冷
気の通路に高熱伝導性材料からなるハニカム構造体56を
配設することが好ましい。冷気を、ハニカム構造体56に
通気することにより、冷風の温度低下と均一な整流を助
長することができる。ハニカム構造体56は、冷気が通気
できる構造であればよく、その構造はとくに限定されな
いが、断面を格子状とし長手方向に通気可能とした構造
体とすることがより好ましい。また、ハニカム構造体の
設置場所は、冷気の通路であれば特に限定されないが、
図1に示すように、イオン風発生装置4の出側 (冷風通
路の後段)に配設することが、より一層均一に温度低下
した冷風とする観点からは好ましい。なお、ハニカム構
造体を構成する高熱伝導性材料としては、ステンレス鋼
を用いることが好ましい。また、ハニカム構造体の大き
さは、 冷凍庫の大きさに合わせて適宜決定することが望
ましい。Further, in the present invention, it is preferable to dispose the honeycomb structure 56 made of a highly heat-conductive material in the passage of cold air in the freezer. By aerating the cool air into the honeycomb structure 56, it is possible to promote the temperature reduction of the cold air and uniform rectification. The honeycomb structure 56 may have any structure as long as it allows cold air to pass therethrough, and the structure thereof is not particularly limited, but it is more preferable to use a structure having a lattice-shaped cross section and allowing ventilation in the longitudinal direction. Further, the installation location of the honeycomb structure is not particularly limited as long as it is a passage of cold air,
As shown in FIG. 1, it is preferable to dispose the ion wind generator 4 on the outlet side (after the cold air passage) from the viewpoint of more uniformly cooling the cold air. In addition, it is preferable to use stainless steel as the high thermal conductivity material forming the honeycomb structure. Moreover, it is desirable that the size of the honeycomb structure is appropriately determined according to the size of the freezer.
【0027】なお、図1には、とくに図示されないが、
冷凍庫1の外郭壁と内壁の間には、断熱部材が配設され
ることはいうまでもない。また、図1にはラック式冷凍
装置の例を示したが、本発明の冷凍装置はこれに限定さ
れるものではなく、トンネル式、スパイラル式等の通常
上公知の冷凍装置に適用できることはいうまでもない。Although not particularly shown in FIG. 1,
It goes without saying that a heat insulating member is provided between the outer wall and the inner wall of the freezer 1. Although an example of the rack type refrigerating apparatus is shown in FIG. 1, the refrigerating apparatus of the present invention is not limited to this, and it can be applied to generally known refrigerating apparatuses such as tunnel type and spiral type. There is no end.
【0028】[0028]
【実施例】図1に示す本発明の高機能性冷凍装置 (ラッ
ク式フリーザー)を用いて、被冷凍物2として食材(鶏
生肉、マグロ)を保持具 (トレイ)21に載置して冷凍庫
1内の内部空間に収容し、冷凍手段5を作用させて冷凍
した。冷凍庫1の内壁には、遠赤外線吸収能を有する部
材(シリカーアルミナー酸化鉄セラミックス)を配設し
た。なお、使用した冷凍装置の仕様は、大きさ:高さ1.
5m×幅1.5m×長さ2.5m、冷凍コンプレッサー:10HP、冷
媒:R22とした。[Embodiment] Using the highly functional freezing apparatus (rack type freezer) of the present invention shown in FIG. 1, foods (raw chicken meat, tuna) are placed on a holder (tray) 21 as an object to be frozen 2 and a freezer. It was housed in the internal space of 1 and frozen by operating the freezing means 5. On the inner wall of the freezer 1, a member (silica-alumina-iron oxide ceramics) having far-infrared absorbing ability was arranged. The specifications of the refrigeration system used are size: height 1.
5 m × width 1.5 m × length 2.5 m, refrigeration compressor: 10 HP, refrigerant: R22.
