[go: up one dir, main page]

JP2003100292A - Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same - Google Patents

Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same

Info

Publication number
JP2003100292A
JP2003100292A JP2001288495A JP2001288495A JP2003100292A JP 2003100292 A JP2003100292 A JP 2003100292A JP 2001288495 A JP2001288495 A JP 2001288495A JP 2001288495 A JP2001288495 A JP 2001288495A JP 2003100292 A JP2003100292 A JP 2003100292A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
pitch
graphite
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001288495A
Other languages
Japanese (ja)
Inventor
Seiryu Nakayama
生龍 中山
Shizukuni Yada
静邦 矢田
Koichi Morita
浩一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2001288495A priority Critical patent/JP2003100292A/en
Publication of JP2003100292A publication Critical patent/JP2003100292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material for a negative electrode which is basically composed of artificial graphite and natural graphite and is applied to a lithium ion secondary battery of high capacity and high efficiency, and to provide the lithium ion secondary battery using the carbon material for the negative electrode. SOLUTION: At least either of the artificial graphite or natural graphite is mixed with a pitch in a weight ratio of 95/5 to 50/50 to form a mixture, which is then subjected to a heat treatment at a temperature of 600 to 800 deg.C under an inert atmosphere, thus obtaining a carbon material for the negative electrode. The carbon material is used for the negative electrode of the lithium ion secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池等に用いられる、負極用炭素材料及びその製造方
法並びに前記負極用炭素材料を用いたリチウムイオン二
次電池に関する。より詳細には、携帯電話、ノート型P
Cなどの小型携帯機器、情報機器等の電源用として特に
好適に用いられる、炭素材料とその製造方法並びに前記
炭素材料を用いたリチウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon material for a negative electrode used in a lithium ion secondary battery and the like, a method for producing the same, and a lithium ion secondary battery using the carbon material for a negative electrode. More specifically, mobile phones, notebook P
The present invention relates to a carbon material, a method for producing the same, and a lithium ion secondary battery using the carbon material, which are particularly preferably used as a power source for small portable devices such as C and information devices.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、負極に黒鉛
等の炭素材料、正極にLiCoO2、LiNiO2等のリチウム複合
酸化物を用いた非水系二次電池であり、その高容量・高
電圧の特徴を活かし、携帯電話、ノート型PC等の小型
携帯機器、情報機器の分野で急速に市場を広げている。
2. Description of the Related Art A lithium-ion secondary battery is a non-aqueous secondary battery that uses a carbon material such as graphite for its negative electrode and a lithium composite oxide such as LiCoO 2 or LiNiO 2 for its positive electrode. The market is rapidly expanding in the fields of small mobile devices such as mobile phones and notebook PCs, and information devices by taking advantage of the features of.

【0003】これらの分野においては、機器の高機能
化、小型軽量化のニーズから電池の高容量化が絶えず希
求されている。このため、負極の黒鉛系材料においても
高容量・高効率化の研究が進められている。
In these fields, there is a continuous demand for higher capacity batteries due to the need for higher functionality and smaller size and lighter weight of equipment. For this reason, research is being carried out to improve the capacity and efficiency of the negative electrode graphite material.

【0004】この流れの中、特開平4-368778号公報、特
開平4-370662号公報、特開平5-94838号公報、特開平5-1
21066号公報、特開平9-213328号公報などでは、黒鉛粒
子の表面を非晶質炭素で被覆した炭素材料が提案されて
いる。これらの表面改質黒鉛系材料は、電解液の分解を
押さえるので、電池容量の増加、サイクル特性の改善な
どに対して有効である。
In this flow, JP-A-4-368778, JP-A-4-370662, JP-A-5-94838, and JP-A-5-1
In Japanese Patent No. 21066, Japanese Patent Laid-Open No. 9-213328, and the like, a carbon material in which the surface of graphite particles is coated with amorphous carbon is proposed. These surface-modified graphite-based materials suppress decomposition of the electrolytic solution, and are effective for increasing battery capacity and improving cycle characteristics.

