[go: up one dir, main page]

JP2003028930A - Device and method of test analysis, and recording medium storing test analysis execution procedure program - Google Patents

Device and method of test analysis, and recording medium storing test analysis execution procedure program

Info

Publication number
JP2003028930A
JP2003028930A JP2001216465A JP2001216465A JP2003028930A JP 2003028930 A JP2003028930 A JP 2003028930A JP 2001216465 A JP2001216465 A JP 2001216465A JP 2001216465 A JP2001216465 A JP 2001216465A JP 2003028930 A JP2003028930 A JP 2003028930A
Authority
JP
Japan
Prior art keywords
inspection
distribution
condition
result
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001216465A
Other languages
Japanese (ja)
Inventor
Masaaki Sugimoto
正明 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001216465A priority Critical patent/JP2003028930A/en
Publication of JP2003028930A publication Critical patent/JP2003028930A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for test analysis that can automatically find out an optical testing condition to identify a cause of failure, even if a plurality of causes of failure coexist and are provided with new quantitative means and method that are hard to be affected by correlation between testing conditions and failure density and skill of an analyst. SOLUTION: A test analyzing device 1 is provided at least with a control means 10, a distribution type setting means 11, a testing means 12, an initial condition setting means 13, a characteristics extracting means 14, a characteristics comparing means 15, a test condition changing means 16, an analysis means 17, an output means 18, and a storing means 19. The test condition changing means 16 sets a correction testing condition which is different from a j-th inspection condition, j=j+1, when the comparison result outputted from the characteristics comparing means 15 does not agree, and the correction test conditions is newly set as the j-th test condition this is outputted to the testing means 12, and testing is executed again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CCD(Charge C
oupled Device )受像素子及びCMOS(Complementar
y Metal Oxide Semiconductor )イメージセンサを含む
デジタル情報入力デバイス、液晶ディスプレイ,プラズ
マディスプレイ,エレクトロルミネッセンスディスプレ
イ及び発光ダイオードを含むデジタル情報出力デバイ
ス、記憶素子及び並列伝送素子を含む出示達情報入出力
デバイス、並びに半導体ウェハ等々の半導体応用装置の
検査解析技術に関し、特に不良原因を解析するために最
適な検査条件を容易に求めることができる検査解析装置
及び方法に関する。
The present invention relates to a CCD (Charge C
oupled Device) image receiving device and CMOS (Complementar)
y Metal Oxide Semiconductor) Digital information input device including image sensor, liquid crystal display, plasma display, electroluminescence display and digital information output device including light emitting diode, notification information input / output device including storage element and parallel transmission element, and semiconductor The present invention relates to an inspection analysis technique for semiconductor application devices such as wafers, and particularly to an inspection analysis device and method capable of easily obtaining optimum inspection conditions for analyzing a cause of a defect.

【0002】[0002]

【従来の技術】LSIに代表される半導体応用装置の検
査では、検査対象が良品か不良品かを短時間で判定する
ための技術を主に用いている。この種の技術では、試験
条件は予め決まっており、この試験条件を満足するか否
かで良否判定する。検査目的が良否判定なので、不良が
1個以上出た時点で検査は終わる。
2. Description of the Related Art In the inspection of a semiconductor application device represented by an LSI, a technique for determining whether an inspection target is a good product or a defective product in a short time is mainly used. In this type of technology, the test conditions are predetermined, and a pass / fail judgment is made based on whether or not the test conditions are satisfied. Since the purpose of the inspection is pass / fail judgment, the inspection ends when one or more defects appear.

【0003】一部の検査では、検査条件と不良密度との
相関から、最適な検査条件の範囲を求めたり、検査対象
がどの程度の試験条件の厳しさまで耐えられるかの実力
を把握するための技術を用いることもある。この種の技
術では、検査条件を緩い条件から厳しい条件へと徐々に
変更して再検査を続け、良否が切り替わる臨界条件を求
める。検査目的が実力把握なので、不良が1個以上、全
数不良に至るまで検査する場合もある。
In some inspections, the optimum inspection condition range is determined from the correlation between the inspection condition and the defect density, and the ability of the inspection target to withstand the severeness of the test condition is grasped. Sometimes technology is used. In this type of technology, the inspection condition is gradually changed from a mild condition to a strict condition, re-inspection is continued, and a critical condition at which the quality is switched is determined. Since the purpose of inspection is to grasp the ability, in some cases, one or more defects may be inspected.

【0004】又、検査結果データを解析する従来技術と
して、特開平11−186354号公報や特開2000
−200814号公報に開示された本発明者提案の方法
がある。特開平11−186354号公報では、不良素
子の間隔の約数の種類とその頻度とを解析することで、
不良原因を定性的且つ定量的に区別し、設計に起因する
欠陥とそうでない欠陥を区別できる検査解析装置及び方
法を開示し、特開2000−200814号公報では、
半導体集積回路の不良素子の分布が規則性分布を含むか
不規則分布であるかを簡易且つ迅速に解析できる不良分
布解析システム及び方法を開示している。
Further, as a conventional technique for analyzing inspection result data, Japanese Patent Laid-Open Nos. 11-186354 and 2000 are known.
There is a method proposed by the present inventor disclosed in Japanese Patent Laid-Open No. 200814/2008. In Japanese Laid-Open Patent Publication No. 11-186354, by analyzing the type and frequency of divisors of defective elements,
Disclosed is an inspection analysis device and method capable of qualitatively and quantitatively discriminating the cause of a defect and discriminating between a defect caused by design and a defect not so, and Japanese Patent Laid-Open No. 2000-200814 discloses
Disclosed is a failure distribution analysis system and method capable of easily and quickly analyzing whether the distribution of defective elements in a semiconductor integrated circuit includes a regular distribution or an irregular distribution.

【0005】[0005]

【発明が解決しようとする課題】上述した従来技術を用
いて不良原因の解析を行うには、検査条件を緩い条件か
ら厳しい条件へと徐々に変更して再検査を続け、良否が
切り替わる臨界条件を求めると共に、不良が1個以上、
全数不良に至るまで検査する方法が適しているが、いく
つかの問題点もある。
In order to analyze the cause of a defect by using the above-mentioned conventional technique, the inspection condition is gradually changed from a mild condition to a severe condition, re-inspection is continued, and a critical condition at which the quality is switched. And one or more defects,
Although the method of inspecting all defects is suitable, there are some problems.

【0006】問題点1.緩い検査条件で不良になる原因
と、厳しい検査条件で不良になる原因は、必ずしも同じ
でない。
Problems 1. The cause of failure under loose inspection conditions and the cause of failure under severe inspection conditions are not necessarily the same.

【0007】問題点2.不良原因が混在している場合、
不良原因を識別するのに最適な検査条件を求めることが
困難である。特に、最適な検査条件を求めるために、検
査結果を目で確かめながら検査条件を手動で変更して再
検査することを繰り返すことは、検査時間が膨大にな
り、非効率である。
Problem 2. If the causes of defects are mixed,
It is difficult to find the optimum inspection condition for identifying the cause of the defect. Particularly, in order to obtain the optimum inspection condition, it is inefficient to repeat the inspection by manually changing the inspection condition while visually confirming the inspection result and the inspection time becomes huge.

【0008】問題点3.検査条件と不良密度との相関が
類似していても不良原因が同じとは限らない。解析者の
主観に頼る分類を行うと、解析結果が解析者の熟練度に
影響を受けたり、解析結果が定性的な表現になりやす
い。
Problem 3. Even if the correlation between the inspection condition and the defect density is similar, the cause of the defect is not always the same. If classification is performed based on the subjectivity of the analyst, the analysis result is likely to be affected by the skill level of the analyst, or the analysis result is likely to be a qualitative expression.

【0009】以下、上記問題点をより具体的に説明す
る。
The above problems will be described more specifically below.

【0010】図8は、不良密度の検査条件依存性概念を
説明するための図で、横軸を検査条件の厳しさとし、各
検査条件での不良密度を縦軸にした模式的なグラフであ
る。図8に示すとおり、検査条件によって、支配的な不
良の原因が交替する。例として、塵埃などの付着物が不
良原因の場合は、付着箇所の断線や短絡などを引き起こ
し、その影響は検査条件に依存せず、常に不良であるこ
とが多い。しかし、半導体ウェハやTFT(Thin Film T
ransistor)型液晶パネルなどの半導体応用装置は、通
常、クリーンルーム内で製造されるため塵埃の付着確率
が非常に低い。よって塵埃起因の不良密度も非常に低
い。これに対し、配線の細りやボイド、接続孔(Via-ho
le)や半導体PN接合部の界面形成不良、コンデンサ部
の容量膜やトランジスタ部のゲート酸化膜の絶縁性低下
等は、不良箇所の抵抗値や容量値や絶縁耐圧などの特性
バラツキの原因となり得る。その影響は検査条件に依存
し、検査条件によって不良密度が変化する場合が多い。
又、その影響範囲は、塵埃と異なって面的広がりを持つ
ことが多いので不良密度が高くなりやすい。そして不良
密度が高まり過ぎると全数不良で飽和し、検査条件との
依存性が分からなくなってしまう。しかも、複数の不良
原因の影響範囲が重なる場合も多く、識別を困難にす
る。
FIG. 8 is a view for explaining the concept of defect condition dependency of defect density, and is a schematic graph in which the abscissa represents the strictness of the inspection condition and the defect density under each inspection condition is the ordinate. . As shown in FIG. 8, the cause of the dominant defect is changed depending on the inspection condition. As an example, when an adhered matter such as dust is the cause of a defect, it causes a disconnection or a short circuit of the adhered place, and the influence does not depend on the inspection condition, and is often defective. However, semiconductor wafers and TFTs (Thin Film T
A semiconductor application device such as a ransistor) type liquid crystal panel is usually manufactured in a clean room and therefore has a very low dust adhesion probability. Therefore, the defect density due to dust is also very low. On the other hand, wiring fineness, voids, and connection holes (Via-ho
le), poor interface formation of semiconductor PN junction, deterioration of insulation of capacitor film of capacitor and gate oxide film of transistor, etc. may cause characteristic variations such as resistance, capacitance and withstand voltage of defective parts. . The effect depends on the inspection conditions, and the defect density often changes depending on the inspection conditions.
In addition, unlike the dust, the affected area often has a planar spread, so that the defect density tends to increase. If the defect density becomes too high, all defects will be saturated and the dependency on the inspection conditions will not be known. Moreover, the influence ranges of a plurality of failure causes often overlap, which makes identification difficult.

【0011】不良分布の規則性の有無の判定を含む検査
結果の解析の際には、例えばU個の検査対象を含む検査
母体の検査結果を特定座標(Y)軸に沿って配置し、個
々の不良をY座標値で識別できる様にして解析する方法
がよく用いられる。図9はY軸のみの1次元座標系に検
査対象及び検査結果の配置概念を示す模式的な配置図で
あり、図10はY軸及びZ軸を含む2次元座標系に検査
対象及び検査結果を配置した場合の模式的な配置図であ
る。又、図11(a),(b),(c)は、面的な広が
りを持つ混合分布の概念を説明するための図で、不規則
分布例,規則性分布例,混合分布例をそれぞれ示す模式
的な配置図であり、図12(a),(b),(c)は、
面的な広がりを持つ混合分布であって、個々の分布が特
性バラツキを持ち、検査条件への依存性も異なる場合の
概念を説明するための図で、不規則分布例,規則性分布
例,混合分布例をそれぞれ示す模式的な配置図である。
When analyzing the inspection result including the determination of the regularity of the defect distribution, for example, the inspection result of the inspection mother body including U inspection objects is arranged along a specific coordinate (Y) axis, and Often used is a method of analyzing such defects so that they can be identified by Y coordinate values. FIG. 9 is a schematic layout diagram showing the concept of the layout of the inspection object and the inspection result in the one-dimensional coordinate system of only the Y axis, and FIG. 10 is the inspection object and the inspection result in the two-dimensional coordinate system including the Y axis and the Z axis. FIG. 6 is a schematic layout diagram in the case where is arranged. 11 (a), (b), and (c) are diagrams for explaining the concept of a mixture distribution having a planar spread. Examples of irregular distribution, examples of regularity distribution, and examples of mixture distribution are shown in FIG. 12A and 12B are schematic layout diagrams shown in FIGS. 12A, 12 </ b> B, and 12 </ b> C.
This is a diagram for explaining the concept in the case of a mixed distribution having a surface spread, where individual distributions have characteristic variations and also have different dependences on inspection conditions. Examples of irregular distributions, examples of regular distributions, It is a schematic layout drawing which shows an example of each mixture distribution.

【0012】図11に示すとおり、例えば不規則分布を
示す不良原因と規則性分布を示す不良原因の影響範囲が
重なる場合、不良分布は混合分布となり、規則性分布の
みの場合に較べて分布周期を検出することが難しくな
る。
As shown in FIG. 11, for example, when the influence ranges of a defect cause showing an irregular distribution and a defect cause showing a regular distribution overlap, the defect distribution becomes a mixed distribution, and the distribution period is larger than that in the case of only the regular distribution. Becomes difficult to detect.

【0013】更に、図12に示すように、個々の分布が
特性バラツキを持ち、検査条件への依存性も異なる場
合、それらの混合分布から規則性分布の分布周期を検出
することは一層難しくなる。
Further, as shown in FIG. 12, when the individual distributions have characteristic variations and the dependences on the inspection conditions are different, it becomes more difficult to detect the distribution period of the regular distribution from the mixture distributions thereof. .

【0014】又、図13(a),(b),(c),
(d)は、特性値への影響度にバラツキを伴う不良原因
に関し、分布周期を求める場合の問題点を説明するため
の図で、U個の検査対象例,不良原因の分布例,検査条
件が厳しい場合の検査結果例,検査条件がやや緩い場合
の検査結果例,及び検査条件が緩い場合の検査結果例の
各配置をそれぞれ模式的に示す配置図である。又、図1
4(a),(b),(c)は、2不良間間隔を横軸に
し、各間隔の含有率を縦軸にしたグラフで、検査条件が
厳しい場合、検査条件がやや緩い場合、検査条件が非常
に緩い場合をそれぞれ示し、図15(a),(b),
(c)は、2不良間間隔が含む約数を横軸にし、各間隔
の含有率を縦軸にしたグラフで、検査条件が厳しい場
合、検査条件がやや緩い場合、検査条件が非常に緩い場
合をそれぞれ示す。
Further, FIGS. 13 (a), 13 (b), 13 (c),
(D) is a diagram for explaining a problem when a distribution cycle is obtained with respect to a defect cause in which the degree of influence on the characteristic value varies, and includes U inspection target examples, defect cause distribution examples, and inspection conditions. FIG. 6 is a layout diagram schematically showing each arrangement of an inspection result example when the inspection condition is strict, an inspection result example when the inspection condition is slightly loose, and an inspection result example when the inspection condition is loose. Moreover, FIG.
4 (a), (b), and (c) are graphs in which the interval between two defects is the horizontal axis and the content rate of each interval is the vertical axis. When the inspection conditions are strict, the inspection conditions are slightly loose, and the inspection is performed. 15 (a), (b), and 15 (a), 15 (b),
(C) is a graph in which the horizontal axis is the divisor included in the interval between two defects and the vertical axis is the content rate of each interval. When the inspection conditions are severe, the inspection conditions are slightly loose, and the inspection conditions are very loose. Each case is shown.

