[go: up one dir, main page]

JP2003017072A - MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME - Google Patents

MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME

Info

Publication number
JP2003017072A
JP2003017072A JP2001196930A JP2001196930A JP2003017072A JP 2003017072 A JP2003017072 A JP 2003017072A JP 2001196930 A JP2001196930 A JP 2001196930A JP 2001196930 A JP2001196930 A JP 2001196930A JP 2003017072 A JP2003017072 A JP 2003017072A
Authority
JP
Japan
Prior art keywords
catalyst
sol
fuel cell
catalyst layer
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001196930A
Other languages
Japanese (ja)
Inventor
Kohei Hase
康平 長谷
Satoshi Okochi
智 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001196930A priority Critical patent/JP2003017072A/en
Publication of JP2003017072A publication Critical patent/JP2003017072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 電極触媒層と電解質膜との接合部の電気抵抗
を低減できる燃料電池用MEAとその製造方法および燃
料電池用触媒層とその製造方法の提供。 【解決手段】 (1)ゾルゲル法によって触媒層を作製
し、ゾルゲル法によって電解質膜を作製し、電解質膜と
触媒層とをゾルゲル法による作製時に一体に成形する燃
料電池用MEA1の製造方法とそれによる燃料電池用M
EA1。(2)プロトン伝導性物質を成分として含有す
る溶媒に触媒コロイドを分散させたゾルゲル溶液に触媒
担持用基材を浸して表面コートしゲル化する燃料電池用
触媒層12の製造方法とそれによる燃料電池用触媒層1
2。(3)表面コートしゲル化した後、撥水性物質を成
分として含有したゾルゲル溶液に浸して最表面に撥水層
を形成する燃料電池用触媒層の製造方法と燃料電池用触
媒層。(4)MEA1をパイプ状とした。(5)集電体
2をワイヤまたはメッシュとした。
PROBLEM TO BE SOLVED: To provide an MEA for a fuel cell capable of reducing the electric resistance of a junction between an electrode catalyst layer and an electrolyte membrane, a method for manufacturing the same, and a catalyst layer for a fuel cell and a method for manufacturing the same. SOLUTION: (1) A method for manufacturing a fuel cell MEA1 in which a catalyst layer is formed by a sol-gel method, an electrolyte membrane is formed by a sol-gel method, and the electrolyte membrane and the catalyst layer are integrally formed when the sol-gel method is used. M for fuel cell
EA1. (2) A method for producing a catalyst layer 12 for a fuel cell, in which a substrate for supporting a catalyst is immersed in a sol-gel solution in which a catalyst colloid is dispersed in a solvent containing a proton-conducting substance as a component, and the surface is coated and gelled, and the fuel thereby is used. Battery catalyst layer 1
2. (3) A method for manufacturing a fuel cell catalyst layer and a fuel cell catalyst layer in which a water-repellent layer is formed on the surface and then immersed in a sol-gel solution containing a water-repellent substance as a component to form a water-repellent layer on the outermost surface. (4) The MEA 1 was formed in a pipe shape. (5) The current collector 2 was a wire or a mesh.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用MEA
とその製造方法および燃料電池用触媒層とその製造方法
に関する。
TECHNICAL FIELD The present invention relates to an MEA for a fuel cell.
The present invention relates to a method for producing the same, a catalyst layer for a fuel cell, and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、膜−電
極アッセンブリ(MEA:Membrane-Electrode Assembl
y )とセパレータ(集電体)とからセルを構成し、複数
のセルを積層してモジュールとし、モジュールを積層し
てモジュール群を構成し、モジュール群のセル積層方向
両端に、ターミナル、インシュレータ、エンドプレート
を配置してスタックを構成し、スタックをスタックの外
側でセル積層体積層方向に延びる締結部材(たとえば、
テンションプレート)にて締め付け、固定したものから
なる。膜−電極アッセンブリは、イオン交換膜からなる
電解質膜とこの電解質膜の一面に配置された触媒層およ
び拡散層からなる電極(アノード、燃料極)および電解
質膜の他面に配置された触媒層および拡散層からなる電
極(カソード、空気極)とからなる。アノード、カソー
ドに燃料ガス(アノードガス、水素)および酸化ガス
(カソードガス、酸素、通常は空気)を供給するための
流体通路がセルに形成されている。固体高分子電解質型
燃料電池では、アノード側で、水素が水素イオンと電子
にされ、水素イオンは電解質膜中をカソード側に移動
し、カソード側で酸素と水素イオンおよび電子(隣りの
MEAのアノードで生成した電子がセパレータを通して
くる)から水が生成される。 アノード側:H2 →2H+ +2e- カソード側:2H+ +2e- +(1/2)O2 →H2 O 特開平5−182672号公報は、燃料電池のMEAの
製造方法を開示している。特開平5−182672号公
報の燃料電池のMEAの製造方法では、電極と電解質膜
とがホットプレスされる。
2. Description of the Related Art A solid polymer electrolyte fuel cell has a membrane-electrode assembly (MEA).
y) and a separator (current collector) to form a cell, a plurality of cells are laminated to form a module, the modules are laminated to form a module group, and terminals, insulators, and End plates are arranged to form a stack, and a fastening member that extends in the stack direction of the cell stack outside the stack (for example,
Tension plate) is used for tightening and fixing. The membrane-electrode assembly includes an electrolyte membrane composed of an ion exchange membrane, a catalyst layer arranged on one surface of the electrolyte membrane and an electrode (anode, fuel electrode) composed of a diffusion layer, and a catalyst layer arranged on the other surface of the electrolyte membrane. It is composed of an electrode (cathode, air electrode) composed of a diffusion layer. Fluid passages are formed in the cell for supplying fuel gas (anode gas, hydrogen) and oxidizing gas (cathode gas, oxygen, usually air) to the anode and cathode. In the solid polymer electrolyte fuel cell, hydrogen is converted into hydrogen ions and electrons on the anode side, the hydrogen ions move to the cathode side in the electrolyte membrane, and oxygen, hydrogen ions and electrons (on the anode of the adjacent MEA) move on the cathode side. Water is generated from the electrons generated in (1) come through the separator). Anode side: H 2 → 2H + + 2e Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O JP-A-5-182672 discloses a method for manufacturing a MEA for a fuel cell. . In the method of manufacturing an MEA for a fuel cell disclosed in JP-A-5-182672, the electrodes and the electrolyte membrane are hot pressed.

【0003】[0003]

【発明が解決しようとする課題】しかし、電極と電解質
膜とのホットプレスによる燃料電池のMEAの製造方法
では、電極層と電解質膜との接合部の接触電気抵抗が大
きく、単セルおよびそれを積層した燃料電池の出力が十
分には得られないという問題がある。本発明の目的は、
電極触媒層と電解質膜との接合部の電気抵抗をホットプ
レス等の従来法に比べて低減することができる燃料電池
用MEAとその製造方法および燃料電池用触媒層とその
製造方法を提供することにある。
However, in the method for manufacturing a MEA for a fuel cell by hot pressing the electrode and the electrolyte membrane, the contact electric resistance at the junction between the electrode layer and the electrolyte membrane is large, and the single cell and There is a problem that the output of the stacked fuel cells cannot be obtained sufficiently. The purpose of the present invention is to
To provide an MEA for a fuel cell, a method for producing the same, a catalyst layer for a fuel cell, and a method for producing the same, which can reduce the electric resistance of a joint portion between an electrode catalyst layer and an electrolyte membrane as compared with a conventional method such as hot pressing. It is in.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) ゾルゲル法によって触媒層を作製し、ゾルゲル
法によって電解質膜を作製し、電解質膜と触媒層とをゾ
ルゲル法による作製時に一体に成形する燃料電池用ME
Aの製造方法。(本発明の実施の形態1、5) (2) ゾルゲル法によって作製された触媒層と、ゾル
ゲル法によって作製された電解質層とを有し、前記触媒
層と前記電解質層とはゾルゲル法による作製時に一体に
成形されている燃料電池用MEA。(本発明の実施の形
態1、5) (3) プロトン伝導性物質を成分として含有する溶媒
に触媒コロイドを分散させたゾルゲル溶液に触媒担持用
基材を浸し引き上げて触媒担持用基材を前記ゾルゲル溶
液で表面コートしゲル化する燃料電池用触媒層の製造方
法。(本発明の実施の形態1) (4) 前記ゾルゲル溶液に予めプロトン伝導性物質の
他に撥水性物質を成分として含有させておく(3)記載
の燃料電池用触媒層。(本発明の実施の形態1) (5) プロトン伝導性物質を成分として含有し撥水性
物質を含有しない溶媒に触媒コロイドを分散させたゾル
ゲル溶液に触媒担持用基材を浸し引き上げて触媒担持用
基材を前記ゾルゲル溶液で表面コートしてゲル化し、そ
の後、撥水性物質を成分として含有したゾルゲル溶液に
浸して最表面に撥水層を形成する燃料電池用触媒層の製
造方法。(本発明の実施の形態2) (6) プロトン伝導性物質を成分として含有するゾル
ゲル溶液に予め触媒を担持した触媒担持用基材を浸漬
し、該触媒を担持した触媒担持用基材を前記ゾルゲル溶
液で表面コートしゲル化する燃料電池用触媒層の製造方
法。(本発明の実施の形態5(1)) (7) 前記触媒担持用基材が、炭素繊維シートからな
る(3)または(4)または(5)または(6)記載の
燃料電池用触媒層の製造方法。(本発明の実施の形態
1、2、5) (8) 前記触媒担持用基材が、炭素繊維をチタニアゾ
ルまたはチタニア+触媒ゾルに浸漬し表面にチタニアゲ
ルコートまたはチタニア+触媒ゲルコートしたものをア
ンモニアガスまたは窒素雰囲気で焼成して表面にTiN
または触媒含有TiNを形成した繊維のシートからなる
(3)または(4)または(5)または(6)記載の燃
料電池用触媒層の製造方法。(本発明の実施の形態3) (9) 前記触媒担持用基材が、炭素繊維の一部にAu
線を織り込んだシートからなる(3)または(4)また
は(5)または(6)記載の燃料電池用触媒層の製造方
法。(本発明の実施の形態4) (10) 上記(3)〜(9)記載の何れかの方法によ
り作製した燃料電池用触媒層。(本発明の実施の形態1
〜4) (11) 電解質膜を作製する際に、ゾルゲル溶液に3
−グリシドキシプロピルトリメトキシシランを添加し、
ゲル化容器としてアクリル容器を用いる(1)記載の燃
料電池用MEAの製造方法。(本発明の実施の形態6) (12) MEAが中空円筒状に形成されている請求項
2記載の燃料電池用MEA。(本発明の実施の形態7) (13) 中空円筒状MEAの外面と接して集電部材が
設けられており、該集電部材は導電性ワイヤからなる
(12)記載の燃料電池用MEA。(本発明の実施の形
態8) (14) 中空円筒状MEAの内面と接して集電部材が
設けられており、該集電部材は導電性メッシュからなる
(12)記載の燃料電池用MEA。(本発明の実施の形
態9) (15) 中空円筒状MEAを、円筒形の芯材を作り、
該芯材の外周に触媒担持用基材を設け、その後触媒担持
用基材に触媒層をゾルゲル法で形成し、ついで該触媒層
上に一体にゾルゲル法で電解質層を形成し、該電解質層
上に一体にゾルゲル法で触媒層を形成し、その後芯材を
除去することにより作製する請求項1記載の燃料電池用
MEAの製造方法。(本発明の実施の形態10)
The present invention which achieves the above object is as follows. (1) A fuel cell ME in which a catalyst layer is produced by a sol-gel method, an electrolyte membrane is produced by a sol-gel method, and the electrolyte membrane and the catalyst layer are integrally formed during production by the sol-gel method.
Manufacturing method of A. (Embodiments 1 and 5 of the present invention) (2) A catalyst layer manufactured by a sol-gel method and an electrolyte layer manufactured by a sol-gel method are provided, and the catalyst layer and the electrolyte layer are manufactured by a sol-gel method. MEAs for fuel cells that are sometimes integrally molded. (Embodiments 1 and 5 of the present invention) (3) The catalyst-supporting base material is immersed in a sol-gel solution in which a catalyst colloid is dispersed in a solvent containing a proton-conductive substance as a component, and the catalyst-supporting base material is pulled up to form the catalyst-supporting base material. A method for producing a catalyst layer for a fuel cell, which is surface-coated with a sol-gel solution and gelated. (Embodiment 1 of the present invention) (4) The catalyst layer for a fuel cell according to (3), wherein the sol-gel solution contains a water-repellent substance as a component in advance in addition to the proton conductive substance. (Embodiment 1 of the present invention) (5) For supporting a catalyst by immersing the catalyst supporting substrate in a sol-gel solution in which a catalyst colloid is dispersed in a solvent containing a proton conductive substance as a component and not containing a water repellent substance, and pulling it up A method for producing a catalyst layer for a fuel cell, wherein a substrate is surface-coated with the sol-gel solution to form a gel, which is then immersed in a sol-gel solution containing a water-repellent substance as a component to form a water-repellent layer on the outermost surface. (Embodiment 2 of the present invention) (6) A catalyst-supporting base material carrying a catalyst in advance is dipped in a sol-gel solution containing a proton conductive substance as a component, and the catalyst-supporting base material carrying the catalyst is prepared as described above. A method for producing a catalyst layer for a fuel cell, which is surface-coated with a sol-gel solution and gelated. (Embodiment 5 (1) of the present invention) (7) The catalyst layer for a fuel cell according to (3) or (4) or (5) or (6), wherein the catalyst supporting substrate is a carbon fiber sheet. Manufacturing method. (Embodiments 1, 2, and 5 of the present invention) (8) The catalyst-supporting substrate is an ammonia gas in which carbon fiber is immersed in titania sol or titania + catalyst sol and the surface is titania gel-coated or titania + catalyst gel-coated. Alternatively, the surface of TiN is burned in a nitrogen atmosphere.
Alternatively, the method for producing a catalyst layer for a fuel cell according to (3), (4), (5) or (6), which comprises a fiber sheet formed with catalyst-containing TiN. (Embodiment 3 of the present invention) (9) The catalyst-supporting base material is Au on a part of carbon fiber.
The method for producing a catalyst layer for a fuel cell according to (3), (4), (5) or (6), which comprises a sheet in which wires are woven. (Embodiment 4 of the present invention) (10) A fuel cell catalyst layer produced by the method according to any one of the above (3) to (9). (Embodiment 1 of the present invention
~ 4) (11) When the electrolyte membrane is prepared, the
-Adding glycidoxypropyltrimethoxysilane,
The method for producing an MEA for a fuel cell according to (1), wherein an acrylic container is used as the gelling container. (Embodiment 6 of the present invention) (12) The MEA for a fuel cell according to claim 2, wherein the MEA is formed in a hollow cylindrical shape. (Embodiment 7 of the present invention) (13) The fuel cell MEA according to (12), wherein a current collecting member is provided in contact with the outer surface of the hollow cylindrical MEA, and the current collecting member is made of a conductive wire. (Embodiment 8 of the invention) (14) The fuel cell MEA according to (12), wherein a current collecting member is provided in contact with the inner surface of the hollow cylindrical MEA, and the current collecting member is made of a conductive mesh. (Ninth Embodiment of the Present Invention) (15) A hollow cylindrical MEA is made into a cylindrical core material,
A catalyst-supporting substrate is provided on the outer periphery of the core material, then a catalyst layer is formed on the catalyst-supporting substrate by a sol-gel method, and then an electrolyte layer is integrally formed on the catalyst layer by a sol-gel method. The method for producing an MEA for a fuel cell according to claim 1, wherein the catalyst layer is integrally formed on the top by a sol-gel method, and then the core material is removed. (Embodiment 10 of the present invention)

