[go: up one dir, main page]

JP2003172828A - Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same - Google Patents

Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same

Info

Publication number
JP2003172828A
JP2003172828A JP2001372151A JP2001372151A JP2003172828A JP 2003172828 A JP2003172828 A JP 2003172828A JP 2001372151 A JP2001372151 A JP 2001372151A JP 2001372151 A JP2001372151 A JP 2001372151A JP 2003172828 A JP2003172828 A JP 2003172828A
Authority
JP
Japan
Prior art keywords
optical fiber
composite substrate
optical
wiring
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372151A
Other languages
Japanese (ja)
Inventor
和俊 ▲高▼山
Kazutoshi Takayama
Terutake Kato
輝武 加藤
Naoki Nishimura
尚樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001372151A priority Critical patent/JP2003172828A/en
Publication of JP2003172828A publication Critical patent/JP2003172828A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • G02B6/3612Wiring methods or machines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

(57)【要約】 (修正有) 【課題】電気ならびに光配線の高密度実装が可能な光電
気複合基板、およびその製造方法を提供する。 【解決手段】電気配線基板の層間部で光配線を形成する
手段として、予め熱硬化樹脂が被覆されている光ファイ
バ7を使用する。光ファイバ7を布線するために、金属
2を光配線形状にエッチングする。この時、エッチング
した導体層と導体層の間隙幅を光ファイバ7の径より狭
くした場合は、光ファイバ7を導体層と導体層の間隙に
押し込むことで仮固定し、広くした場合は、光ファイバ
7に被覆した熱硬化樹脂を部分的に溶着することで、仮
固定する。次に電気配線とともに上記の方法で光配線を
形成した複数の多層用銅張積層板をプリプレグ8により
接着する。接着後の多層板端面の熱硬化性樹脂部をエッ
チングすることで、端面からファイバ芯線端部を再露出
させる。
(57) [Summary] (Modifications) [Problem] To provide an opto-electric composite substrate capable of high-density mounting of electric and optical wiring, and a method of manufacturing the same. An optical fiber coated with a thermosetting resin in advance is used as means for forming an optical wiring between interlayer portions of an electric wiring board. In order to wire the optical fiber 7, the metal 2 is etched into an optical wiring shape. At this time, if the gap width between the etched conductor layer and the conductor layer is made smaller than the diameter of the optical fiber 7, the optical fiber 7 is temporarily fixed by being pushed into the gap between the conductor layer and the optical fiber 7. The thermosetting resin coated on the fiber 7 is temporarily fixed by partially welding. Next, a plurality of multi-layer copper-clad laminates on which optical wirings are formed by the above-described method together with electric wirings are bonded by prepregs 8. By etching the thermosetting resin portion on the end surface of the multilayer board after bonding, the end portion of the fiber core wire is re-exposed from the end surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光配線と電気配線
を同一プリント配線板上に形成した光電気複合基板、光
ファイバの布線方法、及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optoelectric composite substrate in which an optical wiring and an electric wiring are formed on the same printed wiring board, an optical fiber wiring method, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光配線、特に光ファイバをプリント配線
板に布線する方法としては、まずプリント配線板の表裏
に布線する方法がある。例えば、プリント配線板上に固
定用端子を用いて光ファイバを固定する構造や、プリン
ト配線板上に樹脂層で形成した光ファイバ固定用溝内に
光ファイバを固定する構造が知られている。前者の一例
としては実開平5−20004号公報が挙げられ、後者
の一例としては特開2001−59911号公報が挙げ
られる。
2. Description of the Related Art As a method of laying optical wiring, particularly an optical fiber on a printed wiring board, there is a method of laying wiring on the front and back of the printed wiring board. For example, there are known a structure for fixing an optical fiber on a printed wiring board by using a fixing terminal and a structure for fixing the optical fiber in an optical fiber fixing groove formed of a resin layer on the printed wiring board. Japanese Utility Model Laid-Open No. 5-20004 is cited as an example of the former, and Japanese Patent Laid-Open No. 2001-59911 is cited as an example of the latter.

【0003】また、光ファイバをトランスファーモール
ドにより絶縁層に埋め込み、光配線する方法も知られて
おり、その一例として特開2000−147270号公
報が挙げられる。
Further, a method is known in which an optical fiber is embedded in an insulating layer by transfer molding and optical wiring is performed, and an example thereof is Japanese Patent Laid-Open No. 2000-147270.