【0005】特開平4-368778号公報記載の技術によれ
ば、炭化水素ガスの熱分解によって炭素被覆層を形成す
る技術が、特開平4-370662号公報、特開平5-94838号公
報、特開平5-121066号公報などには、液相の有機化合物
と黒鉛粒子とを混合して焼成する技術が、特開平8-2981
14号公報には液相の有機化合物と黒鉛粒子に芳香族系有
機溶媒を添加して粘度を調節した上で混合・加熱した
後、焼成する手法が記載されている。これら黒鉛表面を
非晶質炭素で被覆する技術は、800℃を超える高温で行
われるのが一般的である。
According to the technique described in JP-A-4-368778, a technique for forming a carbon coating layer by thermal decomposition of hydrocarbon gas is disclosed in JP-A-4-370662 and JP-A-5-94838. Japanese Patent Laid-Open No. 5-121066 discloses a technique of mixing a liquid phase organic compound and graphite particles and firing the mixture.
Japanese Patent Publication No. 14 describes a method of adding an aromatic organic solvent to a liquid phase organic compound and graphite particles, adjusting the viscosity, mixing and heating, and then firing. The technique of coating the surface of these graphites with amorphous carbon is generally performed at a high temperature exceeding 800 ° C.

【0006】[0006]

【発明が解決しようとする課題】上記、黒鉛系材料の表
面を炭素材料で被覆した黒鉛系炭素材料は、安価な天然
黒鉛、人造黒鉛を原料とし、かつ、黒鉛の理論容量であ
る372mAh/g近くの容量が高効率(85%以上)で得ら
れるため、リチウムイオン二次電池用負極として有用な
材料である。しかしながら、電池の高容量化が求められ
る昨今においては、これら炭素材料には、更なる高容量
化が望まれている。また、将来、大型リチウムイオン二
次電池に適用する場合、より製造容易であり、低コスト
な材料が必要となる。
The graphite-based carbon material obtained by coating the surface of the graphite-based material with the carbon material is made of inexpensive natural graphite or artificial graphite as a raw material, and has a theoretical capacity of 372 mAh / g. It is a material that is useful as a negative electrode for lithium-ion secondary batteries because it can obtain near capacity with high efficiency (85% or more). However, with the recent demand for higher capacity batteries, these carbon materials are required to have higher capacities. Further, in the future, when it is applied to a large-sized lithium ion secondary battery, a material that is easier to manufacture and that is low in cost is required.

【0007】本発明の目的は、人造黒鉛、天然黒鉛をベ
ースとした高容量かつ高効率なリチウムイオン二次電池
に好適に用いられる負極用炭素材料、及びこれを用いた
リチウムイオン二次電池を提供することに有る。さらに
本発明の目的は、人造黒鉛、天然黒鉛をベースとした低
コスト化が可能で、製造容易なリチウムイオン二次電池
用炭素材料の製造方法を提供することにある。
An object of the present invention is to provide a negative electrode carbon material which is suitable for a high capacity and high efficiency lithium ion secondary battery based on artificial graphite and natural graphite, and a lithium ion secondary battery using the same. It is in providing. A further object of the present invention is to provide a method for producing a carbon material for a lithium ion secondary battery, which is based on artificial graphite or natural graphite and can be manufactured at low cost and is easy to produce.

【0008】[0008]

【課題を解決するための手段】本発明の負極用炭素材料
は、人造黒鉛、天然黒鉛もしくはその混合物とピッチと
を、95/5〜50/50(重量比)で混合し、不活性雰囲気下6
00℃以上800℃以下で熱処理することにより得られる。
また、本発明の負極用炭素材料の製造方法は、人造黒
鉛、天然黒鉛もしくはその混合物と、常温で固体のピッ
チとを固相混合した後、不活性雰囲気下、600℃以上800
℃以下で熱処理する方法である。
The carbon material for a negative electrode of the present invention is prepared by mixing artificial graphite, natural graphite or a mixture thereof with pitch at 95/5 to 50/50 (weight ratio), and under an inert atmosphere. 6
It is obtained by heat treatment at a temperature of 00 ° C to 800 ° C.
Further, the method for producing a carbon material for a negative electrode of the present invention, artificial graphite, natural graphite or a mixture thereof, after solid phase mixing of solid pitch at room temperature, under an inert atmosphere, 600 ℃ or more 800
This is a method of heat treatment at a temperature of ℃ or less.

【0009】本発明のリチウムイオン二次電池は、上記
負極用炭素材料を負極として用いる。
The lithium ion secondary battery of the present invention uses the above carbon material for a negative electrode as a negative electrode.