【0029】冷凍にあたっては、交番電界発生手段3を
利用して交番電界を作用させ、あるいはさらに静磁場発
生装置6a (永久磁石)および変動磁場発生装置6b (誘電
コイル)を利用して静磁場および変動磁場を作用させ、
あるいはさらにイオン風発生装置4を利用して冷気にイ
オン風を重畳させ、あるいはさらに冷気をステンレス鋼
で構成された、口径10×10mm、長さ100mm の断面格子状
構造のハニカム構造体に通気した。なお、被冷凍物2を
保持した保持具(トレイ) 21は、図1に示すように、交
番電界発生手段の電極間に配置した。In freezing, the alternating electric field generating means 3 is used to act the alternating electric field, or the static magnetic field generator 6a (permanent magnet) and the variable magnetic field generator 6b (dielectric coil) are used to generate a static magnetic field and Applying a fluctuating magnetic field,
Alternatively, the ion wind generator 4 is further used to superimpose the ion wind on the cool air, or the cool air is ventilated to a honeycomb structure made of stainless steel and having a cross-sectional lattice-like structure with a diameter of 10 × 10 mm and a length of 100 mm. . The holder (tray) 21 holding the frozen object 2 was arranged between the electrodes of the alternating electric field generating means, as shown in FIG.
【0030】なお、交番電界発生手段3の電極として、
3mm高さの突起を10mm間隔に付与したステンレス鋼製突
起付き平板電極を用いた。また、イオン風発生装置4
は、正極としてステンレス鋼製パイプ (直径20mmφ×長
さ50mm)を、負極として0.5mmφのステンレス鋼線材を
用い、イオン発生のために5000V/cm の電圧を印加し
た。As an electrode of the alternating electric field generating means 3,
A flat plate electrode with protrusions made of stainless steel with protrusions having a height of 3 mm provided at intervals of 10 mm was used. Also, the ion wind generator 4
As for the positive electrode, a stainless steel pipe (diameter 20 mmφ × length 50 mm) was used as the positive electrode, and a 0.5 mmφ stainless steel wire was used as the negative electrode, and a voltage of 5000 V / cm 2 was applied to generate ions.
【0031】また、交番電界は、(1)周波数:250kHz
の電界エネルギー、(2)周波数:3MHz の電界エネル
ギー、(3)50Hz〜5MHz 範囲で連続的に周波数を変化
した電界エネルギー、の3通りで作用させた。なお、電
界強度は150 V/cm とし、電極間距離を100mm とした。
比較として、交番電界を作用させない場合も実施した。
被冷凍物に作用させた電界、磁場、 イオン風の条件は、
表1に示す。The alternating electric field has (1) frequency: 250 kHz
And (2) frequency: 3 MHz electric field energy, and (3) electric field energy with continuously changing frequency in the range of 50 Hz to 5 MHz. The electric field strength was 150 V / cm, and the distance between the electrodes was 100 mm.
As a comparison, it was carried out also when no alternating electric field was applied.
The conditions of the electric field, magnetic field, and ion wind applied to the frozen object are
It shows in Table 1.
【0032】冷凍にあたっては、被冷凍物の目標芯温度
を−20℃、−40℃とした。なお、被冷凍物には熱電対を
設置し芯温度を計測した。芯温度が0℃から−20℃ある
いは−40℃に到達するまでの所要時間を、従来の急速冷
凍の所要時間と比較して冷凍能を評価した。芯温度が0
℃から−20℃あるいは−40℃に到達するまでの所要時間
が、従来の急速冷凍による所要時間を基準として、その
基準と同等の場合を△、基準より1〜20%短縮される場
合を□、20〜50%短縮される場合を○、50%以上短縮さ
れる場合を◎として表示した。In freezing, the target core temperature of the object to be frozen was set to -20 ° C and -40 ° C. A thermocouple was installed on the frozen object to measure the core temperature. The time required for the core temperature to reach -20 ° C or -40 ° C from 0 ° C was compared with the time required for conventional quick freezing to evaluate the freezing capacity. Core temperature is 0
The time required to reach -20 ° C or -40 ° C from ℃ is based on the time required for conventional rapid freezing, △ when it is equivalent to that standard, and □ when it is 1 to 20% shorter than the standard. , 20 to 50% reduction is indicated as ○, and 50% or more reduction is indicated as ◎.
【0033】冷凍後、その温度で3ヶ月間保管し、10℃
の流水で解凍し, 冷凍物の品質を調査した。品質の評価
は、細胞の破壊がみられず、 元の生のままの色目、香
り、食味が再現され、極めて優秀な品質を◎、細胞の破
壊が殆どみられず、元の生に近い色目、香り、食味が得
られ、優秀な品質を○、細胞の破壊が少しみられるがド
リップが少なく食味良好で、良好な品質を□、細胞が破
壊されドリップが多く、色目、香り、食味が劣る、品質
不良を×とした。After freezing, store at that temperature for 3 months at 10 ° C.