【0004】[0004]

【発明が解決しようとする課題】しかし、プリント配線
板に固定用端子を実装した場合は、光ファイバの曲げ損
失が起きないよう曲率半径を考慮し、光ファイバの固定
を数ヶ所で行う必要がある。このため、固定用端子の実
装領域が、配線や部品実装の妨げになり、高密度配線が
困難となる問題がある。また、プリント配線板上に樹脂
層で形成した光ファイバ固定溝内に固定する場合は、固
定用端子の部品点数を減らすことができるが、固定溝内
形成部が配線や部品実装の妨げになっていた。更に、プ
リント配線板上に光ファイバを布線すると、プリント配
線板の表裏しか光ファイバを実装する面がなく、布線本
数が限られてしまっていた。
However, when the fixing terminal is mounted on the printed wiring board, it is necessary to fix the optical fiber at several points in consideration of the radius of curvature so that the bending loss of the optical fiber does not occur. is there. For this reason, there is a problem that the mounting area of the fixing terminal hinders wiring and component mounting, which makes high-density wiring difficult. In addition, when fixing in the optical fiber fixing groove formed of a resin layer on the printed wiring board, the number of parts of the fixing terminal can be reduced, but the fixing groove inside part interferes with wiring and component mounting. Was there. Further, when the optical fibers are laid on the printed wiring board, there are only the front and back surfaces of the printed wiring board on which the optical fibers are mounted, and the number of wirings is limited.

【0005】またさらに、光ファイバをトランスファー
モールドにより絶縁層に埋め込む場合は、光ファイバが
布線するためのガイドとなるパターンがなく、仮固定が
されていないため、モールド時に光ファイバが動いてし
まうなど位置精度が悪くなるという問題点があった。
Furthermore, when the optical fiber is embedded in the insulating layer by transfer molding, there is no pattern serving as a guide for wiring the optical fiber and the optical fiber is not temporarily fixed, so the optical fiber moves during molding. However, there is a problem that the position accuracy becomes poor.

【0006】その他に、電気配線基板の層間部に光ファ
イバを布線するにあたっては、以下の問題点が考えられ
る。すなわち、接着工程において、溶融したプリプレ
グが光ファイバと導体層との隙間を充分埋められず、積
層ボイドと呼ばれる樹脂未充填が発生する。布線して
から接着が完了するまでの間に、光ファイバが動いてし
まい、布線の位置精度が悪くなる。接着後に一定寸法
に仕上げる外形切断作業において、基板端面から露出し
ている光ファイバが、基材とともに切断される。光フ
ァイバを布線することで、表層の平坦性がなくなり、電
気配線が形成できない。これらの問題についてその解決
策は報告されていない。従って、本発明の目的は、これ
らの問題を解決し、電気ならびに光配線の高密度実装が
可能な光電気複合基板、およびその製造方法を提供する
ものである。
In addition, the following problems can be considered when wiring the optical fiber between the layers of the electric wiring board. That is, in the bonding step, the melted prepreg does not sufficiently fill the gap between the optical fiber and the conductor layer, and resin unfilling called a laminated void occurs. The optical fiber moves between the wiring and the completion of the bonding, and the positional accuracy of the wiring deteriorates. In an outer shape cutting operation for finishing to a certain size after bonding, the optical fiber exposed from the end surface of the substrate is cut together with the base material. By laying the optical fiber, the flatness of the surface layer is lost and electrical wiring cannot be formed. No solutions have been reported for these problems. Therefore, an object of the present invention is to solve these problems and to provide an optoelectric composite substrate capable of high-density mounting of electrical and optical wirings, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、以下の手段を用いている。電気配線基板
の層間部に光配線を形成する。この手段として、例えば
光ファイバを使用する。この光ファイバには、予め熱硬
化樹脂が被覆されている。光ファイバを布線する為に
は、金属を光配線形状にエッチングする。この時、光配
線形状にエッチングした導体層と導体層の間隙幅を熱硬
化樹脂が被覆された光ファイバの径より狭くした場合
は、布線時に光ファイバを導体層と導体層の間隙に押し
込むことで仮固定し、光配線形状にエッチングした導体
層と導体層の間隙幅を熱硬化樹脂が被覆された光ファイ
バの径より広くした場合は、光ファイバを布線する際
に、光ファイバに被覆した熱硬化樹脂を部分的に溶着す
ることで、仮固定する。また、電気配線とともに上記の
方法で光配線を形成した複数の多層用銅張積層板をプリ
プレグにより接着する。接着後には、一定寸法に仕上げ
る外形切断作業において、基板端面から露出している光
ファイバが、基材とともに切断されるが、接着後の多層
板端面の熱硬化性樹脂部をエッチングすることで、端面
からファイバ芯線端部を再露出させる。
The present invention uses the following means in order to achieve the above object. Optical wiring is formed in the interlayer portion of the electric wiring board. As this means, for example, an optical fiber is used. This optical fiber is previously coated with a thermosetting resin. In order to wire an optical fiber, metal is etched into an optical wiring shape. At this time, if the gap between the conductor layers etched into the optical wiring shape is made narrower than the diameter of the optical fiber coated with the thermosetting resin, the optical fibers are pushed into the gap between the conductor layers and the conductor layers during wiring. If the gap between the conductor layers that are temporarily fixed and etched into the optical wiring shape is made wider than the diameter of the optical fiber coated with thermosetting resin, the optical fibers will be Temporary fixing is performed by partially welding the coated thermosetting resin. Further, a plurality of copper clad laminates for multilayer, on which optical wiring is formed by the above method, are bonded together with electric wiring by a prepreg. After bonding, in the outer shape cutting work to finish to a certain size, the optical fiber exposed from the substrate end surface is cut together with the base material, but by etching the thermosetting resin portion of the end surface of the multilayer board after bonding, Re-expose the end of the fiber core wire from the end face.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1〜図11は、本発明の光電気
複合基板とその製造方法を示す図である。同図におい
て、光電気複合基板は多層用銅張積層板1,4とプリプ
レグ8とから構成されている。多層用銅張積層板1,4
の表裏両面には、銅箔2,3及び5,6が形成されてい
る。基板1の銅箔2には光ファイバ用溝が形成してあ
り、該溝には光ファイバ7が基板1とプリプレグ8とで
挟むようにして設けられている。光ファイバ7は、熱硬
化性樹脂が被覆されており、溝に押し込むことで仮固定
され、熱硬化性樹脂の性質を利用して基板1の銅箔2に
密着固定される。光電気複合基板には孔9が形成されて
おり、その孔の表面には銅めっき10が形成されてい
る。11は基板の最上面に形成された導体回路パターン
である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 11 are views showing an optoelectric composite substrate of the present invention and a method of manufacturing the same. In the figure, the opto-electric composite substrate is composed of multilayer copper clad laminates 1 and 4 and a prepreg 8. Multi-layered copper clad laminate 1,4
Copper foils 2, 3 and 5, 6 are formed on both front and back surfaces. An optical fiber groove is formed in the copper foil 2 of the substrate 1, and an optical fiber 7 is provided in the groove so as to be sandwiched between the substrate 1 and the prepreg 8. The optical fiber 7 is coated with a thermosetting resin, is temporarily fixed by being pushed into the groove, and is tightly fixed to the copper foil 2 of the substrate 1 by utilizing the property of the thermosetting resin. A hole 9 is formed in the optoelectric composite substrate, and copper plating 10 is formed on the surface of the hole. Reference numeral 11 is a conductor circuit pattern formed on the uppermost surface of the substrate.