【0010】[0010]

【発明の実施の形態】本発明の負極用炭素材料は、人造
黒鉛、天然黒鉛もしくはその混合物とピッチとを、重量
比95/5〜50/50で混合し、不活性雰囲気下、600℃以上80
0℃以下で熱処理する事により得られる。この炭素材料
は、黒鉛の理論容量372mAh/gを超える容量、かつ、85%
を超える効率を有する。また、本発明の炭素材料は、比
表面積が小さく、電解液に対して安定であり、さらに、
安価な人造黒鉛、天然黒鉛をベースとし、かつ、熱処理
温度が600℃以上800℃以下と低いため、コスト面に関し
ても、より優位な材料である。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon material for a negative electrode of the present invention is a mixture of artificial graphite, natural graphite or a mixture thereof and pitch at a weight ratio of 95/5 to 50/50, and 600 ° C. or more in an inert atmosphere 80
It can be obtained by heat treatment at 0 ° C or lower. This carbon material has a capacity exceeding the theoretical capacity of graphite of 372 mAh / g and 85%.
Has an efficiency exceeding. Further, the carbon material of the present invention has a small specific surface area and is stable to an electrolytic solution.
Since it is based on inexpensive artificial graphite and natural graphite and has a low heat treatment temperature of 600 ° C to 800 ° C, it is a more superior material in terms of cost.

【0011】本発明において、原料に用いる人造黒鉛及
び天然黒鉛は、特に限定はないが、例えば、黒鉛化MCMB
(メソカーボンマイクロビーズ)等の他の黒鉛系炭素材料
に比較して容量が大きく、安価であるものが特に好適に
用いられる。
In the present invention, the artificial graphite and natural graphite used as the raw material are not particularly limited, but for example, graphitized MCMB
Those having a larger capacity and lower cost than other graphite carbon materials such as (mesocarbon microbeads) are particularly preferably used.

【0012】また、原料の人造黒鉛及び天然黒鉛の平均
粒度は1〜50μmが好ましく、さらに好ましくは5〜35μ
mである。平均粒度が上限を超える場合、熱処理後、電
極加工のための粉砕が必要となり、粉砕により黒鉛粒子
に活性点が生じ、効率が低下する場合がある。また、下
限未満の場合、電極加工がし難く、電極強度等に問題を
生じるおそれがある。
The average particle size of the artificial graphite and natural graphite as the raw materials is preferably 1 to 50 μm, more preferably 5 to 35 μm.
m. When the average particle size exceeds the upper limit, it is necessary to pulverize for electrode processing after heat treatment, and the pulverization may cause active points in the graphite particles, which may reduce the efficiency. On the other hand, when the amount is less than the lower limit, it is difficult to process the electrode, and there is a possibility that problems may occur in the electrode strength and the like.

【0013】本発明に用いるピッチについては特に限定
されるものではないが、例えば、石炭系ピッチ、石油系
ピッチ、ナフタレンピッチなどが挙げられ、石油系ピッ
チが好ましく、石油系等方性ピッチがより好ましい。
The pitch used in the present invention is not particularly limited, and examples thereof include coal pitch, petroleum pitch, naphthalene pitch, and the like. Petroleum pitch is preferable, and petroleum isotropic pitch is more preferable. preferable.

【0014】これらピッチは、人造黒鉛、天然黒鉛もし
くはその混合物と混合し熱処理される。その混合方法
は、特に限定されるものではないが、例えば、(1)固
体状の粉状ピッチと人造黒鉛、天然黒鉛もしくはその混
合物を混合する、(2)加温等により液状のピッチと人
造黒鉛、天然黒鉛もしくはその混合物を混合する、ある
いは、(3)溶剤に溶解したピッチと人造黒鉛、天然黒
鉛もしくはその混合物を混合する方法が挙げられる。上
記例示の方法のうち、特に上記(1)等の、人造黒鉛、
天然黒鉛もしくはその混合物と固体のピッチとを常温で
固相混合する方法が、熱処理後の二次凝集も少なく、ま
た、製造操作が容易で好ましい。
These pitches are mixed with artificial graphite, natural graphite or a mixture thereof and heat treated. The mixing method is not particularly limited. For example, (1) solid powdery pitch and artificial graphite, natural graphite or a mixture thereof are mixed, (2) liquid pitch and artificial pitch by heating or the like. Examples thereof include a method of mixing graphite, natural graphite or a mixture thereof, or (3) a method of mixing pitch dissolved in a solvent with artificial graphite, natural graphite or a mixture thereof. Of the above-exemplified methods, artificial graphite such as (1) above,
A method in which natural graphite or a mixture thereof and solid pitch are solid-phase mixed at room temperature is preferable because secondary aggregation after heat treatment is small and the manufacturing operation is easy.

