JP2003163029A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2003163029A JP2003163029A JP2001360563A JP2001360563A JP2003163029A JP 2003163029 A JP2003163029 A JP 2003163029A JP 2001360563 A JP2001360563 A JP 2001360563A JP 2001360563 A JP2001360563 A JP 2001360563A JP 2003163029 A JP2003163029 A JP 2003163029A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- lithium
- aqueous electrolyte
- battery
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】 (修正有)
【課題】 Li4/3Ti5/3O4を負極活物質に用いた非
水電解液二次電池において、導電材の添加化率を高める
ことなく負極の導電性を向上されることにより、高負荷
放電特性を改善する。
【解決手段】 スピネル型構造のリチウムチタン酸化物
を主成分とする負極からなる電池において、非水電解液
にS=O結合を有するプロパンサルトン、エチレンサル
ファイトを含有させる。
(57) [Abstract] (with correction) [PROBLEMS] In a non-aqueous electrolyte secondary battery using Li 4/3 Ti 5/3 O 4 as a negative electrode active material, a negative electrode without increasing the rate of addition of a conductive material , The high load discharge characteristics are improved. SOLUTION: In a battery comprising a negative electrode mainly composed of lithium titanium oxide having a spinel structure, a nonaqueous electrolytic solution contains propane sultone and ethylene sulphite having an S = O bond.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、組成式Li4/3T
i5/3O4で示されるスピネル型リチウムチタン酸化物
(以下、Li4/3Ti5/3O4と記す)を負極活物質とし
て用い、高負荷放電特性の改善した非水電解質二次電池
に関する。TECHNICAL FIELD The present invention relates to a composition formula Li 4/3 T
A non-aqueous electrolyte secondary with improved high-load discharge characteristics using a spinel-type lithium titanium oxide represented by i 5/3 O 4 (hereinafter referred to as Li 4/3 Ti 5/3 O 4 ) as a negative electrode active material. Regarding batteries.
【0002】[0002]
【従来の技術】近年のエレクトロニクス技術の急速な発
展により、電子機器の小型が進み、それら機器の主電源
やバックアップ用電源として、小型軽量で高エネルギー
密度を有する電池の需要が高まっている。このような要
望に応える電池の活物質材料として、Li4/3Ti5/3O
4が注目されている。Li4/3Ti5/3O4は、結晶構造が
リチウムの吸蔵・放出反応に対して強固であることか
ら、充放電の繰返しによる劣化の進行速度が小さく、非
常に安定である。さらに過充電・過充電に伴うデンドラ
イト状の金属リチウムの析出がなく、安全性に優れてい
る。これら特徴を有することからバックアップ用電源と
して実用化されている。しかし、最近では機器用途の多
様化に伴いバックアップ用電池の使用環境も過酷になっ
てきており、耐過放電や耐過充電の特性に加え、高負荷
での放電特性等の充足が極めて重要な課題である。2. Description of the Related Art Due to the rapid development of electronic technology in recent years, miniaturization of electronic devices has progressed, and there has been an increasing demand for batteries that are small and lightweight and have a high energy density as a main power source and a backup power source for these devices. Li 4/3 Ti 5/3 O is used as a battery active material that meets these demands.
4 is drawing attention. Since Li 4/3 Ti 5/3 O 4 has a crystal structure that is strong against a lithium occlusion / desorption reaction, the rate of progress of deterioration due to repeated charging / discharging is small and very stable. In addition, overcharge / the dendrite-like metallic lithium does not deposit due to overcharge, resulting in excellent safety. Due to these characteristics, it has been put to practical use as a backup power source. Recently, however, the environment in which backup batteries are used has become more severe with the diversification of equipment applications, and in addition to the characteristics of over-discharge and over-charge resistance, it is extremely important to satisfy discharge characteristics at high loads. It is an issue.
【0003】このような課題に対して、負極にLi4/3
Ti5/3O4を用い、正極にコバルトやマンガン等のリチ
ウム含有遷移金属酸化物と用いた電池では、負極容量規
制とした構成により耐過放電特性や耐過充電特性を向上
させることが提案されている(特開平7−335261
号公報、特開平10−27626号公報、及び特開平1
0−69922号公報)。To address such problems, the negative electrode is made of Li 4/3.
For batteries that use Ti 5/3 O 4 and a lithium-containing transition metal oxide such as cobalt or manganese for the positive electrode, it is proposed to improve the over-discharge resistance and over-charge resistance by configuring the negative electrode capacity regulation. (Japanese Patent Laid-Open No. 7-335261)
Japanese Patent Laid-Open No. 10-27626 and Japanese Patent Laid-Open No.
0-69922).