It was thawed under running water and the quality of frozen products was investigated. The quality was evaluated by the fact that no cell destruction was observed, the original raw color, scent, and taste were reproduced, and the quality was extremely excellent ◎, almost no cell destruction was observed, and the color was close to the original color. Aroma and taste are obtained, excellent quality is ○, cells are slightly broken, but there is little drip and good taste is good, good quality is □, cells are destroyed and there is a lot of drip, color tone, aroma and taste are inferior The poor quality was rated as x.
【0034】なお、総合評価は、劣る:×、良し:□、
優れる:○、極めて優秀:◎とした。得られた結果を表
1に示す。The overall evaluation is inferior: ×, good: □,
Excellent: ○, extremely excellent: ◎. The results obtained are shown in Table 1.
【0035】[0035]
【表1】 [Table 1]
【0036】本発明例は、いずれも全食材において細胞
が破壊されず, 味覚の低下は全くみられない。これに対
し、交番電界が作用されない比較例では、細胞破壊が認
められ味覚が低下している。なお、上記した鶏肉、マグ
ロ以外の、魚介類、生肉、あるいはこれら以外の食材に
ついても、本発明によれば、同様の効果がみられた。In all of the examples of the present invention, cells were not destroyed in all food materials, and taste deterioration was not observed at all. On the other hand, in the comparative example in which the alternating electric field is not applied, cell destruction is recognized and the taste is deteriorated. According to the present invention, the same effect was observed for seafood, raw meat other than chicken and tuna described above, and food materials other than these.
【0037】[0037]
【発明の効果】以上, 詳述したように本発明によれば、
対流熱伝達が促進され急速冷却することができ、さらに
氷結晶核の生成を低温まで抑制して瞬時に冷凍すること
ができ、あらゆる種類の食品、食材あるいは生体の細胞
を破壊することなく冷凍保存できる高機能性冷凍が可能
となり、産業上格段の効果を奏する。As described above in detail, according to the present invention,
Convective heat transfer is promoted, rapid cooling is possible, and the formation of ice crystal nuclei can be suppressed to a low temperature for instant freezing, and frozen storage without destroying all kinds of foods, foods or living cells High-performance refrigeration that can be performed becomes possible, producing a remarkable effect in industry.
【図1】本発明の高機能性冷凍装置の一例を模式的に示
す概略説明図である。FIG. 1 is a schematic explanatory view schematically showing an example of a highly functional refrigerating apparatus of the present invention.
【図2】本発明のイオン風発生装置の一例を模式的に示
す概略断面図である。FIG. 2 is a schematic cross-sectional view schematically showing an example of the ion wind generator of the present invention.
【図3】本発明の変動磁場発生装置の一例を模式的に示
す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing an example of the variable magnetic field generator of the present invention.
1 冷凍庫 2 被冷凍物 21 保持具 3 交番電界発生手段 3a,3b 電極 3c 交番電界発生装置 31 交番電界の向き 4 イオン風発生装置 4a 正極 4b 負極 4c 電位発生装置 5 冷凍手段 51 冷却コイル 52 膨張弁 53 圧縮機 54 凝縮器 55 送風手段 56 ハニカム構造体 6 磁場発生手段 6a 静磁場発生装置 (永久磁石) 6b 変動磁場発生装置 (誘電コイル) 1 freezer 2 Items to be frozen 21 Holder 3 Alternating electric field generating means 3a, 3b electrodes 3c alternating electric field generator 31 Direction of alternating electric field 4 Ion wind generator 4a positive electrode 4b negative electrode 4c potential generator 5 Freezing means 51 cooling coil 52 Expansion valve 53 compressor 54 condenser 55 Blower 56 Honeycomb structure 6 Magnetic field generating means 6a Static magnetic field generator (permanent magnet) 6b Fluctuating magnetic field generator (inductive coil)
Claims (23)
れている被冷凍物に交番電界を作用させる交番電界発生
手段と、を備えることを特徴とする高機能性冷凍装置。1. A highly functional refrigerating apparatus comprising: a freezer; and an alternating electric field generating means for causing an alternating electric field to act on an object to be frozen contained in an internal space of the freezer.