【0015】人造黒鉛、天然黒鉛もしくはその混合物
と、固体のピッチとを、常温で固相混合する場合、ピッ
チの平均粒度は1〜50μmが好ましく、さらに好ましく
は5〜35μmである。平均粒度が上限を超える場合、熱
処理後、電極加工のための粉砕が必要となり、粉砕によ
り黒鉛粒子に活性点が生じ、効率が低下する場合があ
る。また、下限未満の場合、ピッチの混合比にもよる
が、電極加工がし難く、電極強度等に問題を生じるおそ
れがある。
When artificial graphite, natural graphite or a mixture thereof and solid pitch are solid-phase mixed at room temperature, the average particle size of the pitch is preferably 1 to 50 μm, more preferably 5 to 35 μm. When the average particle size exceeds the upper limit, it is necessary to pulverize for electrode processing after heat treatment, and the pulverization may cause active points in the graphite particles, which may reduce the efficiency. Further, if it is less than the lower limit, it may be difficult to process the electrode and a problem may occur in the electrode strength and the like, depending on the pitch mixing ratio.

【0016】本発明において、人造黒鉛、天然黒鉛もし
くはその混合物と、ピッチとの混合比は、重量比で、95
/5〜50/50であり、より好ましくは90/10〜60/40であ
る。上記混合比は、ピッチの組成、軟化点等の性状、人
造黒鉛、天然黒鉛の比表面積、平均粒度等の性状、目標
とする容量・効率により、上記範囲内で適宜決定される
ものである。ピッチの混合量が上記範囲を下回る場合は
十分な容量が得られず、また、上記範囲を超える場合、
得られる材料の効率が低下するため好ましくない。
In the present invention, the mixing ratio of artificial graphite, natural graphite or a mixture thereof and pitch is 95% by weight.
/ 5 to 50/50, more preferably 90/10 to 60/40. The above mixing ratio is appropriately determined within the above range depending on the composition of pitch, properties such as softening point, properties such as specific surface area of artificial graphite and natural graphite, properties such as average particle size, and target capacity and efficiency. If the mixing amount of pitch is less than the above range, sufficient capacity cannot be obtained, and if it exceeds the above range,
It is not preferable because the efficiency of the obtained material decreases.

【0017】本発明においてピッチと人造黒鉛、天然黒
鉛もしくはその混合物との熱処理は窒素,アルゴン等の
不活性ガス気流中、不活性ガスの密閉状態、真空状態な
どの不活性雰囲気下、600℃以上800℃以下で行うが、好
ましくは600℃以上700℃以下である。熱処理温度が上記
範囲を超える場合、容量が低下し、また、上記範囲を下
回る場合、容量あるいは効率が低下するため好ましくな
い。
In the present invention, the heat treatment of pitch with artificial graphite, natural graphite or a mixture thereof is performed at 600 ° C. or higher in an inert gas stream such as nitrogen or argon, in an inert gas closed state, in an inert atmosphere such as a vacuum state. The temperature is 800 ° C or lower, preferably 600 ° C or higher and 700 ° C or lower. When the heat treatment temperature exceeds the above range, the capacity decreases, and when the heat treatment temperature falls below the above range, the capacity or efficiency decreases, which is not preferable.

【0018】熱処理における昇温速度は、特に限定され
ないが、例えば、1℃/hr〜300℃/hr程度の範囲から適宜
選択される。熱処理時間は、特に限定されないが、3時
間〜100時間程度が好ましい。上記のように、本発明の
熱処理は従来の被覆系炭素材料の処理温度(800℃を超
える温度)に比べ十分に低温であることから、設備費用
も安く、かつ、製造コストも安価である。
The heating rate in the heat treatment is not particularly limited, but is appropriately selected from the range of, for example, about 1 ° C./hr to 300 ° C./hr. The heat treatment time is not particularly limited, but is preferably about 3 hours to 100 hours. As described above, the heat treatment of the present invention is sufficiently lower than the treatment temperature (the temperature exceeding 800 ° C.) of the conventional coating carbon material, so that the facility cost and the manufacturing cost are low.

【0019】本発明においてピッチと人造黒鉛、天然黒
鉛もしくはその混合物の熱処理により得られる炭素材料
は、BET法による比表面積が、0.1m2/g以上10m2/
g以下であることが好ましく、より好ましくは0.1m2/
g以上5m2/g以下、さらに好ましくは0.1m2/g以上3
2/g以下である。
The carbon material obtained by heat treatment of pitch and artificial graphite, natural graphite or mixtures thereof in the present invention has a specific surface area by the BET method, 0.1 m 2 / g or more 10 m 2 /
It is preferably not more than g, more preferably 0.1 m 2 /
g or more and 5 m 2 / g or less, more preferably 0.1 m 2 / g or more 3
m 2 / g or less.