【0005】上記(1)の燃料電池用MEAの製造方法
および上記(2)の燃料電池用MEAでは、ゾルゲル法
によって触媒層を作製し、ゾルゲル法によって電解質膜
を作製し、電解質膜と触媒層とをゾルゲル法による作製
時に一体に成形するので、触媒層と電解質層層との接合
はホットプレス等の機械的接合ではなく、製造過程で一
体となり、接合部の電気抵抗値が低減し、燃料電池の出
力が向上する。上記(3)の燃料電池用触媒層の製造方
法では、ゾルゲル溶液に触媒担持用基材を浸漬し引き上
げてゲル化するという1つのゾルゲル工程で触媒層を作
製できる。上記(4)の燃料電池用触媒層の製造方法で
は、ゾルゲル溶液に予めプロトン伝導性物質の他に撥水
性物質を成分として含有させておくので、触媒層の作製
と撥水機能付与を同工程で行うことができる。上記
(5)の燃料電池用触媒層の製造方法では、触媒担持用
基材を前記ゾルゲル溶液で表面コートしてゲル化し、そ
の後、撥水性物質を成分として含有したゾルゲル溶液に
浸して最表面に撥水層を形成するので、撥水処理のみを
後工程として独立させることができ、触媒層の片面のみ
等、局部的に撥水処理を施すことができる。上記(3)
〜(5)の燃料電池用触媒層の製造方法では、ゾルゲル
溶液に触媒コロイドを分散させたが、上記(6)の燃料
電池用触媒層の製造方法では、予め触媒を担持した触媒
担持用基材をゾルゲル溶液に浸漬するようにする。上記
(6)の燃料電池用触媒層の製造方法で、燃料電池用触
媒層を製造してもよい。上記(7)の燃料電池用触媒層
の製造方法では、触媒担持用基材が、炭素繊維シートか
らなるので、集電性が良好である。上記(8)の燃料電
池用触媒層の製造方法では、炭素繊維をチタニアゾルま
たはチタニア+触媒ゾルに浸漬し表面にチタニアゲルコ
ートまたはチタニア+触媒ゲルコートしたものをアンモ
ニアガスまたは窒素雰囲気で焼成して表面にTiNまた
は触媒含有TiNを形成したので、炭素繊維のみの場合
に比べて集電性が良好になり、通電抵抗も低減する。上
記(9)の燃料電池用触媒層の製造方法では、触媒担持
用基材が、炭素繊維の一部にAu線を織り込んだシート
からなるので、炭素繊維のみの場合に比べて集電性が良
好になり、通電抵抗も低減する。上記(10)の燃料電
池用触媒層では、上記(3)〜(9)記載の何れかの方
法により作製したので、上記(3)〜(9)の作用・効
果がある。上記(11)の燃料電池用MEAの製造方法
では、電解質膜を作製する際に、ゾルゲル溶液に3−グ
リシドキシプロピルトリメトキシシランを添加し、ゲル
化容器としてアクリル容器を用いるので、大面積薄膜の
電解質膜を製造できる。上記(12)の燃料電池用ME
Aでは、MEAが中空円筒状に形成されているので、平
板状MEAに比べて触媒層面積を増大でき、MEA、燃
料電池のコンパクト化をはかることができる。上記(1
3)の燃料電池用MEAでは、中空円筒状MEAの外面
と接して集電部材が設けられており、該集電部材は導電
性ワイヤからなるので、中空円筒状MEAの外径にばら
つきがあってもワイヤは中空円筒状MEAに接触でき、
高い集電性が得られる。上記(14)の燃料電池用ME
Aでは、中空円筒状MEAの内面と接して集電部材が設
けられており、該集電部材は導電性メッシュからなるの
で、高い集電性が得られる。上記(15)の燃料電池用
MEAの製造方法では、中空円筒状MEAを、円筒形の
芯材を作り、該芯材の外周に触媒担持用基材を設け、つ
いで触媒層、電解質層、触媒層を順にゾルゲル法で形成
し、その後芯材を除去することにより作製するので、層
間に加圧力をかけることなく接触抵抗の低い中空円筒状
MEAを作製することができる。
In the fuel cell MEA production method (1) and the fuel cell MEA production method (2), a catalyst layer is produced by the sol-gel method, an electrolyte membrane is produced by the sol-gel method, and the electrolyte membrane and the catalyst layer are produced. Since and are integrally molded at the time of production by the sol-gel method, the catalyst layer and the electrolyte layer layer are not joined mechanically such as by hot pressing, but are integrated during the manufacturing process to reduce the electric resistance value of the joint, The output of the battery is improved. In the method (3) for producing a fuel cell catalyst layer, the catalyst layer can be produced by one sol-gel step of immersing the catalyst-supporting substrate in a sol-gel solution and pulling it up to gel. In the method for producing a catalyst layer for a fuel cell according to the above (4), since the sol-gel solution contains a water repellent substance as a component in addition to the proton conductive substance in advance, the catalyst layer is produced and the water repellent function is imparted in the same step. Can be done at. In the method for producing a catalyst layer for a fuel cell according to the above (5), the catalyst-supporting base material is surface-coated with the sol-gel solution to form a gel, and then immersed in a sol-gel solution containing a water-repellent substance as a component to form the outermost surface. Since the water-repellent layer is formed, only the water-repellent treatment can be made independent as a post-process, and the water-repellent treatment can be locally applied on only one surface of the catalyst layer. Above (3)
In the method for producing a catalyst layer for a fuel cell of to (5), the catalyst colloid is dispersed in the sol-gel solution. However, in the method for producing a catalyst layer for a fuel cell in (6) above, a catalyst-supporting group on which a catalyst is previously loaded is supported. The material is immersed in the sol-gel solution. The fuel cell catalyst layer may be manufactured by the method (6) for manufacturing a fuel cell catalyst layer. In the method (7) for producing a catalyst layer for a fuel cell, the catalyst-supporting base material is made of a carbon fiber sheet, so that the current collecting property is good. In the method for producing a catalyst layer for a fuel cell according to the above (8), carbon fibers are immersed in titania sol or titania + catalyst sol, and the surface is titania gel-coated or titania + catalyst gel-coated and baked in an ammonia gas or nitrogen atmosphere to form a surface. Since TiN or catalyst-containing TiN is formed, the current collecting property is improved and the energization resistance is reduced as compared with the case where only carbon fiber is used. In the method for producing a catalyst layer for a fuel cell according to (9) above, since the catalyst-supporting base material is a sheet in which Au wire is woven into a part of carbon fiber, the current collecting property is higher than that of carbon fiber alone. It becomes good and the conduction resistance is reduced. The fuel cell catalyst layer of (10) above is produced by any of the methods described in (3) to (9) above, and therefore has the actions and effects of (3) to (9) above. In the method for producing a fuel cell MEA according to (11) above, 3-glycidoxypropyltrimethoxysilane is added to a sol-gel solution when an electrolyte membrane is prepared, and an acrylic container is used as a gelling container. A thin electrolyte membrane can be manufactured. ME for fuel cell according to (12) above
In A, since the MEA is formed in a hollow cylindrical shape, the catalyst layer area can be increased as compared with the flat MEA, and the MEA and the fuel cell can be made compact. Above (1
In the fuel cell MEA of 3), a current collecting member is provided in contact with the outer surface of the hollow cylindrical MEA, and since the current collecting member is made of a conductive wire, there is variation in the outer diameter of the hollow cylindrical MEA. But the wire can contact the hollow cylindrical MEA,
High current collection performance can be obtained. ME for fuel cell according to the above (14)
In A, a current collecting member is provided in contact with the inner surface of the hollow cylindrical MEA, and since the current collecting member is made of a conductive mesh, high current collecting property can be obtained. In the method (15) for producing a fuel cell MEA, a hollow cylindrical MEA is made into a cylindrical core material, a catalyst-supporting substrate is provided on the outer periphery of the core material, and then a catalyst layer, an electrolyte layer, and a catalyst are provided. Since the layers are sequentially formed by the sol-gel method and then the core material is removed, a hollow cylindrical MEA having a low contact resistance can be manufactured without applying a pressure between the layers.

【0006】[0006]

【発明の実施の形態】以下に、本発明の燃料電池用ME
Aとその製造方法および燃料電池用触媒層とその製造方
法を図1〜図7を参照して、説明する。本発明の燃料電
池10は固体高分子電解質型燃料電池である。本発明の
燃料電池10は、たとえば燃料電池自動車に搭載され
る。ただし、自動車以外に用いられてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell ME of the present invention is described below.
A, a method for producing the same, a catalyst layer for a fuel cell, and a method for producing the same will be described with reference to FIGS. The fuel cell 10 of the present invention is a solid polymer electrolyte fuel cell. The fuel cell 10 of the present invention is mounted in, for example, a fuel cell vehicle. However, it may be used for other than automobiles.

【0007】固体高分子電解質型燃料電池10は、たと
えば図4に示すように、膜−電極アッセンブリ(ME
A:Membrane-Electrode Assembly )1と集電体2とか
らセル3を構成し、複数のセルを積層し、セル積層方向
両端に、ターミナル、インシュレータ、エンドプレート
を配置してスタックを構成し、スタックをスタックの外
側でセル積層体積層方向に延びる締結部材にて締め付
け、固定したものからなる。膜−電極アッセンブリ1
は、イオン交換膜からなる電解質膜11とこの電解質膜
の一面に配置された触媒層12からなる電極13(アノ
ード、燃料極)および電解質膜の他面に配置された触媒
層12からなる電極(カソード、空気極)14とからな
る。セル3には、アノード、カソードに燃料ガス(アノ
ードガス、水素)および酸化ガス(カソードガス、酸
素、通常は空気)を供給するための流体通路15、16
が形成されている。MEA1は、平板状であってもよい
し、あるいは平板以外の形状、たとえば中空円筒状であ
ってもよい。集電体2は、平板状であってもいし、ある
いは平板以外の形状、たとえばワイヤ状またはメッシュ
状などであってもよい。
The solid polymer electrolyte fuel cell 10 has a membrane-electrode assembly (ME) as shown in FIG.
A: Membrane-Electrode Assembly 1) and a current collector 2 constitute a cell 3, a plurality of cells are laminated, and a terminal, an insulator, and an end plate are arranged at both ends in the cell lamination direction to form a stack. Is fastened and fixed by a fastening member extending outside the stack in the cell stacking direction. Membrane-electrode assembly 1
Is an electrode 13 (anode, fuel electrode) composed of an electrolyte membrane 11 composed of an ion exchange membrane and a catalyst layer 12 arranged on one surface of the electrolyte membrane, and an electrode (composed of a catalyst layer 12 arranged on the other surface of the electrolyte membrane). (Cathode, air electrode) 14. The cell 3 has fluid passages 15 and 16 for supplying fuel gas (anode gas, hydrogen) and oxidizing gas (cathode gas, oxygen, usually air) to the anode and cathode.
Are formed. The MEA 1 may have a flat plate shape, or may have a shape other than a flat plate, for example, a hollow cylinder shape. The current collector 2 may have a flat plate shape, or may have a shape other than a flat plate, such as a wire shape or a mesh shape.

【0008】本発明の燃料電池用MEA1の製造方法で
は、ゾルゲル法によって触媒層12を作製し、ゾルゲル
法によって電解質膜11を作製し、電解質膜11と触媒
層12とはゾルゲル法による作製時に一体に成形され
る。該方法により作製された本発明の燃料電池用MEA
1は、ゾルゲル法によって作製された触媒層12と、ゾ
ルゲル法によって作製された電解質層(電解質膜)11
とを有し、触媒層12と電解質層11とはゾルゲル法に
よる作製時に一体に成形されている。ゾルゲル法では、
図2に示すように、ゾル溶液(溶媒はアルコール等)中
のゲル骨格成分(金属アルコキシド、たとえばテトラエ
トキシシラン(TEOS)、3−グリシドキシプロピル
トリメトキシシラン(GPTS)等)の加水分解、脱水
重縮合の繰り返しによりゾルをゲル化させ、得られたゲ
ルを乾燥する。ゾル溶液は、ゲル骨格成分としてTEO
Sを使用した場合の成分の一例は、 TEOS:EtOH(エタノール):H2 O:HCl=
1:4:4:0.01(モル比) であり、ゲル骨格成分としてGPTSを使用した場合の
成分の一例は、 GPTS:EtOH(エタノール):H2 O:HCl=
1:4:4:0.01(モル比) である。
In the method of manufacturing the MEA 1 for a fuel cell of the present invention, the catalyst layer 12 is manufactured by the sol-gel method, the electrolyte membrane 11 is manufactured by the sol-gel method, and the electrolyte membrane 11 and the catalyst layer 12 are integrally formed at the time of manufacturing by the sol-gel method. Is molded into. MEA for a fuel cell of the present invention produced by the method
Reference numeral 1 denotes a catalyst layer 12 produced by the sol-gel method, and an electrolyte layer (electrolyte membrane) 11 produced by the sol-gel method.
And the catalyst layer 12 and the electrolyte layer 11 are integrally formed at the time of production by the sol-gel method. In the sol-gel method,
As shown in FIG. 2, hydrolysis of a gel skeleton component (metal alkoxide such as tetraethoxysilane (TEOS), 3-glycidoxypropyltrimethoxysilane (GPTS), etc.) in a sol solution (solvent is alcohol, etc.), The sol is gelated by repeating dehydration polycondensation, and the obtained gel is dried. The sol solution contains TEO as a gel skeleton component.
An example of the component when S is used is TEOS: EtOH (ethanol): H 2 O: HCl =
It is 1: 4: 4: 0.01 (molar ratio), and an example of the component when GPTS is used as the gel skeleton component is: GPTS: EtOH (ethanol): H 2 O: HCl =
It is 1: 4: 4: 0.01 (molar ratio).

【0009】上記燃料電池用MEAの製造方法および上
記燃料電池用MEAでは、ゾルゲル法によって触媒層1
2を作製し、ゾルゲル法によって電解質膜11を作製
し、電解質膜11と触媒層12とをゾルゲル法による作
製時に一体に成形するので、触媒層12と電解質層層1
1との接合はホットプレス等の機械的接合ではなく、製
造過程で一体となり、接合部の電気抵抗値が低減し、燃
料電池の出力が向上する。
In the method for producing the fuel cell MEA and the fuel cell MEA, the catalyst layer 1 is formed by the sol-gel method.
2 is produced, the electrolyte membrane 11 is produced by the sol-gel method, and the electrolyte membrane 11 and the catalyst layer 12 are integrally molded at the time of production by the sol-gel method. Therefore, the catalyst layer 12 and the electrolyte layer layer 1
The joining with No. 1 is not mechanical joining such as hot pressing, but is integrated in the manufacturing process, the electric resistance value of the joining portion is reduced, and the output of the fuel cell is improved.

【0010】つぎに、本発明の各実施の形態を説明す
る。 〔本発明の実施の形態1〕本発明の実施の形態1は、触
媒層12の製造方法とその製法方法によって作製された
触媒層12、該触媒層12を用いたMEA1の製造方法
に関するものである。触媒層12の製造方法は、図1に
示すように、プロトン伝導物質(たとえば、タングスト
リン酸、ケイタングステン酸、等)を成分として含有す
る溶媒(たとえば、に触媒(たとえば、Pt、Ru、
等)コロイドを分散させたゾルゲル溶液20に触媒担持
用基材21(たとえば、炭素繊維シート21)を浸し引
き上げて触媒担持用基材21をゾルゲル溶液20で表面
コートし乾燥・加熱して(たとえば、60〜70℃×3
0〜60分)ゲル化する方法からなる。そして、この方
法で得られたものが触媒層12である。該触媒層12を
用いたMEA1の製造方法は、周知の方法でリン酸など
を添加したゾルゲル法によりプロトン伝導材の電解質膜
11を作製し、このように作製したゲル材である電解質
膜11の表面にPtを担持したカーボン繊維等を、同じ
くゾルゲル法により一体成形してMEA1を得る方法か
らなる。炭素繊維シート21をゾルゲル溶液20に浸漬
して引き上げることにより、炭素繊維シート21に数n
m〜数μm厚さのコート膜が形成される。コート膜中の
Ptは炭素繊維と効率よく接触し、触媒層12の機能を
発現する。この形態にて、炭素繊維は集電体としても働
く。
Next, each embodiment of the present invention will be described. [First Embodiment of the Invention] A first embodiment of the present invention relates to a method for producing a catalyst layer 12, a catalyst layer 12 produced by the production method, and a method for producing an MEA 1 using the catalyst layer 12. is there. As shown in FIG. 1, the method of manufacturing the catalyst layer 12 includes a solvent (eg, a catalyst (eg, Pt, Ru, etc.) containing a proton conductive material (eg, tungstophosphoric acid, silicotungstic acid, etc.) as a component.
Etc.) A catalyst-supporting base material 21 (for example, a carbon fiber sheet 21) is dipped in a sol-gel solution 20 in which a colloid is dispersed and pulled up, and the catalyst-supporting base material 21 is surface-coated with the sol-gel solution 20 and dried and heated (for example, , 60-70 ° C x 3
(0 to 60 minutes) A method of gelling. The catalyst layer 12 is obtained by this method. The method for producing the MEA 1 using the catalyst layer 12 is a well-known method in which an electrolyte membrane 11 of a proton conductive material is produced by a sol-gel method in which phosphoric acid or the like is added. This is a method of integrally molding carbon fibers having Pt supported on the surface thereof by the sol-gel method to obtain MEA1. By immersing the carbon fiber sheet 21 in the sol-gel solution 20 and pulling it up, a few n
A coat film having a thickness of m to several μm is formed. Pt in the coat film makes efficient contact with the carbon fibers and exhibits the function of the catalyst layer 12. In this form, the carbon fibers also act as a current collector.

【0011】また、ゾルゲル溶液20に予めプロトン伝
導性物質の他に撥水性物質(たとえば、フルオロアルキ
ルシラン(FAS))を成分として含有させておいても
よい。FAS添加時の組成例は、FAS:1.6g、
TEOS:5.12g、 EtOH:48.75g、
0.05N HCl:6.32gである。その場合は、
形成されたコート膜では、FASが撥水成分として働く
ため、燃料電池の酸素極に用いた場合でも反応で生成し
た水分が停留することなく、触媒層12がフラッディン
グを起こさずに効率的に機能する。
Further, the sol-gel solution 20 may contain a water repellent substance (for example, fluoroalkylsilane (FAS)) as a component in addition to the proton conductive substance. An example of the composition when FAS is added is FAS: 1.6 g,
TEOS: 5.12 g, EtOH: 48.75 g,
0.05N HCl: 6.32 g. In that case,
In the formed coat film, FAS acts as a water repellent component, so that even when used in the oxygen electrode of a fuel cell, the water generated by the reaction does not stay and the catalyst layer 12 functions efficiently without causing flooding. To do.

【0012】本発明の実施の形態1の作用については、
ゾルゲル溶液20に触媒担持用基材21を浸漬し引き上
げてゲル化するという1つのゾルゲル工程で触媒層12
を作製できる。また、ゾルゲル溶液20に予めプロトン
伝導性物質の他に撥水性物質を成分として含有させてお
くので、触媒層12の作製と撥水機能付与を同工程で行
うことができる。
Regarding the operation of the first embodiment of the present invention,
The catalyst layer 12 is formed by one sol-gel step of immersing the catalyst-supporting base material 21 in the sol-gel solution 20 and pulling it up for gelation.
Can be produced. Further, since the sol-gel solution 20 contains a water-repellent substance as a component in advance in addition to the proton conductive substance, the catalyst layer 12 can be produced and the water-repellent function can be imparted in the same step.

【0013】〔本発明の実施の形態2〕本発明の実施の
形態2は、発明の実施の形態1において、撥水処理(F
AS等)を、後処理として行う方法と該方法により作製
された触媒層に関するものである。すなわち、本発明の
実施の形態2の燃料電池用触媒層の製造方法は、プロト
ン伝導性物質を成分として含有し撥水性物質を含有しな
い溶媒に触媒コロイドを分散させたゾルゲル溶液20に
触媒担持用基材21を浸し引き上げて触媒担持用基材を
ゾルゲル溶液で表面コートしてゲル化し、その後、撥水
性物質(たとえば、FAS等)を成分として含有したゾ
ルゲル溶液に浸して表面コートの最表面に撥水層を形成
する方法からなる。本発明の実施の形態2は酸素極の作
製に用いられるが、撥水を必要としない水素極へは撥水
層を形成する工程を実施しないようにする。すなわち、
本発明の実施の形態1において、酸素極において、本来
の触媒層の機能に対して、撥水成分は不純物となるた
め、撥水機能を必要最小限の最表面にのみ与えるように
する。また、この方法は、触媒層の厚さ方向に触媒成分
や構造を変化させたい場合にも、適用できる。たとえ
ば、触媒担持用基材をゾルゲル溶液で表面コートしてゲ
ル化し、その後、Ptの含有量を変えた、第2、第3の
ゾル溶液に順次浸漬してゲル化することにより、膜側を
触媒層、集電体側を拡散層として機能させることもでき
る。また、たとえば片面(電解質膜側)のみに撥水膜を
形成したい場合などは、後述の発明の実施の形態6を適
用してもよい。
[Embodiment 2 of the Invention] Embodiment 2 of the present invention is the same as Embodiment 1 of the invention, except that the water repellent treatment (F
AS and the like) as a post-treatment and a catalyst layer produced by the method. That is, the method for producing a catalyst layer for a fuel cell according to Embodiment 2 of the present invention is to support a catalyst in a sol-gel solution 20 in which a catalyst colloid is dispersed in a solvent containing a proton conductive substance as a component and not containing a water repellent substance. The substrate 21 is dipped and pulled up, and the catalyst-supporting substrate is surface-coated with a sol-gel solution for gelation, and then dipped in a sol-gel solution containing a water-repellent substance (for example, FAS) as a component to form the outermost surface of the surface coat. The method comprises forming a water repellent layer. Although the second embodiment of the present invention is used for producing an oxygen electrode, the step of forming a water repellent layer is not performed on a hydrogen electrode that does not require water repellency. That is,
In the first embodiment of the present invention, in the oxygen electrode, since the water-repellent component becomes an impurity with respect to the original function of the catalyst layer, the water-repellent function is given only to the minimum necessary outermost surface. This method can also be applied to the case where it is desired to change the catalyst component or structure in the thickness direction of the catalyst layer. For example, a catalyst-supporting base material is surface-coated with a sol-gel solution to gel, and then the second side and the third sol solution having different Pt contents are sequentially dipped to gel the membrane side. The catalyst layer and the collector side can also function as a diffusion layer. Further, for example, when it is desired to form the water-repellent film only on one surface (electrolyte membrane side), the sixth embodiment of the invention described below may be applied.

【0014】本発明の実施の形態2の燃料電池用触媒層
の製造方法の作用については、触媒担持用基材21をゾ
ルゲル溶液で表面コートしてゲル化し、その後、撥水性
物質を成分として含有したゾルゲル溶液に浸して最表面
に撥水層を形成するので、撥水処理のみを後工程として
独立させることができ、触媒層12の片面のみ等、局部
的に撥水処理を施すことができる。
Regarding the operation of the method for producing a catalyst layer for a fuel cell according to Embodiment 2 of the present invention, the catalyst-supporting base material 21 is surface-coated with a sol-gel solution to form a gel, and then a water-repellent substance is contained as a component. Since the water-repellent layer is formed on the outermost surface by immersing it in the sol-gel solution described above, only the water-repellent treatment can be made independent as a post-process, and the water-repellent treatment can be locally applied such as only one surface of the catalyst layer 12. .

【0015】〔本発明の実施の形態3〕本発明の実施の
形態3は、本発明の実施の形態1、2で用いる触媒担持
用基材である炭素繊維シートの導電性(集電特性)を向
上させる方法とその方法で作製した燃料電池用触媒層で
ある。本発明の実施の形態3の燃料電池用触媒層の製造
方法では、触媒担持用基材21が、炭素繊維をチタニア
(TiO2 )ゾルまたは(チタニア+触媒)ゾルに浸漬
し表面にチタニアゲルコートまたは(チタニア+触媒)
ゲルコートしたものを、アンモニアガスまたは窒素雰囲
気で焼成して、表面にTiNまたは触媒含有TiNを形
成した繊維のシートからなる。
[Embodiment 3 of the present invention] In Embodiment 3 of the present invention, the conductivity (collection characteristics) of the carbon fiber sheet which is the catalyst supporting base material used in Embodiments 1 and 2 of the present invention And a catalyst layer for a fuel cell produced by the method. In the method for producing a catalyst layer for a fuel cell according to Embodiment 3 of the present invention, the catalyst-supporting base material 21 is prepared by immersing carbon fiber in titania (TiO 2 ) sol or (titania + catalyst) sol and titania gel coating or (Titania + catalyst)
The gel-coated product is fired in an atmosphere of ammonia gas or nitrogen to form a fiber sheet having TiN or catalyst-containing TiN formed on the surface.

【0016】本発明の実施の形態3の燃料電池用触媒層
の製造方法の作用については、炭素繊維をチタニアゾル
またはチタニア+触媒ゾルに浸漬し表面にチタニアゲル
コートまたはチタニア+触媒ゲルコートしたものをアン
モニアガスまたは窒素雰囲気で焼成して表面にTiNま
たは触媒含有TiNを形成したので、炭素繊維のみの場
合に比べて集電性が2〜3倍良好になり、通電抵抗も低
減する。比抵抗は、C:4〜7E−5Ωcm、 Ti
N:2.2E−5Ωcm、TiC:18.0E−5Ωc
m、である。
Regarding the operation of the method for producing a catalyst layer for a fuel cell according to the third embodiment of the present invention, the carbon fiber is dipped in titania sol or titania + catalyst sol and the surface is titania gel-coated or titania + catalyst gel-coated and ammonia gas is used. Alternatively, since TiN or catalyst-containing TiN is formed on the surface by firing in a nitrogen atmosphere, the current collecting property becomes 2-3 times better than the case of using only carbon fiber, and the energization resistance also decreases. The specific resistance is C: 4 to 7E-5 Ωcm, Ti
N: 2.2E-5 Ωcm, TiC: 18.0E-5 Ωc
m.

【0017】〔本発明の実施の形態4〕本発明の実施の
形態4は、本発明の実施の形態1、2で用いる触媒担持
用基材である炭素繊維シートの導電性(集電特性)を向
上させる方法とその方法で作製した燃料電池用触媒層で
ある。本発明の実施の形態4の燃料電池用触媒層の製造
方法では、触媒担持用基材21が、炭素繊維の一部にA
u線を織り込んだシートからなる。織り込むAu線の割
合は、炭素繊維10〜1000本に対して1本の割合で
ある。本発明の実施の形態4の作用については、触媒担
持用基材21が、炭素繊維の一部にAu線を織り込んだ
シートからなるので、炭素繊維のみの場合に比べて集電
性が良好になり、通電抵抗も低減する。Auの比抵抗
は、2.4E−6Ωcmである。
[Embodiment 4 of the present invention] In Embodiment 4 of the present invention, the conductivity (collection characteristic) of the carbon fiber sheet which is the catalyst supporting base material used in Embodiments 1 and 2 of the present invention And a catalyst layer for a fuel cell produced by the method. In the method for manufacturing a catalyst layer for a fuel cell according to Embodiment 4 of the present invention, the catalyst-supporting base material 21 has a portion of carbon fiber A
It consists of a sheet woven with u-line. The ratio of Au wire to be woven is one for every 10 to 1,000 carbon fibers. Regarding the operation of the fourth embodiment of the present invention, since the catalyst supporting base material 21 is made of a sheet in which Au wire is woven into a part of carbon fiber, the current collecting property is better than that in the case of only carbon fiber. Therefore, the conduction resistance is also reduced. The specific resistance of Au is 2.4E-6 Ωcm.

【0018】〔本発明の実施の形態5〕本発明の実施の
形態5は、本発明の実施の形態1〜4の触媒層と電解質
膜11(プロトン伝導膜)を一体に形成するMEA1と
その製造方法に関するものである。一体化の方法とし
て、 (一方の層を他方の層上に)積層してゲル化させて
いく方法 電解質膜11と、ゲルを充填した炭素繊維をゾルゲ
ル材により接着する方法 がある。
[Fifth Embodiment of the Present Invention] A fifth embodiment of the present invention is an MEA 1 in which the catalyst layer and the electrolyte membrane 11 (proton conductive membrane) of the first to fourth embodiments of the present invention are integrally formed, and the MEA 1 thereof. The present invention relates to a manufacturing method. As a method of integration, there is a method of laminating (one layer on the other layer) and gelling, and a method of adhering the electrolyte membrane 11 and the gel-filled carbon fiber with a sol-gel material.

【0019】 積層してゲル化させていく方法(図
1) つぎの工程により作製する。 (1)Pt、Ru(必要であれば、それ以外の触媒)な
どを担持したカーボン繊維をプロトン伝導性のゾルゲル
溶液に浸漬し、引き上げてゾル化させ、触媒層12を形
成する(図1の(1)の部分) (2)工程(1)で得られた触媒層の片面のゲル材にプ
ロトン伝導性のゲルを一度にあるいは積層して必要膜厚
形成し、電解質膜11を形成する。 (3)工程(1)で得られた触媒層の他面のゲル材に、
工程(1)と同じようにして、ゾルゲル溶液に浸漬した
触媒付き炭素繊維を、該触媒付き炭素繊維の表面に付着
したゾルゲル溶液が完全ゲル化しないうちに、工程
(2)の電解質膜11に重ねて、(2)までのゲル材に
一体化させる。上記(1)の代わりに、本発明の実施の
形態の1〜4の触媒層12を用いてもよい。その相違
は、本発明の実施の形態の1〜4の触媒層12では、触
媒がゾルゲル溶液にコロイド分散されていたのに対し、
本発明の実施の形態の5のの工程(1)では、炭素繊
維に予め触媒を担持させておく点である。
Method of Laminating and Gelling (FIG. 1) It is manufactured by the following steps. (1) Carbon fibers carrying Pt, Ru (other catalysts if necessary), etc. are immersed in a proton conductive sol-gel solution and pulled up to form a sol to form the catalyst layer 12 (see FIG. 1). (Part (1)) (2) Proton-conducting gel is formed all at once or laminated on the gel material on one surface of the catalyst layer obtained in step (1) to form the electrolyte membrane 11. (3) In the gel material on the other surface of the catalyst layer obtained in step (1),
In the same manner as in step (1), the carbon fiber with a catalyst immersed in the sol-gel solution is applied to the electrolyte membrane 11 in the step (2) before the sol-gel solution attached to the surface of the carbon fiber with a catalyst is completely gelled. Overlap and integrate with the gel materials up to (2). Instead of the above (1), the catalyst layers 12 of Embodiments 1 to 4 of the present invention may be used. The difference is that in the catalyst layers 12 of Embodiments 1 to 4 of the present invention, the catalyst is colloidally dispersed in the sol-gel solution.
In the step (1) of 5 of the embodiment of the present invention, the carbon fiber is preliminarily loaded with the catalyst.

【0020】上記の方法とその方法で作製されたME
Aの作用はつぎの通りである。従来は、電解質膜に触媒
層をホットプレス等で熱を加えながら圧着し、それを炭
素繊維シートなどの集電帯(拡散層)を介してセパレー
タ(炭素板等)により集電していた。これに対し、本発
明では、ゾルゲル法を適用して電解質膜11に相当する
部分と触媒層、集電帯に相当する部分を一体で作製す
る。これにより、カーボン繊維自体に触媒層と集電帯の
2つの機能を持たせ、カーボン繊維から直接集電すれ
ば、従来のようにセパレータから集電しないので、従来
のセパレータと電極との界面の接触抵抗分が無くなり、
抵抗を大幅に低減したセル構造を提供できる。
The method described above and the ME manufactured by the method
The action of A is as follows. Conventionally, a catalyst layer is pressure-bonded to an electrolyte membrane while applying heat with a hot press or the like, and the separator (carbon plate or the like) collects electricity through a current collecting band (diffusion layer) such as a carbon fiber sheet. On the other hand, in the present invention, the portion corresponding to the electrolyte membrane 11, the catalyst layer, and the portion corresponding to the current collecting band are integrally manufactured by applying the sol-gel method. As a result, if the carbon fiber itself has two functions of a catalyst layer and a current collecting band and the current is collected directly from the carbon fiber, the current will not be collected from the separator as in the conventional case. Contact resistance is gone,
A cell structure with significantly reduced resistance can be provided.

【0021】 電解質膜11とゲルを充填した炭素繊
維をゾルゲル材により接着する方法該方法は、電解質膜
11を予めゾルゲル法で作製しておき、ゾルゲル液に浸
漬して引き上げたゾルゲル液でコートされた炭素繊維か
らなる触媒層12を、電解質膜11と触媒層12のゲル
が完全固化する前に電解質膜11の両面に接着する方法
からなる。すなわち、上記の工程(3)に準じた処理
を、電解質膜11の両面に実施する。ゲルが固化する前
でウエットの状態で合わせておくと、ゲル材で互いに一
体に接着する。の方法の作用は上記の方法の作用に
準じる。
Method of adhering the electrolyte membrane 11 and the carbon fiber filled with gel with a sol-gel material In this method, the electrolyte membrane 11 is prepared in advance by a sol-gel method, and the electrolyte membrane 11 is immersed in a sol-gel solution and coated with the sol-gel solution. The catalyst layer 12 made of carbon fiber is adhered to both surfaces of the electrolyte membrane 11 before the gel of the electrolyte membrane 11 and the catalyst layer 12 is completely solidified. That is, the treatment according to the above step (3) is performed on both surfaces of the electrolyte membrane 11. If the gels are put together in a wet state before they solidify, they will be bonded together with the gel material. The action of the above method is similar to that of the above method.

【0022】〔本発明の実施の形態6〕本発明の実施の
形態6は、薄膜でかつ大面積(たとえば、15cm×1
5cm程度以上)の電解質膜11(プロトン伝導膜)を
ゾルゲル法で作製する方法に関する。ゾルゲル法でゲル
骨格成分としてテトラエトキシシラン(TEOS)を使
用した場合、 ・乾燥工程において収縮が起こり割れが発生する。 ・急な加熱処理を行うと溶媒揮発により割れが発生す
る。 ・平坦薄膜作製は困難。 などの問題があり、その結果、薄膜でかつ大面積の電解
質膜11(プロトン伝導膜)をゾルゲル法で作製するこ
とは困難である。これを解消するために、本発明の実施
の形態6の燃料電池用MEAの製造方法では、電解質膜
11を作製する際に、ゾルゲル溶液にゲル化骨格成分と
して3−グリシドキシプロピルトリメトキシシランを添
加し、ゲル化容器としてアクリル容器を用いる。
[Sixth Embodiment of the Present Invention] A sixth embodiment of the present invention is a thin film and has a large area (for example, 15 cm × 1).
The present invention relates to a method for producing the electrolyte membrane 11 (proton conductive membrane) of about 5 cm or more) by the sol-gel method. When tetraethoxysilane (TEOS) is used as a gel skeleton component in the sol-gel method: -Shrinkage occurs in the drying process and cracks occur. -If a rapid heat treatment is performed, the solvent volatilizes and cracks occur.・ It is difficult to produce flat thin films. As a result, it is difficult to produce a thin and large-area electrolyte membrane 11 (proton conductive membrane) by the sol-gel method. In order to solve this, in the method for producing the fuel cell MEA according to the sixth embodiment of the present invention, when the electrolyte membrane 11 is produced, 3-glycidoxypropyltrimethoxysilane is used as a gelling skeleton component in the sol-gel solution. Is added, and an acrylic container is used as a gelling container.

【0023】GPTSを原料とするゲル作製では、つぎ
の式に示すように、 ・OCH3 は酸または塩基触媒下で水による加水分解を
受け、エポキシ環は低pHにて開環する。 ・分子内に有機鎖をもち、これがゲル骨格に取り込まれ
ることからゲル層にフレキシビリティを付与できる。 ・乾燥時に収縮を起こさないことから割れが発生しな
い。 などの性状を示す。なお、ゾルゲル液の組成例はつぎの
通りである。 GPTS:EtOH:H2 O:HCl=1:4:4:
0.01(モル比)
In the gel preparation using GPTS as a raw material, as shown in the following formula: OCH 3 is hydrolyzed by water under an acid or base catalyst, and the epoxy ring is opened at low pH. -Since it has an organic chain in the molecule and this is incorporated into the gel skeleton, flexibility can be imparted to the gel layer.・ No cracking occurs because it does not shrink when dried. Shows the properties such as. The composition example of the sol-gel liquid is as follows. GPTS: EtOH: H 2 O: HCl = 1: 4: 4:
0.01 (molar ratio)

【0024】[0024]

【化1】 [Chemical 1]

【0025】本発明の実施の形態6の作用については、
GPTSを添加することにより、ゲル化時(縮合、乾燥
時)に横方向の収縮が起きにくくなり、これにより膜の
亀裂、割れ等が起こらない。また、容器の選択が悪い
と、ゲル化した薄膜が容器に吸着して剥がす時に薄膜が
損傷することがあるが、アクリル容器を用いると薄膜の
容器からの離脱が円滑に行われることを見出し、容器を
アクリル容器にした。GPTSの添加とアクリル容器の
使用により、大面積薄膜の形成が可能になる。
Regarding the operation of the sixth embodiment of the present invention,
The addition of GPTS makes it difficult for lateral shrinkage to occur during gelation (condensation and drying), and thus does not cause cracking or cracking of the film. Also, if the selection of the container is bad, the thin film gelated may be damaged when adsorbed to the container and peeled off, but it was found that the use of an acrylic container facilitates the separation of the thin film from the container, The container was an acrylic container. The addition of GPTS and the use of acrylic containers allows the formation of large area thin films.

【0026】本発明の実施の形態6の大面積薄膜形成方
法の応用として、炭素繊維シートの片面のみゲルを形成
したい場合につぎの手法を用いることができる。図3に
示すように、炭素繊維シートをアクリル板の上に置き、
傾けた上方からゾルゲル溶液を流し、全面が濡れた状態
で保持しておく。場合によっては、炭素繊維上面からゾ
ルゲル液を吹き付けてもよい。また、ゾルゲル液に浸漬
した炭素繊維シート21をアクリル板30の上に置き、
アクリル板30を傾けてもよい。アクリル板を傾けた状
態で、ゲルを乾燥させることにより、アクリル板30側
のみにゲル膜(たとえば、電解質膜)ができた触媒層を
得ることができる。そのゲル膜厚さはアクリル板30の
傾斜角度で制御(変化)することで可能である。
As an application of the large area thin film forming method of the sixth embodiment of the present invention, the following method can be used when it is desired to form a gel on only one surface of a carbon fiber sheet. As shown in FIG. 3, put the carbon fiber sheet on the acrylic plate,
The sol-gel solution is poured from the upper side of the tilt, and the whole surface is kept wet. Depending on the case, the sol-gel liquid may be sprayed from the upper surface of the carbon fiber. Further, the carbon fiber sheet 21 immersed in the sol-gel solution is placed on the acrylic plate 30,
The acrylic plate 30 may be tilted. By drying the gel with the acrylic plate tilted, it is possible to obtain a catalyst layer having a gel film (for example, an electrolyte film) only on the acrylic plate 30 side. The gel film thickness can be controlled (changed) by the inclination angle of the acrylic plate 30.

【0027】〔本発明の実施の形態7〕本発明の実施の
形態7は、図4、図5に示すように、形状の自由度を増
大させ、平板のみならず平板以外の形状(たとえば、中
空円筒状、すなわちパイプ状)とし得る燃料電池用ME
A1に関する。このMEAの作製には、ゾルゲル法を適
用してもよいし、あるいは適用しなくてもよい。MEA
1をパイプ状とすることにより、単位体積当りで、平板
状のMEAの約3〜7倍の気液反応界面(触媒層面積)
を有するMEAを得ることができる。これにより、同性
能で従来の1/7〜1/3のコンパクト化が実現でき
る。また、ゾルゲル法による伝導膜作製を適用すれば、
容易な工程でMEAを作製することができる。
[Embodiment 7 of the Invention] As shown in FIGS. 4 and 5, Embodiment 7 of the present invention increases the degree of freedom in shape and allows not only flat plates but shapes other than flat plates (for example, ME for fuel cell, which may have a hollow cylindrical shape, that is, a pipe shape
Regarding A1. The sol-gel method may or may not be applied to the production of this MEA. MEA
By making 1 into a pipe shape, the gas-liquid reaction interface (catalyst layer area) is about 3 to 7 times that of a flat plate MEA per unit volume.
It is possible to obtain an MEA having This makes it possible to achieve 1/7 to 1/3 compactness with the same performance. Moreover, if the conductive film production by the sol-gel method is applied,
The MEA can be manufactured by an easy process.

【0028】内面および外面に触媒層(および集電炭素
繊維)を付与された中空円筒状の、たとえば直径1mm
の、電解質パイプを並べ、各パイプの内面および外面の
それぞれから集電する構造をとることができる。パイプ
外面からの集電は集電板からなる集電体2をパイプ状M
EAの外面に接触させて、また、パイプ内面からの集電
は集電棒からなる集電体2をパイプ状MEAの内面に接
触させることにより、行うことができる。パイプ内部の
流体通路15に水素を流し、パイプ外周と外部集電板と
の間の間隙からなる流体通路16に酸素(空気)を流す
ことで、パイプの内外面のそれぞれでアノード、カソー
ド反応を起こすことにより燃料電池10を得る。
A hollow cylindrical shape having a catalyst layer (and a current collecting carbon fiber) provided on the inner surface and the outer surface, for example, a diameter of 1 mm.
It is possible to adopt a structure in which the electrolyte pipes are arranged and current is collected from the inner surface and the outer surface of each pipe. For collecting current from the outer surface of the pipe, the current collector 2 composed of a current collector plate is pipe-shaped M
The current can be collected by contacting the outer surface of the EA and by collecting the current from the inner surface of the pipe by bringing the current collector 2 composed of a current collector into contact with the inner surface of the pipe-shaped MEA. By flowing hydrogen through the fluid passage 15 inside the pipe and flowing oxygen (air) through the fluid passage 16 formed by the gap between the outer periphery of the pipe and the outer current collector plate, the anode and cathode reactions can be performed on the inner and outer surfaces of the pipe, respectively. The fuel cell 10 is obtained by raising.

【0029】パイプ状MEAと平板状MEAの、触媒層
面積を比較すると以下の通りである。平板状単セルで
は、20cm×20cmの面積のMEAが用いられてお
り、その両側をセパレータで挟み込んでいる。これを単
セルとすると、その厚さはカーボンセパレータを用いた
場合で6.2mm、金属セパレータを用いた場合で3.
4mmである。この中のアノード、カソードの触媒層は
それぞれ400cm2 となる。これに対し、本発明の実
施の形態7のパイプMEAを用いた場合、パイプMEA
の外径をたとえば1mmとした場合、縦横20cmに配
列した時には、1本のパイプMEAの外表面積は6.2
8cm2 (=0.1×π×20)であり、これを200
本並べることができるため、1.5mm厚(パイプ径1
mm+外集電板厚0.5mm)で1256cm2 もの触
媒層面積を形成することができる。したがって、同容量
(たとえば、カーボンセパレータ使用時、248cm3
=20cm×20cm×6.2mm)で比較すれば、平
板状MEAでは、この中の触媒総面積は400cm2
あるのに対し、本発明の実施の形態7のパイプMEAで
は5196cm2 を有することになり、約13倍の面積
を得ることができる。金属セパレータの平板MEAと比
較しても(136cm3 =20cm×20cm×3.4
mm)、本発明のパイプMEAの場合触媒総面積が28
48cm2 となり、約7倍の触媒面積を得ることができ
る。逆に同面積でよいとした場合、本発明のパイプME
Aは平板状MEAの1/13の容積で済むことになり、
画期的方法といえる。本発明の実施の形態7のパイプM
EAの配列は、セル積層方向には一列とする。その理由
は、もしもセル積層方向には複数列(たとえば、3列)
とすると、中央のパイプ間隙間(第1列と第2列の間の
隙間、および第2列と第3列の間の隙間)への空気(酸
素)の供給がうまくなされないからである。
A comparison of the catalyst layer areas of the pipe-shaped MEA and the flat plate-shaped MEA is as follows. In the plate-shaped unit cell, MEA having an area of 20 cm × 20 cm is used, and both sides thereof are sandwiched by separators. Assuming that this is a single cell, its thickness is 6.2 mm when a carbon separator is used, and it is 3. when a metal separator is used.
It is 4 mm. The catalyst layers of the anode and the cathode therein are 400 cm 2 each. On the other hand, when the pipe MEA according to the seventh embodiment of the present invention is used, the pipe MEA
When the outer diameter of the pipe MEA is set to 1 mm, for example, the outer surface area of one pipe MEA is 6.2 when the pipe MEA is arranged in the length and width of 20 cm.
8 cm 2 (= 0.1 × π × 20), which is 200
1.5mm thickness (pipe diameter 1
mm + outer current collector plate thickness 0.5 mm), a catalyst layer area of 1256 cm 2 can be formed. Therefore, the same capacity (for example, when using a carbon separator, 248 cm 3
= 20 cm × 20 cm × 6.2 mm), the flat MEA has a total catalyst area of 400 cm 2 , whereas the pipe MEA according to the seventh embodiment of the present invention has 5196 cm 2. It is possible to obtain about 13 times the area. Compared with the flat plate MEA of the metal separator (136 cm 3 = 20 cm × 20 cm × 3.4)
mm), the total area of the catalyst is 28 in the case of the pipe MEA of the present invention.
It becomes 48 cm 2 , and a catalyst area of about 7 times can be obtained. Conversely, if the same area is acceptable, the pipe ME of the present invention
The volume of A will be 1/13 of the flat MEA,
It can be said to be an epoch-making method. Pipe M of Embodiment 7 of the present invention
The EA is arranged in a line in the cell stacking direction. The reason is that if there are multiple rows (for example, 3 rows) in the cell stacking direction.
In that case, the air (oxygen) is not successfully supplied to the gaps between the pipes in the center (the gap between the first row and the second row, and the gap between the second row and the third row).

【0030】〔本発明の実施の形態8〕本発明の実施の
形態8は、図6、図7に示すように、中空円筒状MEA
1の外面と接して集電部材(集電体)2が設けられてお
り、該集電部材2は導電性ワイヤからなる燃料電池用M
EAに関する。本発明の実施の形態8は、発明の実施の
形態7で示したパイプMEAの外側の集電板2の代わり
に、導電性ワイヤ(集電ワイヤ)2を用いてパイプME
A1を編み込むことにより集電する燃料電池構造体であ
る。導電性ワイヤ2を用いて集電することにより、確実
に集電できる。仮に各パイプMEA1に太さのばらつき
が生じていても、板では接触しないパイプMEAが存在
する可能性があるが、ワイヤ2では確実に接触して集電
できるため、集電ロスを生じず、高い集電性が得られ
る。集電層面積を比較するとつぎの通りである。集電ワ
イヤ2の径を0.5mmとすると、パイプMEA1の並
び方向にも集電ワイヤが占める部分が生じるため、並べ
られるパイプMEAの本数が1/1.5になり、したが
って、得られる触媒層の表面積も1/1.5となってし
まうが、それでもカーボンセパレータの6.5倍、金属
セパレータの3.5倍の面積が得られる。
[Eighth Embodiment of the Present Invention] As shown in FIGS. 6 and 7, the eighth embodiment of the present invention is a hollow cylindrical MEA.
1. A current collecting member (current collector) 2 is provided in contact with the outer surface of the fuel cell 1. The current collecting member 2 is a fuel cell M made of a conductive wire.
Regarding EA. In the eighth embodiment of the present invention, a conductive wire (current collecting wire) 2 is used instead of the current collecting plate 2 on the outside of the pipe MEA shown in the seventh embodiment of the invention.
It is a fuel cell structure that collects current by knitting A1. By collecting the current using the conductive wire 2, it is possible to reliably collect the current. Even if the thickness of each pipe MEA 1 varies, there is a possibility that there is a pipe MEA that does not come into contact with the plate, but the wire 2 can surely come into contact and collect current, so that no current collection loss occurs, High current collection performance can be obtained. The areas of the current collecting layers are compared as follows. When the diameter of the current collecting wire 2 is 0.5 mm, a portion occupied by the current collecting wire also occurs in the direction in which the pipes MEA 1 are arranged, so that the number of arranged pipes MEA becomes 1 / 1.5, and thus the obtained catalyst is obtained. Although the surface area of the layer becomes 1 / 1.5, the area is 6.5 times that of the carbon separator and 3.5 times that of the metal separator.

【0031】〔本発明の実施の形態9〕本発明の実施の
形態9は、中空円筒状MEA1の内面と接して集電部材
(集電体)2が設けられており、該集電部材2は導電性
メッシュからなる燃料電池用MEAに関するものであ
る。本発明の実施の形態7で示した構造体で、パイプM
EA1の内側の集電棒の代わりに、金コートしたSUS
メッシュ、もしくは金線メッシュを円筒状にしたものを
用いる。その製造方法は、このメッシュの周りにカーボ
ン繊維(集電帯)を巻き、本発明の実施の形態5により
触媒層および電解質膜を形成する。本発明の実施の形態
5の方法により、加圧の必要なく一体構造を製造でき、
メッシュとMEAの接触に対して加圧する必要がなく、
高い集電性が得られる。
[Ninth Embodiment of the Present Invention] In a ninth embodiment of the present invention, a current collecting member (current collector) 2 is provided in contact with the inner surface of the hollow cylindrical MEA 1, and the current collecting member 2 is provided. Relates to a fuel cell MEA made of a conductive mesh. In the structure shown in the seventh embodiment of the present invention, the pipe M
Gold coated SUS instead of the current collector inside EA1
Use a mesh or a cylindrical gold wire mesh. In the manufacturing method, carbon fibers (collection band) are wound around this mesh to form a catalyst layer and an electrolyte membrane according to the fifth embodiment of the present invention. According to the method of the fifth embodiment of the present invention, an integrated structure can be manufactured without the need for pressurization,
There is no need to pressurize the mesh and MEA contact,
High current collection performance can be obtained.

【0032】〔本発明の実施の形態10〕本発明の実施
の形態10は、中空円筒状MEA1の製造方法に関する
ものである。本発明の実施の形態10では、低融点のろ
う材(パラフィン等)により円筒形(外径0.4mm程
度の中実の円柱状)の芯材を作り、該芯材の外周にリリ
アン編みまたは靴下編み等で触媒担持用基材(たとえ
ば、炭素繊維)を編み込む。その後、触媒担持用基材
(炭素繊維の編み物)に触媒層をゾルゲル法(本発明の
実施の形態5の方法)で形成し、ついで該触媒層上に一
体にゾルゲル法で電解質層を形成し、該電解質層上に一
体にゾルゲル法で触媒層を形成する。その後、芯材を除
去(溶融等による除去)することにより中空円筒状ME
Aを、作製する。外周の触媒層集電部も、電解質形成
後、炭素繊維を上記と同様に編み込んでおいて同様のゾ
ルゲル法の処理を施せばよい。芯材および電解質形成
後、外周側の炭素繊維を編み込むことが工程上困難な場
合は、予め同心円方向に拡がる編み方(靴下編み等)で
目標(芯材の径、電解質形成後の径)より少し小さめの
径で編み込んでおき、広げながら芯材を通して、これに
本発明の実施の形態5の処理を施せばよい。本発明の実
施の形態10の作用については、中空円筒状MEAを、
円筒形の芯材を作り、該芯材の外周に触媒担持用基材を
設け、ついで触媒層、電解質層、触媒層を順にゾルゲル
法で形成し、その後芯材を除去することにより作製する
ので、層間に加圧力をかけることなく接触抵抗の低い中
空円筒状MEA1を作製することができる。
[Embodiment 10 of the present invention] Embodiment 10 of the present invention relates to a method of manufacturing a hollow cylindrical MEA 1. In the tenth embodiment of the present invention, a cylindrical core material (solid cylinder having an outer diameter of about 0.4 mm) is made of a low melting point brazing material (paraffin or the like), and Lillian knitting or A catalyst supporting substrate (for example, carbon fiber) is knitted by sock knitting or the like. Then, a catalyst layer is formed on the catalyst-supporting substrate (knitted carbon fiber) by the sol-gel method (the method of the fifth embodiment of the present invention), and then an electrolyte layer is integrally formed on the catalyst layer by the sol-gel method. A catalyst layer is integrally formed on the electrolyte layer by a sol-gel method. After that, the hollow cylindrical ME is removed by removing the core material (removing by melting, etc.).
A is produced. The catalyst layer current collecting portion on the outer periphery may also be subjected to the same sol-gel method treatment after weaving carbon fibers in the same manner as above after forming the electrolyte. If it is difficult to knit the carbon fiber on the outer peripheral side after forming the core material and electrolyte, the knitting method (sock knitting, etc.) that spreads in the concentric direction is used in advance from the target (core material diameter, diameter after electrolyte formation). It suffices to knit in a slightly smaller diameter, pass through the core material while unfolding, and apply the treatment of the fifth embodiment of the present invention to this. Regarding the operation of Embodiment 10 of the present invention, the hollow cylindrical MEA is
Since a cylindrical core material is prepared, a catalyst-supporting base material is provided on the outer periphery of the core material, then a catalyst layer, an electrolyte layer, and a catalyst layer are sequentially formed by a sol-gel method, and then the core material is removed. The hollow cylindrical MEA 1 having a low contact resistance can be manufactured without applying pressure between the layers.

【0033】[0033]

【発明の効果】請求項1の燃料電池用MEAの製造方法
および請求項2の燃料電池用MEAによれば、ゾルゲル
法によって触媒層を作製し、ゾルゲル法によって電解質
膜を作製し、電解質膜と触媒層とをゾルゲル法による作
製時に一体に成形するので、触媒層と電解質層層との接
合はホットプレス等の機械的接合ではなく、製造過程で
一体となり、接合部の電気抵抗値が低減し、燃料電池の
出力が向上する。請求項3の燃料電池用触媒層の製造方
法によれば、ゾルゲル溶液に触媒担持用基材を浸漬し引
き上げてゲル化するという1つのゾルゲル工程で触媒層
を作製できる。請求項4の燃料電池用触媒層の製造方法
によれば、ゾルゲル溶液に予めプロトン伝導性物質の他
に撥水性物質を成分として含有させておくので、触媒層
の作製と撥水機能付与を同工程で行うことができる。請
求項5の燃料電池用触媒層の製造方法によれば、触媒担
持用基材を前記ゾルゲル溶液で表面コートしてゲル化
し、その後、撥水性物質を成分として含有したゾルゲル
溶液に浸して最表面に撥水層を形成するので、撥水処理
のみを後工程として独立させることができ、触媒層の片
面のみ等、局部的に撥水処理を施すことができる。請求
項3〜5の燃料電池用触媒層の製造方法によれば、ゾル
ゲル溶液に触媒コロイドを分散させたが、請求項6の燃
料電池用触媒層の製造方法によれば、予め触媒を担持し
た触媒担持用基材をゾルゲル溶液に浸漬するようにす
る。請求項6の燃料電池用触媒層の製造方法で、燃料電
池用触媒層を製造してもよい。請求項7の燃料電池用触
媒層の製造方法によれば、触媒担持用基材が、炭素繊維
シートからなるので、集電性が良好である。請求項8の
燃料電池用触媒層の製造方法によれば、炭素繊維をチタ
ニアゾルまたはチタニア+触媒ゾルに浸漬し表面にチタ
ニアゲルコートまたはチタニア+触媒ゲルコートしたも
のをアンモニアガスまたは窒素雰囲気で焼成して表面に
TiNまたは触媒含有TiNを形成したので、炭素繊維
のみの場合に比べて集電性が良好になり、通電抵抗も低
減する。請求項9の燃料電池用触媒層の製造方法によれ
ば、触媒担持用基材が、炭素繊維の一部にAu線を織り
込んだシートからなるので、炭素繊維のみの場合に比べ
て集電性が良好になり、通電抵抗も低減する。請求項1
0の燃料電池用触媒層によれば、請求項3〜9記載の何
れかの方法により作製したので、請求項3〜9で得られ
る作用・効果がある。請求項11の燃料電池用MEAの
製造方法によれば、電解質膜を作製する際に、ゾルゲル
溶液に3−グリシドキシプロピルトリメトキシシランを
添加し、ゲル化容器としてアクリル容器を用いるので、
大面積薄膜の電解質膜を製造できる。請求項12の燃料
電池用MEAによれば、MEAが中空円筒状に形成され
ているので、平板状MEAに比べて触媒層面積を増大で
き、MEA、燃料電池のコンパクト化をはかることがで
きる。請求項13の燃料電池用MEAによれば、中空円
筒状MEAの外面と接して集電部材が設けられており、
該集電部材は導電性ワイヤからなるので、中空円筒状M
EAの外径にばらつきがあってもワイヤは中空円筒状M
EAに接触でき、高い集電性が得られる。請求項14の
燃料電池用MEAによれば、中空円筒状MEAの内面と
接して集電部材が設けられており、該集電部材は導電性
メッシュからなるので、高い集電性が得られる。請求項
15の燃料電池用MEAの製造方法によれば、中空円筒
状MEAを、円筒形の芯材を作り、該芯材の外周に触媒
担持用基材を設け、ついで触媒層、電解質層、触媒層を
順にゾルゲル法で形成し、その後芯材を除去することに
より作製するので、層間に加圧力をかけることなく接触
抵抗の低い中空円筒状MEAを作製することができる。
According to the method for producing an MEA for a fuel cell according to claim 1 and the MEA for a fuel cell according to claim 2, a catalyst layer is produced by a sol-gel method, an electrolyte membrane is produced by a sol-gel method, and an electrolyte membrane is formed. Since the catalyst layer and the catalyst layer are integrally molded during the production by the sol-gel method, the catalyst layer and the electrolyte layer layer are not joined mechanically such as by hot pressing, but are integrated during the manufacturing process, and the electrical resistance value of the joint is reduced. The output of the fuel cell is improved. According to the method for producing a catalyst layer for a fuel cell of claim 3, the catalyst layer can be produced by one sol-gel step of immersing the catalyst-supporting substrate in a sol-gel solution and pulling it up to gel. According to the method for producing a catalyst layer for a fuel cell of claim 4, since the water-repellent substance is contained as a component in advance in the sol-gel solution in addition to the proton conductive substance, the preparation of the catalyst layer and the imparting of the water-repellent function are performed in the same manner. It can be done in process. According to the method for producing a catalyst layer for a fuel cell of claim 5, the catalyst-supporting base material is surface-coated with the sol-gel solution to be gelated, and then dipped in a sol-gel solution containing a water-repellent substance as a component for the outermost surface. Since the water-repellent layer is formed on, the water-repellent treatment can be independently performed as a post-process, and the water-repellent treatment can be locally applied on only one surface of the catalyst layer. According to the method for producing a catalyst layer for a fuel cell according to claims 3 to 5, the catalyst colloid is dispersed in the sol-gel solution. However, according to the method for producing a catalyst layer for a fuel cell according to claim 6, the catalyst is previously loaded. The catalyst supporting substrate is immersed in the sol-gel solution. The fuel cell catalyst layer may be manufactured by the method for manufacturing a fuel cell catalyst layer according to claim 6. According to the method for producing a catalyst layer for a fuel cell of claim 7, the catalyst supporting base material is made of a carbon fiber sheet, so that the current collecting property is good. According to the method for producing a catalyst layer for a fuel cell of claim 8, the surface is obtained by immersing carbon fiber in titania sol or titania + catalyst sol and coating the surface with titania gel coat or titania + catalyst gel coat in an ammonia gas or nitrogen atmosphere. Since TiN or catalyst-containing TiN is formed on the substrate, the current collecting property is improved and the energization resistance is reduced as compared with the case where only carbon fiber is used. According to the method for producing a catalyst layer for a fuel cell of claim 9, since the catalyst-supporting base material is a sheet in which Au wire is woven into a part of carbon fiber, the current collecting property is higher than that in the case of using only carbon fiber. Is improved and conduction resistance is reduced. Claim 1
The fuel cell catalyst layer of No. 0 is produced by the method according to any one of claims 3 to 9, and therefore has the actions and effects obtained in claims 3 to 9. According to the method for producing a fuel cell MEA of claim 11, 3-glycidoxypropyltrimethoxysilane is added to a sol-gel solution when an electrolyte membrane is produced, and an acrylic container is used as a gelling container.
A large area thin film electrolyte membrane can be manufactured. According to the MEA for a fuel cell of the twelfth aspect, since the MEA is formed in a hollow cylindrical shape, the area of the catalyst layer can be increased as compared with the flat MEA, and the MEA and the fuel cell can be made compact. According to the fuel cell MEA of claim 13, the current collecting member is provided in contact with the outer surface of the hollow cylindrical MEA,
Since the current collecting member is made of a conductive wire, it has a hollow cylindrical shape M.
Even if the outer diameter of EA varies, the wire has a hollow cylindrical shape M
It can come into contact with EA and obtains high current collection. According to the MEA for a fuel cell of claim 14, the current collecting member is provided in contact with the inner surface of the hollow cylindrical MEA, and the current collecting member is made of a conductive mesh, so that high current collecting property is obtained. According to the method for producing an MEA for a fuel cell of claim 15, a hollow cylindrical MEA is made into a cylindrical core material, a catalyst supporting base material is provided on the outer periphery of the core material, and then a catalyst layer, an electrolyte layer, Since the catalyst layers are sequentially formed by the sol-gel method and then the core material is removed, the hollow cylindrical MEA having a low contact resistance can be manufactured without applying a pressing force between the layers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池用触媒層の製造方法を含む燃
料電池用MEAの製造方法を工程順で示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a method of manufacturing a fuel cell MEA including a method of manufacturing a fuel cell catalyst layer of the present invention in the order of steps.

【図2】本発明の燃料電池用触媒層の製造方法を含む燃
料電池用MEAの製造方法で用いられるゾルゲル法を工
程順(ゾルゲル溶液、ゲル化)で示す断面図である。
FIG. 2 is a cross-sectional view showing a sol-gel method used in a method for producing a fuel cell MEA including a method for producing a fuel cell catalyst layer of the present invention in the order of steps (sol-gel solution, gelation).

【図3】本発明の実施の形態6におけるアクリル容器と
ゲル化の断面図である。
FIG. 3 is a cross-sectional view of an acrylic container and gelation according to a sixth embodiment of the present invention.

【図4】本発明の実施の形態7におけるパイプMEAの
断面図である。
FIG. 4 is a sectional view of a pipe MEA according to a seventh embodiment of the present invention.

【図5】本発明の実施の形態7におけるパイプMEAの
平面図である。
FIG. 5 is a plan view of a pipe MEA according to a seventh embodiment of the present invention.

【図6】本発明の実施の形態8におけるパイプMEAと
集電ワイヤの断面図である。
FIG. 6 is a sectional view of a pipe MEA and a collecting wire according to an eighth embodiment of the present invention.

【図7】図6の側面図である。FIG. 7 is a side view of FIG.

【符号の説明】[Explanation of symbols]

1 MEA 2 集電体(集電板、集電ワイヤ、集電メッシュ) 3 セル 10 (固体高分子電解質型)燃料電池 11 電解質膜 12 触媒層 13、14 電極 15、16 流体流路 20 ゾルゲル溶液 21 触媒担持用基材(たとえば、炭素繊維シート) 30 アクリル容器(アクリル板) 1 MEA 2 Current collector (current collector, collector wire, collector mesh) 3 cells 10 (Polymer electrolyte type) fuel cell 11 Electrolyte membrane 12 Catalyst layer 13, 14 electrodes 15, 16 fluid flow path 20 Sol-gel solution 21 Catalyst-supporting substrate (for example, carbon fiber sheet) 30 acrylic container (acrylic plate)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 P // H01M 8/10 8/10 Fターム(参考) 5H018 AA06 AS01 BB00 BB01 BB05 BB08 CC03 CC06 DD05 DD08 EE03 EE05 EE11 5H026 AA06 BB01 BB03 BB04 BB08 BB10 CC06 CV02 CX02 CX04 CX06 EE02 EE05 EE11 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/02 H01M 8/02 P // H01M 8/10 8/10 F term (reference) 5H018 AA06 AS01 BB00 BB01 BB05 BB08 CC03 CC06 DD05 DD08 EE03 EE05 EE11 5H026 AA06 BB01 BB03 BB04 BB08 BB10 CC06 CV02 CX02 CX04 CX06 EE02 EE05 EE11

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 ゾルゲル法によって触媒層を作製し、ゾ
ルゲル法によって電解質膜を作製し、電解質膜と触媒層
とをゾルゲル法による作製時に一体に成形する燃料電池
用MEAの製造方法。
1. A method for producing an MEA for a fuel cell, wherein a catalyst layer is produced by a sol-gel method, an electrolyte membrane is produced by a sol-gel method, and the electrolyte membrane and the catalyst layer are integrally formed during production by the sol-gel method.
【請求項2】 ゾルゲル法によって作製された触媒層
と、ゾルゲル法によって作製された電解質層とを有し、
前記触媒層と前記電解質層とはゾルゲル法による作製時
に一体に成形されている燃料電池用MEA。
2. A catalyst layer produced by the sol-gel method, and an electrolyte layer produced by the sol-gel method,
An MEA for a fuel cell, wherein the catalyst layer and the electrolyte layer are integrally formed during production by a sol-gel method.
【請求項3】 プロトン伝導性物質を成分として含有す
る溶媒に触媒コロイドを分散させたゾルゲル溶液に触媒
担持用基材を浸し引き上げて触媒担持用基材を前記ゾル
ゲル溶液で表面コートしゲル化する燃料電池用触媒層の
製造方法。
3. The catalyst-supporting substrate is surface-coated with the sol-gel solution and gelled by immersing the catalyst-supporting substrate in a sol-gel solution in which a catalyst colloid is dispersed in a solvent containing a proton conductive substance as a component. A method for producing a catalyst layer for a fuel cell.
【請求項4】 前記ゾルゲル溶液に予めプロトン伝導性
物質の他に撥水性物質を成分として含有させておく請求
項3記載の燃料電池用触媒層。
4. The catalyst layer for a fuel cell according to claim 3, wherein the sol-gel solution contains a water repellent substance as a component in advance in addition to the proton conductive substance.
【請求項5】 プロトン伝導性物質を成分として含有し
撥水性物質を含有しない溶媒に触媒コロイドを分散させ
たゾルゲル溶液に触媒担持用基材を浸し引き上げて触媒
担持用基材を前記ゾルゲル溶液で表面コートしてゲル化
し、その後、撥水性物質を成分として含有したゾルゲル
溶液に浸して最表面に撥水層を形成する燃料電池用触媒
層の製造方法。
5. A catalyst-supporting substrate is dipped in a sol-gel solution in which a catalyst colloid is dispersed in a solvent containing a proton-conducting substance as a component and not containing a water-repellent substance, and the catalyst-supporting substrate is formed by the sol-gel solution. A method for producing a catalyst layer for a fuel cell, which comprises surface-coating and gelling, and then immersing in a sol-gel solution containing a water-repellent substance as a component to form a water-repellent layer on the outermost surface.
【請求項6】 プロトン伝導性物質を成分として含有す
るゾルゲル溶液に予め触媒を担持した触媒担持用基材を
浸漬し、該触媒を担持した触媒担持用基材を前記ゾルゲ
ル溶液で表面コートしゲル化する燃料電池用触媒層の製
造方法。
6. A gel for which a catalyst-supporting substrate carrying a catalyst in advance is immersed in a sol-gel solution containing a proton conductive substance as a component, and the catalyst-supporting substrate carrying the catalyst is surface-coated with the sol-gel solution. Of producing a catalyst layer for a fuel cell, which is made into a polymer.
【請求項7】 前記触媒担持用基材が、炭素繊維シート
からなる請求項3または請求項4または請求項5または
請求項6記載の燃料電池用触媒層の製造方法。
7. The method for producing a catalyst layer for a fuel cell according to claim 3, 4, 5 or 6, wherein the catalyst supporting base material is a carbon fiber sheet.
【請求項8】 前記触媒担持用基材が、炭素繊維をチタ
ニアゾルまたはチタニア+触媒ゾルに浸漬し表面にチタ
ニアゲルコートまたはチタニア+触媒ゲルコートしたも
のをアンモニアガスまたは窒素雰囲気で焼成して表面に
TiNまたは触媒含有TiNを形成した繊維のシートか
らなる請求項3または請求項4または請求項5または請
求項6記載の燃料電池用触媒層の製造方法。
8. The catalyst-supporting base material is obtained by immersing carbon fiber in titania sol or titania + catalyst sol and coating the surface with titania gel coat or titania + catalyst gel calcination in an atmosphere of ammonia gas or nitrogen to form TiN or 7. The method for producing a catalyst layer for a fuel cell according to claim 3, claim 4, claim 5, or claim 6, which comprises a fiber sheet on which catalyst-containing TiN is formed.
【請求項9】 前記触媒担持用基材が、炭素繊維の一部
にAu線を織り込んだシートからなる請求項3または請
求項4または請求項5または請求項6記載の燃料電池用
触媒層の製造方法。
9. The catalyst layer for a fuel cell according to claim 3, wherein the catalyst-supporting base material is a sheet in which Au wire is woven into a part of carbon fiber. Production method.
【請求項10】 請求項3〜9記載の何れかの方法によ
り作製した燃料電池用触媒層。
10. A fuel cell catalyst layer produced by the method according to claim 3.
【請求項11】 電解質膜を作製する際に、ゾルゲル溶
液に3−グリシドキシプロピルトリメトキシシランを添
加し、ゲル化容器としてアクリル容器を用いる請求項1
記載の燃料電池用MEAの製造方法。
11. The method for producing an electrolyte membrane, wherein 3-glycidoxypropyltrimethoxysilane is added to a sol-gel solution, and an acrylic container is used as a gelling container.
A method for producing the MEA for a fuel cell described.
【請求項12】 MEAが中空円筒状に形成されている
請求項2記載の燃料電池用MEA。
12. The fuel cell MEA according to claim 2, wherein the MEA is formed in a hollow cylindrical shape.
【請求項13】 中空円筒状MEAの外面と接して集電
部材が設けられており、該集電部材は導電性ワイヤから
なる請求項12記載の燃料電池用MEA。
13. The fuel cell MEA according to claim 12, wherein a current collecting member is provided in contact with the outer surface of the hollow cylindrical MEA, and the current collecting member is made of a conductive wire.
【請求項14】 中空円筒状MEAの内面と接して集電
部材が設けられており、該集電部材は導電性メッシュか
らなる請求項12記載の燃料電池用MEA。
14. The fuel cell MEA according to claim 12, wherein a current collecting member is provided in contact with the inner surface of the hollow cylindrical MEA, and the current collecting member is made of a conductive mesh.
【請求項15】 中空円筒状MEAを、円筒形の芯材を
作り、該芯材の外周に触媒担持用基材を設け、その後触
媒担持用基材に触媒層をゾルゲル法で形成し、ついで該
触媒層上に一体にゾルゲル法で電解質層を形成し、該電
解質層上に一体にゾルゲル法で触媒層を形成し、その後
芯材を除去することにより作製する請求項1記載の燃料
電池用MEAの製造方法。
15. A hollow cylindrical MEA is made into a cylindrical core material, a catalyst-supporting base material is provided on the outer periphery of the core material, and then a catalyst layer is formed on the catalyst-supporting base material by a sol-gel method. The fuel cell according to claim 1, wherein the electrolyte layer is integrally formed on the catalyst layer by the sol-gel method, the catalyst layer is integrally formed on the electrolyte layer by the sol-gel method, and then the core material is removed. Method of manufacturing MEA.
JP2001196930A 2001-06-28 2001-06-28 MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME Pending JP2003017072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196930A JP2003017072A (en) 2001-06-28 2001-06-28 MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196930A JP2003017072A (en) 2001-06-28 2001-06-28 MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
JP2003017072A true JP2003017072A (en) 2003-01-17

Family

ID=19034646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196930A Pending JP2003017072A (en) 2001-06-28 2001-06-28 MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2003017072A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
US6972160B2 (en) 2002-04-08 2005-12-06 National Institute Of Advanced Industrial Science And Technology Fuel cell
JP2005353489A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Membrane electrode composite for tube fuel cell
JP2005353487A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Membrane electrode composite for tube fuel cell
JP2005353485A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Method for manufacturing membrane electrode assembly for tube type fuel cell
JP2006344525A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Gas diffuser, manufacturing method thereof, and fuel cell
JP2008500171A (en) * 2004-05-27 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sol-gel derived composite comprising a noble metal component and an oxide or oxyhydroxide having carbon for a fuel cell catalyst
JP2010272248A (en) * 2009-05-19 2010-12-02 Univ Of Yamanashi High potential stable carrier and electrode catalyst for polymer electrolyte fuel cell
JP2011258354A (en) * 2010-06-07 2011-12-22 Tokyo Univ Of Agriculture & Technology Fuel cell electrode catalyst, manufacturing method thereof, and polymer electrolyte fuel cell membrane electrode assembly
WO2024161942A1 (en) * 2023-02-01 2024-08-08 出光興産株式会社 Gas diffusion layer manufacturing method, cathode, ion exchange film-electrode assembly, and solid electrolyte electrolysis device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972160B2 (en) 2002-04-08 2005-12-06 National Institute Of Advanced Industrial Science And Technology Fuel cell
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
JP2008500171A (en) * 2004-05-27 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sol-gel derived composite comprising a noble metal component and an oxide or oxyhydroxide having carbon for a fuel cell catalyst
JP2005353489A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Membrane electrode composite for tube fuel cell
JP2005353487A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Membrane electrode composite for tube fuel cell
JP2005353485A (en) * 2004-06-11 2005-12-22 Toyota Motor Corp Method for manufacturing membrane electrode assembly for tube type fuel cell
JP2006344525A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Gas diffuser, manufacturing method thereof, and fuel cell
JP2010272248A (en) * 2009-05-19 2010-12-02 Univ Of Yamanashi High potential stable carrier and electrode catalyst for polymer electrolyte fuel cell
JP2011258354A (en) * 2010-06-07 2011-12-22 Tokyo Univ Of Agriculture & Technology Fuel cell electrode catalyst, manufacturing method thereof, and polymer electrolyte fuel cell membrane electrode assembly
WO2024161942A1 (en) * 2023-02-01 2024-08-08 出光興産株式会社 Gas diffusion layer manufacturing method, cathode, ion exchange film-electrode assembly, and solid electrolyte electrolysis device

Similar Documents

Publication Publication Date Title
US7939218B2 (en) Nanowire structures comprising carbon
US7045243B2 (en) Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
KR20080070769A (en) Nanowire Structures Containing Carbon
KR20010052924A (en) Fuel cell gas separator
US6673130B2 (en) Method of fabrication of electrodes and electrolytes
JP2003017072A (en) MEA FOR FUEL CELL, METHOD FOR MANUFACTURING THE SAME, AND CATALYST LAYER FOR FUEL CELL, AND METHOD FOR MANUFACTURING THE SAME
CN100487968C (en) Fuel cell battery with large active surface and reduced volume and manufacturing method thereof
CN1331264C (en) Electrolyte membrane-electrode assembly for fuel cell and manufacturing method thereof
US20090130523A1 (en) Tubular Solid Polymer Fuel Cell Comprising a Rod-Shaped Current Collector With Peripheral Glas Flow Channels and Production Method Thereof
US20130256122A1 (en) Electrochemically functional membranes
JP3873825B2 (en) Fuel cell and manufacturing method thereof
ES2381792T3 (en) Chemically sintered compound electrodes and manufacturing procedures
KR101678371B1 (en) Method of manufacturing plate-typed solid oxide fuel cell
JP2003168446A (en) Fuel cell and method of manufacturing the same
JP2003282093A (en) Electrolyte membrane-electrode assembly for fuel cell and method for producing the same
KR100670279B1 (en) Thin membrane electrode assembly for fuel cell and fuel cell using same
CN1883071A (en) PEM fuel cell stack with coated flow distribution network
JP2002075406A (en) Fuel battery cell unit and manufacturing method
JP2005166422A (en) Solid oxide fuel cell, cell plate and method for producing the same
JP3898592B2 (en) Fuel cell manufacturing method
JP2006503415A (en) Electrolyte for thin film fuel cell and method for producing the same
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
KR20060102440A (en) Electrode Coating Device and Coating Method of Membrane-Electrode Assembly for Fuel Cell
TW200835035A (en) Membrane and electrode assembly (MEA) of fuel cell and manufacturing method thereof
KR20240009697A (en) Polymer electrolyte membrane, membrane-electrode assembly, battery and manufacturing methods thereof