【0009】以下、その基板の製造方法について説明す
る。まず、図1と図2に示す多層用銅張積層板1,4を
準備する。次に、以下の工程を行う。すなわち、 多層用銅張積層板1,4の銅箔2,5をフォトエッチ
ング法等により光配線形状に銅を除去し、図3、図4の
如く形成する。光配線形状に形成した銅と銅の間隙幅
は、熱硬化性樹脂が被覆された光ファイバの径より狭く
なるように調整する。光配線形成と同時に、銅箔2と銅
箔5に電気配線を形成してもよい。 光配線形状に銅を除去した部分に熱硬化性樹脂が被覆
された光ファイバ7を布線する。光ファイバ7は、銅と
銅の間隙に押し込むことで、仮固定することができる。
これは光ファイバに被覆された熱硬化樹脂が半硬化の状
態にあり、粘性があるため、押し込むことで、充分に銅
に密着されることによる。これにより、接着が完了する
まで、光ファイバは動くことはなく、充分な位置精度が
得られる。 図5に示すように、プリプレグ8を用いて、多層用銅
張積層板を真空ホットプレス等で積層接着させ、図6、
図7の如く形成する。積層接着時には、光ファイバ7に
被覆された熱硬化性樹脂が加熱により溶融され、光ファ
イバ7と光配線形状に形成した銅箔2との隙間を埋める
ため、積層ボイドと呼ばれる樹脂未充填の発生を防ぐこ
とができる。もちろん、高多層化を行うため、多層用銅
張積層板を3枚以上用いて高多層化してもよい。また、
最外層に銅箔のみ用いてプリプレグにより貼り付ける構
造でもよい。 積層接着終了後は、図8に示すように、一定寸法に仕
上げる外形切断作業を行う。この時、基材とともに基板
端面から露出している光ファイバ7(図7に示す )の一
部が切断されるが、後述する工程において再度露出さ
せる。 図9に示すように、基板の表裏接続を行うため、所望
部にNCドリル等で孔9あけを行う。 図10に示すように、孔9及び銅箔6,3の表面には
めっき触媒を付与し、周知の方法で銅めっき10を施
す。 図11に示すように、表層の導体回路パターン11の
形成等を行う。この時、多層板端面の熱硬化性樹脂部を
エッチングし、端面からファイバ芯線端部を露出させ
る。 図1の光電気複合基板の製造工程において、図1と図2
に示す多層用銅張積層板を用意した。多層用銅張積層板
としては、ガラス布基材エポキシ樹脂銅張積層板を用い
た。銅箔2の厚さは35μm、70μm、105μmの
3種類を選択した。光ファイバ7は直径125μmを使
用し、熱硬化性エポキシ樹脂を厚さ20μmで被覆し
た。図3の銅箔除去はフォトエッチング法を用いた。光
配線形状に形成する銅と銅の間隙幅は、130μm、1
40μm、150μm、160μmの4種類を選択し
た。次に光ファイバ7を銅と銅の間隙に押し込みながら
布線し、0.1mmの厚さのプリプレグ8を3枚重ね、
真空ホットプレスにて積層接着した。以降、外形切断、
穴あけ、めっき、外層回路形成を行い、多層板端面の熱
硬化性樹脂部をエッチングし、端面からファイバ芯線端
部を露出させた。各々の条件において、光ファイバの布
線位置ずれ、光ファイバ周辺の積層ボイドと呼ばれる樹
脂未充填、表層回路形成品質に影響を与える光ファイバ
埋め込みによる基板表面凹凸についての評価を行った。
その結果、銅箔厚70μmでは間隙幅140μm以上、
銅箔厚105μmでは間隙幅130μm以上にて良好な
品質を得られることを確認した図12〜図17は、本発
明の他の製造方法を示す図である。図12〜図17にお
いて、図1〜図11と同一部分には同一符号を付す。図
2の光電気複合基板の製造工程において、図12と図1
3に示す多層用銅張積層板を用意した。多層用銅張積層
板としては、ガラス布基材エポキシ樹脂銅張積層板を用
いた。銅箔9の厚さは35μm、70μm、105μm
の3種類を選択した。光ファイバ7は直径125μmを
使用し、熱硬化性エポキシ樹脂を厚さ20μmで被覆し
た。図14の銅箔除去はフォトエッチング法を用いた。
光配線形状に形成する銅と銅の間隙幅は、180μm、
190μm、200μm、210μm、220μmの5
種類を選択した。次に光ファイバ7を布線し、熱をかけ
て被覆熱硬化性樹脂を部分的に溶着させ、0.1mmの
厚さのプリプレグ8を3枚重ね、真空ホットプレスにて
積層接着した。各々の条件において、光ファイバの布線
位置ずれ、光ファイバ周辺の積層ボイドと呼ばれる樹脂
未充填、表層回路形成品質に影響を与える光ファイバ埋
め込みによる基板表面凹凸についての評価を行った。そ
の結果、銅箔厚70μmから105μm、間隙幅180
μm以上にて良好な品質を得られることを確認した。
尚、図12〜図17に示すように光配線形状に形成した
銅と銅の間隙幅を熱硬化性樹脂が被覆された光ファイバ
の径より広くなるように調整した場合は、光ファイバ7
の布線において被覆された熱硬化性樹脂を部分的に溶着
することで、仮固定できるため、接着が完了するまで、
光ファイバは動くことはなく、充分な位置精度が得られ
る。また、光配線形状に銅を除去する工程においては、
完全に銅を除去しない様にし、銅をU字形状に形成して
もよい。更に、光ファイバの代わりに円筒形の筒を布線
し、その後に光ファイバをこの筒に通してもよい。本実
施例では、導体層に銅箔を用いた多層用銅張積層板を例
に挙げたが、導電性がある金属箔であればよく、アルミ
ニウム、鉄などが挙げられる。特に導体層の厚さを厚く
することで、光ファイバ径との差がなくなるため、表層
に光ファイバ布線による突起発生がなく、平坦性が保て
るため、表層の電気配線が形成できる。また、多層用銅
張積層板の絶縁層を構成する基材としては、ガラス織
布、ガラス不織布などが使用でき、前記基材に含浸させ
る熱硬化性樹脂としては、エポキシ樹脂系、フェノール
樹脂系、ポリイミド樹脂系などが使用可能である。更
に、プリプレグは、ガラス繊維の基材に、エポキシ樹脂
系、フェノール樹脂系、ポリイミド樹脂系などを含浸
し、樹脂を半硬化状態にとしたものであり、使用にあた
っては、多層用銅張積層板の絶縁層と同種のものを使用
するのが望ましい。
The method of manufacturing the substrate will be described below. First, the multilayer copper clad laminates 1 and 4 shown in FIGS. 1 and 2 are prepared. Next, the following steps are performed. That is, copper is removed from the copper foils 2 and 5 of the multilayer copper clad laminates 1 and 4 into an optical wiring shape by a photoetching method or the like to form as shown in FIGS. The gap width between the copper formed in the optical wiring shape is adjusted to be narrower than the diameter of the optical fiber coated with the thermosetting resin. At the same time when the optical wiring is formed, the electric wiring may be formed on the copper foil 2 and the copper foil 5. The optical fiber 7 in which the copper is removed in the optical wiring shape and the thermosetting resin is coated is laid. The optical fiber 7 can be temporarily fixed by pushing it into the gap between the copper.