【0020】炭素材料の比表面積は、用いるピッチの軟
化点等の性状、人造黒鉛、天然黒鉛の比表面積、熱処理
温度等に応じて適宜コントロールすることが可能であ
り、比表面積が10m2/gを超える場合、得られる炭素材
料の効率が低下する傾向にある。
The specific surface area of the carbon material can be appropriately controlled according to the properties such as the softening point of the pitch used, the specific surface area of artificial graphite and natural graphite, the heat treatment temperature, etc., and the specific surface area is 10 m 2 / g. When it exceeds, the efficiency of the obtained carbon material tends to decrease.

【0021】本発明の炭素材料はリチウムイオン二次電
池用負極に用いることが可能である。以下において、本
発明の炭素材料を負極として用いるリチウムイオン二次
電池について説明する。
The carbon material of the present invention can be used for a negative electrode for a lithium ion secondary battery. The lithium ion secondary battery using the carbon material of the present invention as the negative electrode will be described below.

【0022】本発明の炭素材料を負極として用いるリチ
ウムイオン二次電池は、正極、本発明の炭素材料を用い
た負極、及び、リチウム塩を溶解した非水系電解質より
構成される。正極材料はリチウム系の正極材料であれ
ば、特に限定されず、リチウム複合コバルト酸化物、リ
チウム複合ニッケル酸化物、リチウム複合マンガン酸化
物、或いはこれらの混合物、さらにはこれら複合酸化物
に異種金属元素を一種以上添加した系等を用いることが
できる。
A lithium ion secondary battery using the carbon material of the present invention as a negative electrode comprises a positive electrode, a negative electrode using the carbon material of the present invention, and a non-aqueous electrolyte in which a lithium salt is dissolved. The positive electrode material is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, and further, a metal element different from these composite oxides. It is possible to use a system in which one or more of the above are added.

【0023】正極あるいは負極は、公知のバインダー、
導電剤などと混合した後、集電体上に活物質層を形成す
る。バインダーとしては、特に限定されず、ポリテトラ
フルオロエチレン、ポリフッ化ビニリデンなどのフッ素
系ポリマー、ポリエチレン、ポリプロピレンなどのポリ
オレフィン系のポリマー、合成ゴム類などを用いること
ができる。
The positive electrode or the negative electrode is a known binder,
After mixing with a conductive agent or the like, an active material layer is formed on the current collector. The binder is not particularly limited, and fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefin-based polymers such as polyethylene and polypropylene, and synthetic rubbers can be used.

【0024】また、電極を形成する方法としては、活物
質とバインダーとを混合したペーストを作製し、ドクタ
ーブレード、バーコーターなどにより集電体上に活物質
層を形成する方法、或いは活物質とバインダーとを混合
したものを成型器などに入れ、プレスなどにより成形体
とする方法などが挙げられる。ここで、集電体として
は、公知の銅、ニッケル、ステンレス、アルミ、チタン
などの金属の箔状、メッシュ、多孔質体などが挙げられ
る。
As a method for forming the electrode, a paste in which an active material and a binder are mixed is prepared, and an active material layer is formed on a current collector by a doctor blade, a bar coater or the like, or Examples thereof include a method in which a mixture with a binder is put in a molding machine or the like and a molded body is obtained by pressing or the like. Here, examples of the current collector include known foils of metal such as copper, nickel, stainless steel, aluminum, and titanium, meshes, and porous bodies.

【0025】また、リチウム塩を溶解した非水系電解質
としては、公知のリチウム塩を含む非水系電解質を使用
することができ、正極材料、負極材料、充電電圧等の使
用条件により適宜決定される。より具体的にはLiPF6、L
iBF4、LiClO4等のリチウム塩を、プロピレンカーボネー
ト、エチレンカーボネート、ジエチルカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、ジメ
トキシエタン、γ−ブチルラクトン、酢酸メチル、蟻酸
メチル、或いはこれら2種以上の混合溶媒等の有機溶媒
に溶解したもの等が例示される。
As the non-aqueous electrolyte in which the lithium salt is dissolved, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material and the charging voltage. More specifically, LiPF 6 , L
A lithium salt such as iBF 4 or LiClO 4 is mixed with propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these. Examples thereof include those dissolved in the organic solvent.