【0015】U個の検査対象に対し、不良原因は周期λ
=2で規則的に分布しているが、特性値への影響度にバ
ラツキがあると仮定する。検査条件が十分に厳しい場
合、特性値への影響度バラツキに関係なく不良原因全て
が不良と判定されるため、不良原因の真の分布周期であ
るλ=2がはっきりと検出できる。
For U inspection objects, the cause of the defect is the period λ.
= 2, the distribution is regular, but it is assumed that the degree of influence on the characteristic value varies. When the inspection conditions are sufficiently strict, all defect causes are determined to be defective regardless of the degree of influence on the characteristic value, and thus the true distribution cycle of the defect causes, λ = 2, can be clearly detected.

【0016】一方、検査条件が緩い場合、特性値への影
響度が小さい不良原因が正常と判定される場合がある。
その結果、フーリエ変換や自己相関関数やパワースペク
トルやウェーブレット変換といった従来の数学手段で分
布周期を求めようとすると、不良と判定された部分同士
の間隔であるd’=2×λ、d’’=3×λ、d’’’
=4×λを真の分布周期λと同等にあつかうので、これ
らが解析結果に対するノイズとなってしまい、真の分布
周期λ=2の検出感度を低下させる。
On the other hand, when the inspection conditions are loose, the cause of the defect having a small influence on the characteristic value may be determined to be normal.
As a result, when the distribution period is obtained by the conventional mathematical means such as Fourier transform, autocorrelation function, power spectrum, or wavelet transform, d '= 2 × λ, d''which is the interval between the parts determined to be defective. = 3 × λ, d '''
= 4 × λ is used in the same manner as the true distribution period λ, and these become noise for the analysis result, and the detection sensitivity of the true distribution period λ = 2 is reduced.

【0017】上述した特開平11−186354号公報
では、不良素子の間隔の約数の種類とその頻度とを解析
することで、不良原因を定性的且つ定量的に区別し、設
計に起因する欠陥とそうでない欠陥を区別することを、
又、特開2000−200814号公報では、不良素子
の間隔の約数の種類とその頻度並びに期待値関数を解析
することで不良素子の分布が不規則分布であるか規則性
分布を含むか判断することをある程度まで可能にしてい
るが、不良密度が極端に小さい場合や大きい場合につい
ても、得られた検査結果をそのまま解析するのみで、検
査条件を変えて不良原因の識別を容易にできるようにす
ることは考慮されていなかった。
In the above-mentioned Japanese Laid-Open Patent Publication No. 11-186354, the cause of the defect is qualitatively and quantitatively distinguished by analyzing the divisors of the intervals of the defective elements and the frequencies thereof, and defects caused by the design are analyzed. To distinguish between defects that are not
Further, in Japanese Patent Laid-Open No. 2000-200814, it is determined whether the distribution of defective elements is an irregular distribution or a regular distribution by analyzing the types of divisors of the intervals of defective elements, their frequencies, and expected value functions. However, even if the defect density is extremely small or large, it is possible to change the inspection conditions and easily identify the cause of the defect by simply analyzing the obtained inspection results. Was not considered.

【0018】従って、本発明の目的は、従来の検査解析
装置及び方法を改良し、複数の単位検査対象を規則的に
配置した構成を有する検査母体に関し、複数の不良原因
が混在している場合でも、不良原因を識別するのに最適
な検査条件を自動的に求めることができ、更に検査条件
と不良密度との相関に加え、解析者の熟練度に影響を受
けにくい新しい定量的な不良原因の識別手段及び方法を
備えた検査解析装置及び方法を提供することにある。
Therefore, an object of the present invention is to improve the conventional inspection analysis apparatus and method, and to provide an inspection mother having a configuration in which a plurality of unit inspection objects are regularly arranged, in the case where a plurality of defect causes are mixed. However, it is possible to automatically find the optimum inspection condition for identifying the cause of the defect, and in addition to the correlation between the inspection condition and the defect density, a new quantitative cause of defect that is not easily affected by the skill of the analyst. It is an object of the present invention to provide an inspection analysis device and method including the identification means and method.

【0019】[0019]

【課題を解決するための手段】そのため、本発明による
検査解析装置は、複数の検査単位を含む任意の検査対象
母集団が、この母集団内における前記検査単位の配列に
関して何らかの配列規則を有するとき、前記母集団の個
々の前記検査単位の良否判定結果を含む検査結果から算
出される不良密度、並びに該検査結果を前記母集団に応
じた規則に従って特定座標系上に配置し、全ての不良に
ついての2不良間間隔の組み合わせの種類と数,及び該
間隔に含まれる約数の種類と数を用いて定義する分布偏
りを用いて、複数の分布型を含む分布型群を設定する分
布型定義手段と、解析対象であり、複数の検査対象を含
む所定の検査母体中の個々の前記検査対象を所定の検査
条件で検査し、良否判定結果を含む検査結果を当該検査
対象と対応させて出力する検査手段と、個々の前記検査
対象に対する初期検査条件を、外部から与えられる設定
情報に基づいて設定し、j=1としたときの第j検査条
件として前記検査手段に出力する初期条件設定手段と、
第j検査条件に従って前記検査母体の全ての前記検査対
象を前記検査手段により検査した第j検査結果を、前記
検査母体に応じた規則に従って前記特定座標系上に配置
して前記検査母体の不良分布の特徴を抽出する特徴抽出
手段と、前記特徴抽出手段で抽出した前記検査母体の不
良分布の特徴が、前記分布型群に含まれるいずれかの分
布型の特徴と一致するか比較し比較結果を出力する特徴
比較手段と、前記比較結果が不一致の場合に、前記第j
検査条件と異なる修正検査条件を設定してj=j+1と
し、前記修正検査条件を新たな第j検査条件として前記
検査手段に出力する検査条件変更手段と、前記比較結果
が一致の場合に、一致した前記分布型に基づいて前記検
査対象母体の不良密度及び不良分布の偏りを解析する解
析手段と、解析結果を出力する出力手段と、全体を制御
する制御手段と、を少なくとも有することを特徴とす
る。
Therefore, in the inspection analysis apparatus according to the present invention, when an arbitrary inspection object population including a plurality of inspection units has some arrangement rule regarding the arrangement of the inspection units in the population. , The defect density calculated from the inspection result including the quality judgment result of each of the inspection units of the population, and the inspection results are arranged on a specific coordinate system according to the rule according to the population, and all the defects are Distribution type definition that sets a distribution type group including a plurality of distribution types using the distribution type defined by using the type and number of combinations of two defect intervals and the type and number of divisors included in the interval A means and an analysis target, each of the inspection object in a predetermined inspection mother including a plurality of inspection objects is inspected under predetermined inspection conditions, and the inspection result including the quality judgment result is associated with the inspection object. The inspection means to be applied and the initial inspection condition for each of the inspection objects are set based on the setting information given from the outside, and the initial condition setting is output to the inspection means as the j-th inspection condition when j = 1. Means and
All the inspection objects of the inspection mother are inspected by the inspection means according to the jth inspection condition, and the jth inspection result is arranged on the specific coordinate system according to the rule according to the inspection mother, and the defect distribution of the inspection mother is arranged. And a characteristic extraction unit for extracting the characteristic of the inspection mother, the characteristic of the defective distribution of the inspection mother extracted by the characteristic extraction unit is compared with any distribution type characteristic included in the distribution type group, and the comparison result is compared. When the feature comparison means to output and the comparison result do not match, the j-th
When a modified inspection condition different from the inspection condition is set to j = j + 1 and the modified inspection condition is output to the inspection means as a new jth inspection condition, the comparison result is coincident with each other. Characterized in that it has at least an analysis means for analyzing a defect density and a distribution of defect distribution of the inspection target mother based on the distribution type, an output means for outputting an analysis result, and a control means for controlling the whole. To do.

【0020】又、本発明の検査解析方法は、複数の検査
単位を含む任意の検査対象母集団が、この母集団内にお
ける前記検査単位の配列に関して何らかの配列規則を有
するとき、前記母集団の個々の前記検査単位の良否判定
結果を含む検査結果から算出される不良密度、並びに該
検査結果を前記母集団に応じた規則に従って特定座標系
上に配置し、全ての不良についての2不良間間隔の組み
合わせの種類と数,及び該間隔に含まれる約数の種類と
数を用いて定義する分布偏りを用いて、複数の分布型を
含む分布型群を設定する分布型定義ステップと、U個
(但し、Uは2以上の整数)の検査対象を含む検査母体
中の個々の前記検査対象を検査する初期検査条件を、j
=1としたときの第j検査条件として外部から与えられ
る設定情報に基づいて設定し、所定の検査手段に出力す
る初期条件設定ステップと、第j検査条件に従って前記
検査母体中の全ての前記検査対象を前記検査手段により
検査し、良否判定結果を含む第j検査結果を当該検査対
象と対応させて出力する検査ステップと、前記検査母体
に応じた規則に従って前記第j検査結果を前記特定座標
系上に配置し、前記検査母体の不良分布の特徴を抽出す
る特徴抽出ステップと、前記特徴抽出ステップで抽出し
た前記検査母体の不良分布の特徴が、前記分布型群に含
まれるいずれかの分布型の特徴と一致するか比較し、一
致情報又は不一致情報を比較結果として出力する特徴比
較ステップと、前記比較結果が不一致の場合に、前記第
j検査条件と異なる修正検査条件を設定してj=j+1
とし、前記修正検査条件を新たな第j検査条件として前
記検査手段に出力し、前記検査ステップに戻る検査条件
変更ステップと、前記比較結果が一致の場合に、一致し
た前記分布型に基づいて前記検査対象母体の不良密度及
び不良分布の偏りを解析する解析ステップと、解析結果
を出力する出力ステップと、を含むことを特徴とする。
Further, in the inspection analysis method of the present invention, when an arbitrary inspection object population including a plurality of inspection units has some arrangement rule regarding the arrangement of the inspection units in this inspection population, The defect density calculated from the inspection result including the quality determination result of the inspection unit, and the inspection result are arranged on the specific coordinate system according to the rule according to the population, and the interval between two defects for all defects is A distribution type defining step of setting a distribution type group including a plurality of distribution types using a distribution bias defined by using the kind and number of combinations and the kind and number of divisors included in the interval, and U ( However, U is an integer greater than or equal to 2), and the initial inspection condition for inspecting each of the inspection objects in the inspection mother including the inspection object is j
= 1, the initial condition setting step of setting based on setting information given from the outside as the j-th inspection condition and outputting to a predetermined inspection means, and all the inspections in the inspection mother according to the j-th inspection condition An inspection step of inspecting an object by the inspection means and outputting a j-th inspection result including a quality determination result in association with the inspection object, and the j-th inspection result according to a rule according to the inspection mother A feature extraction step that is arranged on the top and extracts the feature of the defect distribution of the inspection mother, and the feature of the defect distribution of the inspection mother extracted in the feature extraction step is any distribution type included in the distribution type group. Characteristic comparison step of comparing with the characteristic of No. 2 and outputting matching information or non-matching information as a comparison result; and if the comparison result does not match, the j-th inspection condition is different. Set the modified test conditions j = j + 1
When the inspection condition changing step of outputting the corrected inspection condition as a new jth inspection condition to the inspection means and returning to the inspection step and the comparison result are the same, based on the matched distribution type, The method is characterized by including an analysis step of analyzing a defect density and a distribution of defect distribution of the inspection object mother body, and an output step of outputting an analysis result.

【0021】このとき、前記分布型定義ステップは、検
査対象母集団の不良密度に応じて定めた複数の分布型を
設定する第1定義処理と、前記母集団の前記不良密度が
特定の不良密度範囲にあるとき、当該母集団が含む全て
の不良についての2不良間間隔の組み合わせの種類と数
を調べ、該間隔に含まれる約数の種類と数を用いて定義
した分布偏りを用いて複数の分布型を設定する第2定義
処理と、を含み、前記分布型群が、前記第1定義処理及
び前記第2定義処理によってそれぞれ設定される分布型
を含むものとすることができる。
At this time, the distribution type defining step includes a first definition process for setting a plurality of distribution types determined according to the defect density of the population to be inspected, and the defect density in which the defect density of the population is specific. When it is within the range, the type and number of combinations of intervals between two defects for all the defects included in the population are examined, and a plurality of distribution biases defined using the types and numbers of divisors included in the interval are used to determine a plurality of types. And a second definition process for setting the distribution type of the above, and the distribution type group may include the distribution types set by the first definition process and the second definition process, respectively.

【0022】又、U個の検査対象を含む検査母体の検査
結果を配置する特定座標系はY座標軸を含むk次元座標
系(但し、kは1以上の整数)としたとき、前記特徴抽
出ステップは、前記検査母体の第j検査結果を少なくと
も前記Y座標軸を含む座標空間上に配置する配置処理
と、前記検査母体の不良密度Q(j)を算出する算出処
理を含み、前記特徴比較ステップは、前記特徴抽出ステ
ップで算出した前記不良密度Q(j)が特定の不良密度
範囲に含まれるているかを確認する第1比較処理と、前
記不良密度Q(j)が特定の不良密度範囲に含まれるて
いる場合に、前記検査結果が含む全ての不良について、
2不良間の間隔のY座標軸成分であるd=|Δy|の組
み合わせの種類と数N(j),間隔d=0となる組み合
わせの数uy(j),及び間隔dの最大値dmax(j)を
調べると共に間隔d>0となる組み合わせの数Ny(j)
=N(j)−uy(j)を算出する不良間隔計算処理と、
dmax(j) ≦Ny(j)を満足するか否かを調べ、満足
する場合は一致情報を比較結果として出力し、不満足の
場合則ちdmax(j) >Ny(j)の場合は第1の不一致
情報を比較結果として出力する第2比較処理を含み、前
記検査条件変更ステップは、前記比較結果が前記第1の
不一致情報のとき、前記修正検査条件は前記第j検査条
件よりも厳しくなるように設定するものとすることがで
きる。
Further, when the specific coordinate system for arranging the inspection result of the inspection mother body including U inspection objects is a k-dimensional coordinate system including the Y coordinate axis (where k is an integer of 1 or more), the feature extracting step is performed. Includes an arrangement process of arranging the j-th inspection result of the inspection base on a coordinate space including at least the Y coordinate axis, and a calculation process of calculating a defect density Q (j) of the inspection base. A first comparison process for confirming whether the defect density Q (j) calculated in the feature extraction step is included in a specific defect density range; and the defect density Q (j) is included in a specific defect density range. If all the defects included in the inspection result,
The number of combinations and the number N (j) of d = | Δy |, which is the Y coordinate axis component of the interval between two defects, the number uy (j) of the combinations with the interval d = 0, and the maximum value dmax (j of the interval d. ) And the number of combinations Ny (j) with the interval d> 0
= N (j) -uy (j) defect interval calculation processing,
It is checked whether or not dmax (j) ≤ Ny (j) is satisfied, and if it is satisfied, the matching information is output as a comparison result. If not satisfied, the first is if dmax (j)> Ny (j). Second comparison processing for outputting the mismatch information of No. 1 as the comparison result, and the inspection condition changing step, when the comparison result is the first mismatch information, the modified inspection condition becomes stricter than the jth inspection condition. Can be set as follows.

