JP2003158246A - Storage element and method of manufacturing the same - Google Patents
Storage element and method of manufacturing the sameInfo
- Publication number
- JP2003158246A JP2003158246A JP2001355459A JP2001355459A JP2003158246A JP 2003158246 A JP2003158246 A JP 2003158246A JP 2001355459 A JP2001355459 A JP 2001355459A JP 2001355459 A JP2001355459 A JP 2001355459A JP 2003158246 A JP2003158246 A JP 2003158246A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- film
- insulating film
- memory element
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
(57)【要約】
【課題】 強誘電体膜の特性劣化を防ぎ、信頼性を向上
させ、高集積化が可能な強誘電体記憶素子及びその製造
方法を提供すること。
【解決手段】 シリコン基板1に電界効果トランジスタ
19が設けられ、シリコン基板1上の層間絶縁層6aに
形成されたコンタクトホール18に設けられたプラグ4
に接続されるように、層間絶縁層6a上の第1絶縁膜7
及び第2絶縁膜14の開口部9aに下部電極8が埋設さ
れ、第2絶縁膜14及び下部電極8上に強誘電体膜10
が形成され、更にこの上に上部電極11が形成されてキ
ャパシタ21が構成されていて、第2絶縁膜14が、耐
水素バリア性があって下部電極8の加工時にこれと同等
の加工性があり、下部電極8と第2絶縁膜14とがほぼ
同一面をなしている強誘電体記憶素子20。
(57) [Problem] To provide a ferroelectric memory element capable of preventing deterioration in characteristics of a ferroelectric film, improving reliability, and achieving high integration, and a method of manufacturing the same. SOLUTION: A field effect transistor 19 is provided on a silicon substrate 1, and a plug 4 provided in a contact hole 18 formed in an interlayer insulating layer 6a on the silicon substrate 1 is provided.
To the first insulating film 7 on the interlayer insulating layer 6a.
The lower electrode 8 is buried in the opening 9a of the second insulating film 14, and the ferroelectric film 10 is formed on the second insulating film 14 and the lower electrode 8.
Is formed thereon, and the upper electrode 11 is further formed thereon to form the capacitor 21. The second insulating film 14 has a hydrogen barrier property and has the same processability as the lower electrode 8 when the lower electrode 8 is processed. A ferroelectric memory element 20 in which the lower electrode 8 and the second insulating film 14 are substantially on the same plane.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、キャパシタ構造を
有する記憶素子及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a memory element having a capacitor structure and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来、強誘電体膜を用いた記憶素子は、
特開2000−164817号、特開2000−174
224号、特開2000−183297号等の各公報に
示されている。例えば図16に示す構成のメモリセルか
らなるものが示されている。2. Description of the Related Art Conventionally, a memory element using a ferroelectric film is
JP-A-2000-164817, JP-A-2000-174
No. 224 and Japanese Patent Laid-Open No. 2000-183297. For example, a memory cell having the configuration shown in FIG. 16 is shown.
【0003】この強誘電体記憶素子70aは、所定厚さ
のシリコン基板51上に、ゲート電極55、ソース領域
52及びドレイン領域53、導電性プラグ兼ソース電極
54及びドレイン電極72等からなる電荷転送用の絶縁
ゲート型電界効果トランジスタ69が設けられ、これを
覆う所定厚さの層間絶縁層56aに形成したコンタクト
ホール68に埋設した導電性プラグ54にソース領域5
2が接続されている。In this ferroelectric memory element 70a, a charge transfer consisting of a gate electrode 55, a source region 52 and a drain region 53, a conductive plug / source electrode 54, a drain electrode 72, etc. is formed on a silicon substrate 51 having a predetermined thickness. An insulated gate field effect transistor 69 is provided for the source region 5 in the conductive plug 54 embedded in the contact hole 68 formed in the interlayer insulating layer 56a having a predetermined thickness.
2 is connected.
【0004】そして、層間絶縁層56a上には、所定厚
さの下部電極58、強誘電体膜60及び上部電極61が
順次形成され、電界効果トランジスタ69と直列接続さ
れたキャパシタ71aが構成されている。Then, a lower electrode 58, a ferroelectric film 60 and an upper electrode 61 having a predetermined thickness are sequentially formed on the interlayer insulating layer 56a to form a capacitor 71a connected in series with a field effect transistor 69. There is.
【0005】更に、キャパシタ71a上には、所定厚さ
のバリア膜65a、層間絶縁膜62が形成され、この絶
縁膜の開口を介して配線層63が上部電極61に接続さ
れ、全体が絶縁層56bで覆われている。Further, a barrier film 65a having a predetermined thickness and an interlayer insulating film 62 are formed on the capacitor 71a, the wiring layer 63 is connected to the upper electrode 61 through the opening of the insulating film, and the entire insulating layer is formed. It is covered with 56b.
【0006】この強誘電体記憶素子70aにおいては、
複数層の積層構造でキャパシタ71aを容易に形成する
ために、下部電極58の面積を大きくし、その上部に積
層される強誘電体膜60や上部電極61の面積を次第に
小さくした、いわばひな壇型構造になっている。In this ferroelectric memory element 70a,
In order to easily form the capacitor 71a with a laminated structure of a plurality of layers, the area of the lower electrode 58 is increased, and the areas of the ferroelectric film 60 and the upper electrode 61 laminated on the lower electrode 58 are gradually decreased, so to speak, a so-called hidantan type. It is structured.
【0007】しかし、下部電極58の面積がこの上に積
層される上部電極61等の面積よりも大きいために、こ
の下部電極58の面積の大きさによってメモリセルサイ
ズが決められてしまい、その集積度を高めることができ
ない。又、この下部電極58の面積が大きいことは、寄
生容量の増大を伴い、駆動速度の低下等の問題を生じ易
い。However, since the area of the lower electrode 58 is larger than the area of the upper electrode 61 and the like laminated on the lower electrode 58, the size of the memory cell is determined by the area of the lower electrode 58. I cannot increase my degree. In addition, the large area of the lower electrode 58 is accompanied by an increase in parasitic capacitance, which easily causes a problem such as a decrease in driving speed.
【0008】そこで、強誘電体記憶素子の集積度を上げ
る(更には寄生容量も減少させる)ことのできる図17
に示すような強誘電体記憶素子が知られている。Therefore, it is possible to increase the degree of integration of the ferroelectric memory element (and reduce the parasitic capacitance) as shown in FIG.
A ferroelectric memory element as shown in (1) is known.
【0009】この強誘電体記憶素子70bによれば、層
間絶縁層56a上に絶縁膜57が形成され、この絶縁膜
に形成された開口内に下部電極58を埋め込んだ構造を
有し、この下部電極58から絶縁膜57上にかけて強誘
電体膜60が形成されているので、下部電極58のサイ
ズを小さくすることができ、メモリセルサイズを小さく
して集積度を向上させ、また下部電極58の面積が小さ
いために、寄生容量も小さくできる。この記憶素子70
bの製造方法を以下に説明する。According to the ferroelectric memory element 70b, the insulating film 57 is formed on the interlayer insulating layer 56a, and the lower electrode 58 is embedded in the opening formed in the insulating film. Since the ferroelectric film 60 is formed from the electrode 58 to the insulating film 57, the size of the lower electrode 58 can be reduced, and the memory cell size can be reduced to improve the integration degree. Since the area is small, the parasitic capacitance can be reduced. This storage element 70
The manufacturing method of b will be described below.
【0010】先ず、図18(a)に示すように、シリコ
ン基板51に、常法に従って、ソース領域52、ドレイ
ン領域53、ゲート絶縁膜73、ゲート電極55をそれ
ぞれ形成し、更に層間絶縁層56aのコンタクトホール
68内にソース電極兼導電性プラグ54を形成し、また
ドレイン電極72を形成して、絶縁ゲート型電界効果ト
ランジスタ69(MOSFET:Metal Oxide Semicond
uctor Field Effect Transistor)を構成する。First, as shown in FIG. 18A, a source region 52, a drain region 53, a gate insulating film 73 and a gate electrode 55 are formed on a silicon substrate 51 by a conventional method, and an interlayer insulating layer 56a is further formed. The source electrode / conductive plug 54 and the drain electrode 72 are formed in the contact hole 68 of the insulated gate field effect transistor 69 (MOSFET: Metal Oxide Semicond
uctor Field Effect Transistor).
【0011】次に、図18(b)に示すように、層間絶
縁層56a上に、SiO2からなる絶縁膜57を所定の
厚さに形成する。この絶縁膜57は、例えば、モノシラ
ン(SiH4)等のガスを使用するCVD(Chemical Va
por Deposition:化学的気相成長:以下、同様)法によ
り形成する。Next, as shown in FIG. 18B, an insulating film 57 made of SiO 2 is formed to a predetermined thickness on the interlayer insulating layer 56a. The insulating film 57 is formed, for example, by CVD (Chemical Vapor) using a gas such as monosilane (SiH 4 ).
por Deposition: Chemical vapor deposition: The same shall apply hereinafter).
【0012】次に、図18(c)に示すように、ソース
領域52側の導電性プラグ54上の絶縁膜57に、フォ
トリソグラフィーによって所定の大きさの開口部59a
をRIE(Reactive Ion Etching、反応性イオンエッチ
ング:以下、同様)法及びイオンミリング法等のドライ
エッチング法、又は酸等によるウエットエッチング法に
より形成する。ここで、開口部59aのサイズ(即ち、
後述する下部電極58のサイズ)は図16の下部電極5
8のサイズよりも小さくしておく。Next, as shown in FIG. 18C, an opening 59a having a predetermined size is formed in the insulating film 57 on the conductive plug 54 on the source region 52 side by photolithography.
Is formed by a dry etching method such as RIE (Reactive Ion Etching, reactive ion etching: hereinafter the same) method and an ion milling method, or a wet etching method using an acid or the like. Here, the size of the opening 59a (that is,
The size of the lower electrode 58 described later) is the lower electrode 5 of FIG.
Keep it smaller than size 8.
【0013】次に、図19(d)に示すように、開口部
59aを含む絶縁膜57上に、例えば、スパッタ法及び
蒸着法等のPVD(Physical Vapor Deposition、物理
的蒸着:以下、同様)法、鍍金法又は無電解めっき法等
により、Ptからなる下部電極材料58Aを所定の厚さ
に形成する。Next, as shown in FIG. 19D, PVD (Physical Vapor Deposition) such as sputtering and vapor deposition is formed on the insulating film 57 including the opening 59a. The lower electrode material 58A made of Pt is formed to a predetermined thickness by a method, a plating method, an electroless plating method, or the like.
【0014】次に、図19(e)に示すように、開口部
59a以外の不要な導電膜58Aの部分を、絶縁膜57
の上面とほぼ同一面になるように、例えばCMP(Chem
icalMechanical Polishing、化学的機械研磨:以下、同
様)法等により除去する。これにより、ほぼ平坦な表面
をなすように下部電極58を絶縁膜57の開口59a内
に埋め込む。Next, as shown in FIG. 19 (e), an unnecessary portion of the conductive film 58A other than the opening 59a is covered with an insulating film 57.
CMP (Chem (Chem
icalMechanical Polishing, chemical mechanical polishing: the same shall apply hereinafter). As a result, the lower electrode 58 is embedded in the opening 59a of the insulating film 57 so as to form a substantially flat surface.
【0015】次に、図19(f)に示すように、絶縁膜
57及び下部電極58の上面全体に、例えば、SBT
(ストロンチウムビスマスタンタル:以下、同様)から
なる強誘電体膜60をゾル−ゲル法、スパッタ法又はC
VD法等により所定の厚さに形成する。Next, as shown in FIG. 19F, for example, SBT is formed on the entire upper surfaces of the insulating film 57 and the lower electrode 58.