【0026】また、電解液(電解質)の濃度は特に限定
されるものではないが、一般的にO.5mol/lから2mol/lが
実用的であり、該電解液は当然のことながら、水分が10
0ppm以下のものを用いることが好ましい。なお、本明細
書で使用する非水系電解質とは、非水系電解液、有機電
解液を含む概念を意味するものであり、また、ゲル状又
は固体の電解質も含む概念を意味するものである。
The concentration of the electrolytic solution (electrolyte) is not particularly limited, but generally 0.5 to 2 mol / l is practical, and the electrolytic solution naturally has a moisture content. Is 10
It is preferable to use one having a content of 0 ppm or less. The non-aqueous electrolyte used in the present specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also a concept including a gel or solid electrolyte.

【0027】また、上記、電解液を保持するためのセパ
レーターとしては、公知の電気絶縁性の合成樹脂繊維、
ガラス繊維、天然繊維などの不織布あるいは織布、アル
ミナなどの粉末の成形体などが挙げられる。これらの中
でも、合成樹脂であるポリエチレン、ポリプロピレンな
どの不織布が品質の安定性などの点から好ましい。
Further, as the separator for holding the electrolytic solution, a known electrically insulating synthetic resin fiber,
Examples include non-woven fabrics or woven fabrics such as glass fibers and natural fibers, and powder compacts such as alumina. Among these, non-woven fabrics made of synthetic resins such as polyethylene and polypropylene are preferable in terms of quality stability.

【0028】これら合成樹脂の不織布には、電池が異常
発熱した場合に、セパレーターが熱により溶解して、正
極と負極との間を遮断する機能を付加したものがあり、
安全性の観点から、これらも好適に使用することができ
る。
Some of these synthetic resin non-woven fabrics have a function of separating the positive electrode and the negative electrode by melting the separator by heat when the battery abnormally heats up.
From the viewpoint of safety, these can also be preferably used.

【0029】セパレーターの厚みは、特に限定されず、
必要量の電解液を保持することが可能であり、かつ正極
と負極との短絡を防ぐことができればよく、通常0.01mm
〜1mm程度であり、好ましくは0.02mm〜0.05mm程度であ
る。
The thickness of the separator is not particularly limited,
It is only necessary to be able to hold the required amount of electrolyte and to prevent a short circuit between the positive electrode and the negative electrode, usually 0.01 mm
It is about 1 mm, preferably about 0.02 mm to 0.05 mm.

【0030】[0030]

【実施例】以下、実施例を挙げて本発明をさらに説明す
るが、本発明はこれら実施例により何ら限定されるもの
ではない。
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0031】<平均粒度の測定>レーザ回析式粒度分布測
定装置SALD-2000J((株)島津製作所製)を用いて測定
した。試料を分散剤を用いて水に超音波分散後測定を行
った。
<Measurement of Average Particle Size> Laser particle size distribution measuring device SALD-2000J (manufactured by Shimadzu Corporation) was used for measurement. The sample was ultrasonically dispersed in water using a dispersant and then measured.

【0032】<比表面積の測定>比表面積測定装置NOVA-1
200(ユアサアイオニクス社製)を用いて測定した。前
処理として試料を200℃で20分真空乾燥後、77Kで窒素の
等温線を測定し、得られた吸着等温線からBET法により
比表面積を求めた。
<Measurement of Specific Surface Area> Specific Surface Area Measuring Device NOVA-1
It measured using 200 (made by Yuasa Ionics). As a pretreatment, the sample was vacuum dried at 200 ° C for 20 minutes, the nitrogen isotherm was measured at 77K, and the specific surface area was determined by the BET method from the obtained adsorption isotherm.