【0023】又、U個の検査対象を含む検査母体の第j
検査結果がが含む不良数をn(j)(但し、n(j)は
0以上の整数)としたとき、前記特徴比較ステップは、
j=1であるか確認する初期検査確認処理と、j=1の
場合は、0<n(1)<Uであるか確認する初期不良数
確認処理と、を更に含み、前記第1比較処理は、j≧
2、又は0<n(1)<Uである場合に、0<α<β<
1であるα、βを予め設定した不良密度閾値として、α
<n(j)/U<βを満足するか否かを調べて、n
(j)/U≦αの場合は第1の不一致情報を、又β≦n
(j)/Uの場合は第2の不一致情報を、比較結果とし
て出力するものであり、前記不良間隔計算処理は、α<
m/U<βの場合に、n(j)個の不良全てについて2
不良間の間隔d=|Δy|の組み合わせの種類と数N
(j)を調べるものであり、前記検査条件変更ステップ
は、前記比較結果が前記第1の不一致情報のとき、前記
修正検査条件は前記第j検査条件よりも厳しくなるよう
に設定し、前記比較結果が前記第2の不一致情報のと
き、前記修正検査条件は前記第j検査条件よりも緩くな
るように設定するものとしてもよい。
Also, the j-th inspection matrix including U inspection objects
When the number of defects included in the inspection result is n (j) (where n (j) is an integer of 0 or more), the feature comparison step is
The first comparison process further includes an initial inspection confirmation process for confirming j = 1 and an initial defect number confirmation process for confirming 0 <n (1) <U in the case of j = 1. Is j ≧
2 or when 0 <n (1) <U, 0 <α <β <
Α and β that are 1 are set as the preset defect density thresholds, and α
It is examined whether or not <n (j) / U <β is satisfied, and n
(J) / U ≦ α, the first mismatch information, and β ≦ n
In the case of (j) / U, the second mismatch information is output as the comparison result, and the defect interval calculation process is performed by α <
2 for all n (j) defects when m / U <β
Type and number of combinations of intervals d = | Δy | between defects
(J) is checked, and in the inspection condition changing step, when the comparison result is the first disagreement information, the modified inspection condition is set to be stricter than the jth inspection condition, and the comparison is performed. When the result is the second mismatch information, the modified inspection condition may be set to be looser than the j-th inspection condition.

【0024】又、前記解析ステップは、Ny(j)/N
(j))が予め定められた所定の分布型判定値p以下の
場合に、前記第j検査結果が含む不良分布は、特定のY
座標値に集中している同質型であると判定する第1分布
型判定処理を、含むものとすることができる。
Further, the analysis step is Ny (j) / N
When (j)) is equal to or less than a predetermined distribution type determination value p, the defect distribution included in the jth inspection result is a specific Y
It is possible to include a first distribution type determination process for determining that the type is a homogeneous type that is concentrated on the coordinate values.

【0025】又、前記解析ステップが、dmax(j) ≦
Ny(j)を満足した後、Ny(j)個の2不良間の間隔d
が含む1を除く約数fの種類及び各約数毎にその約数を
含む間隔dの数Σmj(f)を全て調べる約数算出手順
と、Ny(j)個の組み合わせ中に含まれる約数fの値別
含有率Pj(f)=Σmj(f)/Ny(j)を全ての約
数fについて求める含有率算出手順と、前記Pj(f)
に該fを乗じた期待値関数Tj(f)=f×Pj(f)
を全ての約数fについて求める期待値算出手順と、Tj
(f)>1となるfが存在するか調べる期待値判定手順
と、を備え、全ての約数fにおいて期待値関数Tj
(f)≦1の場合は前記第j検査結果が含む不良分布は
不規則分布であると判定する第2分布型判定処理を、更
に含むこともできる。
Further, in the analysis step, dmax (j) ≤
After satisfying Ny (j), the distance d between two Ny (j) defects
Of divisor f excluding 1 and the divisor calculation procedure for checking all the numbers Σmj (f) of intervals d containing the divisor for each divisor, and the divisors included in Ny (j) combinations A content rate calculation procedure for obtaining the content rate Pj (f) = Σmj (f) / Ny (j) of each number f for all divisors f, and the above Pj (f)
To the expected value function Tj (f) = f × Pj (f)
An expected value calculation procedure for obtaining all divisors f, and Tj
(F) An expected value determination procedure for checking whether or not f with 1 exists, and the expected value function Tj is obtained for all divisors f.
If (f) ≦ 1, it is possible to further include a second distribution type determination process for determining that the defective distribution included in the j-th inspection result is an irregular distribution.

【0026】又、前記解析ステップは、前記第2分布型
判定処理の結果が、特定の約数fにおいて期待値関数T
j(f)>1の場合に、Tj(f)が最大となる約数f
zと、このときの最大値T(f)max =T(fz)を調
べる最大値抽出手順と、T(fz)=fzが成立するか
調べる周期性判定手順と、を備え、T(fz)=fzが
成立する場合に前記第j検査結果が含む不良分布はfz
を分布周期λとする単一周期からなる規則性分布である
と判定し、T(fz)=fzが成立しない場合は前記第
j検査結果が含む不良分布は振動型であると判定する第
3分布型判定処理を、更に備えてもよい。
Further, in the analysis step, the result of the second distribution type determination process is an expected value function T at a specific divisor f.
When j (f)> 1, the divisor f that maximizes Tj (f)
z, a maximum value extraction procedure for checking the maximum value T (f) max = T (fz) at this time, and a periodicity determination procedure for checking whether T (fz) = fz holds, T (fz) = Fz is true, the defect distribution included in the j-th inspection result is fz
Is determined to be a regular distribution having a single period, and T (fz) = fz is not established, the defect distribution included in the j-th inspection result is determined to be a vibration type. The distribution type determination process may be further provided.

【0027】又、前記出力ステップは、前記解析ステッ
プの解析結果に応じて所定の警告情報を出力す警告処理
を含むことができる。
Further, the output step may include a warning process of outputting predetermined warning information according to the analysis result of the analysis step.

【0028】又、本発明の検査解析方法は、CCD受像
素子及びCMOSイメージセンサを含むデジタル情報入
力デバイス、液晶ディスプレイ,プラズマディスプレ
イ,エレクトロルミネッセンスディスプレイ及び発光ダ
イオードを含むデジタル情報出力デバイス、記憶素子及
び並列伝送素子を含むデジタル情報入出力デバイス、並
びに半導体ウェハを含む半導体応用装置の製造順番を表
すロット識別記号をY座標軸に設定すると共にこの半導
体応用装置を並行して製造するライン又は工場の識別記
号をZ座標軸に設定し、U個の製造ロットを検査対象と
し、その内の不良ロット数をn個、任意の2不良ロット
間の間隔をd、該間隔dの組み合わせの種類と数Nと、
2不良ロット間隔d=0となる組み合わせ数をuyとし
て、不良発生の製造ロット間隔依存性の有無、並びに製
造ロットと関係の深い製造日、製造週、製造月、製造季
節、及び製造年を含む製造時期依存性の有無を調べるよ
うにすることもできる。
Further, the inspection analysis method of the present invention includes a digital information input device including a CCD image receiving element and a CMOS image sensor, a liquid crystal display, a plasma display, an electroluminescent display and a digital information output device including a light emitting diode, a storage element, and a storage element. A digital information input / output device including a parallel transmission element, and a lot identification symbol indicating the manufacturing order of a semiconductor application device including a semiconductor wafer are set on the Y coordinate axis, and an identification symbol of a line or factory for manufacturing the semiconductor application device in parallel. Is set as the Z coordinate axis, U production lots are subject to inspection, the number of defective lots therein is n, the interval between any two defective lots is d, the type and number N of combinations of the intervals d,
2 The number of combinations in which the defective lot interval d = 0 is set to uy, and the presence or absence of the dependency of the defective lot on the manufacturing lot interval, and the manufacturing date, manufacturing week, manufacturing month, manufacturing season, and manufacturing year that are closely related to the manufacturing lot are included. It is also possible to check whether or not there is a manufacturing time dependency.

【0029】[0029]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0030】図1は本発明の検査解析装置の一実施形態
の模式的な概略ブロック図であり、図2はこの検査解析
装置を用いて検査結果を解析する検査解析方法の概略フ
ローチャートである。
FIG. 1 is a schematic schematic block diagram of an embodiment of the inspection analysis apparatus of the present invention, and FIG. 2 is a schematic flowchart of an inspection analysis method for analyzing inspection results using this inspection analysis apparatus.

【0031】図1を参照すると、本実施形態の検査解析
装置1は、制御手段10と、分布型設定手段11と、検
査手段12と、初期条件設定手段13と、特徴抽出手段
14と、特徴比較手段15と、検査条件変更手段16
と、解析手段17と、出力手段18と、記憶手段19
と、を少なくとも備えている。又、検査手段12は、試
験部12aと、判定部12bを含み、構成される。
Referring to FIG. 1, the inspection analysis apparatus 1 of this embodiment has a control means 10, a distribution type setting means 11, an inspection means 12, an initial condition setting means 13, a feature extracting means 14, and a feature. Comparison means 15 and inspection condition changing means 16
, Analysis means 17, output means 18, and storage means 19
And at least. In addition, the inspection unit 12 is configured to include a test unit 12a and a determination unit 12b.

【0032】分布型設定手段11は、例えば複数の検査
単位を含む任意の検査対象母集団が、この母集団内にお
ける前記検査単位の配列に関して何らかの配列規則を有
するとき、前記母集団の個々の前記検査単位の良否判定
結果を含む検査結果から算出される不良密度、並びに該
検査結果を前記母集団に応じた規則に従って特定座標系
上に配置し、全ての不良についての2不良間間隔の組み
合わせの種類と数,及び該間隔に含まれる約数の種類と
数を用いて定義する分布偏りを用いて、複数の分布型を
含む分布型群を設定する。
The distribution type setting means 11, for example, when an arbitrary inspection target population including a plurality of inspection units has some arrangement rule with respect to the arrangement of the inspection units in the population, the distribution type setting means 11 The defect density calculated from the inspection result including the quality judgment result of the inspection unit, and the inspection result are arranged on the specific coordinate system according to the rule according to the population, and the combination of the intervals between two defects for all the defects is set. A distribution type group including a plurality of distribution types is set using the distribution bias defined using the types and numbers and the types and numbers of divisors included in the interval.

【0033】検査手段12は、試験部12aにおいて、
解析対象であり、複数の検査対象を含む所定の検査母体
中の個々の検査対象の特性を所定の条件で測定或いは読
み込み、判定部12bで所定の規格値と比較して良否判
定を行い、更にこの良否判定結果を含む検査結果を当該
検査対象と対応させて出力し、例えば記録手段19に記
録する。初期条件設定手段13は、個々の検査対象に対
する初期検査条件を、外部から与えられる設定情報に基
づいて設定し、j=1としたときの第j検査条件として
検査手段12に出力する。特徴抽出手段14は、第j検
査条件に従って検査母体に含まれる全ての検査対象を検
査手段12により検査した第j検査結果を、検査母体に
応じた規則に従って特定座標系上に配置し、検査母体の
不良分布の特徴を抽出する。特徴比較手段15は、特徴
抽出手段14で抽出した検査母体の不良分布の特徴が、
分布型設定手段11で設定した分布型群に含まれるいず
れかの分布型の特徴と一致するか比較し比較結果を出力
する。検査条件変更手段16は、特徴比較手段15から
出力される比較結果が不一致の場合に、第j検査条件と
異なる修正検査条件を設定してj=j+1とし、この修
正検査条件を新たな第j検査条件として検査手段12に
出力する。解析手段17は、特徴比較手段15から出力
される比較結果が一致の場合に、一致した分布型に基づ
いて検査対象母体の不良密度及び不良分布の偏りを解析
し、出力手段18から関連情報と共に出力する。制御手
段10は、検査解析装置1全体の動作を制御する。
The inspecting means 12 is provided in the test section 12a.
It is an analysis target, and the characteristics of each test target in a predetermined test base including a plurality of test targets are measured or read under a predetermined condition, and the determination unit 12b compares the measured value with a predetermined standard value to determine pass / fail. The inspection result including the quality determination result is output in association with the inspection target, and is recorded in, for example, the recording unit 19. The initial condition setting means 13 sets an initial inspection condition for each inspection object based on setting information given from the outside, and outputs it to the inspection means 12 as the j-th inspection condition when j = 1. The feature extracting unit 14 arranges the j-th inspection result obtained by inspecting all the inspection objects included in the inspection mother by the inspection unit 12 according to the j-th inspection condition on the specific coordinate system according to the rule according to the inspection mother, and the inspection mother The characteristics of the defect distribution of are extracted. The feature comparing unit 15 determines that the feature of the defect distribution of the inspection mother extracted by the feature extracting unit 14 is
The distribution type setting unit 11 compares the characteristics of any distribution type included in the distribution type group, and outputs the comparison result. The inspection condition changing unit 16 sets a modified inspection condition different from the jth inspection condition to j = j + 1 when the comparison result output from the feature comparison unit 15 does not match, and sets this modified inspection condition to the new jth. The inspection condition is output to the inspection means 12. When the comparison result output from the feature comparison unit 15 is a match, the analysis unit 17 analyzes the defect density and the bias of the defect distribution of the inspection target mother based on the matched distribution type, and outputs the relevant information from the output unit 18 together with the related information. Output. The control means 10 controls the operation of the inspection analysis apparatus 1 as a whole.

【0034】尚、本実施形態の検査解析装置1は、少な
くとも制御手段10,分布型設定手段11,初期条件設
定手段13,特徴抽出手段14,特徴比較手段15,検
査条件変更手段16,及び解析手段17は、パーソナル
コンピュータ或いはEWS(Engineering Workstation
)を含むコンピュータ上のソフトウェアとして実現す
ることができる。尚、検査手段12は、LSIテスタに
より構成される場合が多いが、検査対象によってはコン
ピュータ上のソフトウェとして実現する場合もある。
又、出力手段18は、プリンタ装置、ディスプレイ装置
及びハードディスク装置等を含んで構成でき、記録手段
19は、例えばハードディスク装置等により構成でき
る。
The inspection / analysis apparatus 1 of the present embodiment includes at least the control means 10, the distribution type setting means 11, the initial condition setting means 13, the feature extracting means 14, the feature comparing means 15, the inspection condition changing means 16, and the analysis. The means 17 is a personal computer or an EWS (Engineering Workstation).
) Can be implemented as software on a computer including. Although the inspection means 12 is often composed of an LSI tester, it may be realized as software on a computer depending on the inspection object.
The output means 18 can be configured to include a printer device, a display device, a hard disk device, and the like, and the recording means 19 can be configured to, for example, a hard disk device.

【0035】又、図2を参照すると、検査解析装置1を
用いて解析対象となる検査母体の検査結果を解析する方
法は、分布型設定ステップS1と、初期条件設定ステッ
プS2と、検査ステップS3と、特徴抽出ステップS4
と、特徴比較ステップS5と、検査条件変更ステップS
6と、解析ステップS7と、出力ステップS8と、を少
なくとも備えている。
Further, referring to FIG. 2, a method of analyzing the inspection result of the inspection mother to be analyzed by using the inspection analysis device 1 is a distribution type setting step S1, an initial condition setting step S2, and an inspection step S3. And feature extraction step S4
And feature comparison step S5 and inspection condition change step S
6, an analysis step S7, and an output step S8.