の可変周波数交番電界であることを特徴とする請求項1
に記載の高機能性冷凍装置。2. The alternating electric field has a frequency of 50 Hz to 5 MHz.
2. The variable frequency alternating electric field according to claim 1,
The high-performance refrigeration apparatus described in.
凍物に磁場を作用させる磁場発生手段を備えることを特
徴とする請求項1または2に記載の高機能性冷凍装置。3. The highly functional refrigerating apparatus according to claim 1, further comprising magnetic field generating means for causing a magnetic field to act on the object to be frozen, in addition to the alternating electric field generating means.
静磁場発生装置および/または変動磁場を発生する変動
磁場発生装置であることを特徴とする請求項3に記載の
高機能性冷凍装置。4. The highly functional refrigerating apparatus according to claim 3, wherein the magnetic field generating means is a static magnetic field generating device that generates a static magnetic field and / or a variable magnetic field generating device that generates a variable magnetic field. .
前記変動磁場発生装置が誘電コイルであることを特徴と
する請求項4に記載の高機能性冷凍装置。5. The static magnetic field generator is a permanent magnet,
The highly functional refrigerating apparatus according to claim 4, wherein the variable magnetic field generator is an inductive coil.
り、前記変動磁場の強さが1〜1000Gausであることを特
徴とする請求項4に記載の高機能性冷凍装置。6. The highly functional refrigerating apparatus according to claim 4, wherein the strength of the static magnetic field is 1 to 10000 Gaus and the strength of the fluctuating magnetic field is 1 to 1000 Gaus.
送風する送風手段と、該送風手段により送風される冷気
にイオン風を重畳するイオン風発生装置と、を備えるこ
とを特徴とする請求項1ないし6のいずれかに記載の高
機能性冷凍装置。7. An air blower for blowing the cool air in the freezer to the object to be frozen, and an ion wind generator for superimposing ion wind on the cool air blown by the blower. The highly functional refrigerating device according to claim 1.
と、該管状の正極の内部に装入された線状の負極と、こ
れら正極と負極の間に電圧を印加する電圧発生装置とを
有すことを特徴とする請求項7に記載の高機能性冷凍装
置。8. The ion wind generator comprises a tubular positive electrode, a linear negative electrode inserted inside the tubular positive electrode, and a voltage generator for applying a voltage between the positive electrode and the negative electrode. The high-performance refrigeration system according to claim 7, wherein the high-performance refrigeration system is provided.
テンレス鋼製または銀めっきあるいは金めっきを施した
鋼製であることを特徴とする請求項8に記載の高機能性
冷凍装置。9. The high-performance refrigerating apparatus according to claim 8, wherein the tubular positive electrode and the linear negative electrode are made of stainless steel or silver-plated or gold-plated steel.
収能を有する部材で構成されたことを特徴とする、請求
項1ないし9のいずれかに記載の高機能性冷凍装置。10. The high-performance refrigerating apparatus according to claim 1, wherein an inner wall surface of the freezer is made of a member having a far infrared radiation absorbing ability.
物を挟み込むように互いに対向して配設される少なくと
も1対の電極と、該電極間に交番電界を印加する交番電
界発生装置とを有することを特徴とする請求項1ないし
10のいずれかに記載の高機能性冷凍装置。11. The alternating electric field generating means comprises at least one pair of electrodes arranged to face each other so as to sandwich the object to be frozen, and an alternating electric field generating device for applying an alternating electric field between the electrodes. Claim 1 thru | or 1 characterized by having.
The high-performance refrigeration apparatus according to any one of 10.
めっきあるいは金めっきを施した鋼製平板電極とし、該
平板電極には複数の突起が付与されたことを特徴とする
請求項11に記載の高機能性冷凍装置。12. The electrode according to claim 11, wherein the electrode is a stainless steel plate electrode or a steel plate electrode plated with silver or gold, and the plate electrode is provided with a plurality of protrusions. High-performance refrigeration equipment.
または前記被冷凍物を保持する保持具裏側に設けられ、
前記誘電コイルが、前記被冷凍物を保持する保持具にま
たがるようにあるいは前記被冷凍物を保持する保持具を
挟むように、あるいは前記被冷凍物を保持する保持具を
囲むようにして、かつ冷気を妨げないように設けられる
ことを特徴とする請求項5に記載の高機能性冷凍装置。13. The permanent magnet is provided on the outer wall surface of the freezer or on the back side of a holder for holding the object to be frozen,
The inductive coil straddles the holder for holding the frozen object, or sandwiches the holder for holding the frozen object, or surrounds the holder for holding the frozen object, and cools the air. The high-performance refrigeration system according to claim 5, wherein the high-performance refrigeration system is provided so as not to interfere.