【0033】<電気化学特性> (1)電極の試作 PVDFのN−メチル−2−ピロリドン(以下NMPと記す)溶
液(濃度6重量%)18.3gと炭素材料10gを乳鉢で10
分間混合し、さらに約0.5gのNMPを加え、30分間混合
後、電極スラリーを得た。電極スラリーを厚さ14μmの
銅箔に塗布し、乾燥、プレスにより、厚さ100μmの電
極を得た。電気化学的評価には1.5cm角(活物質量:約1
0mg/cm2)を用いた。 (2)評価セルの作成 評価セル(3極式)は1.5cm角(活物質量:約10mg/cm2
にカットした電極を作用極とし、対極、参照極には金属
リチウムフォイルを用いた。電解液はエチレンカーボネ
ート(EC)とエチルメチルカーボネート(EMC)を3:7体
積比で混合した溶媒に1mol/l LiPF6を溶解した溶液と
し、組み立てはドライボックス中で行った。 (3)容量及び効率の測定 充電は定電流-定電圧法(電流:50mA/g、電圧 1mV vs.L
i/Li+、12時間)、放電は定電流(2.0Vカットオフ)
とし、25℃で実施した。容量は放電容量にて評価し、効
率は[放電容量/充電容量]×100(%)で求めた。
<Electrochemical characteristics> (1) Electrode trial production PVDF in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) solution (concentration 6% by weight) 18.3 g and carbon material 10 g in a mortar 10
After mixing for about 1 minute, about 0.5 g of NMP was further added, and after mixing for 30 minutes, an electrode slurry was obtained. The electrode slurry was applied to a copper foil having a thickness of 14 μm, dried and pressed to obtain an electrode having a thickness of 100 μm. 1.5 cm square (amount of active material: approx. 1
0 mg / cm 2 ) was used. (2) Creation of evaluation cell The evaluation cell (3 pole type) is 1.5 cm square (active material amount: about 10 mg / cm 2 ).
The electrode cut into 2 was used as a working electrode, and metallic lithium foil was used as a counter electrode and a reference electrode. The electrolyte was a solution prepared by dissolving 1 mol / l LiPF 6 in a solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, and the assembly was performed in a dry box. (3) Measurement of capacity and efficiency Charge is constant current-constant voltage method (current: 50mA / g, voltage 1mV vs. L
i / Li + , 12 hours), constant discharge (2.0V cutoff)
And was carried out at 25 ° C. The capacity was evaluated by the discharge capacity, and the efficiency was calculated by [discharge capacity / charge capacity] × 100 (%).

【0034】〔実施例1〕天然黒鉛には比表面積4.1m2
/g、平均粒度27.2μmのものを、ピッチには軟化点265
℃の石油系等方性ピッチを使用した。ピッチ粉末30重量
部と天然黒鉛90重量部とを常温で固相混合した後、セラ
ミック製の皿に入れ、小型円筒型電気炉(炉心管内径10
0mm)を用いて熱処理を行った。昇温は室温から635℃
まで6時間で行い、635℃で4時間保持した後、続いて自
然冷却により、60℃まで冷却、炉から取り出した。ま
た、熱処理は常圧の窒素雰囲気で行い、窒素流量は0.5l
/minとした。熱処理で得られた負極用炭素材料は、目開
き45μmの篩を通し、評価用電極を作成した。平均粒度
(μm)、負極用炭素材料の比表面積(m2/g)、容量(m
Ah/g)、効率(%)を表1に示す。
Example 1 Natural graphite has a specific surface area of 4.1 m 2
/ g, average particle size 27.2 μm, pitch has a softening point of 265
A petroleum-based isotropic pitch at ℃ was used. After 30 parts by weight of pitch powder and 90 parts by weight of natural graphite are solid-phase mixed at room temperature, they are placed in a ceramic dish and placed in a small cylindrical electric furnace (core tube inner diameter 10
0 mm) was used for heat treatment. Temperature rise from room temperature to 635 ° C
The temperature was maintained at 635 ° C. for 4 hours, then naturally cooled to 60 ° C., and taken out of the furnace. The heat treatment is performed in a nitrogen atmosphere at normal pressure, and the nitrogen flow rate is 0.5 l.
/ min. The carbon material for negative electrode obtained by the heat treatment was passed through a sieve having an opening of 45 μm to prepare an evaluation electrode. Average particle size (μm), specific surface area of carbon material for negative electrode (m 2 / g), capacity (m
Ah / g) and efficiency (%) are shown in Table 1.

【0035】〔実施例2〕軟化点80℃の石炭系等方性ピ
ッチを使用する以外は実施例1と同様の操作を行い、負
極用炭素材料を得た。得られた負極用炭素材料を用いて
評価用電極を作成した。平均粒度、負極用炭素材料の比
表面積、容量、効率を表1に示す。
Example 2 A carbon material for a negative electrode was obtained in the same manner as in Example 1 except that a coal-based isotropic pitch having a softening point of 80 ° C. was used. An evaluation electrode was prepared using the obtained carbon material for a negative electrode. Table 1 shows the average particle size, the specific surface area of the carbon material for the negative electrode, the capacity, and the efficiency.

【0036】〔実施例3〕ピッチに軟化点265℃の石
油系ピッチを使用し、混合比をピッチ粉末10重量部と天
然黒鉛90重量部とする以外は実施例1と同様の操作を行
い、負極用炭素材料を得た。得られた負極用炭素材料を
用いて評価用電極を作成した。平均粒度、負極用炭素材
料の比表面積、容量、効率を表1に示す。
Example 3 The same operation as in Example 1 was carried out except that petroleum pitch having a softening point of 265 ° C. was used as the pitch and the mixing ratio was 10 parts by weight of pitch powder and 90 parts by weight of natural graphite. A carbon material for negative electrode was obtained. An evaluation electrode was prepared using the obtained carbon material for a negative electrode. Table 1 shows the average particle size, the specific surface area of the carbon material for the negative electrode, the capacity, and the efficiency.