【0036】分布型定義ステップS1は、複数の検査単
位を含む任意の検査対象母集団が、この母集団内におけ
る検査単位の配列に関して何らかの配列規則を有すると
き、前記母集団の個々の前記検査単位の良否判定結果を
含む検査結果から算出される不良密度、並びに該検査結
果を前記母集団に応じた規則に従って特定座標系上に配
置し、全ての不良についての2不良間間隔の組み合わせ
の種類と数,及び該間隔に含まれる約数の種類と数を用
いて定義する分布偏りを用いて、複数の分布型を含む分
布型群を設定する。ここで分布型の具体的な設定の例を
説明する。
The distribution type defining step S1 is such that, when an arbitrary test object population including a plurality of test units has some arrangement rule regarding the arrangement of the test units in this population, the individual test units of the population are The defect density calculated from the inspection result including the pass / fail judgment result, and the inspection result are arranged on a specific coordinate system in accordance with the rule according to the population, and the types of combinations of the intervals between two defects for all defects and A distribution type group including a plurality of distribution types is set by using the number and the distribution bias defined using the type and the number of divisors included in the interval. Here, an example of a specific distribution type setting will be described.

【0037】不良分布が完全な不規則分布である場
合:分布確率は場所によらず一定であるから、2不良間
間隔についても特定の間隔dが出現する頻度、言い換え
ると間隔dが分布する重みw(d)が突出して大きくな
ることはない。つまり、w(d)はdの値に関わらず、
ほぼ一定の値を示す。
When the defect distribution is a completely irregular distribution: Since the distribution probability is constant regardless of the location, the frequency at which the specific interval d appears even in the interval between two defects, in other words, the weight with which the interval d is distributed. The w (d) does not significantly increase. That is, w (d) is irrespective of the value of d,
It shows an almost constant value.

【0038】このとき、ΣW(2i)をdが偶数の場合
における重みの総和、ΣW(2i+1)をdが奇数の場
合における重みの総和とすると、両者はほぼ同数であ
り、d(>0)の全組み合わせ数をNyとすると、ΣW
(2i) ΣW(2i+1) Ny/2と考えて良い。例
えば、Σm(2)=w(2)+w(4)+……=ΣW
(2i) Ny/2と考える。
At this time, if ΣW (2i) is the sum of weights when d is an even number and ΣW (2i + 1) is the sum of weights when d is an odd number, both are almost the same number, and d (> 0). Let Ny be the total number of combinations of ΣW
(2i) ΣW (2i + 1) Ny / 2 may be considered. For example, Σm (2) = w (2) + w (4) + ... = ΣW
(2i) Consider Ny / 2.

【0039】同様に、ΣW(fi)をdがfの倍数fi
の場合における重みの総和とし、ΣW(fi+1),Σ
W(fi+2),ΣW(fi+3),…,ΣW(fi+
f−1)を、それぞれdが(fi+1),(fi+
2),(fi+3),…,(fi+f−1)の場合にお
ける重みの総和とすると、 ΣW(fi) ΣW(fi+1) … ΣW(fi
+f−1) Ny/f となるので、Σm(f)=ΣW(f) Ny/fである。
Similarly, ΣW (fi) is a multiple fi of d
And sum ΣW (fi + 1), Σ
W (fi + 2), ΣW (fi + 3), ..., ΣW (fi +
f-1), where d is (fi + 1), (fi +
2), (fi + 3), ..., (fi + f−1), the sum of the weights is: ΣW (fi) ΣW (fi + 1) ... ΣW (fi
+ F-1) Ny / f, so Σm (f) = ΣW (f) Ny / f.

【0040】例えば、f=3とすると、 ΣW(3i) ΣW(3i+1) ΣW(3i+2)
Ny/3 Σm(3)=w(3)+w(6)+……=ΣW(3i)
Ny/3 となる。
For example, when f = 3, ΣW (3i) ΣW (3i + 1) ΣW (3i + 2)
Ny / 3 Σm (3) = w (3) + w (6) + ... = ΣW (3i)
It becomes Ny / 3.

【0041】従って、任意の約数fの含有率P(f),
及び期待値関数T(f)は、 P(f)=Σm(f)/Ny (Ny/f)/Ny=1/f T(f)=f×P(f) f×1/f=1 となる。以上のように、不良分布が完全な不規則分布の
場合、任意の約数fにおける期待値関数T(f)が1に
収束する。従って、T(f)>1を満足するfが存在し
ないとき、則ち全てのfについてT(f)≦1となる場
合を、不規則分布に分類し収束型とする。
Therefore, the content P (f) of any divisor f,
And the expected value function T (f) is: P (f) = Σm (f) / Ny (Ny / f) / Ny = 1 / f T (f) = f × P (f) f × 1 / f = 1 Becomes As described above, when the defect distribution is a perfect irregular distribution, the expected value function T (f) at any divisor f converges to 1. Therefore, when there is no f that satisfies T (f)> 1, that is, when T (f) ≦ 1 for all f, that is, it is classified as an irregular distribution and a convergence type.

【0042】図6は不規則分布の場合の実際の期待値関
数T(f)を縦軸に、fを横軸にした関数グラフ例で、
(a),(b),(c)は、それぞれdmax /Nyが、
「1より大きい場合」,「ほぼ1の場合」,「1より十
分小さい場合」のグラフである。このグラフからも分か
るとおり、不規則分布であっても、dmax /Nyが1以上
の場合は、期待値関数T(f)が必ずしも1に収束しな
くなり、分布の規則性/不規則性の判定が難しくなるこ
とが分かる。
FIG. 6 is an example of a function graph in which the vertical axis represents the actual expected value function T (f) in the case of irregular distribution and the horizontal axis represents f.
In (a), (b), and (c), dmax / Ny is
It is a graph of "when it is larger than 1", "when it is almost 1", and "when it is sufficiently smaller than 1". As can be seen from this graph, even if the distribution is irregular, if dmax / Ny is 1 or more, the expected value function T (f) does not necessarily converge to 1, and the regularity / irregularity of the distribution is determined. It turns out that is difficult.

【0043】不良分布が単一の周期λを持つ規則性分
布である場合:無限母集団を想定すると、間隔dが周期
λの倍数λiの場合の重みw(λi)は一定、則ち、k
を1以上の任意の整数とするとき、 w(λ)=w(2λ)=w(3λ)=…=w(kλ)=
… である。従って、ΣW(λi)をdがλの倍数λiの場
合における重みの総和とすると、次のようになる。
When the defect distribution is a regular distribution having a single period λ: Assuming an infinite population, the weight w (λi) when the interval d is a multiple λi of the period λ is constant, that is, k
Is an arbitrary integer of 1 or more, w (λ) = w (2λ) = w (3λ) = ... = w (kλ) =
… Is. Therefore, if ΣW (λi) is the sum of weights when d is a multiple λi of λ, the following is obtained.

【0044】例えば、d=2の不良間隔が、組み合わせ
数Nyの中に16個あったとすると、Σm(2)=16だ
が、d=4の不良間隔は、d=2の不良間隔の2個分で
あり、Σm(4)=Σm(2×2)={Σm(2)}/
2=8になる。
For example, if there are 16 defective intervals of d = 2 in the number of combinations Ny, Σm (2) = 16, but the defective interval of d = 4 is two defective intervals of d = 2. Minutes, and Σm (4) = Σm (2 × 2) = {Σm (2)} /
2 = 8.

【0045】又、rが1≦r≦(λ−1)を満たす任意
の整数とし、λir=(λi+r)としたとき、ΣW(λ
ir)を、dがλirの場合における重みの総和、則ち ΣW(λir)=w(λ+r)+w(2λ+r)+w(3
λ+r)+… とすると、 Σm(f=λir)=ΣW(λir)=0 となる。
When r is an arbitrary integer satisfying 1 ≦ r ≦ (λ−1) and λir = (λi + r), ΣW (λ
ir) is the sum of weights when d is λir, that is, ΣW (λir) = w (λ + r) + w (2λ + r) + w (3
If λ + r) + ..., Σm (f = λir) = ΣW (λir) = 0.

【0046】従って、任意の約数fの含有率P(f),
及び期待値関数T(f)は、fがλの倍数λiの場合、 P(f=k×λ)=Σm(f=k×λ)/Ny=(Ny/
k)/Ny=1/k T(f=k×λ)=k×λ×P(f=k×λ)=(k×
λ)×(1/k)=λ となり、fがλの倍数λiでない、則ちf=λirの場
合、 P(f=λir)=Σm(f=λir)/Ny=0/Ny=0 T(f=λir)=λir×P(f=λir)=λir×0=0 となる。
Therefore, the content P (f) of an arbitrary divisor f,
And an expected value function T (f) is f (k) is a multiple of λ, P (f = k × λ) = Σm (f = k × λ) / Ny = (Ny /
k) / Ny = 1 / k T (f = k × λ) = k × λ × P (f = k × λ) = (k ×
λ) × (1 / k) = λ, and f is not a multiple λi of λ, that is, f = λir, P (f = λir) = Σm (f = λir) / Ny = 0 / Ny = 0 T (F = λir) = λir × P (f = λir) = λir × 0 = 0.

【0047】但し、λ自身がいくつかの約数μを持って
いた場合、sを1以上の整数として約数fがμの倍数μ
i=(μ×s)で、且つμi≠λiの条件において、 Σm(f=μ×s)=ΣW((μ×s)i)=Ny/s となる。よって、 P(f=μ×s)=Σm(f=μ×s)/Ny=(Ny/
s)/Ny=1/s となり、期待値関数T(f)は、 T(f=μ×s)=μ×s×P(f=μ×s)=(μ×
s)×(1/s)=μ となる。以上のように、不良分布が単一の周期λを持つ
規則性分布の場合、特定の約数fにおける期待値関数T
(f)が1を越える特徴を示し、且つT(f)は0とλ
との間を振動する。従って、規則性分布を含む場合を振
動型とする。更に、T(f)が最大値を示すときのfを
fzとしたとき、 T(f)max =T(fz)=fz が成立すれば、この規則性分布は周期λ=fzの単一周
期を持つ規則性分布であるといえる。
However, when λ itself has several divisors μ, s is an integer of 1 or more and divisor f is a multiple μ of μ.
Under the condition of i = (μ × s) and μi ≠ λi, Σm (f = μ × s) = ΣW ((μ × s) i) = Ny / s. Therefore, P (f = μ × s) = Σm (f = μ × s) / Ny = (Ny /
s) / Ny = 1 / s, and the expected value function T (f) is T (f = μ × s) = μ × s × P (f = μ × s) = (μ ×
s) × (1 / s) = μ. As described above, when the defect distribution is a regular distribution having a single period λ, the expected value function T at a specific divisor f
(F) has a feature of exceeding 1, and T (f) is 0 and λ.
Vibrate between and. Therefore, the case where the regular distribution is included is defined as the vibration type. Furthermore, if f (z) is fz when T (f) shows the maximum value, and if T (f) max = T (fz) = fz is satisfied, this regularity distribution has a single cycle of cycle λ = fz. It can be said that the distribution is regular.

【0048】図7は規則性分布を含む実際の期待値関数
T(f)を縦軸に、fを横軸にした関数グラフ例で、
(a),(b),(c)は、それぞれdmax /Nyが、
「1より大きい場合」,「ほぼ1の場合」,「1より十
分小さい場合」のグラフである。このグラフから分かる
とおり、dmax /Nyが1以上になると、上述した特定の
約数fでT(f)が1を超え、且つ0とλとの間を振動
するという特徴は明瞭でなくなることが分かる。
FIG. 7 is an example of a function graph in which the vertical axis represents the actual expected value function T (f) including the regular distribution and the horizontal axis represents f.
In (a), (b), and (c), dmax / Ny is
It is a graph of "when it is larger than 1", "when it is almost 1", and "when it is sufficiently smaller than 1". As can be seen from this graph, when dmax / Ny is 1 or more, the characteristic that T (f) exceeds 1 and vibrates between 0 and λ at the specific divisor f described above becomes unclear. I understand.

【0049】不良数nが少なく、且つバラツキの大き
な不良分布の場合:例えば、不良間隔dの最大値dmax
が、このd(>0)の組み合わせ数Nyよりも大きい場
合、則ちdmax /Nyが1より大きい場合は、図7
(a)、図8(a)からも分かるとおり、約数fに対し
て期待値関数T(f)が発散する。なぜならdmax =a
×Ny(但し、a>1)且つf=dmax の頻度Σm(f=
dmax )=m(但し、m>1)と仮定すると、dmax の
含有率P(f=dmax )=Σm(f=dmax )/Ny=m
/Ny、期待値関数T(f=dmax )=f×P(f)=
(a×Ny)×(m/Ny)=a×m>1となる。
In the case of a defect distribution with a small number of defects n and a large variation: For example, the maximum value dmax of the defect interval d.
Is larger than the number Ny of combinations of d (> 0), that is, when dmax / Ny is larger than 1,
As can be seen from (a) and FIG. 8 (a), the expected value function T (f) diverges with respect to the divisor f. Because dmax = a
× Ny (however, a> 1) and frequency Σm of f = dmax (f =
Assuming that dmax) = m (however, m> 1), the content ratio of dmax P (f = dmax) = Σm (f = dmax) / Ny = m
/ Ny, expected value function T (f = dmax) = f × P (f) =
(A × Ny) × (m / Ny) = a × m> 1.

【0050】具体例として、dmax =1050、Ny=2
10(n=21、uy=0)、m=2の場合、 dmax /Ny=1050/210=5 P(f=dmax )=2/210 T(f=dmax )=1050×2/210=5×2=1
0 となる。しかもdmax =1050の約数、f=2,3,
5,6,7,10,14,15,21,25,30,3
5,42,50,70,75,105,150,17
5,210,350,525の期待値関数T(f)=f
×2/210より、 T(2) = 0.019047619 T(3) = 0.028571429 T(5) = 0.047619048 T(6) = 0.057142857 T(7) = 0.066666667 T(10) = 0.095238095 T(14) = 0.133333333 T(15) = 0.142857143 T(21) = 0.2 T(25) = 0.238095238 T(30) = 0.285714286 T(35) = 0.333333333 T(42) = 0.4 T(50) = 0.476190476 T(70) = 0.666666667 T(75) = 0.714285714 T(105) = 1 T(150) = 1.428571429 T(175) = 1.666666667 T(210) = 2 T(350) = 3.333333333 T(525) = 5 T(1050) = 10 となり、fの増加に応じてT(f)が発散する傾向を示
すことが分かる。
As a specific example, dmax = 1050 and Ny = 2
When 10 (n = 21, uy = 0) and m = 2, dmax / Ny = 1050/210 = 5 P (f = dmax) = 2/210 T (f = dmax) = 1050 × 2/210 = 5 × 2 = 1
It becomes 0. Moreover, a divisor of dmax = 1050, f = 2,3
5,6,7,10,14,15,21,25,30,3
5,42,50,70,75,105,150,17
5,210,350,525 expected value function T (f) = f
From × 2/210, T (2) = 0.019047619 T (3) = 0.028571429 T (5) = 0.047619048 T (6) = 0.057142857 T (7) = 0.066666667 T (10) = 0.095238095 T (14) = 0.133333333 T ( 15) = 0.142857143 T (21) = 0.2 T (25) = 0.238095238 T (30) = 0.285714286 T (35) = 0.333333333 T (42) = 0.4 T (50) = 0.476190476 T (70) = 0.666666667 T (75) = 0.714285714 T (105) = 1 T (150) = 1.428571429 T (175) = 1.666666667 T (210) = 2 T (350) = 3.333333333 T (525) = 5 T (1050) = 10, which increases f Accordingly, it can be seen that T (f) tends to diverge.