導性材料からなるハニカム構造体を備えることを特徴と
する請求項1ないし13に記載の高機能性冷凍装置。14. The highly functional refrigerating apparatus according to claim 1, wherein a honeycomb structure made of a highly heat-conductive material is provided in a passage for cold air in the freezer.
冷凍物に、交番電界を作用させながら、水分の凍結を抑
制しつつ所定の温度まで急速冷却したのち、該所定の温
度で瞬時に冷凍し、被冷凍物を高鮮度に保持することを
特徴とする高機能性冷凍方法。15. The object to be frozen stored in the internal space of the freezer is rapidly cooled to a predetermined temperature while suppressing freezing of water while applying an alternating electric field, and then is instantly frozen at the predetermined temperature. And, a highly functional freezing method, characterized in that the object to be frozen is maintained at a high degree of freshness.
z の可変周波数交番電界であることを特徴とする請求項
15に記載の高機能性冷凍方法。16. The alternating electric field has a frequency of 50 Hz to 5 MH.
A variable frequency alternating electric field of z.
The highly functional freezing method described in 15.
とを特徴とする請求項16に記載の高機能性冷凍方法。17. The highly functional refrigerating method according to claim 16, wherein the frequency is continuously changed.
ることを特徴とする請求項15ないし17のいずれかに記載
の高機能性冷凍方法。18. The highly functional refrigerating method according to claim 15, wherein a magnetic field is applied in addition to the alternating electric field.
動磁場であることを特徴とする請求項18に記載の高機能
性冷凍方法。19. The highly functional refrigerating method according to claim 18, wherein the magnetic field is a static magnetic field and / or a fluctuating magnetic field.
あり、前記変動磁場の強さが1〜1000Gausであることを
特徴とする請求項19に記載の高機能性冷凍方法。20. The highly functional refrigerating method according to claim 19, wherein the strength of the static magnetic field is 1 to 10000 Gaus, and the strength of the fluctuating magnetic field is 1 to 1000 Gaus.
させることを特徴とする請求項15ないし20のいずれかに
記載の高機能性冷凍方法。21. The highly functional refrigerating method according to claim 15, wherein ion air is superposed on the cool air in the freezer.
収能を有する部材で構成されたことを特徴とする請求項
15ないし21のいずれかに記載の高機能性冷凍方法。22. The inner wall surface of the freezer is formed of a member having a far infrared radiation absorbing ability.
The highly functional freezing method according to any one of 15 to 21.
料からなるハニカム構造体内に通気させることを特徴と
する請求項15ないし22に記載の高機能性冷凍方法。23. The highly functional refrigerating method according to claim 15, wherein the cool air in the freezer is ventilated into a honeycomb structure made of a highly heat-conductive material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001281848A JP4243924B2 (en) | 2001-09-17 | 2001-09-17 | High-functional refrigeration apparatus and high-functional refrigeration method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001281848A JP4243924B2 (en) | 2001-09-17 | 2001-09-17 | High-functional refrigeration apparatus and high-functional refrigeration method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003088347A true JP2003088347A (en) | 2003-03-25 |
| JP4243924B2 JP4243924B2 (en) | 2009-03-25 |
Family
ID=19105597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001281848A Expired - Fee Related JP4243924B2 (en) | 2001-09-17 | 2001-09-17 | High-functional refrigeration apparatus and high-functional refrigeration method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4243924B2 (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007119372A (en) * | 2005-10-26 | 2007-05-17 | Hiroshima Univ | Cryopreservation method of tooth extraction body |
| JP2008061643A (en) * | 2006-09-06 | 2008-03-21 | Samsung Electronics Co Ltd | Refrigeration and refrigeration control system |
| JP2009165392A (en) * | 2008-01-15 | 2009-07-30 | Toyo Seikan Kaisha Ltd | Frozen material packaged in plastic container, and method for producing the same |
| EP1991073A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | REFRIGERATOR AND METHOD FOR STARTING |