A ferroelectric film 60 made of (strontium bismastantal: hereinafter the same) is formed by a sol-gel method, a sputtering method or C
It is formed to a predetermined thickness by the VD method or the like.
【0016】次に、図20(g)に示すように、強誘電
体膜60上に例えばPtからなる上部電極材料61A
を、スパッタ法、蒸着法等のPVD法又は鍍金法等によ
り所定の厚さに形成する。Next, as shown in FIG. 20G, an upper electrode material 61A made of, for example, Pt is formed on the ferroelectric film 60.
Is formed to a predetermined thickness by a PVD method such as a sputtering method or a vapor deposition method or a plating method.
【0017】次に、図20(h)に示すように、上部電
極材料61A及び強誘電体膜60の不要部分を、それぞ
れRIE等のドライエッチング法により順次選択的に除
去し、上部電極61及び強誘電体膜60を所定パターン
に形成する。この時に、上部電極61のサイズは下部電
極58とほぼ同じとし、強誘電体膜60のサイズは上部
電極61や下部電極58のサイズよりも大きくする。Next, as shown in FIG. 20H, unnecessary portions of the upper electrode material 61A and the ferroelectric film 60 are sequentially and selectively removed by a dry etching method such as RIE to form the upper electrode 61 and The ferroelectric film 60 is formed in a predetermined pattern. At this time, the size of the upper electrode 61 is made substantially the same as that of the lower electrode 58, and the size of the ferroelectric film 60 is made larger than the sizes of the upper electrode 61 and the lower electrode 58.
【0018】次に、図20(i)に示すように、上部電
極61、強誘電体膜60及び絶縁膜57を覆うようにA
l2O3からなるバリア膜65aを所定の厚さに形成し、
更に、その上から絶縁層62をスパッタ法又は蒸着法等
のPVD法、又は減圧、プラズマ又は常圧CVD法等で
所定の厚さに形成する。Next, as shown in FIG. 20 (i), A is formed so as to cover the upper electrode 61, the ferroelectric film 60 and the insulating film 57.
A barrier film 65a made of l 2 O 3 is formed to a predetermined thickness,
Further, the insulating layer 62 is formed thereon with a predetermined thickness by a PVD method such as a sputtering method or an evaporation method, or a reduced pressure, plasma or atmospheric pressure CVD method.
【0019】次に、図21(j)に示すように、上部電
極61上においてフォトリソグラフィーにより絶縁膜6
2及びバリア膜65aの一部を除去して、開口部59b
を形成する。Next, as shown in FIG. 21J, the insulating film 6 is formed on the upper electrode 61 by photolithography.
2 and a part of the barrier film 65a are removed to form the opening 59b.
To form.
【0020】次に、図21(k)に示すように、開口部
59bに配線層63を所定パターンに被着し、その後、
図17に示したように、配線層63及び絶縁膜62上に
絶縁層56bを所定の厚さに形成して、上部電極61−
強誘電体膜60−下部電極58からなる電荷蓄積用のキ
ャパシタ71bが電荷転送用の電界効果トランジスタ6
9に接続されてなるメモリセル構造の強誘電体記憶素子
70bを作製する。Next, as shown in FIG. 21K, the wiring layer 63 is deposited in a predetermined pattern on the opening 59b, and then,
As shown in FIG. 17, an insulating layer 56b having a predetermined thickness is formed on the wiring layer 63 and the insulating film 62, and the upper electrode 61-
The charge storage capacitor 71b including the ferroelectric film 60 and the lower electrode 58 is the field effect transistor 6 for charge transfer.
A ferroelectric memory element 70b having a memory cell structure connected to 9 is manufactured.
【0021】このようにして得られる強誘電体記憶素子
70bによれば、キャパシタ71bの下部電極58を絶
縁膜57中に埋め込むことにより、下部電極58のサイ
ズを小さくできる構造であるために、メモリセルサイズ
を小さくしてその集積度を高めることができる。しか
も、下部電極58の面積が小さいために、寄生容量を減
少させることもできるAccording to the ferroelectric memory element 70b thus obtained, the size of the lower electrode 58 can be reduced by embedding the lower electrode 58 of the capacitor 71b in the insulating film 57. The cell size can be reduced to increase the degree of integration. Moreover, since the area of the lower electrode 58 is small, the parasitic capacitance can be reduced.
【0022】[0022]
【発明が解決しようとする課題】図17に示す強誘電体
記憶素子70bにおいては、下部電極58を絶縁膜57
に埋め込む構造としているが、強誘電体膜60が下部電
極58の上面から絶縁膜57の上面にはみ出しているの
で(特に大きくはみ出す場合)、図18(b)に示した
CVD時に絶縁膜57中に取り込まれて残留した水素が
強誘電体膜60との界面から強誘電体膜60中に侵入す
ることにより、強誘電体膜60の特性が劣化し易い。こ
れは、下部電極58が水素ガスに対するバリア性の良い
材質からなっていても、強誘電体膜60が下部電極58
が存在しない領域において絶縁膜57と直接接触してい
るために、不可避的に生じてしまう。In the ferroelectric memory element 70b shown in FIG. 17, the lower electrode 58 is replaced by the insulating film 57.
However, since the ferroelectric film 60 protrudes from the upper surface of the lower electrode 58 to the upper surface of the insulating film 57 (especially when it protrudes largely), the ferroelectric film 60 is embedded in the insulating film 57 during the CVD shown in FIG. The hydrogen taken in and remaining in the ferroelectric film 60 penetrates into the ferroelectric film 60 from the interface with the ferroelectric film 60, so that the characteristics of the ferroelectric film 60 are easily deteriorated. This is because even if the lower electrode 58 is made of a material having a good barrier property against hydrogen gas, the ferroelectric film 60 is formed on the lower electrode 58.
Since it is in direct contact with the insulating film 57 in the region where there is no, it occurs inevitably.
【0023】これを防ぐには、強誘電体膜60の大きさ
を下部電極58と同一にするか或いはより小さくすれば
よいが、これではキャパシタとしての有効面積が減るこ
とになり、不適当である。また、メモリセルサイズが下
部電極58の大きさで規定されてしまうため、デザイン
設計上の自由度が乏しくなり、結果的に集積度が向上し
ない。In order to prevent this, the size of the ferroelectric film 60 may be made equal to or smaller than that of the lower electrode 58, but this reduces the effective area of the capacitor and is not suitable. is there. Further, since the memory cell size is defined by the size of the lower electrode 58, the degree of freedom in design and design is poor, and as a result, the degree of integration cannot be improved.
【0024】又、図19(d)〜図19(e)に示した
ように、下部電極となる導電膜58Aの一部をCMP法
によって研磨除去して、下部電極58が絶縁膜57の開
口部59aに埋め込まれた構造を形成する工程おいて
は、導電膜58Aの材質であるPtよりも、絶縁膜57
の材質であるSiO2の硬さが小さいため(研磨レート
の違いにより)、研磨時に下部電極材料58Aよりも絶
縁膜57が過剰に研磨除去されることになる。その結
果、図22に示すように、下部電極58と絶縁膜57と
の間に例えば100〜150nmの大きな段差74を生
じ易い。Further, as shown in FIGS. 19D to 19E, a part of the conductive film 58A to be the lower electrode is polished and removed by the CMP method, and the lower electrode 58 is opened in the insulating film 57. In the step of forming the structure embedded in the portion 59a, the insulating film 57 is formed more than Pt which is the material of the conductive film 58A.
Since the hardness of SiO 2 which is the material of the above is small (due to the difference in polishing rate), the insulating film 57 is excessively removed by polishing more than the lower electrode material 58A during polishing. As a result, as shown in FIG. 22, a large step 74 of, for example, 100 to 150 nm is likely to occur between the lower electrode 58 and the insulating film 57.
【0025】このため、下部電極58上から絶縁膜57
上にかけて強誘電体膜60を形成する工程で、例えばゾ
ル−ゲル法を用いた場合に700℃〜750℃で熱処理
を行うときに、この熱処理によって段差74の部分にお
いてボイド75が生じ、下部電極58と強誘電体膜60
との密着不良により、配線層63(図21(k)参照)
の形成後に強誘電体記憶素子として動作させる際に絶縁
破壊を引き起こし易い。Therefore, the insulating film 57 is formed from above the lower electrode 58.
In the step of forming the ferroelectric film 60 on the upper side, for example, when heat treatment is performed at 700 ° C. to 750 ° C. when the sol-gel method is used, this heat treatment causes voids 75 in the step 74, and the lower electrode 58 and ferroelectric film 60
Due to poor adhesion with the wiring layer 63 (see FIG. 21 (k))
Dielectric breakdown is likely to occur when the device is operated as a ferroelectric memory element after the formation of.
【0026】本発明は、上記のような状況に鑑みてなさ
れたものであって、その目的は、誘電体膜の特性低下を
防ぎ、信頼性を向上させ、高集積化が可能な記憶素子及
びその製造方法を提供することにある。The present invention has been made in view of the above situation, and an object thereof is to prevent deterioration of characteristics of a dielectric film, improve reliability, and achieve high integration. It is to provide the manufacturing method.
【0027】[0027]
【課題を解決するための手段】即ち、本発明は、半導体
基板に電荷転送素子が設けられ、前記電荷転送素子を覆
うように前記半導体基板上に層間絶縁層が形成され、前
記層間絶縁層に形成された開口に、前記電荷転送素子に
接続された導電材が埋設され、前記層間絶縁層上に絶縁
膜が設けられ、前記絶縁膜に形成された開口に、前記導
電材に接続された第1電極が埋設され、前記第1電極及
び前記絶縁膜上に誘電体膜が形成され、前記絶縁膜が、
少なくとも前記誘電体膜側に、耐水素バリア性があるこ
とと、前記第1電極の加工時にこれと同等の加工性のあ
ることとの少なくとも一方の物性を有する保護層を有し
ており、前記第1電極と前記絶縁膜とがほぼ同一面をな
しており、前記誘電体膜上に第2電極が形成され、前記
第1電極と前記誘電体膜と前記第2電極とによって、前
記電荷転送素子に接続されたキャパシタが構成されてい
る記憶素子に係わるものである。That is, according to the present invention, a charge transfer element is provided on a semiconductor substrate, and an interlayer insulating layer is formed on the semiconductor substrate so as to cover the charge transfer element. A conductive material connected to the charge transfer element is embedded in the formed opening, an insulating film is provided on the interlayer insulating layer, and an opening formed in the insulating film is connected to the conductive material. One electrode is embedded, a dielectric film is formed on the first electrode and the insulating film, and the insulating film is
At least the dielectric film side has a protective layer having at least one physical property of having hydrogen barrier resistance and having workability equivalent to this when processing the first electrode, The first electrode and the insulating film are substantially flush with each other, a second electrode is formed on the dielectric film, and the charge transfer is performed by the first electrode, the dielectric film, and the second electrode. The present invention relates to a storage element including a capacitor connected to the element.