【0051】特定座標系が2次元以上であり、不良が
特定座標値、例えばY座標値に集中している場合:この
場合、不良数nが大きくても、d=0となる組み合わせ
数uyが大きく、Ny=N−uyであるので、dmax /Nyが1
以上となるが、閾値関数F(n,uy)=Ny/Nが1より
も著しく小さくなる。従って、1より十分小さい分布型
判定値p(通常、p≦0.1が好ましい)を予め設定
し、F(n,uy)≦pのときは、dmax /Nyの値に関わ
りなく不良が特定座標値に集中した同質型と判定する。
When the specific coordinate system is two-dimensional or more and defects are concentrated on specific coordinate values, for example, Y coordinate values: In this case, even if the number of defects n is large, the number of combinations uy for which d = 0 holds. Since it is large and Ny = N−uy, dmax / Ny is 1
As described above, the threshold function F (n, uy) = Ny / N becomes significantly smaller than 1. Therefore, if a distribution type judgment value p (usually preferably p ≦ 0.1) that is sufficiently smaller than 1 is set in advance and F (n, uy) ≦ p, a defect is identified regardless of the value of dmax / Ny. Judge as homogeneous type with concentrated coordinate values.

【0052】本実施形態の検査解析装置を用いた検査解
析方法では、以下に詳述するようにF(n,uy)>p且
つdmax /Ny>1の場合は、検査条件を変更して当該検
査母体を再検査し、dmax /Ny≦1を満足するようにし
ているので、dmax /Ny>1の状態で、不良分布の規則
性/不規則性判定を行うことはない。
In the inspection analysis method using the inspection analysis apparatus of this embodiment, as will be described in detail below, in the case of F (n, uy)> p and dmax / Ny> 1, the inspection condition is changed. Since the inspection mother is re-inspected so as to satisfy dmax / Ny ≦ 1, the defect distribution regularity / irregularity determination is not performed in the state of dmax / Ny> 1.

【0053】初期条件設定ステップS2は、U個(但
し、Uは2以上の整数)の検査対象を含む検査母体中の
個々の検査対象を検査する初期検査条件を、j=1とし
たときの第j検査条件として外部から与えられる設定情
報に基づいて初期条件設定手段13により設定し、所定
の検査手段12に出力する。
The initial condition setting step S2 is performed when j = 1 as an initial inspection condition for inspecting each inspection object in the inspection mother body including U inspection objects (where U is an integer of 2 or more). The j-th inspection condition is set by the initial condition setting means 13 based on the setting information given from the outside, and is output to the predetermined inspection means 12.

【0054】検査ステップS3は、第j検査条件に従っ
て検査母体中の全ての検査対象を検査手段12により検
査し、良否判定結果を含む第j検査結果を当該検査対象
と対応させて、例えば記録手段19に出力し、記録す
る。
In the inspection step S3, all the inspection objects in the inspection mother are inspected by the inspection means 12 according to the j-th inspection condition, and the j-th inspection result including the quality judgment result is associated with the inspection object, for example, the recording means. Output to 19 and record.

【0055】特徴抽出ステップS4は、検査母体に応じ
た規則に従って第j検査結果を分布型群を設定した特定
座標系上に配置し、検査母体の不良分布の特徴を抽出す
る。
In the feature extracting step S4, the j-th inspection result is arranged on a specific coordinate system in which a distribution type group is set according to a rule according to the inspection mother, and the features of the defect distribution of the inspection mother are extracted.

【0056】特徴比較ステップS5は、特徴抽出ステッ
プS4で抽出した検査母体の不良分布の特徴が、分布型
定義ステップS1で設定した分布型群に含まれるいずれ
かの分布型の特徴と一致するか比較し、一致情報又は不
一致情報を比較結果として出力する。
In the characteristic comparison step S5, does the characteristic of the defective distribution of the inspection mother extracted in the characteristic extraction step S4 match any distribution type characteristic included in the distribution type group set in the distribution type definition step S1? It compares and outputs matching information or mismatch information as a comparison result.

【0057】検査条件変更ステップS6は、特徴比較ス
テップS5における比較結果が不一致の場合に、第j検
査条件と異なる修正検査条件を設定してj=j+1と
し、この修正検査条件を新たな第j検査条件として検査
手段12に出力し、検査ステップS3に戻る。又、比較
結果が一致の場合は、解析ステップS7に進み、一致し
た分布型に基づいて検査対象母体の不良密度及び不良分
布の偏りを解析し、出力ステップS8で解析結果を出力
する。
In the inspection condition changing step S6, when the comparison result in the feature comparison step S5 does not match, a modified inspection condition different from the jth inspection condition is set to j = j + 1, and the modified inspection condition is newly added to the jth It is output to the inspection means 12 as the inspection condition, and the process returns to the inspection step S3. If the comparison results are in agreement, the process proceeds to analysis step S7, in which the defect density and defect distribution bias of the inspection object mother are analyzed based on the inconsistent distribution type, and the analysis result is output in output step S8.

【0058】次に、本実施形態の検査解析装置1による
検査解析方法をより具体的に説明する。
Next, the inspection analysis method by the inspection analysis apparatus 1 of this embodiment will be described more specifically.

【0059】先ず、分布型定義ステップS1で、例えば
不良密度の第1の閾値α1,β1、第2の閾値α2,β
2、並びに分布型判定値pを定める。但し、0<α1≦
α2<β2≦β1<1とする。更に、分布型について
も、上述のように「収束型」、「振動型」、「単一周期
からなる規則性分布」、「同質型」を含む分布型群を設
定する。又、U個の検査対象を含む第1の検査母体を初
期検査条件で検査したときの不良数をn(1)としたと
き、不良密度Q(1)=n(1)/Uが、Q(1)=
0,0<Q(1)≦α1,β1≦Q(1)<1,Q
(1)=1に応じて、第1の検査母体の不良分布をそれ
ぞれ「全数良品型」,「不規則型」,「高密度不良
型」,「全数不良型」とする。
First, in the distribution type defining step S1, for example, the first thresholds α1, β1 and the second thresholds α2, β of the defect density are set.
2 and the distribution type judgment value p are determined. However, 0 <α1 ≦
α2 <β2 ≦ β1 <1. Further, regarding the distribution type, as described above, a distribution type group including “convergence type”, “oscillation type”, “regular distribution consisting of a single period”, and “homogeneous type” is set. Further, when the number of defects when the first inspection mother body including U inspection objects is inspected under the initial inspection condition is n (1), the defect density Q (1) = n (1) / U is Q (1) =
0,0 <Q (1) ≦ α1, β1 ≦ Q (1) <1, Q
In accordance with (1) = 1, the defect distributions of the first inspection mother body are set as “total number non-defective type”, “irregular type”, “high-density defective type”, and “total number defective type”, respectively.

【0060】次に、初期条件設定ステップS2で、初期
検査条件をj=1としたときの第j検査条件として、外
部から与えられる設定情報に基づいて初期条件設定手段
13により設定し、所定の検査手段12に出力する。
Next, in the initial condition setting step S2, the initial condition setting means 13 sets it as the j-th inspection condition when the initial inspection condition is j = 1 based on the setting information given from the outside, and the predetermined condition is set. Output to the inspection means 12.

【0061】次に、検査ステップS3で、第j検査条件
に基づき所定の検査手段12を用いて、U個の検査対象
を含む第1の検査母体中の個々の検査対象に対する検査
を実施し、第j検査結果を記録手段19に記録する。こ
のとき検出される不良数をn(j)とする。
Next, in the inspection step S3, an inspection is performed on each inspection object in the first inspection mother body including U inspection objects by using the predetermined inspection means 12 based on the j-th inspection condition, The j-th inspection result is recorded in the recording means 19. The number of defects detected at this time is n (j).

【0062】次に、特徴抽出ステップS4で、特徴抽出
手段14により、記録手段19から第j検査結果を読み
出し、第1の検査母体の第j検査条件における不良数n
(j)から不良密度Q(j)=n(j)/Uを算出する
と共に、読み出した第j検査結果を、特定座標系の例え
ばY軸上に配置する。例えば1枚のウェハ上のチップの
良否判定結果を、先頭位置から一定の規則で全てY軸上
に配列し、複数のウェハがあるときは、例えば図10
(a)のようにウェハ毎に、1,2,…,SのようにZ
軸方向にずらして、全ウェハの良否判定結果を同一の先
頭位置、同一の規則でY軸方向に1,2,…,C−1,
Cのように配列すればよい。尚、この場合は、当然U=
C×Sとなる。これにより、個々の不良はY座標値で識
別できるようになる。
Next, in the feature extracting step S4, the feature extracting unit 14 reads the j-th inspection result from the recording unit 19, and the number of defects n under the j-th inspection condition of the first inspection mother body.
The defect density Q (j) = n (j) / U is calculated from (j), and the read j-th inspection result is arranged on the Y axis of the specific coordinate system. For example, when the result of quality judgment of the chips on one wafer is all arranged on the Y-axis from the head position according to a certain rule, and there are a plurality of wafers, for example, FIG.
As shown in (a), Z for each wafer is 1, 2, ...
The quality judgment results of all the wafers are shifted in the axial direction, and the quality determination results of all the wafers are 1, 2, ...
It may be arranged like C. In this case, naturally U =
It becomes C × S. As a result, each defect can be identified by the Y coordinate value.

【0063】次に、特徴比較ステップS5を実施する。
図3はこの特徴比較ステップS5及び検査条件変更ステ
ップS6の詳細を示すフローチャートである。図2,3
を参照すると、先ず第1比較処理S51で、特徴比較手
段15により、j=1か否かを確認し、j=1の場合
は、更に、α1<Q(1)<β1を満足するかを確認す
る。α1<Q(1)<β1を満足していない場合は、そ
のまま解析ステップS7に移り、j≠1或いは、α1<
Q(1)<β1を満足する場合は、第2比較処理S53
で、j=1の場合も含めて、α2<Q(j)<β2を満
足するか調べる。満足しない場合は、Q(j)<α2で
あれば第1の不一致情報を、又β2<Q(j)であれば
第2の不一致情報を、いずれの場合も検査条件変更手段
16に出力して検査条件変更ステップS6に移る。
Next, the characteristic comparison step S5 is carried out.
FIG. 3 is a flow chart showing the details of the feature comparing step S5 and the inspection condition changing step S6. Figures 2 and 3
First, in the first comparison process S51, the feature comparison unit 15 confirms whether or not j = 1. If j = 1, it is further determined whether α1 <Q (1) <β1 is satisfied. Check. If α1 <Q (1) <β1 is not satisfied, the process directly proceeds to analysis step S7, where j ≠ 1 or α1 <
If Q (1) <β1 is satisfied, the second comparison processing S53
Then, it is checked whether α2 <Q (j) <β2 is satisfied, including the case of j = 1. If not satisfied, the first mismatch information is output if Q (j) <α2, and the second mismatch information is output if β2 <Q (j), to the inspection condition changing unit 16 in either case. Then, the inspection condition changing step S6 is performed.

【0064】又、α2<Q(j)<β2を満足している
場合、不良間隔計算処理S55で、特定座標系のY軸上
に配置された第1検査結果に関し、全ての不良について
2不良間のY軸方向の間隔d=|Δy|の組み合わせの
種類と数N(j)を調べると共に、調べた組み合わせの
中から間隔dの最大値dmax を抽出する。尚、図10
(a)のように2次元以上に配置されている場合は、間
隔d=0となる組み合わせが生じ得るのでその数uy
(j)を抽出し、Ny(j)=N(j)−uy(j)を算出
すると共に、 F(n(j),uy(j))=Fj(n,uy)=Ny(j)
/N(j) で定義する閾値関数Fj(n,uy)の値を計算する。
(尚、1次元配置であれば、uy(j)=0であり、Ny
(j)=N(j),Fj(n,uy)=1となる。)次
に、第3比較処理S56で、Fj(n,uy)を予め定め
てある分布型判定値pと比較し、Fj(n,uy)≦pで
あれば、そのまま解析ステップS7に移る。
Further, when α2 <Q (j) <β2 is satisfied, in the defect interval calculation processing S55, regarding the first inspection result arranged on the Y axis of the specific coordinate system, 2 defects are found for all the defects. The type and the number N (j) of the combinations of the interval d = | Δy | in the Y-axis direction between them are checked, and the maximum value dmax of the interval d is extracted from the checked combinations. Incidentally, FIG.
When two or more dimensions are arranged as shown in (a), a combination with an interval d = 0 can occur, so the number uy
(J) is extracted, Ny (j) = N (j) −uy (j) is calculated, and F (n (j), uy (j)) = Fj (n, uy) = Ny (j).
The value of the threshold function Fj (n, uy) defined by / N (j) is calculated.
(Note that if it is a one-dimensional arrangement, uy (j) = 0 and Ny
(J) = N (j) and Fj (n, uy) = 1. Next, in the third comparison processing S56, Fj (n, uy) is compared with a predetermined distribution type judgment value p, and if Fj (n, uy) ≦ p, the process directly proceeds to analysis step S7.

【0065】Fj(n,uy)>pの場合は、更に第4比
較処理S57で、dmax(j) とNy(j)を比較し、d
max(j) >Ny(j)の場合は、第1の不一致情報を検
査条件変更手段16に出力して、検査条件変更ステップ
S6に移り、dmax(j) ≦Ny(j)の場合は、解析ス
テップS7に移る。
If Fj (n, uy)> p, then dmax (j) and Ny (j) are compared in the fourth comparison process S57, and d
If max (j)> Ny (j), the first mismatch information is output to the inspection condition changing unit 16, and the process proceeds to the inspection condition changing step S6. If dmax (j) ≦ Ny (j), Move to analysis step S7.

【0066】次に、検査条件変更ステップS6では、入
力された不一致情報が、第1の不一致情報の場合は第j
検査条件よりも厳しい条件に、又第2の不一致情報の場
合は第j検査条件よりも緩い条件に、いずれの場合も検
査条件変更手段16で変更した後、j=j+1として検
査手段12に出力し、検査ステップS3に戻る。
Next, in the inspection condition changing step S6, if the input mismatch information is the first mismatch information, the jth
The condition is set to be stricter than the inspection condition, and in the case of the second mismatch information, changed to the condition looser than the j-th inspection condition. Then, the process returns to the inspection step S3.

【0067】次に、解析ステップS7の詳細を説明す
る。図4は解析ステップS7の詳細フローチャートであ
り、図5は解析ステップS7に含まれる第1分布型判定
処理S71の詳細フローチャートである。図1,2,及
び4を参照すると、解析ステップS7は、第1分布型判
定処理S71と、期待値算出処理S72と、第2分布型
判定処理S73ととを含み、いずれも解析手段17によ
り処理される。
Next, details of the analysis step S7 will be described. FIG. 4 is a detailed flowchart of the analysis step S7, and FIG. 5 is a detailed flowchart of the first distribution type determination processing S71 included in the analysis step S7. Referring to FIGS. 1, 2, and 4, the analysis step S7 includes a first distribution type determination processing S71, an expected value calculation processing S72, and a second distribution type determination processing S73, all of which are performed by the analysis unit 17. It is processed.

【0068】図2,4及び5を参照すると、先ず、第1
分布型判定処理S71では、第1手順S711で、j=
1か否かを確認し、j=1の場合は、更にα1<Q
(1)<β1を満足するか判定する。
Referring to FIGS. 2, 4 and 5, first, the first
In the distributed determination process S71, j = j in the first step S711.
Check if 1 and if j = 1, then α1 <Q
(1) Determine whether <β1 is satisfied.