| EP2003993A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | SURFACE APPARATUS AND METHOD THEREOF |
| EP1989496A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | AUTOMATIC TRANSFER SWITCH COMPRISING THERMAL OVERLOAD PROTECTION |
| EP1991820A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | NON-FREEZING REFRIGERATOR |
| EP2063202A3 (en) * | 2006-02-15 | 2011-12-07 | LG Electronics Inc. | Apparatus for supercooling and method of making slush through supercooling |
| JP2011244696A (en) * | 2010-05-21 | 2011-12-08 | Yoneda Koki Kk | Quick freezing apparatus |
| JP2014155443A (en) * | 2013-02-14 | 2014-08-28 | Univ Of Tokyo | Cell cryopreservation method |
| JP2014209055A (en) * | 2014-06-17 | 2014-11-06 | 株式会社大木工藝 | Refrigerator |
| CN108836619A (en) * | 2018-07-17 | 2018-11-20 | 北京麦邦光电仪器有限公司 | Target temperature treatment probe, treatment pincers and target temperature therapeutic device |
| JP2019024325A (en) * | 2017-07-25 | 2019-02-21 | 国立大学法人京都大学 | Method for freezing human pluripotent stem cell-derived cardiomyocytes |
| JP2020008263A (en) * | 2018-07-12 | 2020-01-16 | フリーズ食品開発株式会社 | Cooling apparatus, cooling program, and method of manufacturing frozen product of frozen object |
| WO2020073740A1 (en) * | 2018-10-11 | 2020-04-16 | 海尔智家股份有限公司 | Refrigerating and freezing apparatus and control method therefor |
| CN111043826A (en) * | 2018-10-11 | 2020-04-21 | 青岛海尔股份有限公司 | Refrigerating and freezing device and control method thereof |
| CN111213707A (en) * | 2019-12-23 | 2020-06-02 | 安徽鲜森绿色食品有限公司 | Method for freezing and preserving poultry |
| KR102120634B1 (en) * | 2018-12-19 | 2020-06-09 | 전주비빔밥(주) | Food-material refrigeration system using ion wind |
| CN114543409A (en) * | 2020-11-24 | 2022-05-27 | 北京大学 | A high-quality quick-freezing device and quick-freezing method |
| EP4386284A4 (en) * | 2021-08-11 | 2024-11-13 | Qingdao Haier Refrigerator Co., Ltd. | FRESH FOOD STORAGE CONTAINERS FOR REFRIGERATOR AND FRIDGE |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56151867A (en) * | 1980-04-28 | 1981-11-25 | Hitachi Iruma Denshi Kk | Power source circuit for ion generator and refrigerating chamber employing same |
| JPH01308785A (en) * | 1988-05-27 | 1989-12-13 | Meisei Kogyo Kk | Heat-insulating structure |
| JPH02158331A (en) * | 1988-12-13 | 1990-06-18 | Meisei Kogyo Kk | Heat insulating structure |
| JPH04332372A (en) * | 1991-04-30 | 1992-11-19 | Mitsuo Hanazawa | Low-temperature preservation vessel for cosmetic and/or pharmaceutical to be cooled |
| JPH06323721A (en) * | 1993-05-17 | 1994-11-25 | Matsushita Refrig Co Ltd | Refrigerator |
| JPH07301482A (en) * | 1994-04-30 | 1995-11-14 | Mitsubishi Electric Corp | Refrigeration / air conditioning system |
| JP2000325062A (en) * | 1999-05-21 | 2000-11-28 | Airtech Japan Ltd | Refrigeration method and freezer using nuclear magnetic resonance phenomenon |
| JP2001033140A (en) * | 1999-07-22 | 2001-02-09 | Sharp Corp | Sterling refrigerator |
| JP2001086967A (en) * | 1999-09-22 | 2001-04-03 | Airtech Japan Ltd | Refrigeration method and freezer using fluctuation of magnetic field and electric field |
| WO2001024647A1 (en) * | 1999-10-01 | 2001-04-12 | Abi Limited | Method and apparatus for quick freezing |
| JP2001245645A (en) * | 2000-03-07 | 2001-09-11 | Mitsubishi Electric Corp | Method and apparatus for freezing fresh foods |
-
2001
- 2001-09-17 JP JP2001281848A patent/JP4243924B2/en not_active Expired - Fee Related
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56151867A (en) * | 1980-04-28 | 1981-11-25 | Hitachi Iruma Denshi Kk | Power source circuit for ion generator and refrigerating chamber employing same |
| JPH01308785A (en) * | 1988-05-27 | 1989-12-13 | Meisei Kogyo Kk | Heat-insulating structure |