【0004】[0004]
【発明が解決しようとする課題】しかし、上記提案でも
高負荷放電特性を満足する電池を得ることは困難であっ
た。なぜなら上記提案は負極容量規制を採用すること
で、過充電・過放電特性の改善を図ったものであり、高
負荷放電特性については何ら考慮されていない。一般に
高負荷放電特性は、電極の導電性による影響を大きく受
けてしまう。Li4/ 3Ti5/3O4等のリチウムチタン酸
化物の導電性は、リチウムを吸蔵した状態では若干の向
上を認められるが、炭素材料に比べて大幅に低い。この
ため、炭素材料を用いた電池に比べて高負荷放電特性に
劣ることは明らかである。そこで、リチウムチタン酸化
物を活物質に用いた電極の導電性を改善するために、黒
鉛やカーボンブラックなどの導電材を所定の比率で電極
に添加する方法が提案されている。しかし、導電剤の添
加比率を高めることで高負荷放電特性は向上させること
はできるが、添加量の増大に伴って活物質量が相対的に
減少してしまう。このため、電極の電気容量密度の低下
を招き、電池の実用性を大きく損ねてしまう問題点を有
している。However, even with the above proposal, it is difficult to obtain a battery satisfying the high load discharge characteristics. This is because the above proposal is intended to improve the overcharge / overdischarge characteristics by adopting the negative electrode capacity regulation, and no consideration is given to the high load discharge characteristics. Generally, the high load discharge characteristics are greatly affected by the conductivity of the electrodes. Conductive Li 4/3 Ti 5/3 O lithium titanium oxide such as 4, in the state of inserting lithium observed a slight increase, significantly lower than the carbon material. Therefore, it is apparent that the high load discharge characteristics are inferior to the battery using the carbon material. Therefore, in order to improve the conductivity of an electrode using lithium titanium oxide as an active material, a method has been proposed in which a conductive material such as graphite or carbon black is added to the electrode in a predetermined ratio. However, although the high-load discharge characteristics can be improved by increasing the addition ratio of the conductive agent, the active material amount relatively decreases as the addition amount increases. For this reason, there is a problem that the electric capacity density of the electrode is lowered and the practicality of the battery is greatly impaired.
【0005】本発明は、Li4/3Ti5/3O4を負極活物
質に用いた電池において、導電材の添加比率を高めるこ
と無くリチウムチタン酸化物負極の導電性を向上させ、
これにより高負荷放電特性を改善することを目的とす
る。The present invention improves the conductivity of a lithium titanium oxide negative electrode in a battery using Li 4/3 Ti 5/3 O 4 as a negative electrode active material without increasing the addition ratio of a conductive material,
This aims to improve the high load discharge characteristics.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明の非水電解質二次電池は、Li4/3Ti5/3O 4
を負極に用いる非水電解液二次電池において、非水電解
液にプロパンサルトンあるいはエチレンサルファイト等
のS=O結合を有する化合物を含有させることにより、
Li4/3Ti5/3O4を含む電極の導電性が改善されると
いう発見に基づいている。[Means for Solving the Problems] To achieve the above object
The non-aqueous electrolyte secondary battery of the present invention is4/3Ti5/3O Four
Non-aqueous electrolyte secondary battery using
Propane sultone or ethylene sulfite etc.
By containing a compound having an S═O bond of
Li4/3Ti5/3OFourWhen the conductivity of the electrode containing
It is based on the findings.
【0007】すなわち、本発明は、組成式Li4/3Ti
5/3O4で示され、スピネル型構造を有するリチウムチタ
ン酸化物を活物質とする負極と、3V(vsLi/Li
+)以上の電位でリチウムイオンの挿入脱離が可能な物
質を活物質とする正極と、非水電解液とを基本構成とす
る二次電池であって、該非水電解液がプロパンサルト
ン、エチレンサルファイトの少なくとも一方を含有する
ことを特徴とする。That is, the present invention relates to the composition formula Li 4/3 Ti
5/3 O 4 , a negative electrode using a lithium titanium oxide having a spinel structure as an active material, and 3 V (vsLi / Li
+ ) A secondary battery having a positive electrode whose active material is a substance capable of inserting and desorbing lithium ions at a potential of the above potential, and a nonaqueous electrolytic solution, wherein the nonaqueous electrolytic solution is propane sultone, It is characterized by containing at least one of ethylene sulfite.
【0008】負極活物質であるLi4/3Ti5/3O4は、
通常、500〜1000℃の熱処理過程を経て合成され
る。このとき、熱処理による生成物は完全な均一相では
なく、粒子表面の一部がルチル型二酸化チタン層にて覆
われた混晶体となってしまう。本発明者らが詳細な検討
を行った結果、Li4/3Ti5/3O4の表面を被覆するル
チル型二酸化チタンが極少量であるにもかかわらず、前
記二酸化チタンが負極の導電性に悪影響を与え、電池の
高負荷放電特性を著しく低下させてしまうことを見出
し、さらに前記低下の原因が以下の事由によることも見
出した。Li 4/3 Ti 5/3 O 4 , which is the negative electrode active material, is
Usually, it is synthesized through a heat treatment process at 500 to 1000 ° C. At this time, the product obtained by the heat treatment is not a perfect homogeneous phase, and becomes a mixed crystal in which a part of the particle surface is covered with the rutile type titanium dioxide layer. As a result of a detailed study conducted by the present inventors, the amount of rutile-type titanium dioxide coating the surface of Li 4/3 Ti 5/3 O 4 is very small, but the titanium dioxide has negative conductivity of the negative electrode. It was also found that the high load discharge characteristics of the battery are significantly deteriorated, and the cause of the deterioration is due to the following reasons.