【0069】j≠1、或いは、α1<Q(1)<β1を
満足する場合は、第2手順S712で、閾値関数Fj
(n,uy)の値と分布型判定値pを比較し、Fj(n,
uy)≦p、の場合は、第j検査条件での第1の検査母体
の不良分布は、特定Y座標値に集中している同質型に分
類して、出力ステップS8に移り、Fj(n,uy)>
p、の場合は、第2分布型判定処理処理S72に移る。
If j ≠ 1, or if α1 <Q (1) <β1 is satisfied, the threshold function Fj is determined in the second step S712.
The value of (n, uy) is compared with the distribution type judgment value p, and Fj (n,
If uy) ≦ p, the failure distribution of the first inspection mother under the j-th inspection condition is classified into the homogeneous type concentrated on the specific Y coordinate value, and the process proceeds to the output step S8, and Fj (n , Uy)>
In the case of p, the process proceeds to the second distribution type determination processing process S72.

【0070】又、第1手順S711の結果がj=1、且
つα1<Q(1)<β1を満足しない場合は、第3手順
S713でQ(1)の値を確認し、第1の検査母体の不
良分布を、Q(1)=0の場合は「全数良品型」に、0
<Q(1)≦α1の場合は「不規則型」に、β1≦Q
(1)<1の場合は「高密度不良型」に、Q(1)=1
の場合は「全数不良型」に、それぞれ分類し、出力ステ
ップS8に移る。
If the result of the first step S711 does not satisfy j = 1 and α1 <Q (1) <β1, the value of Q (1) is confirmed in the third step S713 and the first inspection is performed. In the case of Q (1) = 0, the defect distribution of the mother is set to “100% non-defective” and 0.
<Q (1) ≦ α1, “Irregular”, β1 ≦ Q
If (1) <1, it is a "high-density defective type", and Q (1) = 1
In the case of, each is classified into "total defective type", and the process proceeds to the output step S8.

【0071】第2分布型判定処理S72では、約数算出
手順S721で、第j検査結果に含まれるd>0である
Ny(j)個の組み合わせの間隔dが含む、1を除く約数
fの種類及びその約数fを含む間隔の数Σmj(f)を
全ての約数fについて調べる。次に、含有率算出手順S
722及び期待値算出手順S723で、Ny(j)個の間
隔に含まれる約数fの値別含有率Pj(f)及び期待値
関数Tj(f)を、 Pj(f)=Σmj(f)/Ny(j) Tj(f)=f×Pj(f) のように定義して、全ての約数fについてそれぞれ算出
する。
In the second distribution type determination processing S72, d> 0 included in the j-th inspection result in the divisor calculation procedure S721.
The types Σmj (f) of the divisors f other than 1 and the number of intervals Σmj (f) that include the divisors f included in the spacing d of Ny (j) combinations are examined for all divisors f. Next, the content rate calculation procedure S
722 and the expected value calculation step S723, Pj (f) = Σmj (f), where Pj (f) and the expected value function Tj (f) for each value of the divisor f contained in the Ny (j) intervals are / Ny (j) Tj (f) = f × Pj (f), and calculate for all divisors f.

【0072】次に、期待値判定手順S724で、Tj
(f)>1、となるfが存在するか調べる。Tj(f)
>1、となるfが存在した場合は第3分布型判定処理S
73に移り、存在しない場合、則ち全てのfでTj
(f)≦1の場合は、第j検査条件での第1の検査母体
の不良分布を不規則分布である収束型に分類して出力ス
テップS8に移る。
Next, in the expected value determining step S724, Tj
It is checked whether there is f such that (f)> 1. Tj (f)
Third distribution type determination process S if there is f that is> 1
73, and if there is not, that is, Tj for all f
In the case of (f) ≦ 1, the defective distribution of the first inspection mother under the j-th inspection condition is classified into a convergence type which is an irregular distribution, and the process proceeds to output step S8.

【0073】第3分布型判定処理S73は、最大期待値
抽出手順S731でTj(f)>1、となるfが存在す
るという条件の下で、Tj(f)の値が最大になるf=
fzと、そのときの最大値Tj(f)max =Tj(f
z)を抽出する。次に、周期性判定手順S732で、T
j(fz)=fzを満足するか調べ、Tj(fz)=f
zを満足する場合,又はしない場合に対応させて、第j
検査条件に基づく第1の検査母体の第j検査結果におけ
る不良分布を、fzを周期λとする単一周期からなる規
則性分布、又は規則性分布を含むことを示すにとどまる
振動型にそれぞれ分類し、いずれの場合も出力ステップ
S8に移る。
In the third distribution type determination processing S73, the value of Tj (f) is maximized under the condition that there is f such that Tj (f)> 1 in the maximum expected value extraction procedure S731, f =
fz and the maximum value Tj (f) max = Tj (f
z) is extracted. Next, in the periodicity determination procedure S732, T
It is examined whether or not j (fz) = fz is satisfied, and Tj (fz) = f
Corresponding to the case where z is satisfied or not satisfied, the j-th
The defect distribution in the j-th inspection result of the first inspection mother based on the inspection conditions is classified into a regular distribution consisting of a single period having a period λ of fz, or a vibration type that is limited to showing that the regular distribution is included. Then, in any case, the process proceeds to the output step S8.

【0074】出力ステップS8では、解析ステップS7
における解析結果を、関連情報と共に出力手段18によ
り出力処理する。
In the output step S8, the analysis step S7
The output result of the analysis result in (1) is output together with the related information.

【0075】以上説明したように、本実施形態の検査解
析装置1を用いた検査解析方法では、初期検査条件にお
ける検査結果の不良密度を複数の範囲に分割し、不良密
度が所定の範囲外にあるときは、不良密度の値、更には
d>0である不良間隔の組み合わせの数Nyと不良間隔の
最大値dmax との関係に応じて適宜検査条件を変更し手
再検査し、得られた不良密度が不良分布の規則性/不規
則性を精度よく判定できる不良密度範囲に合致するまで
検査条件の変更と再検査及び比較判定を繰り返すアルゴ
リズムを備えることにより、不良原因を識別するのに最
適な検査条件を求めることが自動且つ短時間で可能にな
った。
As described above, in the inspection analysis method using the inspection analysis device 1 of this embodiment, the defect density of the inspection result under the initial inspection condition is divided into a plurality of ranges, and the defect density falls outside the predetermined range. In some cases, the inspection condition was appropriately changed according to the relationship between the defect density value, the number Ny of combinations of defect intervals where d> 0, and the maximum value dmax of defect intervals, and reinspection was performed to obtain the result. Optimal for identifying the cause of defects by having an algorithm that repeats inspection condition changes, re-inspection, and comparison judgment until the defect density matches the defect density range where the regularity / irregularity of the defect distribution can be accurately determined. It has become possible to automatically obtain various inspection conditions in a short time.

【0076】本発明は、上記実施形態の説明に限定され
るものでなく、その要旨の範囲内において種々変更が可
能であることはいうまでもない。
It is needless to say that the present invention is not limited to the description of the above embodiment, and various modifications can be made within the scope of the gist thereof.

【0077】例えば、解析対象は、上記実施形態におい
てはウェハ上のチップを例としたが、検査母体に含まれ
る検査対象の検査母体内における空間的或いは時間的配
列に何らかの規則性を備えていればよい。具体的には、
CCD受像素子及びCMOSイメージセンサを含むデジ
タル情報入力デバイス、液晶ディスプレイ,プラズマデ
ィスプレイ,エレクトロルミネッセンスディスプレイ及
び発光ダイオードを含むデジタル情報出力デバイス、記
憶素子及び並列伝送素子を含むデジタル情報入出力デバ
イス、並びに半導体ウェハを含む半導体応用装置等の製
造工程の検査結果或いは個別のデバイスの内部の不良解
析に適用できる。特に、これら半導体応用装置の製造工
程の検査結果を解析する際には、例えば、 ・不良密度が著しく低い場合則ちQ(1)≦α1の場合
は、製造途中にデバイス表面に塵埃が付着していないか
調べ、 ・不良密度が著しく高い場合則ちQ(1)≧β1の場合
は、各デバイスの製造装置又は検査装置に異常動作等の
事故が発生したか否かを調べ、 ・不良分布が同質型と判定された場合は塵埃よりも大き
な損傷の有無を調べ、 ・収束型と判定された場合は製造装置又は検査装置にお
いて不適切な条件が設定されていないか調べ、 ・振動型と判定された場合は設計図面上にマージン確保
の不十分な箇所がないか調べる、 ことを処理内容として含む警告を出力手段18から他の
関連情報と共に出力するようにしてもよい。
For example, although the analysis target is a chip on a wafer in the above embodiment, the analysis target may be provided with some regularity in the spatial or temporal arrangement of the inspection target contained in the inspection base. Good. In particular,
Digital information input device including CCD image receiving element and CMOS image sensor, liquid crystal display, plasma display, digital information output device including electroluminescent display and light emitting diode, digital information input / output device including storage element and parallel transmission element, and semiconductor It can be applied to the inspection result of the manufacturing process of a semiconductor application device including a wafer or the internal failure analysis of an individual device. In particular, when analyzing the inspection results of the manufacturing process of these semiconductor applied devices, for example: If the defect density is extremely low, that is, if Q (1) ≦ α1, then dust adheres to the device surface during manufacturing. If the defect density is extremely high, that is, if Q (1) ≧ β1, check whether or not an accident such as an abnormal operation has occurred in the manufacturing equipment or inspection equipment for each device, and If it is judged to be homogeneous type, it is checked whether it is more damaged than dust. ・ If it is judged to be convergent type, it is checked whether inappropriate conditions are set in the manufacturing equipment or inspection equipment. If the determination is made, a warning may be output from the output means 18 together with other related information, which includes, as a processing content, checking whether there is an insufficient margin securing portion on the design drawing.

【0078】又、前述の半導体応用装置の製造順番を表
すロット識別記号をY座標軸に設定すると共にこの半導
体応用装置を並行して製造する製造ライン又は工場の識
別記号をZ座標軸に設定し、U個の製造ロットを検査対
象とし、その内の不良ロット数をn個、任意の2不良ロ
ット間の間隔をd、該間隔dの組み合わせの種類と数N
と、2不良ロット間隔d=0となる組み合わせ数をuyと
して、不良発生の製造ロット間隔依存性の有無、並びに
製造ロットと関係の深い製造日、製造週、製造月、製造
季節、及び製造年を含む製造時期依存性の有無を調べる
ようにすることもできる。この場合、上述の各ロットデ
ータは、例えば通信回線30を介してハードディスク等
の外部記録手段20に予め記録するようにしておき、検
査解析装置1は通信回線30を介してこの外部記録手段
20から各ロットデータを読み出して解析するようにし
てもよい。
Further, the lot identification code indicating the manufacturing order of the semiconductor application device is set on the Y coordinate axis, and the identification code of the manufacturing line or factory which manufactures the semiconductor application device in parallel is set on the Z coordinate axis. Each manufacturing lot is subject to inspection, the number of defective lots is n, the interval between any two defective lots is d, and the type and number N of combinations of the intervals d.
And uy is the number of combinations in which the defective lot interval d = 0, and whether or not there is a dependency on the occurrence of a defective production lot, and the production date, production week, production month, production season, and production year that are closely related to the production lot. It is also possible to check whether or not there is a manufacturing time dependency including. In this case, the above-mentioned lot data are recorded in advance in the external recording means 20 such as a hard disk via the communication line 30, and the inspection / analysis apparatus 1 is transferred from the external recording means 20 via the communication line 30. The lot data may be read and analyzed.

【0079】又、検査条件の変更方法は、検査するパラ
メータにより適宜定めればよく、例えば、 ・電圧、電流、温度或いは時間(タイミング)等の検査
条件の出発点と終点を予め定めておき、その間を等分に
分割したものをメモリとして段階的に検査条件を変更す
る、 ・出発点からの数点〜十数点の検査条件における検査結
果の変化が小さい場合は、複数目盛り分ずつ段階的に検
査条件を変更し、検査結果の変化が大きい場合は、目盛
りを更に細かく分割して少しずつ検査条件を変更する、 ・全てが良品判定されると期待できる緩い検査条件と全
てが不良判定されると期待される厳しい検査条件との間
を等分に分割したものを目盛りとして、緩い検査条件と
厳しい検査条件とで交互に検査し、1目盛りずつ中点方
向に変化させてゆく、 ・予め数点の検査条件を定めておき、その数点間で検査
結果の変化の有無を比較する、 等々の方法がある。尚、上記実施形態の説明では明記し
ていないが、これらの検査条件変更方法で検査条件を変
更しても、不良密度Q(j)が、α2<Q(j)<β2
を満足できなかったり、不良間隔の最大値を不良間隔が
0でない不良間隔の組み合わせの数で割った値が1以下
とならない場合は、不良分布が規則性分布を含むか否か
を精度よく識別できないものと判定するようにもでき
る。
The method of changing the inspection condition may be appropriately determined according to the inspection parameter. For example, the starting point and the end point of the inspection condition such as voltage, current, temperature or time (timing) are set in advance, The test conditions are changed stepwise by using the memory divided into equal parts as a memory. ・ If the change in the test results from the starting point to the test point of a few points to a dozen points is small, stepwise by multiple scales. If the inspection conditions are changed to, and if the inspection result changes significantly, the scale is divided into smaller pieces and the inspection conditions are changed little by little.-If all are judged to be non-defective, loose inspection conditions and all are judged to be defective. The gradual division between the strict inspection conditions expected to be the same is used as the scale, and the inspection is alternately performed under the loose inspection conditions and the severe inspection conditions, and the scales are changed one by one toward the midpoint. There are various methods such as predefining several inspection conditions and comparing the presence or absence of changes in the inspection results among the several points. Although not specified in the description of the above embodiment, even if the inspection condition is changed by these inspection condition changing methods, the defect density Q (j) is α2 <Q (j) <β2.
If the value is not satisfied or the value obtained by dividing the maximum value of the defect interval by the number of combinations of defect intervals where the defect interval is not 0 is not 1 or less, it is accurately identified whether the defect distribution includes a regular distribution. You can also judge that it is not possible.

【0080】又、本発明の検査解析方法の各ステップ
は、コンピュータ装置で実行するプログラムとして構成
することができ、このプログラムはCD−ROM等のコ
ンピュータ読み取り可能な記録媒体に格納して配布し、
コンピュータ装置で配布された記録媒体から当該プログ
ラムを読み出して実行することができる。
Further, each step of the inspection analysis method of the present invention can be configured as a program executed by a computer, and the program is stored in a computer-readable recording medium such as a CD-ROM and distributed,
The program can be read from the recording medium distributed by the computer device and executed.

【0081】[0081]

【発明の効果】以上説明したように、本発明の検査解析
装置及び検査解析方法は、検査母体に含まれる検査対象
の検査母体内における空間的或いは時間的配列に何らか
の規則性を備えているとき、当該検査母体の検査結果に
含まれる不良分布が不規則性か否かを判定するのに適し
た不良密度範囲に到達するまで、自動的に検査条件を変
更して再検査することで、解析に適した不良密度範囲に
自動的に誘導できるため、短時間且つ高精度の検査結果
の解析ができるという効果が得られる。又、これにより
大量の検査データが発生する例えば半導体応用装置の製
造工程の検査結果を迅速に解析でき、歩留の向上を図る
ことができるという効果も得られる。
As described above, the inspection analysis apparatus and the inspection analysis method according to the present invention, when the inspection target contained in the inspection mother has some regularity in the spatial or temporal arrangement in the inspection mother. , The analysis is performed by automatically changing the inspection conditions and re-inspecting until the defect density range suitable for determining whether the defect distribution included in the inspection result of the inspection mother is irregular or not is reached. Since it is possible to automatically guide the defect density range suitable for the above, it is possible to analyze the inspection result with high accuracy in a short time. Further, as a result, a large amount of inspection data is generated, for example, the inspection result of the manufacturing process of the semiconductor application device can be analyzed promptly, and the yield can be improved.