| JPH02158331A (en) * | 1988-12-13 | 1990-06-18 | Meisei Kogyo Kk | Heat insulating structure |
| JPH04332372A (en) * | 1991-04-30 | 1992-11-19 | Mitsuo Hanazawa | Low-temperature preservation vessel for cosmetic and/or pharmaceutical to be cooled |
| JPH06323721A (en) * | 1993-05-17 | 1994-11-25 | Matsushita Refrig Co Ltd | Refrigerator |
| JPH07301482A (en) * | 1994-04-30 | 1995-11-14 | Mitsubishi Electric Corp | Refrigeration / air conditioning system |
| JP2000325062A (en) * | 1999-05-21 | 2000-11-28 | Airtech Japan Ltd | Refrigeration method and freezer using nuclear magnetic resonance phenomenon |
| JP2001033140A (en) * | 1999-07-22 | 2001-02-09 | Sharp Corp | Sterling refrigerator |
| JP2001086967A (en) * | 1999-09-22 | 2001-04-03 | Airtech Japan Ltd | Refrigeration method and freezer using fluctuation of magnetic field and electric field |
| WO2001024647A1 (en) * | 1999-10-01 | 2001-04-12 | Abi Limited | Method and apparatus for quick freezing |
| JP2001245645A (en) * | 2000-03-07 | 2001-09-11 | Mitsubishi Electric Corp | Method and apparatus for freezing fresh foods |
Non-Patent Citations (3)
| Title |
|---|
| 岩波 理化学辞典, vol. 第4版, JPN4006016295, 1987, pages 1306, ISSN: 0000770417 * |
| 岩波 理化学辞典, vol. 第4版, JPN6008065043, 1987, pages 1306, ISSN: 0001211114 * |
| 岩波 理化学辞典, vol. 第4版, JPNX007048965, 1987, pages 1306, ISSN: 0000891779 * |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007119372A (en) * | 2005-10-26 | 2007-05-17 | Hiroshima Univ | Cryopreservation method of tooth extraction body |
| EP1991820A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | NON-FREEZING REFRIGERATOR |
| EP1991073A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | REFRIGERATOR AND METHOD FOR STARTING |
| EP2003993A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | SURFACE APPARATUS AND METHOD THEREOF |
| EP1989496A4 (en) * | 2006-02-15 | 2010-06-02 | Lg Electronics Inc | AUTOMATIC TRANSFER SWITCH COMPRISING THERMAL OVERLOAD PROTECTION |
| EP2063202A3 (en) * | 2006-02-15 | 2011-12-07 | LG Electronics Inc. | Apparatus for supercooling and method of making slush through supercooling |
| US8151576B2 (en) | 2006-02-15 | 2012-04-10 | Lg Electronics Inc. | Refrigerator and method of operating a refrigerator |
| US8196424B2 (en) | 2006-02-15 | 2012-06-12 | Lg Electronics Inc. | Apparatus for supercooling and method of making slush through supercooling |
| AU2010241223B2 (en) * | 2006-02-15 | 2012-10-25 | Lg Electronics Inc | Non-freezing refrigerator |
| US8616008B2 (en) | 2006-02-15 | 2013-12-31 | Lg Electronics Inc. | Non-freezing refrigerator |
| JP2008061643A (en) * | 2006-09-06 | 2008-03-21 | Samsung Electronics Co Ltd | Refrigeration and refrigeration control system |
| KR101273464B1 (en) * | 2006-09-06 | 2013-06-14 | 삼성전자주식회사 | Control system of refrigerating and freezing |
| JP2009165392A (en) * | 2008-01-15 | 2009-07-30 | Toyo Seikan Kaisha Ltd | Frozen material packaged in plastic container, and method for producing the same |
| JP2011244696A (en) * | 2010-05-21 | 2011-12-08 | Yoneda Koki Kk | Quick freezing apparatus |
| JP2014155443A (en) * | 2013-02-14 | 2014-08-28 | Univ Of Tokyo | Cell cryopreservation method |
| JP2014209055A (en) * | 2014-06-17 | 2014-11-06 | 株式会社大木工藝 | Refrigerator |
| JP2019024325A (en) * | 2017-07-25 | 2019-02-21 | 国立大学法人京都大学 | Method for freezing human pluripotent stem cell-derived cardiomyocytes |
| JP2020008263A (en) * | 2018-07-12 | 2020-01-16 | フリーズ食品開発株式会社 | Cooling apparatus, cooling program, and method of manufacturing frozen product of frozen object |
| CN108836619A (en) * | 2018-07-17 | 2018-11-20 | 北京麦邦光电仪器有限公司 | Target temperature treatment probe, treatment pincers and target temperature therapeutic device |
| CN111043826A (en) * | 2018-10-11 | 2020-04-21 | 青岛海尔股份有限公司 | Refrigerating and freezing device and control method thereof |