【0009】すなわち、Li4/3Ti5/3O4とリチウム
との反応電位が、リチウム電極基準で約1.55Vにあ
るのに対して、ルチル型二酸化チタンの反応電位は1.
5〜1.3Vにあり、Li4/3Ti5/3O4の電位よりも
少し低い値を示す。このため充電時には、リチウムが先
ずLi4/3Ti5/3O4に挿入された後、ルチル型二酸化
チタンに挿入される。一方、放電時には、ルチル型二酸
化チタンが先にリチウムが離脱し、次いでLi4/3Ti
5/3O4から脱離する。従って、Li4/3Ti5/3O4の充
放電反応は、リチウムが存在しないルチル型二酸化チタ
ン相を通してリチウムイオンが移動することによって進
行する。リチウムが存在しないルチル型二酸化チタン相
は、導電性が低いことから、リチウムの移動を阻害する
ことになる。これにより、Li4/3Ti5/3O4からのリ
チウムの離脱が抑制され、、Li4 /3Ti5/3O4を負極
活物質に用いた電池では高率の放電が困難になり、特に
高負荷での放電特性を著しく損ねてしまう。That is, the reaction potential of Li 4/3 Ti 5/3 O 4 and lithium is about 1.55 V based on the lithium electrode, whereas the reaction potential of rutile titanium dioxide is 1.
It is in the range of 5 to 1.3 V, which is a little lower than the potential of Li 4/3 Ti 5/3 O 4 . Therefore, during charging, lithium is first inserted into Li 4/3 Ti 5/3 O 4 and then into rutile titanium dioxide. On the other hand, during discharge, the rutile type titanium dioxide releases lithium first, and then Li 4/3 Ti.
5/3 Desorbed from O 4 . Therefore, the charge / discharge reaction of Li 4/3 Ti 5/3 O 4 proceeds due to the movement of lithium ions through the rutile-type titanium dioxide phase in which lithium does not exist. The rutile-type titanium dioxide phase in which lithium is not present has low conductivity and therefore inhibits the migration of lithium. Thus, high rate of discharge becomes difficult in batteries using the extraction of lithium from Li 4/3 Ti 5/3 O 4 is suppressed ,, Li 4/3 Ti 5/3 O 4 anode active material In particular, the discharge characteristics at a high load are significantly impaired.
【0010】本発明は、上記の通り非水電解液に分子構
造にS=O結合を有する物質を含有、添加させるもので
ある。その中でもプロパンサルトン、エチレンサルファ
イトの少なくとも一方(以下、添加剤)を含む非水電解
液を用い、負極にLi4/3Ti5/3O4を用いた電池で
は、充電時にLi4/3Ti5/3O4の表面相を形成するル
チル型二酸化チタンとS=O結合を有する物質とが反応
し、Ti−O−Sの3元系の化合物が形成される。この
化合物の導電性は、ルチル型二酸化チタンより著しく良
好であることから、高負荷放電特性の向上に寄与したも
のと推察する。尚、Ti−O−Sの3元系の化合物がL
i4/3Ti5/3O4の表面に形成されていることは、表面
分析においてSが導入されていることによって確認し
た。As described above, the present invention includes a substance having an S═O bond in its molecular structure contained and added to the non-aqueous electrolyte. Among them, in a battery using a non-aqueous electrolytic solution containing at least one of propane sultone and ethylene sulfite (hereinafter referred to as an additive) and using Li 4/3 Ti 5/3 O 4 for the negative electrode, Li 4 / Rutile titanium dioxide forming the surface phase of 3 Ti 5/3 O 4 reacts with a substance having an S═O bond to form a Ti—O—S ternary compound. Since the conductivity of this compound is significantly better than that of rutile titanium dioxide, it is speculated that this compound contributed to the improvement of the high load discharge characteristics. The ternary compound of Ti-OS is L
Formation on the surface of i 4/3 Ti 5/3 O 4 was confirmed by the introduction of S in the surface analysis.
【0011】[0011]
【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below.
【0012】本発明の非水電解液二次電池は、Li4/3
Ti5/3O4を主たる活物質とする負極と、3V(vsL
i/Li-)以上の電位でリチウムイオンの挿入脱離が
可能な物質を活物質とする正極、溶質と非水溶媒からな
る非水電解液を備える電池であって、非水電解液がプロ
パンサルトン、エチレンサルファイトの少なくとも何れ
か一方を含有する。The non-aqueous electrolyte secondary battery of the present invention comprises Li 4/3
A negative electrode whose main active material is Ti 5/3 O 4 and 3V (vsL
A battery comprising a positive electrode using a substance capable of inserting and desorbing lithium ions at an electric potential of i / Li − ) or higher and a nonaqueous electrolytic solution composed of a solute and a nonaqueous solvent, wherein the nonaqueous electrolytic solution is propane. At least one of sultone and ethylene sulfite is contained.