【0082】又、Also,

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の検査解析装置の一実施形態の模式的な
概略ブロック図である。
FIG. 1 is a schematic block diagram of an embodiment of an inspection / analysis apparatus of the present invention.

【図2】本発明の検査解析方法の概略フローチャートで
ある。
FIG. 2 is a schematic flowchart of the inspection analysis method of the present invention.

【図3】図2の特徴比較ステップ及び検査条件変更ステ
ップの詳細を示すフローチャートである。
FIG. 3 is a flowchart showing details of a feature comparison step and an inspection condition changing step in FIG.

【図4】図2の検査解析ステップの詳細を示すフローチ
ャートである。
FIG. 4 is a flowchart showing details of the inspection analysis step of FIG.

【図5】図4の第1分布型判定処理の詳細を示すフロー
チャートである。
5 is a flowchart showing details of a first distribution type determination process of FIG. 4. FIG.

【図6】不規則分布の場合の実際の期待値関数T(f)
を縦軸に、fを横軸にした関数グラフ例で、(a),
(b),(c)は、それぞれdmax /Nyが、「1より大
きい場合」,「ほぼ1の場合」,「1より十分小さい場
合」のグラフである。
FIG. 6 is an actual expected value function T (f) in the case of irregular distribution
Is a vertical axis and f is a horizontal axis.
(B) and (c) are graphs in which dmax / Ny is "greater than 1", "nearly 1", and "well below 1", respectively.

【図7】規則性分布を含む実際の期待値関数T(f)を
縦軸に、fを横軸にした関数グラフ例で、(a),
(b),(c)は、それぞれdmax /Nyが、「1より大
きい場合」,「ほぼ1の場合」,「1より十分小さい場
合」のグラフである。
FIG. 7 is a function graph example in which an actual expected value function T (f) including a regularity distribution is plotted on the vertical axis and f is plotted on the horizontal axis.
(B) and (c) are graphs in which dmax / Ny is "greater than 1", "nearly 1", and "well below 1", respectively.

【図8】、不良密度の検査条件依存性概念を説明するた
めの図で、横軸を検査条件の厳しさとし、各検査条件で
の不良密度を縦軸にした模式的なグラフである。
FIG. 8 is a diagram for explaining a concept of defect condition dependency of defect density, and is a schematic graph in which the abscissa represents the strictness of the inspection condition and the defect density under each inspection condition is the ordinate.

【図9】Y軸のみの1次元座標系に検査対象及び検査結
果の配置概念を示す模式的な配置図である。
FIG. 9 is a schematic layout diagram showing a layout concept of a test object and a test result in a one-dimensional coordinate system having only a Y-axis.

【図10】Y軸及びZ軸を含む2次元座標系に検査対象
及び検査結果を配置した場合の模式的な配置図である。
FIG. 10 is a schematic layout diagram when an inspection target and an inspection result are arranged in a two-dimensional coordinate system including a Y axis and a Z axis.

【図11】面的な広がりを持つ混合分布の概念を説明す
るための図で、(a),(b),(c)は、不規則分布
例,規則性分布例,混合分布例をそれぞれ示す模式的な
配置図である。
FIG. 11 is a diagram for explaining the concept of a mixture distribution having a planar spread, in which (a), (b), and (c) are examples of irregular distribution, regular distribution, and mixture distribution, respectively. It is a schematic layout drawing shown.

【図12】面的な広がりを持つ混合分布であって、個々
の分布が特性バラツキを持ち、検査条件への依存性も異
なる場合の概念を説明するための図で、(a),
(b),(c)は、不規則分布例,規則性分布例,混合
分布例をそれぞれ示す模式的な配置図である。
FIG. 12 is a diagram for explaining a concept of a mixed distribution having a planar spread, in which individual distributions have characteristic variations and have different dependences on inspection conditions.
(B), (c) is a schematic layout drawing which shows an example of irregular distribution, an example of regularity distribution, and an example of mixture distribution, respectively.

【図13】特性値への影響度にバラツキを伴う不良原因
に関し、分布周期を求める場合の問題点を説明するため
の図で、(a),(b),(c),(d)は、U個の検
査対象例,不良原因の分布例,検査条件が厳しい場合の
検査結果例,検査条件がやや緩い場合の検査結果例,及
び検査条件が緩い場合の検査結果例の各配置をそれぞれ
模式的に示す配置図である。
FIG. 13 is a diagram for explaining a problem in obtaining a distribution period with respect to a cause of a defect in which the degree of influence on a characteristic value varies, and (a), (b), (c), and (d) are , U inspection target examples, defect cause distribution examples, inspection result examples when the inspection conditions are severe, inspection result examples when the inspection conditions are slightly loose, and inspection result examples when the inspection conditions are loose, respectively. It is a layout showing typically.

【図14】図13の不良分布を例として、2不良間間隔
を横軸にし、各間隔の含有率を縦軸にしたグラフで、
(a),(b),(c)は、検査条件が厳しい場合(図
13(c)に対応)、検査条件がやや緩い場合(図13
(d)に対応)、検査条件が非常に緩い場合(図13
(e)に対応)をそれぞれ示す。
FIG. 14 is a graph showing the defect distribution of FIG. 13 as an example, with the interval between two defects as the horizontal axis and the content rate of each interval as the vertical axis;
13 (a), (b), and (c) are when the inspection conditions are strict (corresponding to FIG. 13C) and when the inspection conditions are slightly loose (FIG. 13).
(Corresponding to (d)), when the inspection conditions are very loose (Fig. 13).
(Corresponding to (e)).

【図15】2不良間間隔が含む約数を横軸にし、各間隔
の含有率を縦軸にしたグラフで、(a),(b),
(c)は、検査条件が厳しい場合(図13(c)に対
応)、検査条件がやや緩い場合(図13(d)に対
応)、検査条件が非常に緩い場合(図13(e)に対
応)をそれぞれ示す。
FIG. 15 is a graph in which the horizontal axis represents the divisor included in the interval between two defects, and the vertical axis represents the content rate of each interval, (a), (b),
In FIG. 13C, when the inspection conditions are strict (corresponding to FIG. 13C), when the inspection conditions are slightly loose (corresponding to FIG. 13D), and when the inspection conditions are very loose (FIG. 13E). Correspondence) is shown respectively.

【符号の説明】[Explanation of symbols]

1 検査解析装置 10 制御手段 11 分布型設定手段 12 検査手段 12a 試験部 12b 判定部 13 初期条件設定手段 14 特徴抽出手段 15 特徴比較手段 16 検査条件変更手段 17 解析手段 18 出力手段 19 記録手段 20 外部記録手段 30 通信回線 1 Inspection and analysis device 10 Control means 11 Distribution type setting means 12 Inspection means 12a Testing Department 12b Judgment unit 13 Initial condition setting means 14 Feature extraction means 15 Feature comparison means 16 Inspection condition changing means 17 Analytical means 18 Output means 19 Recording means 20 External recording means 30 communication lines

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 複数の検査単位を含む任意の検査対象母
集団が、この母集団内における前記検査単位の配列に関
して何らかの配列規則を有するとき、前記母集団の個々
の前記検査単位の良否判定結果を含む検査結果から算出
される不良密度、並びに該検査結果を前記母集団に応じ
た規則に従って特定座標系上に配置し、全ての不良につ
いての2不良間間隔の組み合わせの種類と数,及び該間
隔に含まれる約数の種類と数を用いて定義する分布偏り
を用いて、複数の分布型を含む分布型群を設定する分布
型定義手段と、解析対象であり、複数の検査対象を含む
所定の検査母体中の個々の前記検査対象を所定の検査条
件で検査し、良否判定結果を含む検査結果を当該検査対
象と対応させて出力する検査手段と、個々の前記検査対
象に対する初期検査条件を、外部から与えられる設定情
報に基づいて設定し、j=1としたときの第j検査条件
として前記検査手段に出力する初期条件設定手段と、第
j検査条件に従って前記検査母体の全ての前記検査対象
を前記検査手段により検査した第j検査結果を、前記検
査母体に応じた規則に従って前記特定座標系上に配置し
て前記検査母体の不良分布の特徴を抽出する特徴抽出手
段と、前記特徴抽出手段で抽出した前記検査母体の不良
分布の特徴が、前記分布型群に含まれるいずれかの分布
型の特徴と一致するか比較し比較結果を出力する特徴比
較手段と、前記比較結果が不一致の場合に、前記第j検
査条件と異なる修正検査条件を設定してj=j+1と
し、前記修正検査条件を新たな第j検査条件として前記
検査手段に出力する検査条件変更手段と、前記比較結果
が一致の場合に、一致した前記分布型に基づいて前記検
査対象母体の不良密度及び不良分布の偏りを解析する解
析手段と、解析結果を出力する出力手段と、全体を制御
する制御手段と、を少なくとも有することを特徴とする
検査解析装置。
1. When an arbitrary inspection target population including a plurality of inspection units has some arrangement rule regarding the arrangement of the inspection units in the population, the quality judgment result of each inspection unit of the population The defect density calculated from the inspection result including, the inspection result is arranged on a specific coordinate system according to the rule according to the population, and the type and number of combinations of intervals between two defects for all defects, and Distribution type defining means for setting a distribution type group including a plurality of distribution types by using a distribution bias defined by the type and number of divisors included in an interval, and an analysis target, including a plurality of inspection targets An inspection means for inspecting each of the inspection objects in a predetermined inspection mother under predetermined inspection conditions and outputting an inspection result including a quality determination result in association with the inspection object, and an initial inspection for each of the inspection objects The condition is set based on setting information given from the outside, and initial condition setting means for outputting to the inspecting means as the jth inspection condition when j = 1, and all of the inspection mothers according to the jth inspection condition. A feature extracting means for arranging the j-th inspection result obtained by inspecting the inspection object by the inspecting means on the specific coordinate system according to a rule according to the inspecting mother to extract a characteristic of a defect distribution of the inspecting mother; The characteristic of the defective distribution of the inspection mother extracted by the characteristic extraction means, the characteristic comparison means for comparing and comparing with any distribution type characteristic included in the distribution type group, and outputting the comparison result, the comparison result is In the case of disagreement, a correction inspection condition different from the jth inspection condition is set to j = j + 1, and the correction inspection condition is output to the inspection means as a new jth inspection condition. When the comparison result is a match, an analyzing unit that analyzes a defect density and a defect distribution bias of the inspection target mother based on the matched distribution type, an output unit that outputs an analysis result, and a control that controls the whole An inspection analysis device comprising at least means.
【請求項2】 複数の検査単位を含む任意の検査対象母
集団が、この母集団内における前記検査単位の配列に関
して何らかの配列規則を有するとき、前記母集団の個々
の前記検査単位の良否判定結果を含む検査結果から算出
される不良密度、並びに該検査結果を前記母集団に応じ
た規則に従って特定座標系上に配置し、全ての不良につ
いての2不良間間隔の組み合わせの種類と数,及び該間
隔に含まれる約数の種類と数を用いて定義する分布偏り
を用いて、複数の分布型を含む分布型群を設定する分布
型定義ステップと、U個(但し、Uは2以上の整数)の
検査対象を含む検査母体中の個々の前記検査対象を検査
する初期検査条件を、j=1としたときの第j検査条件
として外部から与えられる設定情報に基づいて設定し、
所定の検査手段に出力する初期条件設定ステップと、第
j検査条件に従って前記検査母体中の全ての前記検査対
象を前記検査手段により検査し、良否判定結果を含む第
j検査結果を当該検査対象と対応させて出力する検査ス
テップと、前記検査母体に応じた規則に従って前記第j
検査結果を前記特定座標系上に配置し、前記検査母体の
不良分布の特徴を抽出する特徴抽出ステップと、前記特
徴抽出ステップで抽出した前記検査母体の不良分布の特
徴が、前記分布型群に含まれるいずれかの分布型の特徴
と一致するか比較し、一致情報又は不一致情報を比較結
果として出力する特徴比較ステップと、前記比較結果が
不一致の場合に、前記第j検査条件と異なる修正検査条
件を設定してj=j+1とし、前記修正検査条件を新た
な第j検査条件として前記検査手段に出力し、前記検査
ステップに戻る検査条件変更ステップと、前記比較結果
が一致の場合に、一致した前記分布型に基づいて前記検
査対象母体の不良密度及び不良分布の偏りを解析する解
析ステップと、解析結果を出力する出力ステップと、を
含むことを特徴とする検査解析方法。
2. When an arbitrary inspection target population including a plurality of inspection units has some arrangement rule with respect to the arrangement of the inspection units in the population, the quality determination result of each inspection unit of the population The defect density calculated from the inspection result including, the inspection result is arranged on a specific coordinate system according to the rule according to the population, and the type and number of combinations of intervals between two defects for all defects, and Distribution type definition step of setting a distribution type group including a plurality of distribution types by using distribution bias defined using the type of divisor and number included in the interval, and U (where U is an integer of 2 or more) ), The initial inspection condition for inspecting each of the inspection objects in the inspection mother including the inspection object is set based on the setting information given from the outside as the j-th inspection condition when j = 1.
An initial condition setting step of outputting to a predetermined inspection means, all the inspection objects in the inspection mother body are inspected by the inspection means according to the jth inspection condition, and the jth inspection result including the quality judgment result is regarded as the inspection object. The inspection step of correspondingly outputting and the j-th according to the rule according to the inspection mother
The inspection result is arranged on the specific coordinate system, and the feature extraction step of extracting the characteristic of the defective distribution of the inspection mother, and the characteristic of the defective distribution of the inspection mother extracted in the characteristic extraction step are in the distribution type group. A feature comparison step of comparing any of the distribution-type features included and comparing and outputting matching information or non-matching information as a comparison result; and a correction inspection different from the j-th inspection condition when the comparison result does not match. When the condition is set to j = j + 1, the modified inspection condition is output to the inspection means as a new jth inspection condition, and the inspection condition changing step of returning to the inspection step and the comparison result are in agreement, And an analysis step of analyzing a defect density and a distribution of defect distribution of the inspection object mother based on the distribution type, and an output step of outputting an analysis result. Inspection analysis how.
【請求項3】 前記分布型定義ステップは、検査対象母
集団の不良密度に応じて定めた複数の分布型を設定する
第1定義処理と、前記母集団の前記不良密度が特定の不
良密度範囲にあるとき、当該母集団が含む全ての不良に
ついての2不良間間隔の組み合わせの種類と数を調べ、
該間隔に含まれる約数の種類と数を用いて定義した分布
偏りを用いて複数の分布型を設定する第2定義処理と、
を含み、前記分布型群が、前記第1定義処理及び前記第
2定義処理によってそれぞれ設定される分布型を含むも
のである請求項2記載の検査解析方法。
3. The distribution type defining step comprises a first defining process of setting a plurality of distribution types determined according to a defect density of a population to be inspected, and a defect density range in which the defect density of the population is a specific defect density range. , The type and number of combinations of intervals between two defects for all the defects included in the population are examined,
A second definition process for setting a plurality of distribution types by using a distribution bias defined by using the type of divisor and the number included in the interval;
The inspection analysis method according to claim 2, wherein the distribution type group includes distribution types set by the first definition process and the second definition process, respectively.
【請求項4】 U個の検査対象を含む検査母体の検査結
果を配置する特定座標系はY座標軸を含むk次元座標系
(但し、kは1以上の整数)としたとき、前記特徴抽出
ステップは、前記検査母体の第j検査結果を少なくとも
前記Y座標軸を含む座標空間上に配置する配置処理と、
前記検査母体の不良密度Q(j)を算出する算出処理を
含み、前記特徴比較ステップは、前記特徴抽出ステップ
で算出した前記不良密度Q(j)が特定の不良密度範囲
に含まれるているかを確認する第1比較処理と、前記不
良密度Q(j)が特定の不良密度範囲に含まれるている
場合に、前記検査結果が含む全ての不良について、2不
良間の間隔のY座標軸成分であるd=|Δy|の組み合
わせの種類と数N(j),間隔d=0となる組み合わせ
の数uy(j),及び間隔dの最大値dmax(j)を調べ
ると共に間隔d>0となる組み合わせの数Ny(j)=N
(j)−uy(j)を算出する不良間隔計算処理と、dma
x(j) ≦Ny(j)を満足するか否かを調べ、満足する
場合は一致情報を比較結果として出力し、不満足の場合
則ちdmax(j) >Ny(j)の場合は第1の不一致情報
を比較結果として出力する第2比較処理を含み、前記検
査条件変更ステップは、前記比較結果が前記第1の不一
致情報のとき、前記修正検査条件は前記第j検査条件よ
りも厳しくなるように設定するものである、請求項2又
は3に記載の検査解析方法。
4. The feature extracting step when the specific coordinate system for arranging the inspection result of the inspection mother body including U inspection objects is a k-dimensional coordinate system including the Y coordinate axis (where k is an integer of 1 or more). An arrangement process for arranging the j-th inspection result of the inspection base on a coordinate space including at least the Y coordinate axis;
The feature comparison step includes a calculation process of calculating a defect density Q (j) of the inspection mother, and whether the defect density Q (j) calculated in the feature extraction step is included in a specific defect density range. When the defect density Q (j) is included in a specific defect density range, the first comparison process to be confirmed is the Y coordinate axis component of the interval between two defects for all defects included in the inspection result. d = | Δy |, the number of combinations N (j), the number uy (j) of combinations with an interval d = 0, and the maximum value dmax (j) of the interval d, and the combination with an interval d> 0. Number Ny (j) = N
(J) -uy (j) defect interval calculation processing, and dma
It is checked whether or not x (j) ≤ Ny (j) is satisfied, and if it is satisfied, the matching information is output as a comparison result, and if not satisfied, the first if dmax (j)> Ny (j). Second comparison processing for outputting the mismatch information of No. 1 as the comparison result, and the inspection condition changing step, when the comparison result is the first mismatch information, the modified inspection condition becomes stricter than the jth inspection condition. The inspection analysis method according to claim 2 or 3, which is set as follows.
【請求項5】 U個の検査対象を含む検査母体の第j検
査結果がが含む不良数をn(j)(但し、n(j)は0
以上の整数)としたとき、前記特徴比較ステップは、j
=1であるか確認する初期検査確認処理と、j=1の場
合は、0<n(1)<Uであるか確認する初期不良数確
認処理と、を更に含み、前記第1比較処理は、j≧2、
又は0<n(1)<Uである場合に、0<α<β<1で
あるα、βを予め設定した不良密度閾値として、α<n
(j)/U<βを満足するか否かを調べて、n(j)/
U≦αの場合は第1の不一致情報を、又β≦n(j)/
Uの場合は第2の不一致情報を、比較結果として出力す
るものであり、前記不良間隔計算処理は、α<m/U<
βの場合に、n(j)個の不良全てについて2不良間の
間隔d=|Δy|の組み合わせの種類と数N(j)を調
べるものであり、前記検査条件変更ステップは、前記比
較結果が前記第1の不一致情報のとき、前記修正検査条
件は前記第j検査条件よりも厳しくなるように設定し、
前記比較結果が前記第2の不一致情報のとき、前記修正
検査条件は前記第j検査条件よりも緩くなるように設定
するものである、請求項4記載の検査解析方法。
5. The number of defects included in the j-th inspection result of the inspection base including U inspection objects is n (j) (where n (j) is 0).
The integer above), the feature comparison step is j
Further includes an initial inspection confirmation process for confirming whether = 1 and an initial defect number confirmation process for confirming 0 <n (1) <U in the case of j = 1. , J ≧ 2,
Alternatively, when 0 <n (1) <U, α <n, where 0 <α <β <1, is set as a preset defect density threshold, and α <n
By checking whether or not (j) / U <β is satisfied, n (j) /
If U ≦ α, the first mismatch information is used, and β ≦ n (j) /
In the case of U, the second mismatch information is output as a comparison result, and the defective interval calculation process is performed by α <m / U <
In the case of β, the type and the number N (j) of combinations of intervals d = | Δy | between two defects are checked for all n (j) defects, and the inspection condition changing step is performed by the comparison result. Is the first mismatch information, the modified inspection condition is set to be stricter than the jth inspection condition,
The inspection analysis method according to claim 4, wherein when the comparison result is the second disagreement information, the modified inspection condition is set to be less strict than the jth inspection condition.
【請求項6】 前記解析ステップは、Ny(j)/N
(j))が予め定められた所定の分布型判定値p以下の
場合に、前記第j検査結果が含む不良分布は、特定のY
座標値に集中している同質型であると判定する第1分布
型判定処理を、含む請求項4又は5記載の検査解析方
法。
6. The analysis step comprises Ny (j) / N
When (j)) is equal to or less than a predetermined distribution type determination value p, the defect distribution included in the jth inspection result is a specific Y
The inspection analysis method according to claim 4 or 5, further comprising a first distribution type determination process for determining the homogeneity type that is concentrated on the coordinate values.
【請求項7】 前記解析ステップが、dmax(j) ≦Ny
(j)を満足した後、Ny(j)個の2不良間の間隔dが
含む1を除く約数fの種類及び各約数毎にその約数を含
む間隔dの数Σmj(f)を全て調べる約数算出手順
と、Ny(j)個の組み合わせ中に含まれる約数fの値別
含有率Pj(f)=Σmj(f)/Ny(j)を全ての約
数fについて求める含有率算出手順と、前記Pj(f)
に該fを乗じた期待値関数Tj(f)=f×Pj(f)
を全ての約数fについて求める期待値算出手順と、Tj
(f)>1となるfが存在するか調べる期待値判定手順
と、を備え、全ての約数fにおいて期待値関数Tj
(f)≦1の場合は前記第j検査結果が含む不良分布は
不規則分布であると判定する第2分布型判定処理を、更
に含む請求項6記載の検査解析方法。
7. The analyzing step comprises dmax (j) ≦ Ny
After satisfying (j), the type of divisor f excluding 1 included in the space d between two Ny (j) defects and the number Σmj (f) of space d including the divisor for each divisor are calculated. A divisor calculation procedure to check all and a content Pj (f) = Σmj (f) / Ny (j) for each divisor f contained in Ny (j) combinations is calculated for all divisors f Rate calculation procedure and the Pj (f)
To the expected value function Tj (f) = f × Pj (f)
An expected value calculation procedure for obtaining all divisors f, and Tj
(F) An expected value determination procedure for checking whether or not f with 1 exists, and the expected value function Tj is obtained for all divisors f.
7. The inspection analysis method according to claim 6, further comprising a second distribution type determination process of determining that the defect distribution included in the jth inspection result is an irregular distribution when (f) ≦ 1.
【請求項8】 前記解析ステップは、前記第2分布型判
定処理の結果が、特定の約数fにおいて期待値関数Tj
(f)>1の場合に、Tj(f)が最大となる約数fz
と、このときの最大値T(f)max =T(fz)を調べ
る最大値抽出手順と、T(fz)=fzが成立するか調
べる周期性判定手順と、を備え、T(fz)=fzが成
立する場合に前記第j検査結果が含む不良分布はfzを
分布周期λとする単一周期からなる規則性分布であると
判定し、T(fz)=fzが成立しない場合は前記第j
検査結果が含む不良分布は振動型であると判定する第3
分布型判定処理を、更に含む請求項7記載の検査解析方
法。
8. In the analysis step, the result of the second distribution type determination process is an expected value function Tj at a specific divisor f.
When (f)> 1, divisor fz that maximizes Tj (f)
And a maximum value extraction procedure for checking the maximum value T (f) max = T (fz) at this time, and a periodicity determination procedure for checking whether T (fz) = fz holds, T (fz) = When fz is satisfied, it is determined that the defect distribution included in the j-th inspection result is a regular distribution having a single period having a distribution period λ of fz, and when T (fz) = fz is not satisfied, the above-mentioned defect distribution is determined. j
Defect distribution included in inspection result is judged to be vibration type
The inspection analysis method according to claim 7, further comprising a distributed determination process.
【請求項9】 前記出力ステップは、前記解析ステップ
の解析結果に応じて所定の警告情報を出力す警告処理を
含む請求項2乃至8いずれか1項に記載の検査解析方
法。
9. The inspection analysis method according to claim 2, wherein the output step includes a warning process of outputting predetermined warning information according to an analysis result of the analysis step.
【請求項10】 CCD受像素子及びCMOSイメージ
センサを含むデジタル情報入力デバイス、液晶ディスプ
レイ,プラズマディスプレイ,エレクトロルミネッセン
スディスプレイ及び発光ダイオードを含むデジタル情報
出力デバイス、記憶素子及び並列伝送素子を含むデジタ
ル情報入出力デバイス、並びに半導体ウェハを含む半導
体応用装置の製造順番を表すロット識別記号をY座標軸
に設定すると共にこの半導体応用装置を並行して製造す
るライン又は工場の識別記号をZ座標軸に設定し、U個
の製造ロットを検査対象とし、その内の不良ロット数を
n個、任意の2不良ロット間の間隔をd、該間隔dの組
み合わせの種類と数Nと、2不良ロット間隔d=0とな
る組み合わせ数をuyとして、不良発生の製造ロット間隔
依存性の有無、並びに製造ロットと関係の深い製造日、
製造週、製造月、製造季節、及び製造年を含む製造時期
依存性の有無を調べるようにした請求項2乃至9いずれ
か1項に記載の検査解析方法。
10. A digital information input device including a CCD image receiving element and a CMOS image sensor, a liquid crystal display, a plasma display, a digital information output device including an electroluminescent display and a light emitting diode, a digital information input including a storage element and a parallel transmission element. A lot identification symbol indicating the manufacturing order of the semiconductor application device including the output device and the semiconductor wafer is set on the Y coordinate axis, and an identification symbol of a line or a factory that concurrently manufactures this semiconductor application device is set on the Z coordinate axis. The number of defective lots is n, the interval between any two defective lots is d, the type and number N of combinations of the intervals d, and the interval between two defective lots d = 0. The number of combinations is uy. Deep manufacturing date and the manufacturing lot of the relationship,
The inspection analysis method according to any one of claims 2 to 9, wherein presence or absence of manufacturing time dependency including a manufacturing week, a manufacturing month, a manufacturing season, and a manufacturing year is checked.
【請求項11】 請求項2乃至10いずれか1項に記載
の検査解析方法を実行するためのソフトウェアプログラ
ムを記録したコンピュータで読み取り可能な記録媒体。
11. A computer-readable recording medium in which a software program for executing the inspection analysis method according to any one of claims 2 to 10 is recorded.
JP2001216465A 2001-07-17 2001-07-17 Device and method of test analysis, and recording medium storing test analysis execution procedure program Withdrawn JP2003028930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216465A JP2003028930A (en) 2001-07-17 2001-07-17 Device and method of test analysis, and recording medium storing test analysis execution procedure program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216465A JP2003028930A (en) 2001-07-17 2001-07-17 Device and method of test analysis, and recording medium storing test analysis execution procedure program

Publications (1)

Publication Number Publication Date
JP2003028930A true JP2003028930A (en) 2003-01-29

Family

ID=19050938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216465A Withdrawn JP2003028930A (en) 2001-07-17 2001-07-17 Device and method of test analysis, and recording medium storing test analysis execution procedure program

Country Status (1)

Country Link
JP (1) JP2003028930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248040B2 (en) 2004-09-17 2007-07-24 Fujitsu Limited Disk testing apparatus, disk testing method, computer-readable recording medium that stores a disk testing program, and disk apparatus including a disk to be tested
JP2012078276A (en) * 2010-10-05 2012-04-19 Hioki Ee Corp Circuit board inspection apparatus and circuit board inspection method
JP2012078277A (en) * 2010-10-05 2012-04-19 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
CN112649551A (en) * 2019-10-10 2021-04-13 日本株式会社日立高新技术科学 Liquid chromatography device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248040B2 (en) 2004-09-17 2007-07-24 Fujitsu Limited Disk testing apparatus, disk testing method, computer-readable recording medium that stores a disk testing program, and disk apparatus including a disk to be tested
JP2012078276A (en) * 2010-10-05 2012-04-19 Hioki Ee Corp Circuit board inspection apparatus and circuit board inspection method
JP2012078277A (en) * 2010-10-05 2012-04-19 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
CN112649551A (en) * 2019-10-10 2021-04-13 日本株式会社日立高新技术科学 Liquid chromatography device

Similar Documents

Publication Publication Date Title
US5940300A (en) Method and apparatus for analyzing a fabrication line
US7975245B2 (en) Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects
US6797526B2 (en) Method for manufacturing semiconductor devices and method and its apparatus for processing detected defect data
US6393602B1 (en) Method of a comprehensive sequential analysis of the yield losses of semiconductor wafers
US8788237B2 (en) Methods and apparatus for hybrid outlier detection
US8081814B2 (en) Linear pattern detection method and apparatus
US8606536B2 (en) Methods and apparatus for hybrid outlier detection
US8170707B2 (en) Failure detecting method, failure detecting apparatus, and semiconductor device manufacturing method
JP5116307B2 (en) Integrated circuit device abnormality detection device, method and program
US7904279B2 (en) Methods and apparatus for data analysis
CN105702595B (en) Wafer yield judgment method and multivariate inspection method for wafer qualification test
US10719655B2 (en) Method and system for quickly diagnosing, classifying, and sampling in-line defects based on CAA pre-diagnosis database
US10145894B1 (en) Defect screening method for electronic circuits and circuit components using power spectrum anaylysis
JP7637147B2 (en) System and method for identifying potential reliability defects in semiconductor devices - Patents.com
US6551847B2 (en) Inspection analyzing apparatus and semiconductor device
US20100004775A1 (en) Method and system for defect detection in manufacturing integrated circuits
JP2010272797A (en) Inspection result analysis method and inspection result analysis apparatus, abnormal equipment detection method and abnormal equipment detection apparatus, program for causing a computer to execute the inspection result analysis method or abnormal equipment detection method, and a computer-readable record recording the program Medium
US20030158679A1 (en) Anomaly detection system
US6885955B1 (en) Semiconductor process yield analysis based on evaluation of parametric relationship
JP2003028930A (en) Device and method of test analysis, and recording medium storing test analysis execution procedure program
TWI647770B (en) Yield rate determination method for wafer and method for multiple variable detection of wafer acceptance test
JP2000223385A (en) Quality control method for electronic devices
CN110895404A (en) Method and system for automatically detecting correlation between integrated circuit parameters
JP4051332B2 (en) Inspection data analysis system
CN115795772B (en) Evaluation method and system of test data, wafer test system and storage medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100122