This is because the thermosetting resin coated on the optical fiber is in a semi-cured state and is viscous, so that it can be sufficiently adhered to copper by being pushed. As a result, the optical fiber does not move until the bonding is completed, and sufficient positional accuracy can be obtained. As shown in FIG. 5, using a prepreg 8, a multilayer copper clad laminate is laminated and bonded by a vacuum hot press or the like, and as shown in FIG.
It is formed as shown in FIG. At the time of stacking and bonding, the thermosetting resin coated on the optical fiber 7 is melted by heating and fills the gap between the optical fiber 7 and the copper foil 2 formed in the optical wiring shape, so that resin unfilling called stacking void occurs. Can be prevented. Of course, in order to increase the number of layers, three or more copper clad laminates for multilayer may be used to increase the number of layers. Also,
A structure may be used in which only the copper foil is used for the outermost layer and the prepreg is used for attachment. After the lamination and adhesion is completed, as shown in FIG. 8, an outer shape cutting operation for finishing to a certain size is performed. At this time, a part of the optical fiber 7 (shown in FIG. 7) exposed from the end face of the substrate along with the base material is cut, but is exposed again in the step described later. As shown in FIG. 9, in order to connect the front and back of the substrate, a hole 9 is made in a desired portion with an NC drill or the like. As shown in FIG. 10, a plating catalyst is applied to the surfaces of the holes 9 and the copper foils 6 and 3, and the copper plating 10 is applied by a known method. As shown in FIG. 11, the surface conductor circuit pattern 11 is formed. At this time, the thermosetting resin portion on the end face of the multilayer plate is etched to expose the end of the fiber core wire from the end face. 1 and 2 in the manufacturing process of the opto-electric composite substrate of FIG.
The copper clad laminate for multilayer shown in was prepared. A glass cloth-based epoxy resin copper clad laminate was used as the multilayer copper clad laminate. The thickness of the copper foil 2 was selected from 35 μm, 70 μm, and 105 μm. The optical fiber 7 has a diameter of 125 μm and is coated with a thermosetting epoxy resin to a thickness of 20 μm. The copper foil in FIG. 3 was removed by photoetching. The width of the gap between copper formed in the optical wiring shape is 130 μm, 1
Four types of 40 μm, 150 μm and 160 μm were selected. Next, the optical fiber 7 is laid while pushing it into the gap between the copper, and three 0.1 mm thick prepregs 8 are stacked,
It was laminated and adhered by a vacuum hot press. After that, the outer shape cutting,
Drilling, plating, and outer layer circuit formation were performed, and the thermosetting resin portion on the end face of the multilayer board was etched to expose the end of the fiber core wire from the end face. Under each condition, the misalignment of the wiring of the optical fiber, the resin non-filling called laminated void around the optical fiber, and the substrate surface unevenness due to the optical fiber embedding which affects the surface circuit formation quality were evaluated.
As a result, when the copper foil thickness is 70 μm, the gap width is 140 μm or more,