| CN111043827A (en) * | 2018-10-11 | 2020-04-21 | 青岛海尔股份有限公司 | Refrigeration and freezing device and control method thereof |
| WO2020073740A1 (en) * | 2018-10-11 | 2020-04-16 | 海尔智家股份有限公司 | Refrigerating and freezing apparatus and control method therefor |
| CN111043826B (en) * | 2018-10-11 | 2020-11-24 | 青岛海尔股份有限公司 | Refrigeration and freezing device and control method thereof |
| KR102120634B1 (en) * | 2018-12-19 | 2020-06-09 | 전주비빔밥(주) | Food-material refrigeration system using ion wind |
| CN111213707A (en) * | 2019-12-23 | 2020-06-02 | 安徽鲜森绿色食品有限公司 | Method for freezing and preserving poultry |
| CN111213707B (en) * | 2019-12-23 | 2023-04-11 | 安徽鲜森绿色食品有限公司 | Method for freezing and preserving poultry |
| CN114543409A (en) * | 2020-11-24 | 2022-05-27 | 北京大学 | A high-quality quick-freezing device and quick-freezing method |
| EP4386284A4 (en) * | 2021-08-11 | 2024-11-13 | Qingdao Haier Refrigerator Co., Ltd. | FRESH FOOD STORAGE CONTAINERS FOR REFRIGERATOR AND FRIDGE |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4243924B2 (en) | 2009-03-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2003088347A (en) | High-performance freezing apparatus and high- performance freezing method | |
| US7237400B2 (en) | Highly-efficient freezing apparatus and highly-efficient freezing method | |
| JP4041673B2 (en) | Ultra-rapid freezing method and apparatus | |
| KR101172104B1 (en) | Quick Refrigeration Apparatus | |
| CN103712398A (en) | Core unit for refrigeration device and refrigeration device using the same | |
| JP2004081133A (en) | Method for producing very fresh frozen fresh vegetable | |
| CN110671876B (en) | Supercooling freezing method, refrigerator and refrigerator control method | |
| JPWO2011004597A1 (en) | Storage device and storage method | |
| JP2005291525A (en) | Food freezing device and food thawing device | |
| CN114543409A (en) | A high-quality quick-freezing device and quick-freezing method | |
| Tudor et al. | Advances in control of frost on evaporator coils with an applied electric field | |
| JP2017161189A (en) | Freezing apparatus | |
| JP3973429B2 (en) | Refrigeration equipment | |
| JP3870230B2 (en) | Manufacturing method and manufacturing apparatus for hydrous frozen product | |
| JP2007093071A (en) | Cooling device | |
| Jarulertwattana et al. | Effect of oscillating magnetic field on freezing rate, phase transition time and supercooling of deionized water | |
| JP4209157B2 (en) | Production method and apparatus for edible rice | |
| CN115143714B (en) | Ultrasonic auxiliary treatment compartment and refrigerator | |
| JP2004147548A (en) | Method for freezing frozen commodity | |
| EP4161215A1 (en) | Micro-vibration wave generating device | |
| JPH11238615A (en) | Magnetic material for magnetic cooling and magnetic cooling device using the same | |
| TWI833120B (en) | device that generates microseismic waves | |
| TWM627573U (en) | Generating device for generating microseismic waves | |
| JP2006052875A (en) | Electric field generating device for electric field processing, and frosting preventing device for cooling unit using the same | |
| JP4999381B2 (en) | Continuous cooling system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040525 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041005 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041206 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050404 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070904 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071105 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080225 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081125 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081224 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |