JP2003017447A - Cmp abrasives and method for polishing substrate - Google Patents
Cmp abrasives and method for polishing substrateInfo
- Publication number
- JP2003017447A JP2003017447A JP2001197277A JP2001197277A JP2003017447A JP 2003017447 A JP2003017447 A JP 2003017447A JP 2001197277 A JP2001197277 A JP 2001197277A JP 2001197277 A JP2001197277 A JP 2001197277A JP 2003017447 A JP2003017447 A JP 2003017447A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- water
- substrate
- cmp
- cerium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 157
- 239000000758 substrate Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000003082 abrasive agent Substances 0.000 title abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 30
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 28
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 28
- 150000004812 organic fluorine compounds Chemical class 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 description 33
- -1 poly (4-vinylpyridinium salt Chemical class 0.000 description 24
- 239000010410 layer Substances 0.000 description 20
- 239000002270 dispersing agent Substances 0.000 description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- 238000002955 isolation Methods 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 229920002125 Sokalan® Polymers 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000004584 polyacrylic acid Substances 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HVYJSOSGTDINLW-UHFFFAOYSA-N 2-[dimethyl(octadecyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O HVYJSOSGTDINLW-UHFFFAOYSA-N 0.000 description 1
- TUHFFGNJPDYPGR-UHFFFAOYSA-N 2-ethenyl-3-sulfonyl-2H-pyridine Chemical compound C=CC1C(=S(=O)=O)C=CC=N1 TUHFFGNJPDYPGR-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- LIFHMKCDDVTICL-UHFFFAOYSA-N 6-(chloromethyl)phenanthridine Chemical compound C1=CC=C2C(CCl)=NC3=CC=CC=C3C2=C1 LIFHMKCDDVTICL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- KHSBAWXKALEJFR-UHFFFAOYSA-H cerium(3+);tricarbonate;hydrate Chemical compound O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O KHSBAWXKALEJFR-UHFFFAOYSA-H 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 229940094506 lauryl betaine Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 1
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体素子製造技
術である基板表面の平坦化工程、特に、層間絶縁膜の平
坦化工程、シャロー・トレンチ分離の形成工程等におい
て使用されるCMP研磨剤及びこれらCMP研磨剤を使
用した基板の研磨方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CMP polishing agent used in a flattening process of a substrate surface, which is a semiconductor element manufacturing technique, in particular, a flattening process of an interlayer insulating film, a shallow trench isolation forming process, and the like. The present invention relates to a method for polishing a substrate using these CMP abrasives.
【0002】[0002]
【従来の技術】現在の超々大規模集積回路では、実装密
度を高める傾向にあり、種々の微細加工技術が研究、開
発されている。既に、デザインルールは、サブハーフミ
クロンのオーダーになっている。このような厳しい微細
化の要求を満足するために開発されている技術の一つに
CMP(Chemical Mechanical P
olishing)技術がある。この技術は、半導体装
置の製造工程において、露光を施す層を完全に平坦化
し、露光技術の負担を軽減し、歩留まりを安定させるこ
とができるため、例えば、層間絶縁膜の平坦化やシャロ
ー・トレンチ分離等を行う際に必須となる技術である。2. Description of the Related Art In the current ultra-large scale integrated circuits, there is a tendency to increase the packaging density, and various fine processing techniques have been researched and developed. Already, the design rules are on the order of sub-half micron. CMP (Chemical Mechanical P) is one of the technologies developed to satisfy such strict miniaturization requirements.
There is an illuminating technology. This technique can completely flatten the layer to be exposed in the manufacturing process of the semiconductor device, reduce the burden of the exposure technique, and stabilize the yield, so that, for example, the flattening of the interlayer insulating film or the shallow trench. This is an indispensable technique when performing separation and the like.
【0003】従来、集積回路内の素子分離にはLOCO
S(シリコン局所酸化)法が用いられてきたが、素子分
離幅をより狭くするため、近年ではシャロー・トレンチ
分離法が用いられている。シャロー・トレンチ分離法で
は、ウエハ基板上に成膜した余分の酸化珪素膜を除くた
めにCMPが必須であり、研磨を停止させるために、酸
化珪素膜の下に窒化珪素膜がストッパとして形成される
のが一般的である。Conventionally, LOCO is used for element isolation in an integrated circuit.
Although the S (silicon local oxidation) method has been used, the shallow trench isolation method has been used in recent years in order to narrow the element isolation width. In the shallow trench isolation method, CMP is indispensable to remove the excess silicon oxide film formed on the wafer substrate, and a silicon nitride film is formed as a stopper under the silicon oxide film to stop polishing. It is common to
【0004】半導体装置の製造工程において、プラズマ
−CVD(Chemical Vapor Depos
ition、化学的蒸着法)、低圧−CVD等の方法で
形成される酸化珪素絶縁膜等を平坦化するためのCMP
研磨剤としては、従来、ヒュームドシリカを研磨粒子と
するpHが9を超えるアルカリ性のシリカ系研磨剤が広
く用いられてきた。一方、フォトマスクやレンズ等のガ
ラス表面研磨剤として多用されてきた酸化セリウムを研
磨粒子とする研磨剤が近年CMP研磨剤として注目され
るようになった。この技術は、例えば特開平5−326
469号公報に開示されている。酸化セリウム系研磨剤
はシリカ系研磨剤と比べて酸化珪素膜の研磨速度が早
く、研磨傷も比較的少ないという点で優るため種々の適
用検討がなされ、その一部は半導体用研磨剤として実用
化されるようになっている。この技術は、例えば特開平
9−270402号公報に開示されている。In the process of manufacturing a semiconductor device, plasma-CVD (Chemical Vapor Depos) is used.
CMP for planarizing a silicon oxide insulating film and the like formed by a method such as an ionization method, a chemical vapor deposition method) or a low pressure-CVD method.
As the polishing agent, conventionally, an alkaline silica-based polishing agent having fumed silica as polishing particles and having a pH of more than 9 has been widely used. On the other hand, an abrasive containing cerium oxide as abrasive particles, which has been frequently used as a glass surface abrasive for photomasks, lenses and the like, has recently attracted attention as a CMP abrasive. This technique is disclosed in, for example, Japanese Patent Laid-Open No. 5-326.
It is disclosed in Japanese Patent Publication No. 469. Cerium oxide-based abrasives are superior to silica-based abrasives in that they have a faster polishing rate for silicon oxide films and comparatively less polishing scratches, so various application studies have been conducted, and some of them have been commercialized as semiconductor abrasives. It is supposed to be done. This technique is disclosed in, for example, Japanese Patent Laid-Open No. 9-270402.
【0005】近年、半導体素子の多層化・高精細化が進
むにつれ、半導体素子の歩留り及びスループットのさら
なる向上が要求されるようになってきている。CMP研
磨後得られる半導体基板についても、より一層の高平坦
化、すなわち基板膜厚の面内均一性向上が望まれる傾向
にある。より高平坦化された基板を得る方法としては、
研磨剤の研磨特性及び研磨プロセスの最適化が挙げられ
る。研磨プロセスの最適化とは、研磨速度の面内バラツ
キがない研磨条件で研磨することを意味するが、そのた
めには研磨パッド表面に研磨剤がムラなく均等に供給さ
れることが不可欠である。しかし、一般に研磨パッドを
構成する樹脂の表面張力は10〜50mN/mの範囲内
であり、研磨剤の主成分である水の73mN/mよりも
低いため、研磨パッド表面における研磨剤のいわゆる
「はじき」を抑制することが困難であり、研磨剤をムラ
なく均等に供給できない問題点があった。本発明は、酸
化セリウムを水に分散させた研磨剤であって、研磨剤の
表面張力を研磨パッド構成樹脂のそれに近づけて、上記
問題点を解決するものである。そしてまた本発明は、研
磨速度の面内バラツキを低減し、高平坦化された基板を
得ることのできるCMP研磨剤及びこの研磨剤を使用し
た基板の研磨方法を提供することを目的とする。In recent years, as the number of layers of semiconductor elements has increased and the resolution has increased, further improvement in the yield and throughput of semiconductor elements has been demanded. Also for the semiconductor substrate obtained after the CMP polishing, there is a tendency that further flattening, that is, improvement of in-plane uniformity of substrate film thickness is desired. As a method of obtaining a highly planarized substrate,
The polishing characteristics of the polishing agent and the optimization of the polishing process may be mentioned. The optimization of the polishing process means polishing under the polishing conditions in which there is no in-plane variation in the polishing rate. For that purpose, it is essential that the polishing agent is evenly and evenly supplied to the surface of the polishing pad. However, generally, the surface tension of the resin constituting the polishing pad is within the range of 10 to 50 mN / m, which is lower than 73 mN / m of water, which is the main component of the polishing agent, so that the so-called " It is difficult to suppress the "repellency", and there is a problem that the polishing agent cannot be evenly and uniformly supplied. The present invention is a polishing agent in which cerium oxide is dispersed in water, and the surface tension of the polishing agent is brought close to that of the polishing pad constituent resin to solve the above problems. It is another object of the present invention to provide a CMP polishing agent capable of reducing the in-plane variation of the polishing rate and obtaining a highly flattened substrate, and a substrate polishing method using this polishing agent.
【0006】[0006]
【発明が解決しようとする課題】請求項1記載の発明
は、研磨速度の面内バラツキを低減し、研磨傷を発生さ
せずに高速研磨して、高平坦化された基板を得ることが
可能な、CMP研磨剤を提供するものである。また、請
求項2記載の発明は、研磨速度の面内バラツキを低減
し、研磨傷を発生させずに高速研磨して、高平坦化され
た基板を得ることが可能な基板の研磨方法を提供するも
のである。According to the invention of claim 1, it is possible to obtain a highly flattened substrate by reducing the in-plane variation of the polishing rate and performing high-speed polishing without generating polishing scratches. It provides a CMP abrasive. Further, the invention according to claim 2 provides a method for polishing a substrate, which can reduce in-plane variation in polishing rate and can perform high-speed polishing without generating polishing scratches to obtain a highly flattened substrate. To do.
【0007】[0007]
【課題を解決するための手段】本発明は、酸化セリウム
粒子、水溶性高分子、水溶性有機フッ素化合物及び水を
含む表面張力が5mN/m以上50mN/m以下である
CMP研磨剤に関する。また本発明は、酸化セリウム粒
子、水溶性高分子、水溶性有機フッ素化合物及び水を含
むCMP研磨剤を研磨定盤上の研磨パッドに供給し、酸
化珪素絶縁膜が形成された半導体チップである基板の被
研磨面と接触させて被研磨面と研磨パッドを相対運動さ
せて、水の表面張力を弱めたCMP研磨剤を分布させた
研磨パッドを介して基板表面を研磨することを特徴とす
る基板の研磨方法に関する。The present invention relates to a CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water and having a surface tension of 5 mN / m or more and 50 mN / m or less. Further, the present invention is a semiconductor chip on which a silicon oxide insulating film is formed by supplying a CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water to a polishing pad on a polishing platen. It is characterized in that the surface of the substrate is polished by bringing the surface of the substrate into contact with the surface to be polished of the substrate and moving the polishing pad relative to each other, and polishing the surface of the substrate through a polishing pad in which a CMP abrasive having a weakened surface tension of water is distributed. The present invention relates to a method for polishing a substrate.
【0008】[0008]
【発明の実施の形態】本発明における酸化セリウム粒子
は、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化
合物を焼成または酸化することによって得られる。本発
明の実施例において、酸化セリウム粉末を作製する方法
として焼成または過酸化水素等による酸化法が使用でき
る。焼成温度は350℃以上900℃以下が好ましい。
上記の方法により製造された酸化セリウム粒子は凝集し
ているため、機械的に粉砕することが好ましい。粉砕方
法として、ジェットミル等による乾式粉砕や遊星ビーズ
ミル等による湿式粉砕方法が好ましい。ジェットミルは
例えば化学工業論文集第6巻第5号(1980)527
〜532頁に説明されている。BEST MODE FOR CARRYING OUT THE INVENTION The cerium oxide particles according to the present invention are obtained by calcining or oxidizing a cerium compound of carbonate, nitrate, sulfate or oxalate. In the examples of the present invention, firing or oxidation with hydrogen peroxide or the like can be used as a method for producing the cerium oxide powder. The firing temperature is preferably 350 ° C or higher and 900 ° C or lower.
Since the cerium oxide particles produced by the above method are agglomerated, it is preferable to mechanically grind them. As the crushing method, a dry crushing method using a jet mill or a wet crushing method using a planetary bead mill is preferable. The jet mill is, for example, a collection of chemical industry papers, Vol. 6, No. 5 (1980) 527.
~ P.532.
【0009】研磨剤の表面張力を研磨パッド構成樹脂の
それに近づけたCMP研磨剤は、上記方法で合成された
酸化セリウム粒子を洗浄し、水溶性高分子、水溶性有機
フッ素化合物、水及び必要に応じて分散剤を加えた組成
物を分散させることによって得られる。洗浄は、遠心分
離等で固液分離を数回繰り返す方法等が使用できる。The CMP polishing agent in which the surface tension of the polishing agent is close to that of the resin for forming the polishing pad is to wash the cerium oxide particles synthesized by the above method, and to dissolve the water-soluble polymer, water-soluble organic fluorine compound, water and, if necessary, water. It is obtained by dispersing the composition to which a dispersant has been added accordingly. For washing, a method in which solid-liquid separation is repeated several times by centrifugation or the like can be used.
【0010】表面張力の低下の度合いは水溶性有機フッ
素化合物の種類に応じて異なるが、任意の表面張力を有
する研磨剤の調整は比較的容易である。但し、CMP研
磨剤の表面張力は、5mN/m以上50mN/m以下で
ある必要があり、10mN/m以上40mN/m以下で
あることがより好ましい。表面張力が5mN/m未満で
は、パッド表面にCMP研磨剤を保持する能力が下が
り、研磨速度が低下する傾向がある。表面張力が50m
N/mより大きいと、パッド表面のCMP研磨剤濃度分
布の均等化が困難となる傾向がある。表面張力測定方法
としては、デュヌイによる円環法やウィルヘルミーによ
る垂直平板法等が挙げられる。CMP研磨剤のpHは、
3以上9以下であることが好ましく、5以上8以下であ
ることがより好ましい。pHが3未満では、化学的作用
が小さくなり、研磨速度が低下する。pHが9より大き
いと、粒子が凝集して被研磨膜との接触面積が低下し、
研磨速度が低下する傾向がある。また、半導体チップ研
磨に使用することから、アルカリ金属及びハロゲン類の
含有率は酸化セリウム粒子中10ppm以下に抑えるこ
とが好ましい。The degree of reduction in surface tension varies depending on the type of the water-soluble organic fluorine compound, but it is relatively easy to adjust an abrasive having any surface tension. However, the surface tension of the CMP abrasive must be 5 mN / m or more and 50 mN / m or less, and more preferably 10 mN / m or more and 40 mN / m or less. When the surface tension is less than 5 mN / m, the ability of holding the CMP abrasive on the pad surface is lowered, and the polishing rate tends to be lowered. Surface tension is 50m
If it is larger than N / m, it tends to be difficult to equalize the CMP abrasive concentration distribution on the pad surface. Examples of the surface tension measuring method include the annular method by Dunui and the vertical plate method by Wilhelmy. The pH of the CMP abrasive is
It is preferably 3 or more and 9 or less, and more preferably 5 or more and 8 or less. When the pH is less than 3, the chemical action becomes small and the polishing rate is lowered. If the pH is higher than 9, the particles agglomerate and the contact area with the film to be polished decreases.
The polishing rate tends to decrease. Further, since it is used for polishing semiconductor chips, it is preferable to keep the content of alkali metals and halogens in the cerium oxide particles to 10 ppm or less.
【0011】水に分散させた酸化セリウム粒子は完全に
は1ヶずつバラバラになってはいないと一般に考えられ
ており、水に分散させた酸化セリウムの粒子径測定値
は、粉体状態でのSEM写真撮影等の方法を用いて得ら
れる1次粒子径測定値より大きくなる。水に分散させた
酸化セリウムの2次粒子径は、1nm以上300nm以
下であることが望ましい。2次粒子径が1nmより小さ
いと、砥粒として被研磨膜への影響が低下し、研磨速度
が低下する。2次粒子径が300nmより大きいと、被
研磨膜との接触面積が小さくなり、研磨速度が低下する
傾向がある。粒子径は、光子相関法(例えばマルバーン
社製ゼータサイザー3000HS)で測定する。また、
酸化セリウムの1次粒子径は、0nmより大きく300
nm以下であることを要する。1次粒子径が0nmで
は、全く酸化珪素膜が研磨されない。また、結晶子径が
300nmより大きいと、2次粒子径が300nmより
大きくなり研磨速度が低下する。It is generally considered that the cerium oxide particles dispersed in water are not completely separated one by one, and the measured value of the particle diameter of cerium oxide dispersed in water is in the powder state. It is larger than the primary particle size measurement value obtained by using a method such as SEM photography. The secondary particle diameter of cerium oxide dispersed in water is preferably 1 nm or more and 300 nm or less. If the secondary particle diameter is smaller than 1 nm, the effect of the abrasive grains on the film to be polished is reduced, and the polishing rate is reduced. When the secondary particle diameter is larger than 300 nm, the contact area with the film to be polished becomes small and the polishing rate tends to decrease. The particle size is measured by a photon correlation method (for example, Zetasizer 3000HS manufactured by Malvern Instruments Ltd.). Also,
The primary particle size of cerium oxide is larger than 0 nm and 300
It is necessary to be less than nm. When the primary particle size is 0 nm, the silicon oxide film is not polished at all. If the crystallite size is larger than 300 nm, the secondary particle size will be larger than 300 nm and the polishing rate will decrease.
【0012】酸化セリウム粒子の濃度に制限はないが、
分散液の取り扱いやすさから0.5重量%以上20重量
%以下の範囲が好ましい。Although the concentration of cerium oxide particles is not limited,
The range of 0.5% by weight or more and 20% by weight or less is preferable from the viewpoint of easy handling of the dispersion.
【0013】水溶性高分子としては、ポリビニルスルホ
ン酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポ
リアクリル酸、ポリアクリル酸誘導体、ポリ(4−ビニ
ルピリジニウム塩)、ポリ(1(3−スルホニル)−2
−ビニルピリジニウムベタイン−co−p−スチレンス
ルホン酸)、ポリビニルアルコール誘導体、ポリアクロ
レイン、ポリ(酢酸ビニル−co−メタクリル酸メチ
ル)、ポリ(スチレン−co−無水マレイン酸)、ポリ
(オレフィン−co−無水マレイン酸)、ポリアクリル
アミド部分加水分解物、ポリ(アクリルアミド−co−
アクリル酸)、アルギン酸、ポリアクリル酸メチル、ポ
リメタクリル酸メチル、及びポリアクリル酸もしくはポ
リメタクリル酸のアンモニウム塩、アミン塩もしくはカ
リウム塩等の水溶性陰イオン性界面活性剤;ポリビニル
ピロリドン等の水溶性非イオン性界面活性剤;から選ば
れた少なくとも1種を用いることができ、好ましくは、
ポリメタクリル酸、ポリアクリル酸、ポリビニルアルコ
ール誘導体、ポリアクリルアミド部分加水分解物、ポリ
(アクリルアミド−co−アクリル酸)、ポリアクリル
酸もしくはポリメタクリル酸のアンモニウム塩、アミン
塩を用いることができる。ここでアミン塩としてはN,
N−ジメチルアミノエタノールによる塩等が挙げられ
る。また、水溶性高分子の重量平均分子量は、1000
〜100000が好ましい。水溶性高分子のモノマー単
位のモル数/水溶性高分子と塩を作るアミンのモル数の
比に特に制限はないが、研磨剤のpHを3以上9以下に
する必要から、10/7以上10/14以下であること
が好ましい。水溶性高分子は、その量が酸化セリウム粒
子に対して1〜3重量倍となるようにCMP研磨剤に混
合する必要がある。1重量倍未満では水溶性高分子の効
果が薄れ平坦化特性が悪くなり、3重量倍を超えると、
研磨速度が低くなる傾向にある。また、水溶性高分子の
濃度は、取り扱い性、混合作業性等の点から1〜5重量
であることが好ましい。As the water-soluble polymer, polyvinyl sulfonic acid, polymethacrylic acid, polystyrene sulfonic acid, polyacrylic acid, polyacrylic acid derivative, poly (4-vinylpyridinium salt), poly (1 (3-sulfonyl) -2
-Vinylpyridinium betaine-co-p-styrene sulfonic acid), polyvinyl alcohol derivative, polyacrolein, poly (vinyl acetate-co-methyl methacrylate), poly (styrene-co-maleic anhydride), poly (olefin-co- Maleic anhydride), polyacrylamide partial hydrolyzate, poly (acrylamide-co-
Acrylic acid), alginic acid, polymethyl acrylate, polymethyl methacrylate, and water-soluble anionic surfactants such as ammonium salts, amine salts or potassium salts of polyacrylic acid or polymethacrylic acid; water-soluble polyvinylpyrrolidone, etc. At least one selected from nonionic surfactants can be used, and preferably,
Polymethacrylic acid, polyacrylic acid, polyvinyl alcohol derivative, polyacrylamide partial hydrolyzate, poly (acrylamide-co-acrylic acid), ammonium salt of polyacrylic acid or polymethacrylic acid, and amine salt can be used. Here, the amine salt is N,
Examples thereof include salts with N-dimethylaminoethanol. The weight average molecular weight of the water-soluble polymer is 1000
-100,000 are preferable. There is no particular limitation on the ratio of the number of moles of the monomer unit of the water-soluble polymer / the number of moles of the water-soluble polymer and the amine that forms a salt, but it is necessary to set the pH of the polishing agent to 3 or more and 9 or less, and therefore 10/7 or more It is preferably 10/14 or less. The water-soluble polymer needs to be mixed with the CMP abrasive so that the amount thereof is 1 to 3 times the weight of the cerium oxide particles. If the amount is less than 1 times by weight, the effect of the water-soluble polymer is weakened and the flattening property is deteriorated. If the amount exceeds 3 times by weight,
The polishing rate tends to be low. Further, the concentration of the water-soluble polymer is preferably 1 to 5 weight from the viewpoint of handleability, mixing workability and the like.
【0014】水溶性有機フッ素化合物としては、パーフ
ルオロアルキルエチレンオキサイド付加物、パーフルオ
ロアルキルスルホン酸塩、パーフルオロアルキルトリメ
チルアンモニウム塩、パーフルオロアルキルアミノスル
ホンサン塩、パーフルオロアルキル基・親水性基含有オ
リゴマー等から選ばれた少なくとも1種を用いることが
できる。これらの水溶性有機フッ素化合物の濃度は、
0.0001重量%以上1.0重量%以下の範囲が好ま
しく、0.0005重量%以上0.005重量%以下が
より好ましい。0.0001重量%以下では所望の表面
張力が得られず、1.0重量%以上添加しても表面張力
に変化はなく、酸化セリウム粒子の分散性等に悪影響を
及ぼす。As the water-soluble organic fluorine compound, perfluoroalkyl ethylene oxide adduct, perfluoroalkyl sulfonate, perfluoroalkyl trimethyl ammonium salt, perfluoroalkyl aminosulfone sun salt, perfluoroalkyl group / hydrophilic group-containing At least one selected from oligomers and the like can be used. The concentration of these water-soluble organic fluorine compounds,
The range of 0.0001% by weight or more and 1.0% by weight or less is preferable, and the range of 0.0005% by weight or more and 0.005% by weight or less is more preferable. If it is 0.0001% by weight or less, the desired surface tension cannot be obtained, and even if it is added in an amount of 1.0% by weight or more, the surface tension does not change, which adversely affects the dispersibility of the cerium oxide particles.
【0015】CMP研磨剤においては、必要に応じて研
磨剤に分散剤を加えて組成物を分散させたものを使用す
ることができる。分散剤としては、上述した水溶性高分
子の他、水溶性陰イオン性分散剤、水溶性非イオン性分
散剤、水溶性陽イオン性分散剤、水溶性両性分散剤から
選ばれた少なくとも1種類を含む2種類以上の分散剤を
使用することができる。水溶性陰イオン性分散剤として
は、例えば、ラウリル硫酸トリエタノールアミン、ラウ
リル硫酸アンモニウム、ポリオキシエチレンアルキルエ
ーテル硫酸トリエタノールアミン等が挙げられるが、後
述するアニオン系水溶性高分子を用いてもよい。水溶性
非イオン性分散剤としては、例えば、ポリオキシエチレ
ンラウリルエーテル、ポリオキシエチレンセチルエーテ
ル、ポリオキシエチレンステアリルエーテル、ポリオキ
シエチレンオレイルエーテル、ポリオキシエチレン高級
アルコールエーテル、ポリオキシエチレンオクチルフェ
ニルエーテル、ポリオキシエチレンノニルフェニルエー
テル、ポリオキシアルキレンアルキルエーテル、ポリオ
キシエチレン誘導体、ポリオキシエチレンソルビタンモ
ノラウレート、ポリオキシエチレンソルビタンモノパル
ミテート、ポリオキシエチレンソルビタンモノステアレ
ート、ポリオキシエチレンソルビタントリステアレー
ト、ポリオキシエチレンソルビタンモノオレエート、ポ
リオキシエチレンソルビタントリオレエート、テトラオ
レイン酸ポリオキシエチレンソルビット、ポリエチレン
グリコールモノラウレート、ポリエチレングリコールモ
ノステアレート、ポリエチレングリコールジステアレー
ト、ポリエチレングリコールモノオレエート、ポリオキ
シエチレンアルキルアミン、ポリオキシエチレン硬化ヒ
マシ油、アルキルアルカノールアミド等が挙げられ、水
溶性陽イオン性分散剤としては、例えば、ココナットア
ミンアセテート、ステアリルアミンアセテート等が挙げ
られ、水溶性両性分散剤としては、例えば、ラウリルベ
タイン、ステアリルベタイン、ラウリルジメチルアミン
オキサイド、2−アルキル−N−カルボキシメチル−N
−ヒドロキシエチルイミダゾリニウムベタイン等が挙げ
られる。これらの分散剤添加量は、分散性及び沈降防
止、さらに研磨傷と分散剤添加量との関係から酸化セリ
ウム粒子100重量部に対して、0.01重量部以上
2.0重量部以下の範囲が好ましい。これらの酸化セリ
ウム粒子を水中に分散させる方法としては、通常の攪拌
機による分散処理の他にホモジナイザー、超音波分散
機、湿式ボールミルなどを用いることができる。As the CMP abrasive, a composition in which a dispersant is added to the abrasive as necessary to disperse the composition can be used. As the dispersant, in addition to the above-mentioned water-soluble polymer, at least one selected from water-soluble anionic dispersants, water-soluble nonionic dispersants, water-soluble cationic dispersants, and water-soluble amphoteric dispersants. It is possible to use two or more dispersants including Examples of the water-soluble anionic dispersant include triethanolamine lauryl sulfate, ammonium lauryl sulfate, triethanolamine polyoxyethylene alkyl ether sulfate, and the like, but anionic water-soluble polymers described later may also be used. As the water-soluble nonionic dispersant, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octylphenyl ether, Polyoxyethylene nonyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, Polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetraoleic acid poly Xyethylene sorbit, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, alkyl alkanolamide, etc. Examples of the water-soluble cationic dispersant include coconut amine acetate and stearyl amine acetate, and examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, and 2-alkyl-N. -Carboxymethyl-N
-Hydroxyethyl imidazolinium betaine and the like can be mentioned. The amount of these dispersants added is in the range of 0.01 parts by weight or more and 2.0 parts by weight or less with respect to 100 parts by weight of the cerium oxide particles in view of dispersibility and prevention of sedimentation, and the relationship between polishing scratches and the amount of the dispersants added. Is preferred. As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the usual dispersion treatment using a stirrer.
【0016】CMP研磨剤を用いて研磨する対象である
無機絶縁膜の作製方法として、定圧CVD法、プラズマ
CVD法等が挙げられる。定圧CVD法による酸化珪素
絶縁膜形成は、Si源としてモノシラン:SiH4、酸
素源として酸素:O2を用いる。このSiH4−O2系
酸化反応を400℃程度以下の低温で行わせることによ
り得られる。高温リフローによる表面平坦化を図るため
にリン:Pをドープするときには、SiH4−O2−P
H3系反応ガスを用いることが好ましい。プラズマCV
D法は、通常の熱平衡下では高温を必要とする化学反応
が低温でできる利点を有する。プラズマ発生法には、容
量結合型と誘導結合型の2つが挙げられる。反応ガスと
しては、Si源としてSiH4、酸素源としてN2Oを
用いたSiH4−N2O系ガスとテトラエトキシシラン
(TEOS)をSi源に用いたTEOS−O2系ガス
(TEOS−プラズマCVD法)が挙げられる。基板温
度は250℃〜400℃、反応圧力は67〜400Pa
の範囲が好ましい。酸化珪素絶縁膜にはリン、ホウ素等
の元素がド−プされていてもよい。同様に、低圧CVD
法による窒化珪素膜形成は、Si源としてジクロルシラ
ン:SiH2Cl2、窒素源としてアンモニア:NH3
を用いる。このSiH2Cl2−NH3系酸化反応を9
00℃の高温で行わせることにより得られる。プラズマ
CVD法は、Si源としてSiH4、窒素源としてNH
3を用いたSiH4−NH3系ガスが挙げられる。基板
温度は300〜400℃が好ましい。As a method for producing an inorganic insulating film to be polished with a CMP polishing agent, a constant pressure CVD method, a plasma CVD method and the like can be mentioned. In forming the silicon oxide insulating film by the constant pressure CVD method, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It is obtained by carrying out this SiH 4 —O 2 system oxidation reaction at a low temperature of about 400 ° C. or lower. When phosphorus: P is doped to achieve surface flattening by high temperature reflow, SiH 4 —O 2 —P
It is preferable to use an H 3 -based reaction gas. Plasma CV
Method D has the advantage that chemical reactions that require high temperatures under normal thermal equilibrium can be performed at low temperatures. There are two plasma generation methods, a capacitive coupling type and an inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is 250 ° C to 400 ° C, and the reaction pressure is 67 to 400 Pa.
Is preferred. Elements such as phosphorus and boron may be doped in the silicon oxide insulating film. Similarly, low pressure CVD
The silicon nitride film is formed by the method as follows: dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source.
To use. This SiH 2 Cl 2 —NH 3 system oxidation reaction is
It is obtained by carrying out at a high temperature of 00 ° C. The plasma CVD method uses SiH 4 as a Si source and NH as a nitrogen source.
3 include SiH 4 -NH 3 based gas was used. The substrate temperature is preferably 300 to 400 ° C.
【0017】基板として、図1(a)(b)に示す様
に、半導体基板すなわち回路素子と配線パターンが形成
された段階の半導体基板、回路素子が形成された段階の
半導体基板等の半導体基板上に酸化珪素膜或いは酸化珪
素膜及び窒化珪素膜が形成された基板が使用できる。こ
のような半導体基板上に形成された酸化珪素膜層を上記
研磨剤で研磨することによって、酸化珪素膜層表面の凹
凸を解消し、半導体基板全面に渡って平滑な面とする。
具体的には、酸化セリウム粒子、水溶性高分子、水溶性
有機フッ素化合物及び水を含むCMP研磨剤を研磨定盤
上の研磨パッドに供給し、酸化珪素絶縁膜が形成された
半導体チップである基板の被研磨面と接触させて被研磨
面と研磨パッドを相対運動させて、水の表面張力を弱め
たCMP研磨剤を分布させた研磨パッドを介して基板表
面を研磨する。シャロー・トレンチ分離の場合には、酸
化珪素膜層の凹凸を解消しながら下層の窒化珪素層まで
研磨することによって、素子分離部に埋め込んだ酸化珪
素膜のみを残す。この際、ストッパーとなる窒化珪素と
の研磨速度比が大きければ、研磨のプロセスマージンが
大きくなる。また、シャロー・トレンチ分離に使用する
ためには、研磨時に傷発生が少ないことも必要である。
ここで、研磨する装置としては、半導体基板を保持する
ホルダーと研磨布(パッド)を貼り付けた(回転数が変
更可能なモータ等を取り付けてある)定盤を有する一般
的な研磨装置が使用できる。図2は本発明において使用
するCMP装置を示す概略図である。研磨定盤18の上
に貼り付けられた研磨パッド17の上に、酸化セリウム
粒子、水溶性高分子、水溶性有機フッ素化合物及び水を
含むCMP研磨剤を供給し、半導体チップである基板1
3に形成された酸化珪素絶縁膜14を被研磨面としてウ
エハホルダ11に貼り付け、酸化珪素絶縁膜14を研磨
パッドと接触させ、被研磨面と研磨パッドを相対運動、
具体的にはウエハホルダ11と研磨定盤18を回転させ
てCMPすなわち基板の研磨を行う構造となっている。
研磨パッドとしては、一般的な不織布、発泡ポリウレタ
ン、多孔質フッ素樹脂などが使用でき、特に制限がな
い。また、研磨パッドには研磨剤が溜まる様な溝加工を
施すことが好ましい。研磨条件には制限はないが、定盤
の回転速度は半導体が飛び出さない様に100rpm以
下の低回転が好ましい。被研磨膜を有する半導体基板の
研磨パッドへの押しつけ圧力が10〜100kPaであ
ることが好ましく、研磨速度のウエハ面内均一性及びパ
ターンの平坦性を満足するためには、20〜50kPa
であることがより好ましい。研磨している間、研磨パッ
ドには研磨剤をポンプ等で連続的に供給する。この供給
量には制限はないが、研磨パッドの表面が常に研磨剤で
覆われていることが好ましい。As the substrate, as shown in FIGS. 1A and 1B, a semiconductor substrate, that is, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a semiconductor substrate at a stage where a circuit element is formed, and the like. A substrate having a silicon oxide film or a silicon oxide film and a silicon nitride film formed thereon can be used. By polishing the silicon oxide film layer formed on such a semiconductor substrate with the above-mentioned polishing agent, unevenness on the surface of the silicon oxide film layer is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate.
Specifically, it is a semiconductor chip having a silicon oxide insulating film formed by supplying a CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water to a polishing pad on a polishing platen. The surface of the substrate is polished by bringing the surface of the substrate and the polishing pad into relative motion by bringing them into contact with the surface of the substrate to be polished, and polishing the surface of the substrate through the polishing pad in which the CMP polishing agent having the surface tension of water weakened is distributed. In the case of shallow trench isolation, the lower silicon nitride layer is polished while eliminating the irregularities of the silicon oxide film layer, leaving only the silicon oxide film embedded in the element isolation portion. At this time, if the polishing rate ratio with respect to the silicon nitride serving as the stopper is large, the polishing process margin becomes large. Further, in order to use for shallow / trench separation, it is also necessary that the number of scratches generated during polishing is small.
Here, as a polishing device, a general polishing device having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed is changeable) is used is used. it can. FIG. 2 is a schematic diagram showing a CMP apparatus used in the present invention. A CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water is supplied onto the polishing pad 17 attached on the polishing platen 18 to form a substrate 1 which is a semiconductor chip.
The silicon oxide insulating film 14 formed in 3 is attached to the wafer holder 11 as a surface to be polished, the silicon oxide insulating film 14 is brought into contact with the polishing pad, and the surface to be polished and the polishing pad are relatively moved,
Specifically, the wafer holder 11 and the polishing platen 18 are rotated to perform CMP, that is, polishing of the substrate.
As the polishing pad, general non-woven fabric, polyurethane foam, porous fluororesin, etc. can be used without any particular limitation. Further, it is preferable that the polishing pad is grooved so that the polishing agent is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing pad is preferably 10 to 100 kPa, and 20 to 50 kPa is required to satisfy the in-plane uniformity of the polishing rate and the flatness of the pattern.
Is more preferable. During polishing, a polishing agent is continuously supplied to the polishing pad by a pump or the like. Although there is no limitation on the supply amount, it is preferable that the surface of the polishing pad is always covered with the abrasive.
【0018】また、図3は本発明におけるCMPプロセ
スを示す図である。研磨パッドの表面状態を常に同一に
してCMPを行うため、CMPの前に研磨パッドのコン
ディショニング工程を入れる。具体的には、ダイヤモン
ド粒子のついたドレッサを用いて少なくとも水を含む液
で研磨を行う。続いて本発明の研磨工程を実施し、さら
に、
1) 研磨後の基板に付着した粒子等の異物を除去する
ためのブラシ洗浄
2) 研磨剤等を水に置換するためのメガソニック洗浄
3) 基板表面から水を除去するためのスピン乾燥
からなるウエハ洗浄工程を加える。研磨終了後の半導体
基板は、流水中で良く洗浄後、スピンドライヤ等を用い
て半導体基板上に付着した水滴を払い落としてから乾燥
させることが好ましい。このようにして、Si基板上に
シャロー・トレンチ分離を形成したあと、酸化珪素絶縁
膜層及びその上にアルミニウム配線を形成し、その上に
形成した酸化珪素絶縁膜を平坦化する。平坦化された酸
化珪素絶縁膜層の上に、第2層目のアルミニウム配線を
形成し、その配線間および配線上に再度上記方法により
酸化珪素膜を形成後、上記研磨剤を用いて研磨すること
によって、酸化珪素絶縁膜表面の凹凸を解消し、半導体
基板全面に渡って平滑な面とする。この工程を所定数繰
り返すことにより、所望の層数の半導体を製造する。FIG. 3 is a diagram showing a CMP process in the present invention. In order to perform CMP with the surface state of the polishing pad always the same, a polishing pad conditioning step is inserted before CMP. Specifically, polishing is performed with a liquid containing at least water using a dresser with diamond particles. Subsequently, the polishing step of the present invention is performed, and further, 1) brush cleaning for removing foreign matters such as particles adhered to the substrate after polishing 2) megasonic cleaning for replacing abrasives with water 3) A wafer cleaning step consisting of spin drying to remove water from the substrate surface is added. It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed by using a spin dryer or the like and then dried. Thus, after forming the shallow trench isolation on the Si substrate, the silicon oxide insulating film layer and the aluminum wiring are formed thereon, and the silicon oxide insulating film formed thereon is flattened. A second layer of aluminum wiring is formed on the flattened silicon oxide insulating film layer, and a silicon oxide film is formed again between the wirings and on the wiring by the above method, and then polished with the above polishing agent. As a result, the unevenness on the surface of the silicon oxide insulating film is eliminated and the entire surface of the semiconductor substrate is made smooth. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.
【0019】CMP研磨剤は、半導体基板に形成された
酸化珪素膜や窒化珪素膜だけでなく、所定の配線を有す
る配線板に形成された酸化珪素膜、ガラス、窒化珪素等
の無機絶縁膜、フォトマスク・レンズ・プリズムなどの
光学ガラス、ITO等の無機導電膜、ガラス及び結晶質
材料で構成される光集積回路・光スイッチング素子・光
導波路、光ファイバ−の端面、シンチレ−タ等の光学用
単結晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファ
イア基板、SiC、GaP、GaAS等の半導体単結
晶、磁気ディスク用ガラス基板、磁気ヘッド等の基板を
研磨するために使用される。The CMP abrasive is not only a silicon oxide film or a silicon nitride film formed on a semiconductor substrate, but also a silicon oxide film formed on a wiring board having a predetermined wiring, an inorganic insulating film such as glass or silicon nitride, Optical glass such as photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits, optical switching elements and optical waveguides composed of glass and crystalline materials, optical fiber end faces, optics such as scintillators It is used for polishing substrates such as semiconductor single crystals for lasers, solid-state lasers single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals for SiC, GaP, GaAs, etc., glass substrates for magnetic disks, magnetic heads, etc. .
【0020】[0020]
【実施例】以下、本発明を実施例により説明する。
実施例1
(添加液Aの作製)炭酸セリウム水和物2kgを白金製
容器に入れ、850℃で2時間空気中で焼成することに
より酸化セリウム粉末を約1kg得た。上記作製の酸化
セリウム粉末1kg、ポリマ中のカルボキシル基のモル
数とアンモニウムイオンのモル数の比を1:1に調整し
たポリアクリル酸アンモニウム塩40%水溶液(重量平
均分子量10,000)11g、パーフルオロアルキル
基含有オリゴマー(大日本インキ製 メガファックF−
171)1g及び脱イオン水18988gを混合した。
続いて混合物を撹拌しながら超音波分散を10分間施し
た。さらに1μmフィルターを介してろ過して得られた
ものを添加液Aとした(酸化セリウム粒子濃度6重量
%)。
(添加液Bの作製)重量平均分子量4000で、ポリマ
中のカルボキシル基のモル数とアンモニウムイオンのモ
ル数の比を1:1に調整した、ポリアクリル酸アンモニ
ウム塩を脱イオン水で希釈し、4重量%の水溶液(添加
液B)とした。
(研磨剤の作製)上記の添加液A及び添加液Bを重量比
1:3の割合で混合し、酸化セリウム粒子濃度1.5重
量%、ポリマ濃度1重量%、パーフルオロアルキル基含
有オリゴマー濃度0.001重量%であるCMP研磨剤
を作製した。研磨剤のpHは6.8であった。研磨剤原
液を用いる光子相関法により2次粒子径を測定したとこ
ろ、その中央値は280nmであった。また、表面張力
測定装置(TOMBO BORL、古河製作所製)を用
いたデュヌイによる円環法で測定したところ、研磨剤の
表面張力は37mN/mであった。EXAMPLES The present invention will be described below with reference to examples. Example 1 (Preparation of Additive Solution A) 2 kg of cerium carbonate hydrate was placed in a platinum container and baked in the air at 850 ° C. for 2 hours to obtain about 1 kg of cerium oxide powder. 1 kg of the cerium oxide powder prepared above, 11 g of a 40% aqueous solution of ammonium polyacrylate (weight average molecular weight 10,000) in which the ratio of the number of moles of carboxyl groups in the polymer to the number of moles of ammonium ions in the polymer was adjusted to 1: 1; Fluoroalkyl group-containing oligomer (Dega Nippon Ink Megafac F-
171) 1 g and deionized water 18988 g were mixed.
The mixture was subsequently subjected to ultrasonic dispersion for 10 minutes with stirring. The product obtained by further filtering through a 1 μm filter was used as an additive liquid A (cerium oxide particle concentration: 6% by weight). (Preparation of Additive Solution B) A weight average molecular weight of 4000, a ratio of the number of moles of carboxyl groups in the polymer and the number of moles of ammonium ions in the polymer was adjusted to 1: 1 and polyacrylic acid ammonium salt was diluted with deionized water, A 4% by weight aqueous solution (additive solution B) was used. (Preparation of Abrasive) The additive liquid A and the additive liquid B were mixed at a weight ratio of 1: 3, and the cerium oxide particle concentration was 1.5% by weight, the polymer concentration was 1% by weight, and the perfluoroalkyl group-containing oligomer concentration was A 0.001 wt% CMP abrasive was made. The pH of the polishing agent was 6.8. When the secondary particle diameter was measured by a photon correlation method using an abrasive stock solution, the median value was 280 nm. Further, the surface tension of the abrasive was 37 mN / m as measured by the annular method by Dunui using a surface tension measuring device (TOMBO BORL, manufactured by Furukawa Seisakusho).
【0021】(絶縁膜層及びシャロートレンチ分離層の
研磨)8インチSi基板上にLine/Space幅が
0.05〜5mmで高さが1000nmのAl配線Li
ne部を形成した後、その上にTEOS−プラズマCV
D法で酸化珪素膜を2000nm形成した絶縁膜層パタ
ーンウエハを作製する。上記のCMP研磨剤で、3分間
研磨(定盤回転数:50rpm、研磨荷重:30kP
a、研磨剤供給量:200ml/分)した。その結果、
研磨後の凸部と凹部の段差が40nmとなり高平坦性を
示した。また、図1(a)に示す様に、8インチSi基
板に一辺350nm〜0.1mm四方の凸部、深さが4
00nmの凹部を形成し、凸部密度がそれぞれ2〜40
%となるようなシャロートレンチ分離層パターンウエハ
を作製した。続いて図1(b)に示す様に、凸部上に酸
化窒素膜を100nm形成し、その上にTEOS−プラ
ズマCVD法で酸化珪素膜を600nm成膜した。上記
のCMP研磨剤で、このパターンウエハを2分間研磨
(定盤回転数:50rpm、研磨荷重:30kPa、研
磨剤供給量:200ml/分)した。その結果、図1
(c)の様に、凸部の研磨は窒化珪素膜でストップし、
研磨後の段差は42nmとなり、高平坦性を示した。い
ずれの研磨においても研磨傷は観察されなかった。(Polishing of Insulating Film Layer and Shallow Trench Separation Layer) Al wiring Li having a Line / Space width of 0.05 to 5 mm and a height of 1000 nm is formed on an 8-inch Si substrate.
After forming the ne portion, TEOS-plasma CV is formed on the ne portion.
An insulating film layer patterned wafer having a silicon oxide film formed to a thickness of 2000 nm is manufactured by the D method. Polished for 3 minutes with the above CMP polishing agent (plate rotation speed: 50 rpm, polishing load: 30 kP
a, supply amount of abrasive: 200 ml / min). as a result,
The step difference between the convex portion and the concave portion after polishing was 40 nm, which showed high flatness. Further, as shown in FIG. 1A, a convex portion having a side of 350 nm to 0.1 mm square and a depth of 4 is formed on an 8-inch Si substrate.
The concave portion of 00 nm is formed, and the convex portion density is 2 to 40, respectively.
%, A shallow trench isolation layer patterned wafer was prepared. Subsequently, as shown in FIG. 1B, a nitric oxide film having a thickness of 100 nm was formed on the convex portion, and a silicon oxide film having a thickness of 600 nm was formed thereon by the TEOS-plasma CVD method. This patterned wafer was polished for 2 minutes with the above CMP polishing agent (plate rotation number: 50 rpm, polishing load: 30 kPa, polishing agent supply rate: 200 ml / min). As a result,
As shown in (c), the polishing of the convex portion is stopped by the silicon nitride film,
The level difference after polishing was 42 nm, showing high flatness. No polishing scratches were observed in any polishing.
【0022】(絶縁膜層ブランケットウエハの研磨)次
に、8インチの酸化珪素膜ブランケットウエハを上記の
CMP研磨剤で研磨(定盤回転数:50rpm、研磨荷
重:30kPa、研磨剤供給量:200ml/分)し
た。研磨後、ウエハをホルダーから取り外して、脱イオ
ン水を流しながらPVAスポンジブラシで洗浄した。洗
浄後、ウエハをスピンドライヤー上で1000rpmで
1分間回転させて水滴を除去した。その結果、外周部5
mmを除いた範囲内同心円上の49点での研磨速度平均
値は150nm/分であり、上記49点における研磨後
の膜厚測定値を用いて、
膜厚均一性=(膜厚最大値−膜厚最小値)/(膜厚最大
値+膜厚最小値)×100
の式に代入して算出した膜厚均一性は3%であった。研
磨傷は観察されなかった。(Polishing of Insulating Film Layer Blanket Wafer) Next, an 8-inch silicon oxide film blanket wafer was polished with the above CMP polishing agent (plate rotation number: 50 rpm, polishing load: 30 kPa, polishing agent supply amount: 200 ml). / Minute). After polishing, the wafer was removed from the holder and washed with a PVA sponge brush while flowing deionized water. After cleaning, the wafer was rotated on a spin dryer at 1000 rpm for 1 minute to remove water droplets. As a result, the outer peripheral portion 5
The average polishing rate at 49 points on concentric circles within the range excluding mm is 150 nm / min. Using the measured film thickness after polishing at 49 points, film thickness uniformity = (film thickness maximum value− The film thickness uniformity calculated by substituting into the formula of (film thickness minimum value) / (film thickness maximum value + film thickness minimum value) × 100 was 3%. No polishing scratches were observed.
【0023】比較例1
(研磨剤の作製)実施例1の添加液Aの作製において使
用するパーフルオロアルキル基含有オリゴマーを1g→
0となくすこと、及びそれに伴い脱イオン水の量を18
988g→18989gとすること以外は、実施例1と
同一にしてCMP研磨剤を作製した。研磨剤のpHは
6.8で、2次粒子径の中央値は270nmであった。
研磨剤の表面張力は71mN/mであった。Comparative Example 1 (Preparation of Abrasive) 1 g of a perfluoroalkyl group-containing oligomer used in the preparation of the additive liquid A of Example 1
Eliminate 0 and the amount of deionized water accordingly 18
A CMP polishing slurry was prepared in the same manner as in Example 1 except that the amount was changed from 988 g to 18989 g. The pH of the abrasive was 6.8, and the median secondary particle diameter was 270 nm.
The surface tension of the abrasive was 71 mN / m.
【0024】(絶縁膜層及びシャロートレンチ分離層の
研磨)上記の通り作製したCMP研磨剤を用いて、実施
例1と同一の絶縁膜層パターンウエハを、同一の研磨条
件で5分間研磨した。その結果、研磨後の凸部と凹部の
段差が41nmとなった。また、上記のCMP研磨剤を
用いて、実施例1と同様にシャロートレンチ分離層パタ
ーンウエハの凸部上に酸化窒素膜を100nm形成しそ
の上にTEOS−プラズマCVD法で酸化珪素膜を60
0nm成膜したものを実施例1と同一の研磨条件で4分
間研磨した。その結果、研磨後の段差は44nmとなり
高平坦性を示した。いずれの研磨においても研磨傷は観
察されなかった。
(絶縁膜層ブランケットウエハの研磨)次に、実施例1
と同一の8インチ酸化珪素膜ブランケットウエハ及び窒
化珪素膜ブランケットウエハについても上記のCMP研
磨剤を用いて実施例1と同一の研磨条件で各々研磨し、
研磨速度と膜厚均一性を算出した。その結果、研磨速度
は146nm/分、研磨後の膜厚均一性は10%であっ
た。研磨傷は観察されなかった。(Polishing of Insulating Film Layer and Shallow Trench Separation Layer) Using the CMP polishing agent prepared as described above, the same insulating film layer patterned wafer as in Example 1 was polished under the same polishing conditions for 5 minutes. As a result, the step difference between the convex portion and the concave portion after polishing was 41 nm. Further, using the above CMP abrasive, a nitric oxide film having a thickness of 100 nm was formed on the convex portion of the shallow trench isolation layer pattern wafer in the same manner as in Example 1, and a silicon oxide film was formed thereon by TEOS-plasma CVD method.
The 0 nm film was polished for 4 minutes under the same polishing conditions as in Example 1. As a result, the step difference after polishing was 44 nm, indicating high flatness. No polishing scratches were observed in any polishing. (Polishing of Insulating Film Layer Blanket Wafer) Next, Example 1
The same 8-inch silicon oxide film blanket wafer and silicon nitride film blanket wafer were also polished using the above CMP polishing agent under the same polishing conditions as in Example 1,
The polishing rate and the film thickness uniformity were calculated. As a result, the polishing rate was 146 nm / min, and the film thickness uniformity after polishing was 10%. No polishing scratches were observed.
【0025】水溶性有機フッ素化合物を含み、表面張力
が5mN/m以上50mN/m以下であるCMP研磨剤
を用いたことにより、パッド表面のCMP研磨剤量分布
の均等化がなされた実施例1に対して比較例1は、研磨
速度に関しては同等であるが、研磨後の膜厚均一性が劣
る。Example 1 in which the CMP polishing agent amount distribution on the pad surface was made uniform by using a CMP polishing agent containing a water-soluble organic fluorine compound and having a surface tension of 5 mN / m or more and 50 mN / m or less. On the other hand, in Comparative Example 1, the polishing rate is the same, but the film thickness uniformity after polishing is poor.
【0026】[0026]
【発明の効果】本発明により、酸化セリウム粒子、水溶
性高分子、水溶性有機フッ素化合物及び水を含み、表面
張力が5mN/m以上50mN/m以下であるCMP研
磨剤を提供することができる。また、この研磨剤を用い
て、水の表面張力を弱めたCMP研磨剤を分布させた研
磨パッドを介して基板表面を研磨することにより、研磨
速度の面内バラツキを低減し、研磨傷を発生させずに高
速研磨して、高平坦化された基板を得ることの可能な基
板の研磨方法が適用できる。According to the present invention, it is possible to provide a CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water and having a surface tension of 5 mN / m or more and 50 mN / m or less. . Further, by using this polishing agent to polish the substrate surface through a polishing pad in which a CMP polishing agent having a weakened surface tension of water is distributed, in-plane variation in polishing rate is reduced and polishing scratches are generated. It is possible to apply a substrate polishing method capable of obtaining a highly planarized substrate by performing high-speed polishing without performing the polishing.
【図1】本発明の基板表面の凹凸平坦化を示す説明図で
ある。FIG. 1 is an explanatory view showing flattening of unevenness on a substrate surface of the present invention.
【図2】本発明を実施したCMP装置を示す図である。FIG. 2 is a diagram showing a CMP apparatus embodying the present invention.
【図3】本発明のCMPプロセスを示す説明図である。FIG. 3 is an explanatory diagram showing a CMP process of the present invention.
【図4】本発明のCMP研磨剤における、水溶性有機フ
ッ素化合物濃度と表面張力の相関を示す説明図であるFIG. 4 is an explanatory diagram showing the correlation between the water-soluble organic fluorine compound concentration and the surface tension in the CMP polishing slurry of the present invention.
1 Si基板
2 窒化珪素膜
3 酸化珪素膜、
11 ウエハホルダ
12 リテーナ
13 半導体チップである基板
14 酸化珪素絶縁膜
15 研磨剤供給機構
16 酸化セリウム粒子 水溶性高分子 水溶性有機フ
ッ素化合物及び水を含む研磨剤
17 研磨パッド
18 研磨定盤1 Si Substrate 2 Silicon Nitride Film 3 Silicon Oxide Film, 11 Wafer Holder 12 Retainer 13 Semiconductor Chip Substrate 14 Silicon Oxide Insulating Film 15 Abrasive Supplying Mechanism 16 Cerium Oxide Particles Water-Soluble Polymer Water-Soluble Organic Fluorine Compound and Polishing Containing Water Agent 17 Polishing pad 18 Polishing surface plate
Claims (2)
性有機フッ素化合物及び水を含む表面張力が5mN/m
以上50mN/m以下であるCMP研磨剤。1. A surface tension including cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water is 5 mN / m.
A CMP abrasive having a content of 50 mN / m or less.
性有機フッ素化合物及び水を含みCMP研磨剤を研磨定
盤上の研磨パッドに供給し、酸化珪素絶縁膜が形成され
た半導体チップである基板の被研磨面と接触させて被研
磨面と研磨パッドを相対運動させて、水の表面張力を弱
めたCMP研磨剤を分布させた研磨パッドを介して基板
表面を研磨することを特徴とする基板の研磨方法。2. A semiconductor chip on which a silicon oxide insulating film is formed by supplying a CMP abrasive containing cerium oxide particles, a water-soluble polymer, a water-soluble organic fluorine compound and water to a polishing pad on a polishing platen. It is characterized in that the surface of the substrate is polished by bringing the surface of the substrate into contact with the surface to be polished of the substrate and moving the polishing pad relative to each other, and polishing the surface of the substrate through a polishing pad in which a CMP abrasive having a weakened surface tension of water is distributed. Substrate polishing method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001197277A JP2003017447A (en) | 2001-06-28 | 2001-06-28 | Cmp abrasives and method for polishing substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001197277A JP2003017447A (en) | 2001-06-28 | 2001-06-28 | Cmp abrasives and method for polishing substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003017447A true JP2003017447A (en) | 2003-01-17 |
Family
ID=19034909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001197277A Pending JP2003017447A (en) | 2001-06-28 | 2001-06-28 | Cmp abrasives and method for polishing substrate |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003017447A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003071592A1 (en) * | 2002-02-20 | 2003-08-28 | Ebara Corporation | Method and device for polishing |
| JP2004297035A (en) * | 2003-03-13 | 2004-10-21 | Hitachi Chem Co Ltd | Abrasive agent, polishing method, and manufacturing method of electronic component |
| US7071105B2 (en) | 2003-02-03 | 2006-07-04 | Cabot Microelectronics Corporation | Method of polishing a silicon-containing dielectric |
| JP2008085133A (en) * | 2006-09-28 | 2008-04-10 | Jsr Corp | Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method |
-
2001
- 2001-06-28 JP JP2001197277A patent/JP2003017447A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003071592A1 (en) * | 2002-02-20 | 2003-08-28 | Ebara Corporation | Method and device for polishing |
| US7108579B2 (en) | 2002-02-20 | 2006-09-19 | Ebara Corporation | Method and device for polishing |
| US7071105B2 (en) | 2003-02-03 | 2006-07-04 | Cabot Microelectronics Corporation | Method of polishing a silicon-containing dielectric |
| US8486169B2 (en) | 2003-02-03 | 2013-07-16 | Cabot Microelectronics Corporation | Method of polishing a silicon-containing dielectric |
| JP2004297035A (en) * | 2003-03-13 | 2004-10-21 | Hitachi Chem Co Ltd | Abrasive agent, polishing method, and manufacturing method of electronic component |
| JP2008085133A (en) * | 2006-09-28 | 2008-04-10 | Jsr Corp | Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100475976B1 (en) | CMP Abrasive, Liquid Additive for CMP Abrasive and Method for Polishing Substrate | |
| JP5444625B2 (en) | CMP polishing liquid, substrate polishing method, and electronic component | |
| JP5287174B2 (en) | Abrasive and polishing method | |
| JP4952745B2 (en) | CMP abrasive and substrate polishing method | |
| JP4972829B2 (en) | CMP polishing agent and substrate polishing method | |
| JP2009182344A (en) | Cerium oxide abrasive and method of polishing substrate | |
| JPH10106988A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
| JPH10102040A (en) | Cerium oxide abrasive and grinding of substrate | |
| JPH10106990A (en) | Cerium oxide abrasive material and polishing method of substrate | |
| JPH10106987A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
| JP2003017447A (en) | Cmp abrasives and method for polishing substrate | |
| JP2003158101A (en) | Cmp abrasive and manufacturing method therefor | |
| JP2003017445A (en) | Cmp abrasive and method for polishing substrate | |
| JP2000109803A (en) | Polishing agent for cmp and polishing of substrate | |
| JP2004200268A (en) | Cmp polishing agent and polishing method of substrate | |
| JP5418571B2 (en) | CMP polishing agent and substrate polishing method | |
| JPH10102038A (en) | Cerium oxide abrasive and grinding of substrate | |
| JPH10106991A (en) | Cerium oxide abrasive powder, and polishing method of substrate | |
| JPH10106992A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
| JPH10106989A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
| JP4608925B2 (en) | Additive for CMP abrasives | |
| JP4604727B2 (en) | Additive for CMP abrasives | |
| JP4501694B2 (en) | Additive for CMP abrasives | |
| JPH10106986A (en) | Cerium oxide abrasive agent and polishing method of substrate | |
| JP2001332516A (en) | Cmp abrasive and method for polishing substrate |