It is confirmed that good quality can be obtained when the gap width is 130 μm or more when the copper foil thickness is 105 μm, and FIGS. 12 to 17 are views showing another manufacturing method of the present invention. 12 to 17, the same parts as those in FIGS. 1 to 11 are designated by the same reference numerals. 12 and 1 in the process of manufacturing the optoelectronic composite substrate of FIG.
The multilayer copper clad laminate shown in 3 was prepared. A glass cloth-based epoxy resin copper clad laminate was used as the multilayer copper clad laminate. The thickness of the copper foil 9 is 35 μm, 70 μm, 105 μm
3 types were selected. The optical fiber 7 has a diameter of 125 μm and is coated with a thermosetting epoxy resin to a thickness of 20 μm. The copper foil removal in FIG. 14 uses a photo-etching method.
The gap width between copper formed in the optical wiring shape is 180 μm,
190μm, 200μm, 210μm, 220μm 5
I chose the type. Next, the optical fiber 7 was laid, and heat was applied to partially weld the coated thermosetting resin, three prepregs 8 having a thickness of 0.1 mm were stacked, and laminated and bonded by a vacuum hot press. Under each condition, the misalignment of the wiring of the optical fiber, the resin non-filling called laminated void around the optical fiber, and the substrate surface unevenness due to the optical fiber embedding which affects the surface circuit formation quality were evaluated. As a result, the copper foil thickness is 70 μm to 105 μm, and the gap width is 180
It was confirmed that good quality can be obtained when the thickness is at least μm.
In addition, when the gap width between copper formed in the optical wiring shape as shown in FIGS. 12 to 17 is adjusted to be wider than the diameter of the optical fiber coated with the thermosetting resin, the optical fiber 7
By partially welding the thermosetting resin covered in the wiring of, it is possible to temporarily fix, so until the adhesion is completed,
The optical fiber does not move, and sufficient positional accuracy can be obtained. Also, in the step of removing copper into the optical wiring shape,
The copper may be formed in a U-shape without completely removing the copper. Further, instead of the optical fiber, a cylindrical tube may be wired, and then the optical fiber may be passed through this tube. In this embodiment, a multilayer copper clad laminate using a copper foil for the conductor layer is given as an example, but any conductive metal foil may be used, such as aluminum or iron. In particular, by increasing the thickness of the conductor layer, there is no difference from the diameter of the optical fiber, so that no protrusion is generated on the surface layer due to the wiring of the optical fiber and the flatness can be maintained, so that the electric wiring of the surface layer can be formed. Further, as the base material constituting the insulating layer of the multilayer copper-clad laminate, glass woven cloth, glass non-woven cloth, etc. can be used, and as the thermosetting resin impregnated into the base material, epoxy resin type, phenol resin type , Polyimide resin type, etc. can be used. Furthermore, the prepreg is made by impregnating a glass fiber base material with an epoxy resin type, a phenol resin type, a polyimide resin type, etc. so that the resin is in a semi-cured state. It is desirable to use the same type of insulating layer as described above.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、高
多層基板の各層間で同様の光配線を形成することで、光
配線の高密度化も可能となる。
As described above, according to the present invention, the density of optical wiring can be increased by forming the same optical wiring between the layers of the high-multilayer substrate.

【0011】また、本発明の製造方法によれば、プリン
ト配線板基板の層間部に光配線を形成が可能になる。こ
れにより、プリント配線板表裏へ光ファイバを布線する
必要がなくなり、電子部品の実装領域が拡大できる。
Further, according to the manufacturing method of the present invention, it is possible to form the optical wiring in the interlayer portion of the printed wiring board substrate. As a result, it is not necessary to wire the optical fiber to the front and back of the printed wiring board, and the mounting area for electronic components can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図2】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図3】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 3 is a cross-sectional view showing an embodiment of a method for manufacturing an optoelectric composite substrate of the present invention.

【図4】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図5】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 5 is a cross-sectional view showing an example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図6】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 6 is a cross-sectional view showing one example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図7】本発明の光電気複合基板の製造方法の一実施例
を示す斜視図である。
FIG. 7 is a perspective view showing an embodiment of a method for manufacturing an optoelectric composite substrate of the present invention.

【図8】本発明の光電気複合基板の製造方法の一実施例
を示す斜視図である。
FIG. 8 is a perspective view showing an embodiment of a method for manufacturing an optoelectric composite substrate of the present invention.

【図9】本発明の光電気複合基板の製造方法の一実施例
を示す断面図である。
FIG. 9 is a cross-sectional view showing an example of a method for manufacturing an optoelectric composite substrate of the present invention.

【図10】本発明の光電気複合基板とその製造方法の一
実施例を示す断面図である。
FIG. 10 is a cross-sectional view showing an embodiment of the optoelectronic composite substrate and the method for manufacturing the same according to the present invention.

【図11】本発明の光電気複合基板とその製造方法の一
実施例を示す斜視図である。
FIG. 11 is a perspective view showing an embodiment of an optoelectric composite substrate and a method for manufacturing the same according to the present invention.

【図12】本発明の他の光電気複合基板の製造方法の他
の実施例を示す断面図である。
FIG. 12 is a cross-sectional view showing another embodiment of the method of manufacturing another optoelectric composite substrate of the present invention.

【図13】本発明の他の光電気複合基板の製造方法の他
の実施例を示す断面図である。
FIG. 13 is a cross-sectional view showing another embodiment of the method for manufacturing another optoelectric composite substrate of the present invention.

【図14】本発明の他の光電気複合基板の製造方法の他
の実施例を示す断面図である。
FIG. 14 is a cross-sectional view showing another embodiment of the method for manufacturing another optoelectric composite substrate of the present invention.

【図15】本発明の他の光電気複合基板の製造方法の他
の実施例を示す断面図である。
FIG. 15 is a cross-sectional view showing another embodiment of the method of manufacturing another optoelectric composite substrate of the present invention.

【図16】本発明の他の光電気複合基板の製造方法の他
の実施例を示す断面図である。
FIG. 16 is a cross-sectional view showing another embodiment of the method for manufacturing another optoelectric composite substrate of the present invention.

【図17】本発明の他の光電気複合基板とその製造方法
の他の実施例を示す断面図である。
FIG. 17 is a cross-sectional view showing another embodiment of the optoelectric composite substrate and the manufacturing method thereof according to the present invention.

【符号の説明】[Explanation of symbols]

1,4 多層用銅張積層板絶縁層 2,3,5,6,9 銅箔 7 光ファイバ(熱硬化性樹脂被覆) 8 プリプレグ 9 孔 10 めっき 11 導体回路パターン 1,4 Multilayer copper clad laminate insulation layer 2,3,5,6,9 copper foil 7 Optical fiber (thermosetting resin coating) 8 prepreg 9 holes 10 plating 11 Conductor circuit pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 尚樹 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所通信事業部内 Fターム(参考) 2H038 CA52 5E338 AA03 CD40 5E346 AA15 CC04 CC06 CC09 CC10 CC32 CC34 DD02 DD32 EE01 FF01 HH25    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naoki Nishimura             216 Totsuka Town, Totsuka Ward, Yokohama City, Kanagawa Prefecture             Ceremony Company Hitachi Ltd. Communication Division F-term (reference) 2H038 CA52                 5E338 AA03 CD40                 5E346 AA15 CC04 CC06 CC09 CC10                       CC32 CC34 DD02 DD32 EE01                       FF01 HH25

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】多層銅張積層基板からなる配線基板の層間
部に光配線を形成したことを特徴とした光電気複合基
板。
1. An optoelectric composite substrate, wherein optical wiring is formed in an interlayer portion of a wiring substrate made of a multilayer copper clad laminated substrate.
【請求項2】請求項1記載の光配線が、光ファイバであ
ることを特徴とした光電気複合基板。
2. An optoelectric composite substrate, wherein the optical wiring according to claim 1 is an optical fiber.
【請求項3】請求項2において、上記光ファイバが予め
熱硬化樹脂を被覆していることを特徴とした光電気複合
基板。
3. The optoelectric composite substrate according to claim 2, wherein the optical fiber is previously coated with a thermosetting resin.
【請求項4】請求項3の光電気複合基板において、上記
多層銅張基板の銅からなる導体層の一部に上記光ファイ
バを固定するエッチング溝を形成し該溝に上記光ファイ
バを布線したことを特徴とした光電気複合基板。
4. The optoelectric composite substrate according to claim 3, wherein an etching groove for fixing the optical fiber is formed in a part of the copper conductor layer of the multilayer copper clad substrate, and the optical fiber is laid in the groove. An opto-electric composite substrate characterized by the above.
【請求項5】請求項4の上記、エッチングした部分の断
面形状がU字形状をしたことを特徴とした光電気複合基
板。
5. An optoelectric composite substrate according to claim 4, wherein the etched portion has a U-shaped cross section.
【請求項6】請求項4又は5の光電気複合基板におい
て、上記光配線形状にエッチングした導体層と導体層の
間隙幅を熱硬化樹脂が被覆された上記光ファイバの径よ
り狭いことを特徴とした光電気複合基板。
6. The optoelectric composite substrate according to claim 4 or 5, wherein a conductor layer etched into the shape of the optical wiring and a gap width between the conductor layers are narrower than a diameter of the optical fiber coated with a thermosetting resin. Opto-electric composite substrate.
【請求項7】請求項4又は5の光電気複合基板におい
て、上記光配線形状にエッチングした導体層と導体層の
間隙幅を熱硬化樹脂が被覆された上記光ファイバの径よ
り広くことを特徴とした光電気複合基板。
7. The optoelectric composite substrate according to claim 4 or 5, wherein a conductor layer etched into the optical wiring shape and a gap width between the conductor layers are wider than a diameter of the optical fiber coated with a thermosetting resin. Opto-electric composite substrate.
【請求項8】請求項6の光電気複合基板において、上記
光ファイバを上記導体層と導体層の間隙に押し込むこと
で仮固定することを特徴とした光電気複合基板の光ファ
イバの布線方法。
8. The method for wiring an optical fiber of an optoelectric composite substrate according to claim 6, wherein the optical fiber is temporarily fixed by being pushed into a gap between the conductor layers. .
【請求項9】請求項7の光電気複合基板において、上記
光ファイバに被覆した熱硬化性樹脂を、部分的に溶着す
ることで仮固定することを特徴とした光電気複合基板の
光ファイバの布線方法。
9. The optical / electrical composite substrate according to claim 7, wherein the thermosetting resin coated on the optical fiber is temporarily fixed by partially welding. Wiring method.
【請求項10】光電気配線板の製造方法において、複数
の多層用銅張積層板に電気配線と光配線形状をエッチン
グにて形成し、この後、光配線形状に形成した導体層間
に光ファイバを布線し、仮固定し、この多層用銅張積層
板をプリプレグにより接着することを特徴とした光電気
複合基板の製造方法。
10. A method of manufacturing an optical / electrical wiring board, wherein electric wirings and optical wiring shapes are formed on a plurality of copper clad laminates for multilayer by etching, and then optical fibers are formed between the conductor layers formed in the optical wiring shape. Is wired, temporarily fixed, and the copper clad laminate for multilayer is adhered by a prepreg.
【請求項11】請求項10において、接着後の多層板端面
の熱硬化性樹脂部をエッチングし、端面からファイバ芯
線端部を露出させたことを特徴とする光電気複合基板の
製造方法。
11. The method of manufacturing an optoelectric composite substrate according to claim 10, wherein the thermosetting resin portion of the end face of the multilayer board after adhesion is etched to expose the end of the fiber core wire from the end face.
【請求項12】請求項10において、光ファイバの代わり
に円筒形状の配管を布線し、必要時に光ファイバを配管
内に挿入することを特徴とした光電気複合基板の製造方
法。
12. The method of manufacturing an optoelectric composite substrate according to claim 10, wherein a cylindrical pipe is wired instead of the optical fiber, and the optical fiber is inserted into the pipe when necessary.
JP2001372151A 2001-12-06 2001-12-06 Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same Pending JP2003172828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372151A JP2003172828A (en) 2001-12-06 2001-12-06 Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372151A JP2003172828A (en) 2001-12-06 2001-12-06 Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003172828A true JP2003172828A (en) 2003-06-20

Family

ID=19181091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372151A Pending JP2003172828A (en) 2001-12-06 2001-12-06 Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003172828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669958B1 (en) 2005-04-04 2007-01-16 삼성전기주식회사 Method of forming optical waveguide in printed circuit board and printed circuit board using same
US7350295B2 (en) * 2002-12-24 2008-04-01 Samsung Electro-Mechanics Co., Ltd. Method of fabricating multi-layered printed circuit board for optical waveguides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350295B2 (en) * 2002-12-24 2008-04-01 Samsung Electro-Mechanics Co., Ltd. Method of fabricating multi-layered printed circuit board for optical waveguides
KR100669958B1 (en) 2005-04-04 2007-01-16 삼성전기주식회사 Method of forming optical waveguide in printed circuit board and printed circuit board using same

Similar Documents

Publication Publication Date Title
US6872436B2 (en) Method for manufacturing printed wiring substrates, metal plate for use in manufacturing printed wiring substrates, and multi-printed wiring-substrate panel
CA2030826C (en) Composite circuit board with thick embedded conductor and method of manufacturing the same
KR20110122811A (en) Circuit board and method of manufacturing the circuit board
CN111901987B (en) Circuit board with embedded heat conductor and preparation method thereof
EP0405482B1 (en) Improved wire scribed circuit boards and methods of their manufacture
JP2009290193A (en) Rigid flexible multilayer printed wiring board and its production method
JP4819033B2 (en) Multilayer circuit board manufacturing method
JP2002076578A (en) Printed wiring board and manufacturing method therefor
JP6643956B2 (en) Printed wiring board and manufacturing method thereof
JP2020161732A (en) Wiring board
JP3879158B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4363947B2 (en) Multilayer wiring circuit board and method for manufacturing the same
JP2003172828A (en) Photoelectric composite substrate, wiring method of optical fiber, and method of manufacturing the same
JP2007208229A (en) Manufacturing method of multilayer wiring board
US6492007B1 (en) Multi-layer printed circuit bare board enabling higher density wiring and a method of manufacturing the same
JPH1056267A (en) Multilayer printed wiring board and method of manufacturing the same
JP4705261B2 (en) Build-up multilayer printed wiring board
JP3645780B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP4742409B2 (en) Method for manufacturing printed wiring board
JPS62186594A (en) Multilayer printed wiring board and manufacture of the same
JP2020161729A (en) Wiring board
JPH07221460A (en) Method for manufacturing multilayer printed wiring board
JP2005159201A (en) Wiring board and its manufacturing method
JP2010205809A (en) Multilayer printed wiring board and method of manufacturing the same
EP1259102B1 (en) Multi-layer printed circuit bare board enabling higher density wiring and a method of manufacturing the same