【0028】本発明は又、電荷転送素子を設けた半導体
基板に、前記電荷転送素子を覆うように層間絶縁層を形
成する工程と、前記層間絶縁層に形成された開口に、前
記電荷転送素子に接続された導電材を埋設する工程と、
前記層間絶縁層上に絶縁膜を設ける工程と、前記絶縁膜
に形成された開口に、前記導電材に接続された第1電極
を埋設し、この埋設に際し、前記層間絶縁層上に被着し
た前記第1電極及び前記絶縁膜の少なくとも一方の構成
材料を表面側から除去処理するか、或いは前記絶縁膜の
前記開口に前記第1電極の構成材料を選択的に被着し
て、前記絶縁膜の前記開口に前記第1電極を前記絶縁膜
とほぼ同一面をなすように埋め込む工程と、前記第1電
極及び前記絶縁膜上に誘電体膜を形成する工程と、前記
絶縁膜の少なくとも前記誘電体膜側に、耐水素バリア性
があることと、前記第1電極の加工時にこれと同等の加
工性のあることとの少なくとも一方の物性を有する保護
層を形成する工程と、前記誘電体膜上に第2電極を形成
する工程とを有し、前記第1電極と前記誘電体膜と前記
第2電極とによって、前記電荷転送素子に接続されたキ
ャパシタを構成する、記憶素子の製造方法も提供するも
のである。The present invention also provides a step of forming an interlayer insulating layer on the semiconductor substrate provided with the charge transfer element so as to cover the charge transfer element, and the charge transfer element in the opening formed in the interlayer insulating layer. Burying the conductive material connected to
A step of providing an insulating film on the interlayer insulating layer, and embedding a first electrode connected to the conductive material in an opening formed in the insulating film, and during the embedding, depositing on the interlayer insulating layer. The constituent material of at least one of the first electrode and the insulating film is removed from the surface side, or the constituent material of the first electrode is selectively applied to the opening of the insulating film to form the insulating film. A step of embedding the first electrode in the opening so as to be substantially flush with the insulating film, a step of forming a dielectric film on the first electrode and the insulating film, and at least the dielectric film of the insulating film. Forming a protective layer on the body film side, which has at least one physical property of having a hydrogen barrier resistance and having workability equivalent to that of the first electrode during processing; And a step of forming a second electrode thereon, A serial first electrode and said dielectric film by said second electrode constitute a capacitor connected to said charge transfer device, a manufacturing method of the memory element is also intended to provide.
【0029】本発明によれば、前記開口に前記第1電極
を埋設した前記絶縁膜が、少なくとも前記誘電体膜側
に、耐水素バリア性がある前記保護層を有しているため
に、この保護層によって前記絶縁膜中に残留した水素が
前記誘電体膜内へ侵入することを効果的に防ぐことがで
き、水素の侵入による誘電体膜の特性劣化を防ぐことが
できる。According to the present invention, the insulating film having the first electrode buried in the opening has the protective layer having hydrogen barrier resistance at least on the side of the dielectric film. The protective layer can effectively prevent hydrogen remaining in the insulating film from penetrating into the dielectric film, and prevent deterioration of the characteristics of the dielectric film due to the penetration of hydrogen.
【0030】又、前記絶縁膜が、少なくとも前記誘電体
膜側に、前記第1電極の加工時にこれと同等の加工性の
ある前記保護層を有しているために、前記第1電極と前
記絶縁膜(具体的には前記保護層)との加工量に差が生
じることがなくなり、前記第1電極と前記絶縁膜(具体
的には前記保護層)とがほぼ同一面をなすことになり、
これによって前記第1電極と前記絶縁膜との間に段差が
生じることがなく、密着不良による絶縁破壊が生じ難く
なる。Further, since the insulating film has the protective layer having a workability equivalent to that of the first electrode at the time of processing the first electrode, the insulating film has at least the dielectric film side. There is no difference in the amount of processing with the insulating film (specifically, the protective layer), and the first electrode and the insulating film (specifically, the protective layer) are substantially flush with each other. ,
As a result, no step is formed between the first electrode and the insulating film, and dielectric breakdown due to poor adhesion is less likely to occur.
【0031】又、前記誘電体膜を前記第1電極及び前記
絶縁膜上に形成しているので、キャパシタの有効面積が
十分となる上に、メモリセルサイズは前記第1電極の大
きさによって制約されることなく、自由度を高くでき、
高集積度化を図ることができる。Further, since the dielectric film is formed on the first electrode and the insulating film, the effective area of the capacitor is sufficient and the memory cell size is restricted by the size of the first electrode. You can increase the degree of freedom without being
High integration can be achieved.
【0032】[0032]
【発明の実施の形態】本発明においては、前記半導体基
板に電荷転送用の電界効果トランジスタが設けられ、前
記電界効果トランジスタを覆うように前記半導体基板上
に前記層間絶縁層が形成され、前記層間絶縁層に形成さ
れた前記開口に、前記電界効果トランジスタに接続され
た前記導電材が埋設され、前記第1電極と前記誘電体膜
としての強誘電体膜と前記第2電極とによって、前記電
界効果トランジスタに接続されたキャパシタが構成され
ており、またこれらのトランジスタ及びキャパシタはダ
イナミック・ランダムアクセス・メモリー(DRAM)
のメモリセルを構成するのが好ましい。According to the present invention, a field effect transistor for charge transfer is provided on the semiconductor substrate, and the interlayer insulating layer is formed on the semiconductor substrate so as to cover the field effect transistor. The conductive material connected to the field effect transistor is embedded in the opening formed in the insulating layer, and the electric field is formed by the first electrode, the ferroelectric film as the dielectric film, and the second electrode. A capacitor connected to the effect transistor is formed, and these transistors and capacitors are a dynamic random access memory (DRAM).
It is preferable to configure the memory cell of
【0033】又、前記絶縁膜が、前記保護層を前記誘電
体膜側に有するか或いは前記保護層のみからなっていて
よい。例えば、前記絶縁膜が、前記保護層とシリコン酸
化物層との積層膜、前記保護層とシリコン酸化物層とシ
リコン窒化物層との積層膜、又は前記保護層のみからな
っているのがよい。Further, the insulating film may have the protective layer on the side of the dielectric film, or may be composed of only the protective layer. For example, the insulating film may be composed of a laminated film of the protective layer and a silicon oxide layer, a laminated film of the protective layer, a silicon oxide layer and a silicon nitride layer, or only the protective layer. .
【0034】又、耐水素バリア性を十分に確保するため
には、前記絶縁膜の全厚に対する前記保護層の厚さの比
(前者/後者)が、6/1〜1/1であるのが好まし
い。In order to sufficiently secure the hydrogen barrier resistance, the ratio of the thickness of the protective layer to the total thickness of the insulating film (the former / the latter) is 6/1 to 1/1. Is preferred.
【0035】又、前記保護層がAl2O3、ZrO2、Y2
O3及びランタノイド酸化物から選ばれた少なくとも1
種からなるのが好ましい。The protective layer is made of Al 2 O 3 , ZrO 2 , Y 2
At least 1 selected from O 3 and lanthanoid oxides
It is preferably composed of seeds.
【0036】又、前記第2電極及び前記誘電体膜を覆う
保護膜が形成されているのが、前記第2電極上の絶縁層
からの水素の侵入も防止する上で好ましい。Further, it is preferable that a protective film is formed to cover the second electrode and the dielectric film in order to prevent hydrogen from penetrating from the insulating layer on the second electrode.
【0037】又、請求項1に記載した記憶素子が複数個
並設され、これらの記憶素子に共通して前記誘電体膜が
形成され、この誘電体膜上に各記憶素子の前記第2電極
がそれぞれ設けられている記憶素子とすれば、誘電体膜
を各記憶素子毎に加工する必要がないために、加工時に
発生する誘電体膜へのダメージを軽減でき、加工残渣の
影響もなく、更に記憶素子又はメモリセルの集積度が向
上し、また多様なメモリ動作が可能となる。A plurality of storage elements according to claim 1 are arranged side by side, the dielectric film is formed in common with these storage elements, and the second electrode of each storage element is formed on the dielectric film. If the storage element is provided respectively, since it is not necessary to process the dielectric film for each storage element, it is possible to reduce the damage to the dielectric film that occurs during processing, there is no influence of processing residues, Further, the degree of integration of storage elements or memory cells is improved, and various memory operations are possible.
【0038】又、前記層間絶縁層上に形成した前記絶縁
膜の前記開口を含む表面上に前記第1電極の構成材料を
被着し、前記除去処理によって主として前記構成材料を
表面から除去して、前記第1電極を前記開口内に埋め込
むのが好ましい。Further, the constituent material of the first electrode is deposited on the surface including the opening of the insulating film formed on the interlayer insulating layer, and the constituent material is mainly removed from the surface by the removing treatment. It is preferable to embed the first electrode in the opening.
【0039】又、前記層間絶縁層上に前記第1電極をパ
ターン形成し、このパターンを含む表面に前記絶縁膜の
構成材料を被着し、前記除去処理によって主として前記
構成材料を表面から除去して、前記第1電極を前記開口
内に埋め込むことができる。Further, the first electrode is patterned on the interlayer insulating layer, the constituent material of the insulating film is deposited on the surface including the pattern, and the constituent material is mainly removed from the surface by the removing treatment. Then, the first electrode can be embedded in the opening.
【0040】又、前記層間絶縁層上に形成した前記絶縁
膜の前記開口に前記第1電極の構成材料を無電解めっき
等でめっきして、前記第1電極を形成してもよい。The first electrode may be formed by plating the constituent material of the first electrode by electroless plating or the like in the opening of the insulating film formed on the interlayer insulating layer.
【0041】又、前記除去処理を化学的機械研磨又は研
削又はエッチバックで行うのが好ましい。Further, it is preferable that the removal treatment is performed by chemical mechanical polishing, grinding or etch back.
【0042】以下、本発明の好ましい実施の形態を図面
の参照下に説明する。Preferred embodiments of the present invention will be described below with reference to the drawings.
【0043】第1の実施の形態
本実施の形態における強誘電体記憶素子は、図1(A)
に示すように、キャパシタ21の下部電極8を埋設した
絶縁膜が、シリコン酸化物(SiO2)からなる第1絶
縁膜7と、Al2O3等の保護層としての第2絶縁膜14
との積層膜からなっており、第2絶縁膜14が強誘電体
膜10と接していることが特徴的である。その他の構成
は図17に示した従来例と同一であって、対応部分につ
いては図17中の符号から数字の50を差引いた数字を
図1において用いている。 First Embodiment A ferroelectric memory element according to the present embodiment is shown in FIG.
As shown in FIG. 3, the insulating film in which the lower electrode 8 of the capacitor 21 is embedded is a first insulating film 7 made of silicon oxide (SiO 2 ) and a second insulating film 14 as a protective layer of Al 2 O 3 or the like.
And a second insulating film 14 is in contact with the ferroelectric film 10. Other configurations are the same as those of the conventional example shown in FIG. 17, and corresponding parts are shown in FIG. 1 by subtracting the numeral 50 from the reference numerals in FIG.
【0044】この強誘電体記憶素子20をその作製工程
によって説明する。This ferroelectric memory element 20 will be described by its manufacturing process.
【0045】先ず、図2(a)に示すように、シリコン
基板1に、常法に従って、ソース領域2、ドレイン領域
3、ゲート絶縁膜23、ゲート電極5をそれぞれ形成
し、更に層間絶縁層6aのコンタクトホール18内にソ
ース電極兼導電性プラグ4を形成し、またドレイン電極
22を形成して、絶縁ゲート型電界効果トランジスタ1
9(MOSFET)を構成する。First, as shown in FIG. 2A, a source region 2, a drain region 3, a gate insulating film 23, and a gate electrode 5 are formed on a silicon substrate 1 by a conventional method, and an interlayer insulating layer 6a is formed. The source electrode / conductive plug 4 is formed in the contact hole 18 and the drain electrode 22 is formed, and the insulated gate field effect transistor 1 is formed.
9 (MOSFET).