【0013】本発明の電池に適用される負極としては、
Li4/3Ti5/3O4を主成分としており、他の負極活物
質が混晶したものであってもよい。また、負極に用いら
れる導電剤には、アセチレンブラック、カーボンブラッ
ク、黒鉛などを用いることができ、結着剤にはスチレン
・ブタジエンラテックス(SBR)、カルボキシメチル
セルロース(CMC)、ポリテトラフルオロエチレン
(PTFE)、ポリフッ化ビニリデン(PVDF)、エ
チレンプロピレンジエン共重合体(EPDM)、テトラ
フルオロエチレン・ヘキサフルオロプロピレン共重合体
(FEP)などをもちいることができる。As the negative electrode applied to the battery of the present invention,
It may contain Li 4/3 Ti 5/3 O 4 as a main component and may be a mixed crystal of another negative electrode active material. In addition, acetylene black, carbon black, graphite or the like can be used as a conductive agent used for the negative electrode, and styrene-butadiene latex (SBR), carboxymethyl cellulose (CMC), polytetrafluoroethylene (PTFE) can be used as a binder. ), Polyvinylidene fluoride (PVDF), ethylene propylene diene copolymer (EPDM), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) and the like can be used.
【0014】一方、正極としては、3V(vsLi/L
i+)以上の電位でリチウムイオンの挿入脱離が可能な
遷移金属酸化物が用いられる。具体的には3V(vsL
i/Li+)程度の電位を有する3V級のLiMnO2,
V2O5に加え、4V(vsLi/Li+)程度の電位を
示す4V級のLiCoO2,LiNiO2,LiMn2O 4
等の遷移金属酸化物が適用される。そして、これら活物
質に組み合わされて正極を構成する結着材、導電剤とし
ては、上記負極と同様のものが使用可能である。On the other hand, as the positive electrode, 3 V (vsLi / L
i+) It is possible to insert and desorb lithium ions at the above potential.
Transition metal oxides are used. Specifically, 3V (vsL
i / Li+3V class LiMnO having a potential of about2,
V2OFiveIn addition to 4V (vsLi / Li+) Potential
4V class LiCoO shown2, LiNiO2, LiMn2O Four
And transition metal oxides are applied. And these activities
As a binder or conductive agent that is combined with the quality to form the positive electrode
As the negative electrode, the same one as the above negative electrode can be used.
【0015】さらに正極にリチウムを含有させる方法と
しては、3V級の遷移金属酸化物の場合には、電池組立
時に負極のLi4/3Ti5/3O4にリチウム金属を接触さ
せて組み込むことで、放電電圧が1.5V程度の電池が
得られる。一方、4V級の遷移金属複合酸化物の場合に
は、活物質の合成時に含有させるので上記処理を施すこ
となく、放電電圧が2.5V程度の電池が得られる。Further, as a method of incorporating lithium in the positive electrode, in the case of a transition metal oxide of 3V class, lithium metal is brought into contact with Li 4/3 Ti 5/3 O 4 of the negative electrode during battery assembly and incorporated. Thus, a battery having a discharge voltage of about 1.5 V can be obtained. On the other hand, in the case of a transition metal composite oxide of 4V class, since it is contained during the synthesis of the active material, a battery having a discharge voltage of about 2.5V can be obtained without the above treatment.
【0016】非水電解液を構成する非水溶媒としては、
プロピレンカーボネート(PC)、エチレンカーボネー
ト(EC)、ブチレンカーボネート(BC)、スルホラ
ン(SLF)、γ−ブチロラクトン(γ−BL)、ジメ
チルカーボネート(DMC)、エチルメチルカーボネー
ト(EMC)、ジエチルカーボネート(DEC)、1,
2−ジメトキシエタン(DME)、テトラヒドロフラン
(THF)、ジオキソラン(DOL)から選ばれる少な
くとも一種であることが好ましい。As the non-aqueous solvent that constitutes the non-aqueous electrolyte,
Propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), sulfolane (SLF), γ-butyrolactone (γ-BL), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC). , 1,
It is preferably at least one selected from 2-dimethoxyethane (DME), tetrahydrofuran (THF) and dioxolane (DOL).
【0017】非水電解液を構成する溶質のリチウム塩と
しては、LiClO4、LiPF6、LiBF4、LiC
F3SO3、LiN(CF3SO2)2、LiN(C2F5S
O2)2などを一種類または混合して用いることができ
る。好ましくは、LiPF6、LiBF4である。溶質の
電解液中の濃度としては、0.3〜2.0mol/lが
好ましく、より好ましくは0.8〜1.5mol/lで
ある。As the solute lithium salt constituting the non-aqueous electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , and LiC are used.
F 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 S
O 2 ) 2 and the like can be used alone or in combination. LiPF 6 and LiBF 4 are preferable. The concentration of solute in the electrolytic solution is preferably 0.3 to 2.0 mol / l, more preferably 0.8 to 1.5 mol / l.
【0018】上記非水電解液に対してプロパンサルトン
の添加量は、0.1〜10重量%が好ましい。0.1重
量%未満になるとプロパンサルトンにより形成される有
機被膜がリチウムチタン酸化物の表面を完全に被覆でき
ない場合がある。また、10重量%より多くなるとプロ
パンサルトンに起因する有機被膜が厚くなるに伴い有機
被膜の抵抗成分が大きくなる。したがって負極の充放電
時の分極抵抗が大きくなり、電気負荷特性が低下する。The amount of propane sultone added to the non-aqueous electrolyte is preferably 0.1 to 10% by weight. If it is less than 0.1% by weight, the organic coating formed by propane sultone may not be able to completely cover the surface of the lithium titanium oxide. On the other hand, if it is more than 10% by weight, the resistance component of the organic coating increases as the organic coating resulting from propane sultone becomes thicker. Therefore, the polarization resistance during charge / discharge of the negative electrode increases, and the electric load characteristics deteriorate.
【0019】上記非水電解液に対してエチレンサルファ
イトの添加量は、0.05〜2.0重量%が好ましい。
0.05重量%未満になるとエチレンサルファイトによ
り形成される有機被膜がLi4/3Ti5/3O4の表面を完
全に被覆できない場合がある。また、3.0重量%より
多くなるとエチレンサルファイトに起因する有機被膜が
厚くなるに伴い有機被膜の抵抗成分が大きくなる。した
がって負極の充放電時の分極抵抗が大きくなり、電気負
荷特性が低下する。The amount of ethylene sulfite added to the non-aqueous electrolyte is preferably 0.05 to 2.0% by weight.
If it is less than 0.05% by weight, the organic coating formed by ethylene sulfite may not be able to completely cover the surface of Li 4/3 Ti 5/3 O 4 . On the other hand, if it exceeds 3.0% by weight, the resistance component of the organic coating increases as the thickness of the organic coating resulting from ethylene sulfite increases. Therefore, the polarization resistance during charge / discharge of the negative electrode increases, and the electric load characteristics deteriorate.
【0020】以上、詳細にわたって述べたように、本発
明は、Li4/3Ti5/3O4を主成分とする負極、リチウ
ムイオンを挿入脱離可能な正極および非水溶媒および溶
質とからなる非水電解液とを備えた非水電解液二次電池
において、プロパンサルトンを0.1〜10重量%又は
エチレンサルファイトを0.05〜2.0重量%含有し
ている非水電解液を用いることにより、高負荷放電特性
に優れたリチウムイオン二次電池を得ることが可能とな
った。As described in detail above, the present invention comprises a negative electrode containing Li 4/3 Ti 5/3 O 4 as a main component, a positive electrode capable of inserting and desorbing lithium ions, a non-aqueous solvent and a solute. A non-aqueous electrolyte secondary battery comprising the following non-aqueous electrolyte solution containing 0.1 to 10% by weight of propane sultone or 0.05 to 2.0% by weight of ethylene sulfite. By using the liquid, it has become possible to obtain a lithium-ion secondary battery having excellent high-load discharge characteristics.
【0021】[0021]
【実施例】以下、実施例により本発明を詳しく説明す
る。The present invention will be described in detail below with reference to examples.
【0022】図1に本実施例で用いたコイン型電池の断
面図を示す。正極ケース1、負極ケース2はそれぞれス
テンレス鋼製であり、正極ケース1の電解液に接する内
面側にはアルミニウムがステンレス表面を完全被覆して
ある。絶縁パッキング3はポリプロピレン製であり、正
極ケース1と負極ケース2とを絶縁、密封口する。FIG. 1 shows a sectional view of the coin type battery used in this embodiment. Each of the positive electrode case 1 and the negative electrode case 2 is made of stainless steel, and the inner surface of the positive electrode case 1 in contact with the electrolytic solution is completely covered with aluminum on the surface of the stainless steel. The insulating packing 3 is made of polypropylene and insulates and seals the positive electrode case 1 and the negative electrode case 2.
【0023】正極4は、活物質のコバルト酸リチウム
(LiCoO2)を88重量%、導電剤としてセチレン
ブラックを5重量%、結着剤としてポリテトラフルオロ
エチレンを7重量%の混合比で混合し乾燥した合剤約2
50mgを2ton/cm2で直径16mmのペレット
に加圧成形し、200℃で乾燥し作製した。また、負極
5は、活物質のLi4/3Ti5/3O4を88重量%、導電
剤としてアセチレンブラックを5重量%、結着剤として
スチレン・ブタジエンラテックス水分散物を固形分で7
重量%の混合比で混合し乾燥した合剤約185mgを2
ton/cm2で直径16mmのペレットに加圧成形
し、200℃で乾燥し作製した。正極4及び負極5は、
ポリプロピレン製の不織布からなるセパレータ6を介し
て対向配置される。For the positive electrode 4, 88% by weight of lithium cobalt oxide (LiCoO 2 ) as an active material, 5% by weight of acetylene black as a conductive agent, and 7% by weight of polytetrafluoroethylene as a binder were mixed. And dried mixture 2
50 mg was pressure-molded at 2 ton / cm 2 into pellets having a diameter of 16 mm, and dried at 200 ° C. to prepare. The negative electrode 5 had an active material of Li 4/3 Ti 5/3 O 4 of 88% by weight, an acetylene black of 5% by weight as a conductive agent, and a styrene-butadiene latex aqueous dispersion of 7% by solid as a binder.
Approximately 185 mg of the mixed material which was mixed and dried at a mixing ratio of 2 wt.
Pellets having a diameter of 16 mm at ton / cm 2 were pressure-molded and dried at 200 ° C. to prepare. The positive electrode 4 and the negative electrode 5 are
They are arranged opposite to each other with a separator 6 made of polypropylene non-woven fabric interposed therebetween.
【0024】非水電解液には、エチレンカーボネート
(EC)とエチルメチルカーボネート(EMC)とを体
積比1:1で混合した非水溶媒に、リチウム六フッ化リ
ンを1mol/lの濃度で溶解したものに、添加剤とし
てのプロパンサルトンを1.0重量%添加したものを使
用した。電池には上記電解液を90mg注液した。この
電池寸法は直径20mm、厚み2.0mmである。上記
構成にて作成したものを本発明の電池Aとした。In the non-aqueous electrolytic solution, lithium phosphorus hexafluoride was dissolved at a concentration of 1 mol / l in a non-aqueous solvent prepared by mixing ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 1: 1. Then, the product prepared by adding 1.0% by weight of propane sultone as an additive was used. 90 mg of the above electrolytic solution was injected into the battery. This battery has a diameter of 20 mm and a thickness of 2.0 mm. The battery A of the present invention was produced with the above-mentioned structure.
【0025】電池Aにおいて、添加剤としてのプロパン
サルトンの代わりに、エチレンサルファイトを0.5重
量%加え、その他は同様にして本発明の電池Bを作製し
た。In Battery A, ethylene sulfite was added in an amount of 0.5% by weight in place of propane sultone as an additive, and Battery B of the present invention was prepared in the same manner as in the above.
【0026】さらに比較電池として、エチレンカーボネ
ート(EC)とエチルメチルカーボネート(EMC)と
を体積比1:1で混合した非水溶媒に、リチウム六フッ
化リンを1mol/lの濃度で溶解した非水電解液を用
いた以外、電池Aと同様な構成とした電池を組立てた。Further, as a comparative battery, lithium phosphorus hexafluoride was dissolved at a concentration of 1 mol / l in a non-aqueous solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 1: 1. A battery having the same configuration as the battery A was assembled except that the water electrolytic solution was used.
【0027】これら本発明の電池Aと電池B及び比較電
池の非水電解液二次電池は各々3個について、次のよう
に放電率特性を評価した。充電は周囲温度25℃で、外
部回路に5Ωの充電抵抗を接続して印加電圧2.6Vの
一定電圧で24時間行なった。一方、放電は同温度で
2、5、10、15、20mAの各電流値について、定
電流で終止電圧1.5Vまで行い、放電容量を測定し
た。その結果を表1に示す。なお、ここで放電電流5〜
15mAでの放電においては、終止電圧までの放電後、
引き続いて2mAで終止電圧1.5Vまで放電を行なっ
た後、次の充電を行なった。The discharge rate characteristics of three non-aqueous electrolyte secondary batteries of the batteries A and B and the comparative battery of the present invention were evaluated as follows. Charging was carried out at an ambient temperature of 25 ° C. for 24 hours with a constant voltage of 2.6 V applied voltage by connecting a charging resistor of 5Ω to an external circuit. On the other hand, the discharge was performed at the same temperature for each current value of 2, 5, 10, 15, and 20 mA at a constant current up to a final voltage of 1.5 V, and the discharge capacity was measured. The results are shown in Table 1. Here, the discharge current 5 to
In the discharge at 15mA, after discharging to the final voltage,
Subsequently, after discharging at 2 mA to a final voltage of 1.5 V, the next charging was performed.
【0028】[0028]
【表1】 [Table 1]
【0029】表1の結果からも明らかなように、本発明
の電池A及びBは、放電電流5mA以上で比較例の電池
に比べて大きな容量が得られ、プロパンサルトンあるい
はエチレンサルファイトを添加した効果が認められる。As is clear from the results shown in Table 1, the batteries A and B of the present invention obtained a larger capacity than the batteries of the comparative examples at a discharge current of 5 mA or more, and propane sultone or ethylene sulfite was added. The effect is confirmed.
【0030】本実施例では正極にコバルト酸リチウムに
ついて述べたがニッケル酸リチウム、マンガン酸リチウ
ムについても同様の結果が得られる。電池形状について
は本実施例で説明したコイン型に限らず、円筒型、角型
電池についても適用が可能である。In this embodiment, lithium cobalt oxide was used as the positive electrode, but similar results can be obtained with lithium nickel oxide and lithium manganate. The shape of the battery is not limited to the coin type described in this embodiment, but can be applied to a cylindrical type or a rectangular type.
【0031】[0031]
【発明の効果】以上の説明からも明らかなように、Li
4/3Ti5/3O4を負極活物質に用いた非水電解液二次電
池において、非水電解液にプロパンサルトン、エチレン
サルファイトを含有させることにより、高負荷放電特性
に優れたリチウムイオン二次電池を提供することがで
き、その工業的価値は大なるものである。As is clear from the above description, Li
In a non-aqueous electrolyte secondary battery using 4/3 Ti 5/3 O 4 as the negative electrode active material, by incorporating propane sultone and ethylene sulfite in the non-aqueous electrolyte, excellent high load discharge characteristics were achieved. It is possible to provide a lithium ion secondary battery, and its industrial value is great.
【図1】本実施例における非水電解液電池の構成を示す
断面図FIG. 1 is a cross-sectional view showing the configuration of a non-aqueous electrolyte battery in this example.
1 正極缶 2 負極缶 3 ガスケット 4 正極 5 負極 6 セパレータ 1 positive electrode can 2 Negative electrode can 3 gasket 4 positive electrode 5 Negative electrode 6 separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柴 信晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ06 AK03 AL03 AM00 AM07 BJ03 BJ12 HJ02 HJ18 5H050 AA12 BA17 CA08 CA09 CB03 FA02 HA02 HA18 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuharu Koshiba 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd. F term (reference) 5H029 AJ06 AK03 AL03 AM00 AM07 BJ03 BJ12 HJ02 HJ18 5H050 AA12 BA17 CA08 CA09 CB03 FA02 HA02 HA18
Claims (2)
ピネル型構造を有するリチウムチタン酸化物を活物質と
する負極と、3V(vsLi/Li+)以上の電位でリ
チウムイオンの挿入脱離が可能な物質を活物質とする正
極と、非水電解液とを基本構成とする二次電池であっ
て、該非水電解液がプロパンサルトン、エチレンサルフ
ァイトの少なくとも一方を含有することを特徴とする非
水電解液二次電池。1. A negative electrode represented by the composition formula Li 4/3 Ti 5/3 O 4 and having a spinel-type structure and a lithium titanium oxide as an active material, and lithium at a potential of 3 V (vsLi / Li + ) or more. A secondary battery having a positive electrode having a substance capable of inserting and desorbing ions as an active material, and a nonaqueous electrolytic solution as a basic component, wherein the nonaqueous electrolytic solution contains at least one of propane sultone and ethylene sulfite. A non-aqueous electrolyte secondary battery characterized by containing.
の少なくとも1種を含むリチウム複合酸化物である請求
項1記載の非水電解質二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is a lithium composite oxide containing at least one of cobalt, nickel and manganese.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001360563A JP3969072B2 (en) | 2001-11-27 | 2001-11-27 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001360563A JP3969072B2 (en) | 2001-11-27 | 2001-11-27 | Nonaqueous electrolyte secondary battery |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2003163029A true JP2003163029A (en) | 2003-06-06 |
| JP2003163029A5 JP2003163029A5 (en) | 2005-04-07 |
| JP3969072B2 JP3969072B2 (en) | 2007-08-29 |
Family
ID=19171350
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001360563A Expired - Lifetime JP3969072B2 (en) | 2001-11-27 | 2001-11-27 | Nonaqueous electrolyte secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3969072B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004281073A (en) * | 2003-03-12 | 2004-10-07 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte and non-aqueous electrolyte battery |
| WO2006011642A1 (en) * | 2004-07-28 | 2006-02-02 | Gs Yuasa Corporation | Electrode material for electrochemical device, method for producing same, electrode for electrochemical device and electrochemical device |
| JP2008041402A (en) * | 2006-08-04 | 2008-02-21 | Toshiba Corp | Non-aqueous electrolyte battery, battery pack and automobile |
| JP2008091327A (en) * | 2006-09-05 | 2008-04-17 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte battery and its manufacturing method |
| US20080166637A1 (en) * | 2007-01-04 | 2008-07-10 | Hiroki Inagaki | Nonaqueous electrolyte battery, battery pack and vehicle |
| US7629081B2 (en) | 2004-03-30 | 2009-12-08 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
| WO2013137273A1 (en) * | 2012-03-15 | 2013-09-19 | 株式会社 東芝 | Non-aqueous electrolyte secondary battery and battery pack |
| JP2013191439A (en) * | 2012-03-14 | 2013-09-26 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
| JP2013229341A (en) * | 2006-09-05 | 2013-11-07 | Gs Yuasa Corp | Nonaqueous electrolyte battery |
| JP2016035937A (en) * | 2015-12-17 | 2016-03-17 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
-
2001
- 2001-11-27 JP JP2001360563A patent/JP3969072B2/en not_active Expired - Lifetime
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004281073A (en) * | 2003-03-12 | 2004-10-07 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte and non-aqueous electrolyte battery |
| US7629081B2 (en) | 2004-03-30 | 2009-12-08 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery |
| CN100492729C (en) * | 2004-07-28 | 2009-05-27 | 株式会社杰士汤浅 | Electrode material for electrochemical device, method for producing same, electrode for electrochemical device, and electrochemical device |
| WO2006011642A1 (en) * | 2004-07-28 | 2006-02-02 | Gs Yuasa Corporation | Electrode material for electrochemical device, method for producing same, electrode for electrochemical device and electrochemical device |
| JP2006040738A (en) * | 2004-07-28 | 2006-02-09 | Yuasa Corp | Electrode material for electrochemical device, method for producing the same, electrode for electrochemical device, and electrochemical device |
| US8663850B2 (en) | 2006-08-04 | 2014-03-04 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
| JP2008041402A (en) * | 2006-08-04 | 2008-02-21 | Toshiba Corp | Non-aqueous electrolyte battery, battery pack and automobile |
| JP2008091327A (en) * | 2006-09-05 | 2008-04-17 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte battery and its manufacturing method |
| JP2013229341A (en) * | 2006-09-05 | 2013-11-07 | Gs Yuasa Corp | Nonaqueous electrolyte battery |
| JP2008186803A (en) * | 2007-01-04 | 2008-08-14 | Toshiba Corp | Non-aqueous electrolyte battery, battery pack and automobile |
| US20080166637A1 (en) * | 2007-01-04 | 2008-07-10 | Hiroki Inagaki | Nonaqueous electrolyte battery, battery pack and vehicle |
| US9728809B2 (en) * | 2007-01-04 | 2017-08-08 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte battery, battery pack and vehicle |
| JP2013191439A (en) * | 2012-03-14 | 2013-09-26 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
| WO2013137273A1 (en) * | 2012-03-15 | 2013-09-19 | 株式会社 東芝 | Non-aqueous electrolyte secondary battery and battery pack |
| CN103718370A (en) * | 2012-03-15 | 2014-04-09 | 株式会社东芝 | Non-aqueous electrolyte secondary battery and battery pack |
| JPWO2013137273A1 (en) * | 2012-03-15 | 2015-08-03 | 株式会社東芝 | Nonaqueous electrolyte secondary battery and battery pack |
| CN103718370B (en) * | 2012-03-15 | 2016-06-15 | 株式会社东芝 | Non-aqueous electrolyte secondary battery and battery pack |
| JP2016035937A (en) * | 2015-12-17 | 2016-03-17 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3969072B2 (en) | 2007-08-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110998959B (en) | Lithium secondary battery having improved high-temperature storage characteristics | |
| JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP5232631B2 (en) | Non-aqueous electrolyte battery | |
| US10454138B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte | |
| JP5061497B2 (en) | Nonaqueous electrolyte secondary battery | |
| KR102117622B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
| KR20090077716A (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
| JP2007317534A (en) | Non-aqueous electrolyte secondary battery | |
| CN108713272A (en) | Non-aqueous electrolyte solution and lithium secondary battery including the non-aqueous electrolyte solution | |
| CN105374983A (en) | Positive electrode and nonaqueous electrolyte battery | |
| KR20180086141A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
| JP2015144104A (en) | Nonaqueous electrolyte secondary battery | |
| JP2004022379A (en) | Secondary cell, electrolyte therefor and usage thereof | |
| JP4530822B2 (en) | Nonaqueous electrolyte secondary battery and charging method thereof | |
| CN113678299B (en) | Non-aqueous electrolyte additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery containing the same | |
| JP3969072B2 (en) | Nonaqueous electrolyte secondary battery | |
| CA2528827A1 (en) | Lithium ion battery having an improved conserved property at a high temperature | |
| JPH11329494A (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
| JP7636095B2 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same | |
| JP4582684B2 (en) | Non-aqueous secondary battery | |
| JP5242315B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP4915101B2 (en) | Flat type non-aqueous electrolyte secondary battery | |
| WO2012090804A1 (en) | Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery | |
| JP2010135115A (en) | Nonaqueous electrolyte secondary battery | |
| JP4134556B2 (en) | Nonaqueous electrolyte secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040513 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040513 |
|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050704 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061208 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070323 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070515 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070528 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 3969072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
| EXPY | Cancellation because of completion of term |