【0046】次に、図2(b)に示すように、層間絶縁
層6a上に、SiO2からなる第1絶縁膜7を所定の厚
さに形成する。この第1絶縁膜7は、例えば、モノシラ
ン(SiH4)等のガスを使用する常圧、減圧又はプラ
ズマCVD法等で形成するが、スパッタ法又は蒸着法等
のPVD法で形成してよい。Next, as shown in FIG. 2B, a first insulating film 7 made of SiO 2 is formed to a predetermined thickness on the interlayer insulating layer 6a. The first insulating film 7 is formed by, for example, atmospheric pressure using a gas such as monosilane (SiH 4 ) or reduced pressure, plasma CVD, or the like, but may be formed by a PVD method such as a sputtering method or an evaporation method.
【0047】次に、図2(c)に示すように、第1絶縁
膜7上に、例えばアルミナ(Al2O3)からなる第2絶
縁膜14をスパッタ法又は蒸着法等のPVD法によって
所定の厚さに形成する。Next, as shown in FIG. 2C, a second insulating film 14 made of alumina (Al 2 O 3 ) is formed on the first insulating film 7 by a PVD method such as a sputtering method or a vapor deposition method. It is formed to a predetermined thickness.
【0048】ここで、第2絶縁膜14の材質としては、
第1に、CVDによる第1絶縁膜7の形成時に例えばモ
ノシラン(SiH4)ガスを用いた際の化学反応で生じ
て第1絶縁膜7中に残留した水素ガスを強誘電体膜10
に侵入させないための耐水素バリア作用を発揮するもの
でなければならない。Here, as the material of the second insulating film 14,
First, hydrogen gas generated in the first insulating film 7 by a chemical reaction when monosilane (SiH 4 ) gas is used when the first insulating film 7 is formed by CVD and remaining in the first insulating film 7 is used as the ferroelectric film 10.
It must exhibit a hydrogen barrier resistance so that it does not enter into.
【0049】第2に、後述のCMP等による除去工程の
際に、下部電極8とこの第2絶縁膜14とがほぼ同一面
をなすことが求められるので、両者間に研磨レート又は
エッチレート差がないもの、即ち、第1絶縁膜7が研磨
又はエッチングされないためのストッパーとして作用す
るものである。Secondly, since it is required that the lower electrode 8 and the second insulating film 14 are substantially flush with each other in the removing step by CMP or the like which will be described later, the polishing rate or the etching rate difference between them is required. That is, that is, that acts as a stopper for preventing the first insulating film 7 from being polished or etched.
【0050】第3に、後述の強誘電体膜10の形成時に
この強誘電体膜の結晶化を良好に進行させるようなもの
である。Thirdly, the crystallization of the ferroelectric film 10 is favorably promoted when the ferroelectric film 10 is formed, which will be described later.
【0051】第2絶縁膜14の材質として上記した条件
を満たすものとしては、アルミナ(Al2O3)、酸化ジ
ルコニウム(ZrO2)、酸化イットリウム(Y
2O3)、ランタン、セリウム、プラセオジム、ネオジム
等のランタノイド(希土類元素)の酸化物、又はこれら
の混合物等が挙げられる。Alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), yttrium oxide (Y
2 O 3 ), lanthanoid (rare earth element) oxides such as lanthanum, cerium, praseodymium, and neodymium, and mixtures thereof.
【0052】又、第1絶縁膜7と第2絶縁膜14との合
計厚さ(全厚)は、下部電極8とほぼ同じ厚さ(200
〜300nm)であり、この合計厚さに対する第2絶縁
膜14の厚さの比(前者/後者)は、6/1〜1/1と
するのがよい(第1絶縁膜7/第2絶縁膜14の厚み比
で5/1〜0とするのがよく、例えば、全厚を200〜
300nmとしたとき、第2絶縁膜14は50nm以上
とするのがよい)。この範囲を外れて、第2絶縁膜14
が薄すぎると、上記した耐水素バリア性等が乏しくなる
か或いは無くなってしまうので、全厚の1/6以上(例
えば50nm以上)の厚さとするのがよく、また厚すぎ
る分には問題はないが、全厚が第2絶縁膜14で占めら
れていてもよい。但し、下地の影響(絶縁層6aからの
水素又はイオンの侵入等)を防止するために、第1絶縁
膜7下には絶縁層6aとの間に窒化シリコン膜(Si3
N4等)が設けられてよい。The total thickness (total thickness) of the first insulating film 7 and the second insulating film 14 is almost the same as the lower electrode 8 (200 mm).
The ratio of the thickness of the second insulating film 14 to the total thickness (former / latter) is preferably 6/1 to 1/1 (first insulating film 7 / second insulating film). The thickness ratio of the film 14 is preferably 5/1 to 0, and for example, the total thickness is 200 to
When the thickness is 300 nm, the second insulating film 14 is preferably 50 nm or more). Outside this range, the second insulating film 14
If the thickness is too thin, the above hydrogen barrier resistance becomes poor or disappears. Therefore, it is preferable to set the thickness to 1/6 or more (for example, 50 nm or more) of the total thickness. However, the entire thickness may be occupied by the second insulating film 14. However, in order to prevent the influence of the base (invasion of hydrogen or ions from the insulating layer 6a), a silicon nitride film (Si 3
N 4 etc.) may be provided.
【0053】本実施の形態では、例えば、第1絶縁膜7
の厚さを200nm、第2絶縁膜14の厚さを100n
mとする。In the present embodiment, for example, the first insulating film 7
Is 200 nm, and the thickness of the second insulating film 14 is 100 n.
m.
【0054】次に、図3(d)に示すように、ソース領
域2側のプラグ4上の第1絶縁膜7及び第2絶縁膜14
に、プラグ4の上面が露出するように、RIE法及びイ
オンミリング法等のドライエッチング法、又は酸等によ
るウエットエッチング法により開口部9aを所定サイズ
に形成する。開口部9aのサイズ(即ち、下部電極8の
サイズ)は、図16に示した下部電極58のサイズより
も小さくしておく。Next, as shown in FIG. 3D, the first insulating film 7 and the second insulating film 14 on the plug 4 on the source region 2 side.
First, the opening 9a is formed in a predetermined size by a dry etching method such as an RIE method and an ion milling method, or a wet etching method using an acid so that the upper surface of the plug 4 is exposed. The size of the opening 9a (that is, the size of the lower electrode 8) is smaller than the size of the lower electrode 58 shown in FIG.
【0055】次に、図3(e)に示すように、開口部9
aを含む第2絶縁膜14上に、例えば、スパッタ法及び
蒸着法等のPVD法、又は無電解めっき法等により、P
tからなる導電膜(下部電極材料)8Aを形成する。Next, as shown in FIG. 3E, the opening 9
P is formed on the second insulating film 14 containing a by, for example, a PVD method such as a sputtering method and an evaporation method, or an electroless plating method.
A conductive film (lower electrode material) 8A made of t is formed.
【0056】次に、図3(f)に示すように、CMP
(化学的機械研磨)法により、導電膜8Aを研磨又は研
削し、開口部9a以外の上部の不要な導電膜8Aの部分
を除去し、第2絶縁膜14の上面とほぼ同一面をなすよ
うに加工し、下部電極8を開口部9a内に埋め込む。こ
のCMP法に代えて、ドライエッチングによるエッチバ
ック法を採用してもよい。Next, as shown in FIG. 3 (f), CMP
The conductive film 8A is polished or ground by a (chemical mechanical polishing) method to remove unnecessary portions of the conductive film 8A in the upper portion other than the opening 9a so as to be substantially flush with the upper surface of the second insulating film 14. Then, the lower electrode 8 is embedded in the opening 9a. Instead of this CMP method, an etch back method by dry etching may be adopted.
【0057】このCMP又はエッチバック時に、第2絶
縁膜14の研磨又はエッチレートと導電膜(下部電極材
料)8Aの研磨又はエッチレートとが同等なので、第2
絶縁膜14が第1絶縁膜7の研磨又はエッチングのスト
ッパーとして作用することになり、この工程終了時には
第2絶縁膜14は導電膜8Aと同等に除去され、第2絶
縁膜14の上面とほぼ同一面で平坦な埋め込み構造の下
部電極8が得られる。At the time of this CMP or etch back, since the polishing or etching rate of the second insulating film 14 is equal to the polishing or etching rate of the conductive film (lower electrode material) 8A, the second
The insulating film 14 acts as a stopper for polishing or etching the first insulating film 7, and at the end of this step, the second insulating film 14 is removed in the same manner as the conductive film 8A, and is almost flush with the upper surface of the second insulating film 14. The lower electrode 8 having a flat buried structure on the same surface can be obtained.
【0058】例えば、下部電極8にPtを用い、第2絶
縁膜14にAl2O3を用いて研削工程を行ったとき、第
2絶縁膜14と下部電極8の間はほぼ平坦で段差が殆ど
なくなる。For example, when Pt is used for the lower electrode 8 and Al 2 O 3 is used for the second insulating film 14, the second insulating film 14 and the lower electrode 8 are substantially flat with no step. It almost disappears.
【0059】次に、図4(g)に示すように、第2絶縁
膜14及び下部電極8の上面全体に、例えば、SBT
(ストロンチウムビスマスタンタル)からなる強誘電体
膜10をゾル−ゲル法、スパッタ法又はCVD法等によ
り所定の厚さに形成する。Next, as shown in FIG. 4G, for example, SBT is formed on the entire upper surfaces of the second insulating film 14 and the lower electrode 8.
A ferroelectric film 10 made of (strontium bismastantal) is formed to a predetermined thickness by a sol-gel method, a sputtering method, a CVD method or the like.
【0060】次に、図4(h)に示すように、強誘電体
膜10上に、例えばPtからなる上部電極11を、スパ
ッタ法、蒸着法等のPVD法又は鍍金法等により所定の
厚さに形成する。Next, as shown in FIG. 4H, an upper electrode 11 made of, for example, Pt is formed on the ferroelectric film 10 to a predetermined thickness by a PVD method such as a sputtering method or a vapor deposition method or a plating method. To form.
【0061】次に、図4(i)に示すように、上部電極
材料11Aの不要部分を、RIE等のドライエッチング
法を用いて除去し、上部電極11を形成する。この時
に、上部電極11のサイズは下部電極8のサイズとほぼ
同一とする。Next, as shown in FIG. 4I, unnecessary portions of the upper electrode material 11A are removed by dry etching such as RIE to form the upper electrode 11. At this time, the size of the upper electrode 11 is made substantially the same as the size of the lower electrode 8.
【0062】次に、図5(j)に示すように、強誘電体
膜10の不要部分を、RIE等のドライエッチング法を
用いて除去し、所定パターンの強誘電体膜10とする。
この時に、強誘電体膜10のサイズは上部電極11や下
部電極8のサイズよりも大きいものとする。Next, as shown in FIG. 5J, unnecessary portions of the ferroelectric film 10 are removed by a dry etching method such as RIE to form a ferroelectric film 10 having a predetermined pattern.
At this time, the size of the ferroelectric film 10 is larger than the sizes of the upper electrode 11 and the lower electrode 8.
【0063】次に、図5(k)に示すように、上部電極
11、強誘電体膜10及び第2絶縁膜14の一部を覆う
ように、第2絶縁膜14と同様の材質のAl2O3等から
なるバリア膜15aを所定の厚さに形成する。Next, as shown in FIG. 5 (k), Al of the same material as the second insulating film 14 is formed so as to cover the upper electrode 11, the ferroelectric film 10 and a part of the second insulating film 14. A barrier film 15a made of 2 O 3 or the like is formed to have a predetermined thickness.
【0064】このバリア膜15aは、後述するCVD法
で形成されるSiO2からなる絶縁膜12中の残留水素
が、強誘電体膜10に侵入して物性を劣化させるのを防
ぐ作用がある。又、強誘電体膜10の上に、上部電極
8、絶縁膜12等を形成する際の熱で強誘電体膜10の
構成物質であるストロンチウムビスマスタンタルからビ
スマスが蒸発して強誘電体膜10の特性が変化してしま
うのを防ぐ作用もある。The barrier film 15a has a function of preventing residual hydrogen in the insulating film 12 made of SiO 2 formed by the CVD method described later from entering the ferroelectric film 10 and deteriorating the physical properties. In addition, bismuth evaporates from strontium bismuth tantalum, which is a constituent material of the ferroelectric film 10, by heat when the upper electrode 8, the insulating film 12 and the like are formed on the ferroelectric film 10, and the ferroelectric film 10 is formed. It also has the effect of preventing changes in the characteristics of.
【0065】次に、図5(l)に示すように、バリア膜
15a上及び第2絶縁膜14上に、SiO2からなる絶
縁膜12を、減圧、プラズマ又は常圧CVD法、又はス
パッタ法又は蒸着法等のPVD法等で所定の厚さに形成
する。Next, as shown in FIG. 5 (l), an insulating film 12 made of SiO 2 is formed on the barrier film 15a and the second insulating film 14 under reduced pressure, plasma or atmospheric pressure CVD method, or sputtering method. Alternatively, it is formed to a predetermined thickness by a PVD method such as a vapor deposition method.
【0066】次に、図6(m)に示すように、上部電極
11上においてフォトリソグラフィーにより絶縁膜12
及びバリア膜15aの一部を除去して、開口部9bを形
成する。Next, as shown in FIG. 6 (m), the insulating film 12 is formed on the upper electrode 11 by photolithography.
And a part of the barrier film 15a is removed to form the opening 9b.
【0067】次に、図6(n)に示すように、開口部9
bに配線層13を所定パターンに被着し、その後、図1
(A)に示したように、配線層13及び絶縁膜12上に
絶縁層6b、更には耐湿保護膜(図示せず)を所定の厚
さに形成して、上部電極11−強誘電体膜10−下部電
極8からなる電荷蓄積用のキャパシタ21が電荷転送用
の電界効果トランジスタ19に接続されてなるメモリセ
ル構造の強誘電体記憶素子20を作製する。Next, as shown in FIG. 6 (n), the opening 9
The wiring layer 13 is applied to b in a predetermined pattern, and then, as shown in FIG.
As shown in (A), an insulating layer 6b and a moisture-resistant protective film (not shown) are formed to a predetermined thickness on the wiring layer 13 and the insulating film 12, and the upper electrode 11-the ferroelectric film is formed. 10-A ferroelectric memory element 20 having a memory cell structure in which a charge storage capacitor 21 including a lower electrode 8 is connected to a charge transfer field effect transistor 19 is manufactured.
【0068】又、図1(B)に示すように、強誘電体記
憶素子20のメモリセル等価回路においては、図示省略
した選択トランジスタの拡散層17にキャパシタ21の
上部電極11が接続されて電圧が選択的に固定されるこ
とによって、電界効果トランジスタ19から転送される
電荷をキャパシタ11に安定して蓄積することができ
る。Further, as shown in FIG. 1B, in the memory cell equivalent circuit of the ferroelectric memory element 20, the upper electrode 11 of the capacitor 21 is connected to the diffusion layer 17 of the select transistor (not shown) and the voltage is applied. Is selectively fixed, the electric charges transferred from the field effect transistor 19 can be stably accumulated in the capacitor 11.
【0069】本実施の形態によれば、第1絶縁膜7の少
なくとも強誘電体膜10側に、耐水素バリア性がある保
護層としての第2絶縁膜14を設けているために、この
第2絶縁膜14によって第1絶縁膜7から強誘電体膜1
0内への水素の侵入を防ぐことができ、強誘電体膜10
の性能劣化を防ぐことができる。According to the present embodiment, since the second insulating film 14 as the protective layer having the hydrogen barrier resistance is provided at least on the ferroelectric film 10 side of the first insulating film 7, the second insulating film 14 is provided. The two insulating films 14 form the first insulating film 7 to the ferroelectric film 1
It is possible to prevent hydrogen from penetrating into the ferroelectric film 10 and
The performance deterioration of can be prevented.
【0070】又、第1絶縁膜7の少なくとも強誘電体膜
10側に、下部電極材料(導電膜)8Aの加工時に、こ
れと同等の加工性のある第2絶縁膜14を設けているた
めに、下部電極材料8Aと第2絶縁膜14との加工量に
差が生じることなく、下部電極8と第2絶縁膜14とが
段差なしにほぼ同一面をなすように確実に加工でき、こ
れによって、下部電極8及び第2絶縁膜14に対する強
誘電体膜10の密着性が良好となり(既述した如きボイ
ドが発生せず)、この密着性が不良の時に生じる絶縁破
壊を防ぐことができる。Further, at the time of processing the lower electrode material (conductive film) 8A, the second insulating film 14 having a workability equivalent to that of the first insulating film 7 is provided on at least the ferroelectric film 10 side. In addition, it is possible to surely process the lower electrode 8 and the second insulating film 14 so that the lower electrode 8 and the second insulating film 14 are substantially flush with each other without any difference in the processing amount between the lower electrode material 8A and the second insulating film 14. As a result, the adhesion of the ferroelectric film 10 to the lower electrode 8 and the second insulating film 14 becomes good (the voids described above do not occur), and the dielectric breakdown that occurs when the adhesion is defective can be prevented. .
【0071】又、図4(g)の工程で、下部電極8上に
強誘電体膜材料を形成してこれを結晶化させて強誘電体
膜化するときに、下部電極8上の結晶化状態と第2絶縁
膜14上の結晶化状態とは同等であるから、下部電極8
上及び第2絶縁膜14上とも、強誘電体膜はグレインが
大きくて結晶化が良好となる。このために、第2絶縁膜
14と強誘電体膜10との界面特性が向上し、電荷のリ
ークが生じず、強誘電体特性が良好となり、特に、メモ
リセルサイズを微小化する場合には、強誘電体特性を十
分に確保することができる。Further, in the step of FIG. 4G, when a ferroelectric film material is formed on the lower electrode 8 and crystallized to form a ferroelectric film, the crystallization on the lower electrode 8 is performed. Since the state is the same as the crystallized state on the second insulating film 14, the lower electrode 8
On both the top and the second insulating film 14, the ferroelectric film has a large grain and the crystallization is good. Therefore, the interface characteristics between the second insulating film 14 and the ferroelectric film 10 are improved, the leakage of charges does not occur, and the ferroelectric characteristics are improved. Especially, when the memory cell size is miniaturized. It is possible to secure sufficient ferroelectric characteristics.
【0072】また、強誘電体記憶素子20においては、
キャパシタ21の下部電極8を絶縁膜7中に埋め込むこ
とにより、下部電極8のサイズを小さくできる構造であ
るために、メモリセルサイズを小さくしてその集積度を
高めることができる。この場合、強誘電体膜10は、下
部電極8より大きく形成しているので、下部電極8に制
約されることなしに任意にパターン設計することがで
き、この点でも高集積化に有利である。しかも、下部電
極8の面積が小さいために、寄生容量を減少させること
もできる。Further, in the ferroelectric memory element 20,
By embedding the lower electrode 8 of the capacitor 21 in the insulating film 7, the size of the lower electrode 8 can be reduced, so that the memory cell size can be reduced and the degree of integration can be increased. In this case, since the ferroelectric film 10 is formed larger than the lower electrode 8, the pattern can be arbitrarily designed without being restricted by the lower electrode 8, which is also advantageous for high integration. . Moreover, since the area of the lower electrode 8 is small, the parasitic capacitance can be reduced.
【0073】第2の実施の形態
図7から図11は、本発明の第2の実施の形態を示すも
のである。 Second Embodiment FIGS. 7 to 11 show a second embodiment of the present invention.
【0074】本実施の形態によれば、先ず、図7(a)
に示すように、図2(a)と同様に、シリコン基板1
に、ゲート電極5、ソース領域2、ドレイン領域3、及
びコンタクトホール18に埋め込んだ導電性プラグ4等
により、電界効果トランジスタ19を作製する。According to the present embodiment, first, FIG.
As shown in FIG. 2A, the silicon substrate 1
Then, the field effect transistor 19 is manufactured by the gate electrode 5, the source region 2, the drain region 3, the conductive plug 4 embedded in the contact hole 18, and the like.
【0075】次に、図7(b)に示すように、導電性プ
ラグ4を埋設した層間絶縁層6a上に、Ptからなる導
電膜(下部電極材料)8Aを所定の厚さに形成する。こ
の形成方法としては、例えば、スパッタ法及び蒸着法等
のPVD法、鍍金法、又は無電解めっき法等を用いる。Next, as shown in FIG. 7B, a conductive film (lower electrode material) 8A made of Pt is formed to a predetermined thickness on the interlayer insulating layer 6a in which the conductive plug 4 is buried. As a method for forming this, for example, a PVD method such as a sputtering method or an evaporation method, a plating method, an electroless plating method, or the like is used.
【0076】次に、図7(c)に示すように、フォトレ
ジストを用いたエッチング法によって不要な部分を除去
し、Ptからなる下部電極8を所定のパターンに形成す
る。Next, as shown in FIG. 7C, an unnecessary portion is removed by an etching method using a photoresist, and the lower electrode 8 made of Pt is formed in a predetermined pattern.
【0077】次に、図8(d)に示すように、下部電極
8上及び層間絶縁層6a上に、SiO2からなる第1絶
縁膜7を所定の厚さに形成する。この第1絶縁膜7は、
例えば、モノシラン(SiH4)等のガスを使用する減
圧、プラズマ又は常圧CVD法、又はスパッタ法又は蒸
着法等のPVD法等により形成する。Next, as shown in FIG. 8D, a first insulating film 7 made of SiO 2 is formed to a predetermined thickness on the lower electrode 8 and the interlayer insulating layer 6a. The first insulating film 7 is
For example, it is formed by pressure reduction using a gas such as monosilane (SiH 4 ), plasma or atmospheric pressure CVD method, or PVD method such as sputtering method or vapor deposition method.
【0078】次に、図8(e)に示すように、第1絶縁
膜7上に、上述したと同様の例えばアルミナ(Al
2O3)からなる第2絶縁膜14を、スパッタ法又は蒸着
法等のPVD法によって所定の厚さに形成する。Next, as shown in FIG. 8E, on the first insulating film 7, for example, the same alumina (Al) as described above is formed.
The second insulating film 14 made of 2 O 3 ) is formed to a predetermined thickness by a PVD method such as a sputtering method or a vapor deposition method.
【0079】次に、図8(f)に示すように、下部電極
8上に積層した第2絶縁膜14及び第1絶縁膜7を除去
して、第1及び第2絶縁膜7及び14の上面と下部電極
8の上面とがほぼ同一面をなすように加工する。この加
工には、例えばCMP(化学的機械研磨)法、ドライエ
ッチングによるエッチバック法等を用いる。Next, as shown in FIG. 8F, the second insulating film 14 and the first insulating film 7 laminated on the lower electrode 8 are removed to remove the first and second insulating films 7 and 14. Processing is performed so that the upper surface and the upper surface of the lower electrode 8 are substantially flush with each other. For this processing, for example, a CMP (chemical mechanical polishing) method, an etch back method by dry etching, or the like is used.
【0080】この後の図9(g)〜図11(o)までの
工程は、それぞれ、上述の第1の実施の形態における図
4(g)〜図6(n)及び図1(A)までの工程と同様
であるので、ここではそれぞれの説明を省略する。The subsequent steps from FIG. 9 (g) to FIG. 11 (o) are respectively shown in FIG. 4 (g) to FIG. 6 (n) and FIG. 1 (A) in the above-described first embodiment. Since the steps are the same as the above steps, their description will be omitted here.
【0081】本実施の形態においては、強誘電体膜10
が下地絶縁膜の殆どの領域を占める第2絶縁膜14と接
しているので、層間絶縁層6a中の残留水素が強誘電体
膜10に侵入するのを十分に防止することができ、また
強誘電体膜10の結晶状態も良好となる。第2絶縁膜1
4の材質、厚さ等は、上述の第1の実施の形態と同様で
ある。In the present embodiment, the ferroelectric film 10
Is in contact with the second insulating film 14 occupying most of the underlying insulating film, it is possible to sufficiently prevent the residual hydrogen in the interlayer insulating layer 6a from entering the ferroelectric film 10, and The crystal state of the dielectric film 10 also becomes good. Second insulating film 1
The material, thickness, etc. of No. 4 are the same as those of the above-mentioned first embodiment.
【0082】又、第2絶縁膜14の上面と下部電極8の
上面とがほぼ同一面をなすように、下部電極8上に積層
した第2絶縁膜14及び第1絶縁膜7だけを除去するこ
とができるので、上述したと同様の特性向上が得られる
と共に、下部電極材料の研削除去量を大幅に減らすこと
ができる。Further, only the second insulating film 14 and the first insulating film 7 laminated on the lower electrode 8 are removed so that the upper surface of the second insulating film 14 and the upper surface of the lower electrode 8 are substantially flush with each other. Therefore, it is possible to obtain the same characteristic improvement as described above, and it is possible to significantly reduce the grinding removal amount of the lower electrode material.
【0083】又、第2絶縁膜14の研削又はエッチレー
トと下部電極材料の研削又はエッチレートとが同等のた
めに、研削面又はエッチング面、即ち下部電極8と第2
絶縁膜14がなす面を確実に平坦化できる。Further, since the grinding or etching rate of the second insulating film 14 and the grinding or etching rate of the lower electrode material are equal, the ground surface or the etched surface, that is, the lower electrode 8 and the second electrode.
The surface formed by the insulating film 14 can be surely flattened.
【0084】又、図7(c)の段階で層間絶縁層6a上
に下部電極8を所定パターンに形成し、その上の絶縁膜
14及び7を研削等すれば、そのまま下部電極8を絶縁
膜の開口内に埋め込めるので、下部電極8の被着性及び
埋め込みパターン精度が向上し、かつその埋め込み作業
も容易となる。Further, when the lower electrode 8 is formed in a predetermined pattern on the interlayer insulating layer 6a in the step of FIG. 7C and the insulating films 14 and 7 thereon are ground or the like, the lower electrode 8 is directly formed into the insulating film. Since it can be embedded in the opening, the adherence of the lower electrode 8 and the precision of the embedding pattern are improved, and the embedding work is facilitated.
【0085】その他、本実施の形態においては、上述の
第1の実施の形態で述べたのと同様の作用及び効果が生
じる。Besides, in the present embodiment, the same operation and effect as those described in the above-mentioned first embodiment occur.
【0086】第3の実施の形態
図12(A)は、本発明の第3の実施の形態を示すもの
である。 Third Embodiment FIG. 12A shows a third embodiment of the present invention.
【0087】本実施の形態においては、第1絶縁膜7と
層間絶縁層6aとの間にバリア膜15bを所定の厚さに
形成した以外は、上述の第1の実施の形態と同様にして
いる。ここで、バリア膜15bの材質を、例えばSi3
N4とし、厚さ等の条件は上述の第2絶縁膜14と同様
に50nm程度であってよい。The present embodiment is similar to the above-described first embodiment except that the barrier film 15b is formed between the first insulating film 7 and the interlayer insulating layer 6a to have a predetermined thickness. There is. Here, the material of the barrier film 15b is, for example, Si 3
The condition such as N 4 and the thickness may be about 50 nm like the second insulating film 14 described above.
【0088】このSi3N4からなるバリア膜15bは、
層間絶縁層6a中に存在するイオンや水素ガスが強誘電
体膜10に侵入して特性劣化させることを防止できるも
のである。The barrier film 15b made of Si 3 N 4 is
It is possible to prevent ions or hydrogen gas existing in the interlayer insulating layer 6a from entering the ferroelectric film 10 and deteriorating the characteristics.
【0089】その他、本実施の形態においては、上述の
第1の実施の形態で述べたのと同様の作用及び効果が生
じる。In addition, in the present embodiment, the same operation and effect as those described in the above-mentioned first embodiment are produced.
【0090】第4の実施の形態
図12(B)は、本発明の第4の実施の形態を示すもの
である。 Fourth Embodiment FIG. 12 (B) shows a fourth embodiment of the present invention.
【0091】本実施の形態においては、層間絶縁層6a
と強誘電体膜10との間に、上述の第1絶縁膜7を設け
ずに、Al2O3等からなる第2絶縁膜14のみを所定の
厚さに形成する以外は、上述の第1の実施の形態と同様
である。In the present embodiment, the interlayer insulating layer 6a is formed.
Between the ferroelectric film 10 and the ferroelectric film 10, the first insulating film 7 is not provided, and only the second insulating film 14 made of Al 2 O 3 or the like is formed to have a predetermined thickness. This is similar to the first embodiment.
【0092】このように、第2絶縁膜14のみを形成し
ても、層間絶縁層6a中の残留水素の侵入による強誘電
体膜10の特性劣化を防止できる。As described above, even if only the second insulating film 14 is formed, it is possible to prevent the characteristic deterioration of the ferroelectric film 10 due to the penetration of residual hydrogen in the interlayer insulating layer 6a.
【0093】その他、本実施の形態においては、上述の
第1の実施の形態で述べたのと同様の作用及び効果が生
じる。Besides, in the present embodiment, the same operation and effect as those described in the above-mentioned first embodiment occur.
【0094】第5の実施の形態
図13、及び図14(a)〜図15(e)は、本発明の
第5の実施の形態を示すものである。 Fifth Embodiment FIG. 13 and FIGS. 14 (a) to 15 (e) show a fifth embodiment of the present invention.
【0095】本実施の形態においては、図13(A)に
示すように、ソース領域2上のみならず、ドレイン領域
2上にも下部電極8が設けられ、この下部電極8に各領
域2、3上の導電性プラグ4が接続されていて、これら
に共通に強誘電体膜10が形成され、かつ上部電極11
も各下部電極8に一対一に対応して設けられている。従
って、キャパシタ21及び電界効果トランジスタ19か
らなる記憶素子の複数個が共通の強誘電体膜10を用い
て構成されている以外は、上述の第1の実施の形態と同
様である。In this embodiment, as shown in FIG. 13A, the lower electrode 8 is provided not only on the source region 2 but also on the drain region 2. 3 is connected to a conductive plug 4 on which a ferroelectric film 10 is commonly formed, and an upper electrode 11
Is also provided in a one-to-one correspondence with each lower electrode 8. Therefore, it is the same as the above-described first embodiment, except that a plurality of memory elements including the capacitor 21 and the field effect transistor 19 are configured by using the common ferroelectric film 10.
【0096】このような記憶素子を作製するには、先
ず、図14(a)に示すように、上述したと同様の工程
により、絶縁膜7及び14の各開口部に各下部電極8を
それぞれ同一面をなすようにして埋め込む。To manufacture such a memory element, first, as shown in FIG. 14A, the lower electrodes 8 are respectively formed in the openings of the insulating films 7 and 14 by the same steps as described above. Embed so as to form the same surface.
【0097】次に、図14(b)に示すように、第2絶
縁膜14の上面及び下部電極8の上面に、例えば、SB
T(ストロンチウムビスマスタンタル)からなる強誘電
体膜10を、ゾル−ゲル法、スパッタ法又はCVD法等
により所定の厚さに形成する。Next, as shown in FIG. 14B, on the upper surface of the second insulating film 14 and the upper surface of the lower electrode 8, for example, SB
A ferroelectric film 10 made of T (strontium bismuth tantalum) is formed to a predetermined thickness by a sol-gel method, a sputtering method, a CVD method or the like.
【0098】次に、図14(c)に示すように、強誘電
体膜10上に、例えばPtからなる上部電極材料11A
を、スパッタ法、蒸着法等のPVD法又は鍍金法等によ
り所定の厚さに形成する。Next, as shown in FIG. 14C, the upper electrode material 11A made of, for example, Pt is formed on the ferroelectric film 10.
Is formed to a predetermined thickness by a PVD method such as a sputtering method or a vapor deposition method or a plating method.
【0099】次に、図15(d)に示すように、上部電
極11の不要部分及び強誘電体膜10の不要部分を、R
IE等のドライエッチング法を用いて除去する。この時
に、上部電極11のサイズは下部電極8とほぼ同一とす
る。更に、強誘電体記憶素子の各素子単位ごとに強誘電
体膜10を分割するのではなく、複数の(この例では4
個の)強誘電体記憶素子のブロック(記憶素子の集合
体)に共通して強誘電体膜10を残すように加工除去す
る。Next, as shown in FIG. 15D, the unnecessary portion of the upper electrode 11 and the unnecessary portion of the ferroelectric film 10 are R
It is removed using a dry etching method such as IE. At this time, the size of the upper electrode 11 is substantially the same as that of the lower electrode 8. Further, instead of dividing the ferroelectric film 10 for each element unit of the ferroelectric memory element, a plurality of (4 in this example
The ferroelectric film 10 is processed and removed so that the ferroelectric film 10 remains in common to the block (collection of memory elements) of the ferroelectric memory elements.
【0100】次に、図15(e)に示すように、上部電
極11、強誘電体膜10及び第2絶縁膜14の一部を覆
うように、第2絶縁膜14と同様の材質のAl2O3等か
らなるバリア膜15aを所定の厚さに形成する。Next, as shown in FIG. 15E, Al of the same material as the second insulating film 14 is formed so as to cover part of the upper electrode 11, the ferroelectric film 10 and the second insulating film 14. A barrier film 15a made of 2 O 3 or the like is formed to have a predetermined thickness.
【0101】その後、上述の第1の実施の形態における
図5(l)から図6(n)の工程と同様の工程を経た後
に、図13(A)に示すように、アルミニウムからなる
配線層13及びSiO2からなる絶縁膜12上にSiO2
からなる層間絶縁層6bを所定の厚さに形成し、更に耐
湿保護膜(図示せず)等を所定の厚さに形成して、複数
の強誘電体記憶素子20からなる素子ブロックを作製す
る。Then, after the steps similar to the steps of FIGS. 5 (l) to 6 (n) in the first embodiment described above, as shown in FIG. 13 (A), a wiring layer made of aluminum is formed. 13 and SiO 2 on the insulating film 12 made of SiO 2.
An interlayer insulating layer 6b made of is formed to a predetermined thickness, and a moisture resistant protective film (not shown) or the like is further formed to a predetermined thickness to produce an element block made of a plurality of ferroelectric memory elements 20. .
【0102】ここで、図13(B)に示すように、強誘
電体記憶素子20のメモリセル等価回路においては、選
択トランジスタの拡散層(図示せず)によって、各キャ
パシタの上部電極11側の電圧が選択的に固定されるこ
とに加え、G1、G2等のゲート電極を選択して選択的に
電荷を転送することによって、各電界効果トランジスタ
19から転送される電荷を任意のキャパシタ21内に安
定して蓄積する(これは、強誘電体膜10が各キャパシ
タに共通して設けられているにも拘らず、クロストーク
なしで実現できる。)ことができ、例えばクロスポイン
ト型メモリを構成することができる。Here, as shown in FIG. 13B, in the memory cell equivalent circuit of the ferroelectric memory element 20, the diffusion layer (not shown) of the selection transistor causes the diffusion layer (not shown) on the upper electrode 11 side of each capacitor. In addition to the voltage being selectively fixed, the charge transferred from each field effect transistor 19 is transferred to an arbitrary capacitor 21 by selecting gate electrodes such as G 1 and G 2 to transfer the charge selectively. It can be stably stored inside (this can be realized without crosstalk even though the ferroelectric film 10 is provided in common to each capacitor). For example, a crosspoint type memory can be obtained. Can be configured.
【0103】本実施の形態によれば、強誘電体膜10を
各記憶素子に共通に設けているので、個々に分割加工す
る必要がなく、従って強誘電体材料の無駄を少なくし、
集積度を向上させることができると共に、その加工残渣
などの悪影響が少なく、また加工時における強誘電体膜
10へのダメージを低減でき、その特性劣化を防ぐこと
ができ、信頼性も向上する。According to the present embodiment, since the ferroelectric film 10 is provided in common for each memory element, it is not necessary to divide the film into individual pieces, thus reducing the waste of the ferroelectric material.
In addition to being able to improve the degree of integration, it is possible to reduce adverse effects such as processing residues, reduce damage to the ferroelectric film 10 during processing, prevent characteristic deterioration thereof, and improve reliability.
【0104】以上に述べた本発明の実施の形態は、本発
明の技術的思想に基づいて更に変形が可能である。The embodiments of the present invention described above can be further modified based on the technical idea of the present invention.
【0105】例えば、上述した下部電極8の埋め込み方
法として、CMP、エッチバック法が望ましいが、絶縁
膜の開口部のみに選択的に無電解めっきして埋め込む方
法も実施可能である。For example, as a method of burying the lower electrode 8 described above, a CMP method or an etch back method is preferable, but a method of selectively electroless plating and burying only the opening of the insulating film can also be implemented.
【0106】又、第2絶縁膜14及びバリア膜15b
や、強誘電体膜10、電極8及び11等の厚さ、材質、
形成方法等は、所定の効果が有れば、任意に変えてよ
い。強誘電体膜10は好ましい材料であるが、公知の他
の誘電体膜としてもよい。Further, the second insulating film 14 and the barrier film 15b.
The thickness and material of the ferroelectric film 10, the electrodes 8 and 11, etc.
The forming method and the like may be arbitrarily changed as long as they have a predetermined effect. The ferroelectric film 10 is a preferable material, but may be another known dielectric film.
【0107】[0107]
【発明の作用効果】本発明は、上述したように、前記開
口に前記第1電極を埋設した前記絶縁膜が、少なくとも
前記誘電体膜側に、耐水素バリア性がある前記保護層を
有しているために、この保護層によって前記絶縁膜中に
残留した水素が前記誘電体膜内へ侵入することを効果的
に防ぐことができ、水素の侵入による誘電体膜の特性劣
化を防ぐことができる。As described above, according to the present invention, the insulating film having the first electrode buried in the opening has the protective layer having hydrogen barrier resistance at least on the dielectric film side. Therefore, this protective layer can effectively prevent hydrogen remaining in the insulating film from entering the dielectric film, and prevent deterioration of the characteristics of the dielectric film due to the penetration of hydrogen. it can.
【0108】又、前記絶縁膜が、少なくとも前記誘電体
膜側に、前記第1電極の加工時にこれと同等の加工性の
ある前記保護層を有しているために、前記第1電極と前
記絶縁膜(具体的には前記保護層)との加工量に差が生
じることがなくなり、前記第1電極と前記絶縁膜(具体
的には前記保護層)とがほぼ同一面をなすことになり、
これによって前記第1電極と前記絶縁膜との間に段差が
生じることがなく、密着不良による絶縁破壊が生じ難く
なる。又、前記誘電体膜を前記第1電極及び前記絶縁膜
上に形成しているので、キャパシタの有効面積が十分と
なる上に、メモリセルサイズは前記第1電極の大きさに
よって制約されることなく、自由度を高くでき、高集積
度化を図ることができる。Further, since the insulating film has the protective layer having a workability equivalent to that of the first electrode at the time of processing the first electrode, the insulating film has at least the dielectric film side. There is no difference in the amount of processing with the insulating film (specifically, the protective layer), and the first electrode and the insulating film (specifically, the protective layer) are substantially flush with each other. ,
As a result, no step is formed between the first electrode and the insulating film, and dielectric breakdown due to poor adhesion is less likely to occur. Further, since the dielectric film is formed on the first electrode and the insulating film, the effective area of the capacitor is sufficient and the memory cell size is restricted by the size of the first electrode. Therefore, the degree of freedom can be increased and the degree of integration can be increased.
【図1】本発明の第1の実施の形態による強誘電体記憶
素子を示す断面図(A)、及びその等価回路図(B)で
ある。FIG. 1 is a cross-sectional view (A) showing a ferroelectric memory element according to a first embodiment of the present invention and an equivalent circuit diagram (B) thereof.
【図2】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 2 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図3】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 3 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図4】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 4 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図5】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 5 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図6】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 6 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図7】本発明の第2の実施の形態による強誘電体記憶
素子の製造工程を順次示す断面図である。FIG. 7 is a sectional view sequentially showing a manufacturing process of a ferroelectric memory element according to a second embodiment of the present invention.
【図8】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 8 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図9】同、強誘電体記憶素子の製造工程を順次示す断
面図である。FIG. 9 is a cross-sectional view sequentially showing the manufacturing process of the ferroelectric memory element.
【図10】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 10 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図11】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 11 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図12】本発明の第3の実施の形態による強誘電体記
憶素子を示す断面図(A)、及び本発明の第4の実施の
形態による強誘電体記憶素子を示す断面図(B)であ
る。FIG. 12 is a sectional view showing a ferroelectric memory element according to a third embodiment of the present invention (A) and a sectional view showing a ferroelectric memory element according to a fourth embodiment of the present invention (B). Is.
【図13】本発明の第5の実施の形態による強誘電体記
憶素子の断面図(A)、及びその等価回路図(B)であ
る。FIG. 13 is a sectional view (A) of a ferroelectric memory element according to a fifth embodiment of the present invention and an equivalent circuit diagram (B) thereof.
【図14】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 14 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図15】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 15 is a cross-sectional view showing the manufacturing process of the ferroelectric memory element in sequence.
【図16】従来例による強誘電体記憶素子を示す断面図
である。FIG. 16 is a sectional view showing a conventional ferroelectric memory element.
【図17】従来例による他の強誘電体記憶素子を示す断
面図である。FIG. 17 is a cross-sectional view showing another conventional ferroelectric memory element.
【図18】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 18 is a sectional view sequentially showing the manufacturing process of the ferroelectric memory element.
【図19】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 19 is a sectional view sequentially showing the manufacturing process of the ferroelectric memory element.
【図20】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 20 is a sectional view sequentially showing the manufacturing process of the ferroelectric memory element.
【図21】同、強誘電体記憶素子の製造工程を順次示す
断面図である。FIG. 21 is a cross-sectional view showing the manufacturing steps of the ferroelectric memory element in sequence.
【図22】同、強誘電体記憶素子の製造時に生じる問題
点を説明するための断面図である。FIG. 22 is a cross-sectional view for explaining a problem that occurs during manufacturing of the ferroelectric memory element.
1…シリコン基板、2…ソース領域、3…ドレイン領
域、4…導電性プラグ、5…ゲート電極、6a、6b…
層間絶縁層、7…第1絶縁膜、8…下部電極、9a、9
b…開口部、10…強誘電体膜、11…上部電極、12
…絶縁膜、13…配線層、14…第2絶縁膜、15a、
15b…バリア膜、18…コンタクトホール、19…電
界効果トランジスタ、20…強誘電体記憶素子、21…
キャパシタ、22…ドレイン電極1 ... Silicon substrate, 2 ... Source region, 3 ... Drain region, 4 ... Conductive plug, 5 ... Gate electrode, 6a, 6b ...
Interlayer insulating layer, 7 ... First insulating film, 8 ... Lower electrode, 9a, 9
b ... Opening part, 10 ... Ferroelectric film, 11 ... Upper electrode, 12
... Insulating film, 13 ... Wiring layer, 14 ... Second insulating film, 15a,
15b ... Barrier film, 18 ... Contact hole, 19 ... Field effect transistor, 20 ... Ferroelectric memory element, 21 ...
Capacitor, 22 ... Drain electrode
Claims (21)
絶縁層が形成され、 前記層間絶縁層に形成された開口に、前記電荷転送素子
に接続された導電材が埋設され、 前記層間絶縁層上に絶縁膜が設けられ、 前記絶縁膜に形成された開口に、前記導電材に接続され
た第1電極が埋設され、 前記第1電極及び前記絶縁膜上に誘電体膜が形成され、 前記絶縁膜が、少なくとも前記誘電体膜側に、耐水素バ
リア性があることと、前記第1電極の加工時にこれと同
等の加工性のあることとの少なくとも一方の物性を有す
る保護層を有しており、 前記第1電極と前記絶縁膜とがほぼ同一面をなしてお
り、 前記誘電体膜上に第2電極が形成され、前記第1電極と
前記誘電体膜と前記第2電極とによって、前記電荷転送
素子に接続されたキャパシタが構成されている記憶素
子。1. A charge transfer element is provided on a semiconductor substrate, an interlayer insulating layer is formed on the semiconductor substrate so as to cover the charge transfer element, and the charge transfer element is provided in an opening formed in the interlayer insulating layer. A conductive material connected to the conductive material is embedded, an insulating film is provided on the interlayer insulating layer, and a first electrode connected to the conductive material is embedded in an opening formed in the insulating film, the first electrode And a dielectric film formed on the insulating film, wherein the insulating film has hydrogen barrier resistance at least on the side of the dielectric film, and has workability equivalent to that when processing the first electrode. And a protective layer having at least one of the above physical properties, the first electrode and the insulating film are substantially flush with each other, a second electrode is formed on the dielectric film, and One electrode, the dielectric film, and the second electrode Te, memory element a capacitor connected to said charge transfer device is configured.
トランジスタが設けられ、 前記電界効果トランジスタを覆うように前記半導体基板
上に前記層間絶縁層が形成され、 前記層間絶縁層に形成された前記開口に、前記電界効果
トランジスタに接続された前記導電材が埋設され、前記
第1電極と前記誘電体膜としての強誘電体膜と前記第2
電極とによって、前記電界効果トランジスタに接続され
たキャパシタが構成されている、請求項1に記載の記憶
素子。2. A field effect transistor for charge transfer is provided on the semiconductor substrate, the interlayer insulating layer is formed on the semiconductor substrate so as to cover the field effect transistor, and the field insulating transistor is formed on the interlayer insulating layer. The conductive material connected to the field effect transistor is embedded in the opening, and the first electrode, the ferroelectric film as the dielectric film, and the second electrode
The storage element according to claim 1, wherein a capacitor connected to the field effect transistor is configured by the electrode.
膜側に有するか或いは前記保護層のみからなっている、
請求項1に記載の記憶素子。3. The insulating film has the protective layer on the side of the dielectric film, or consists only of the protective layer.
The storage element according to claim 1.
化物層との積層膜、前記保護層とシリコン酸化物層とシ
リコン窒化物層との積層膜、又は前記保護層のみからな
っている、請求項3に記載の記憶素子。4. The insulating film is composed of a laminated film of the protective layer and a silicon oxide layer, a laminated film of the protective layer, a silicon oxide layer and a silicon nitride layer, or only the protective layer. The storage element according to claim 3.
厚さの比(前者/後者)が、6/1〜1/1である、請
求項1に記載の記憶素子。5. The memory element according to claim 1, wherein a ratio (former / latter) of the thickness of the protective layer to the total thickness of the insulating film is 6/1 to 1/1.
3及びランタノイド酸化物から選ばれた少なくとも1種
からなる、請求項1に記載の記憶素子。6. The protective layer comprises Al 2 O 3 , ZrO 2 , Y 2 O.
The memory element according to claim 1, comprising at least one selected from 3 and lanthanoid oxides.
護膜が形成されている、請求項1に記載の記憶素子。7. The memory element according to claim 1, wherein a protective film is formed to cover the second electrode and the dielectric film.
リーに用いられる、請求項1に記載の記憶素子。8. The storage element according to claim 1, which is used in a dynamic random access memory.
設され、これらの記憶素子に共通して前記誘電体膜が形
成され、この誘電体膜上に各記憶素子の前記第2電極が
それぞれ設けられている記憶素子。9. A plurality of memory elements according to claim 1 are arranged side by side, the dielectric film is formed in common with these memory elements, and the second electrode of each memory element is formed on the dielectric film. A memory element provided with each.
前記電荷転送素子を覆うように層間絶縁層を形成する工
程と、 前記層間絶縁層に形成された開口に、前記電荷転送素子
に接続された導電材を埋設する工程と、 前記層間絶縁層上に絶縁膜を設ける工程と、 前記絶縁膜に形成された開口に、前記導電材に接続され
た第1電極を埋設し、この埋設に際し、前記層間絶縁層
上に被着した前記第1電極及び前記絶縁膜の少なくとも
一方の構成材料を表面側から除去処理するか、或いは前
記絶縁膜の前記開口に前記第1電極の構成材料を選択的
に被着して、前記絶縁膜の前記開口に前記第1電極を前
記絶縁膜とほぼ同一面をなすように埋め込む工程と、 前記第1電極及び前記絶縁膜上に誘電体膜を形成する工
程と、 前記絶縁膜の少なくとも前記誘電体膜側に、耐水素バリ
ア性があることと、 前記第1電極の加工時にこれと同等の加工性のあること
との少なくとも一方の物性を有する保護層を形成する工
程と、 前記誘電体膜上に第2電極を形成する工程とを有し、前
記第1電極と前記誘電体膜と前記第2電極とによって、
前記電荷転送素子に接続されたキャパシタを構成する、
記憶素子の製造方法。10. A semiconductor substrate provided with a charge transfer element,
Forming an interlayer insulating layer so as to cover the charge transfer element; embedding a conductive material connected to the charge transfer element in an opening formed in the interlayer insulating layer; and forming a conductive material on the interlayer insulating layer. Providing an insulating film, and embedding a first electrode connected to the conductive material in the opening formed in the insulating film, and at the time of embedding, the first electrode and the first electrode deposited on the interlayer insulating layer. At least one constituent material of the insulating film is removed from the surface side, or the constituent material of the first electrode is selectively applied to the opening of the insulating film, and the opening of the insulating film is covered with the first material. A step of embedding one electrode so as to be substantially flush with the insulating film; a step of forming a dielectric film on the first electrode and the insulating film; and a step of forming a dielectric film on at least the dielectric film side of the insulating film. Having a hydrogen barrier property, and the first The method includes the step of forming a protective layer having at least one of the physical properties of having a workability equivalent to that of the pole during processing, and the step of forming a second electrode on the dielectric film. With the electrode, the dielectric film, and the second electrode,
Configuring a capacitor connected to the charge transfer device,
Storage element manufacturing method.
果トランジスタを設け、 前記電界効果トランジスタを覆うように前記半導体基板
上に前記層間絶縁層を形成し、 前記層間絶縁層に形成された前記開口に、前記電界効果
トランジスタに接続された前記導電材を埋設し、前記第
1電極と前記誘電体膜としての強誘電体膜と前記第2電
極とによって、前記電界効果トランジスタに接続された
キャパシタを構成する、請求項10に記載の記憶素子の
製造方法。11. A field effect transistor for charge transfer is provided on the semiconductor substrate, the interlayer insulating layer is formed on the semiconductor substrate so as to cover the field effect transistor, and the opening formed in the interlayer insulating layer. And burying the conductive material connected to the field effect transistor, and forming a capacitor connected to the field effect transistor by the first electrode, the ferroelectric film as the dielectric film, and the second electrode. The method for manufacturing a memory element according to claim 10, which is configured.
膜の前記開口を含む表面上に前記第1電極の構成材料を
被着し、前記除去処理によって主として前記構成材料を
表面から除去して、前記第1電極を前記開口内に埋め込
む、請求項10に記載の記憶素子の製造方法。12. The constituent material of the first electrode is deposited on the surface of the insulating film formed on the interlayer insulating layer and including the opening, and the constituent material is mainly removed from the surface by the removing treatment. 11. The method of manufacturing a memory element according to claim 10, wherein the first electrode is embedded in the opening.
ターン形成し、このパターンを含む表面に前記絶縁膜の
構成材料を被着し、前記除去処理によって主として前記
構成材料を表面から除去して、前記第1電極を前記開口
内に埋め込む、請求項10に記載の記憶素子の製造方
法。13. The first electrode is patterned on the interlayer insulating layer, the constituent material of the insulating film is deposited on the surface including the pattern, and the constituent material is mainly removed from the surface by the removal treatment. 11. The method of manufacturing a memory element according to claim 10, wherein the first electrode is embedded in the opening.
膜の前記開口に前記第1電極の構成材料をめっきして、
前記第1電極を形成する、請求項10に記載の記憶素子
の製造方法。14. The constituent material of the first electrode is plated in the opening of the insulating film formed on the interlayer insulating layer,
The method of manufacturing a memory element according to claim 10, wherein the first electrode is formed.
研削又はエッチバックで行う、請求項10に記載の記憶
素子の製造方法。15. The method of manufacturing a storage element according to claim 10, wherein the removing process is performed by chemical mechanical polishing, grinding, or etch back.
か或いは前記保護層のみからなる前記絶縁膜を形成す
る、請求項10に記載の記憶素子の製造方法。16. The method of manufacturing a memory element according to claim 10, wherein the insulating film having the protective layer on the side of the dielectric film or formed of only the protective layer is formed.
酸化物層との積層膜、前記保護層とシリコン酸化物層と
シリコン窒化物層との積層膜、又は前記保護層のみによ
って形成する、請求項16に記載の記憶素子の製造方
法。17. The insulating film is formed of a laminated film of the protective layer and a silicon oxide layer, a laminated film of the protective layer, a silicon oxide layer and a silicon nitride layer, or only the protective layer. The method for manufacturing a memory element according to claim 16.
の厚さの比(前者/後者)を、6/1〜1/1とする、
請求項16に記載の記憶素子の製造方法。18. The ratio (former / latter) of the thickness of the protective layer to the total thickness of the insulating film is 6/1 to 1/1.
The method for manufacturing a memory element according to claim 16.
O3及びランタノイド酸化物から選ばれた少なくとも一
種によって形成する、請求項10に記載の記憶素子の製
造方法。19. The protective layer is formed of Al 2 O 3 , ZrO 2 , Y 2
The method for manufacturing a memory element according to claim 10, wherein the memory element is formed of at least one selected from O 3 and a lanthanoid oxide.
保護膜を形成する、請求項10に記載の記憶素子の製造
方法。20. The method of manufacturing a memory element according to claim 10, wherein a protective film is formed to cover the second electrode and the dielectric film.
モリーを製造する、請求項10に記載の記憶素子の製造
方法。21. The method of manufacturing a storage element according to claim 10, wherein a dynamic random access memory is manufactured.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001355459A JP2003158246A (en) | 2001-11-21 | 2001-11-21 | Storage element and method of manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001355459A JP2003158246A (en) | 2001-11-21 | 2001-11-21 | Storage element and method of manufacturing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003158246A true JP2003158246A (en) | 2003-05-30 |
Family
ID=19167156
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001355459A Abandoned JP2003158246A (en) | 2001-11-21 | 2001-11-21 | Storage element and method of manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003158246A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006032451A (en) * | 2004-07-13 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Semiconductor memory device and manufacturing method thereof |
| JP2007511905A (en) * | 2003-11-13 | 2007-05-10 | インフィネオン テクノロジーズ アクチエンゲゼルシャフト | Ferroelectric capacitor device and FeRAM device |
| KR100878847B1 (en) * | 2006-12-04 | 2009-01-15 | 한국전자통신연구원 | CMOS device using thin film transistor and manufacturing method thereof |
| CN108550551A (en) * | 2018-03-29 | 2018-09-18 | 湘潭大学 | A kind of more logical states storage units of ferroelectricity and its read/write/erasing operation method |
-
2001
- 2001-11-21 JP JP2001355459A patent/JP2003158246A/en not_active Abandoned
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007511905A (en) * | 2003-11-13 | 2007-05-10 | インフィネオン テクノロジーズ アクチエンゲゼルシャフト | Ferroelectric capacitor device and FeRAM device |
| JP2006032451A (en) * | 2004-07-13 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Semiconductor memory device and manufacturing method thereof |
| KR100878847B1 (en) * | 2006-12-04 | 2009-01-15 | 한국전자통신연구원 | CMOS device using thin film transistor and manufacturing method thereof |
| CN108550551A (en) * | 2018-03-29 | 2018-09-18 | 湘潭大学 | A kind of more logical states storage units of ferroelectricity and its read/write/erasing operation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11195840B2 (en) | Method and structures pertaining to improved ferroelectric random-access memory (FeRAM) | |
| US6642563B2 (en) | Semiconductor memory including ferroelectric gate capacitor structure, and method of fabricating the same | |
| US7371651B2 (en) | Flat-type capacitor for integrated circuit and method of manufacturing the same | |
| JP2007515775A (en) | Semiconductor device and manufacturing method thereof | |
| US6218258B1 (en) | Method for fabricating semiconductor device including capacitor with improved bottom electrode | |
| US7745280B2 (en) | Metal-insulator-metal capacitor structure | |
| CN1276511C (en) | Semiconductor memory with plug contacting capacitor electrode and manufacturing method thereof | |
| US20040089891A1 (en) | Semiconductor device including electrode or the like having opening closed and method of manufacturing the same | |
| US6858442B2 (en) | Ferroelectric memory integrated circuit with improved reliability | |
| US6933549B2 (en) | Barrier material | |
| CN1155054C (en) | Method for processing monocrystalline semiconductor wafers | |
| JP2008130615A (en) | Semiconductor memory device and manufacturing method thereof | |
| TW202301654A (en) | Integrated chip, memory device and method of forming the same | |
| JP3820003B2 (en) | Thin film capacitor manufacturing method | |
| JP4073912B2 (en) | Ferroelectric memory with memory cells connected in series | |
| US20070102746A1 (en) | Semiconductor integrated circuit devices and methods of forming the same | |
| JP2003158246A (en) | Storage element and method of manufacturing the same | |
| JP2003007850A (en) | Semiconductor device and manufacturing method thereof | |
| EP0978881A2 (en) | Ferroelectric capacitor and its manufacturing method | |
| JP2001185687A (en) | Integrated circuit device and manufacturing method thereof | |
| TWI894587B (en) | Integrated chip and method for forming the same | |
| US20240334677A1 (en) | Semiconductor memory device | |
| US20250062218A1 (en) | Metal insulator metal capacitor (mim capacitor) | |
| CN100358127C (en) | Capacitor over plug structure | |
| JPH08236719A (en) | Platinum thin film, semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041026 |
|
| RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20070125 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070511 |
|
| A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20070612 |