【0037】〔実施例4〕ピッチに軟化点265℃の石
油系ピッチを使用し、混合比を、ピッチ粉末40重量部と
天然黒鉛60重量部とする以外は実施例1と同様の操作を
行い、負極用炭素材料を得た。得られた負極用炭素材料
を用いて評価用電極を作成した。平均粒度、負極用炭素
材料の比表面積、容量、効率を表1に示す。
Example 4 The same operation as in Example 1 was carried out except that petroleum pitch having a softening point of 265 ° C. was used as the pitch and the mixing ratio was 40 parts by weight of pitch powder and 60 parts by weight of natural graphite. A carbon material for negative electrode was obtained. An evaluation electrode was prepared using the obtained carbon material for a negative electrode. Table 1 shows the average particle size, the specific surface area of the carbon material for the negative electrode, the capacity, and the efficiency.

【0038】〔比較例1〕実施例1で用いた天然黒鉛のみ
を用いる以外は、実施例1と同様の操作を行い、比較用
の炭素材料を得た。得られた炭素材料を用いて評価用電
極を作成した。平均粒度、上記炭素材料の比表面積、容
量、効率を表1に示す。
[Comparative Example 1] A carbon material for comparison was obtained in the same manner as in Example 1 except that only the natural graphite used in Example 1 was used. An evaluation electrode was prepared using the obtained carbon material. Table 1 shows the average particle size, the specific surface area of the carbon material, the capacity, and the efficiency.

【0039】〔比較例2〕ピッチに軟化点265℃の石油系
ピッチを使用し、熱処理温度を1000℃とする以外は実施
例1と同様の操作を行い、比較用の炭素材料を得た。得
られた炭素材料を用いて評価用電極を作成した。平均粒
度、上記炭素材料の比表面積、容量、効率を表1に示
す。
Comparative Example 2 A carbon material for comparison was obtained in the same manner as in Example 1 except that petroleum pitch having a softening point of 265 ° C. was used as the pitch and the heat treatment temperature was 1000 ° C. An evaluation electrode was prepared using the obtained carbon material. Table 1 shows the average particle size, the specific surface area of the carbon material, the capacity, and the efficiency.

【0040】〔比較例3〕大阪ガス株式会社製黒鉛化MCM
Bを用いた以外は、実施例1と同様の操作を行い、比較
用の炭素材料を得た。得られた比較用の炭素材料を用い
て評価用電極を作成した。平均粒度、上記炭素材料の比
表面積、容量、効率を表1に示す。
[Comparative Example 3] Graphitized MCM manufactured by Osaka Gas Co., Ltd.
The same operation as in Example 1 was carried out except that B was used to obtain a carbon material for comparison. An evaluation electrode was prepared using the obtained carbon material for comparison. Table 1 shows the average particle size, the specific surface area of the carbon material, the capacity, and the efficiency.

【0041】[0041]

【表1】 [Table 1]

【0042】実施例1〜4によると、黒鉛とピッチを95/5
〜50/50(重量比)で混合し、不活性雰囲気下、600℃以
上800℃以下で熱処理する事により得られる炭素材料は
いずれも380mAh/g以上の容量で88%以上の効率が得られ
ることがわかる。また、負極用炭素材料が黒鉛のみであ
る場合、あるいは熱処理温度が所定の温度を逸脱した場
合は、黒鉛の理論容量372mAh/gを超えることができない
ことが明らかである。
According to Examples 1 to 4, graphite and pitch are 95/5.
Carbon materials obtained by mixing at ~ 50/50 (weight ratio) and heat-treating at 600 ℃ or more and 800 ℃ or less in an inert atmosphere can achieve 88% or more efficiency at a capacity of 380mAh / g or more. I understand. Further, it is clear that when the carbon material for the negative electrode is only graphite, or when the heat treatment temperature deviates from a predetermined temperature, the theoretical capacity of graphite cannot exceed 372 mAh / g.

【0043】[0043]

【発明の効果】以上のように、本発明の負極用炭素材料
は、人造黒鉛及び天然黒鉛の少なくともいずれかと、ピ
ッチとを、重量比95/5〜50/50で混合し、不活性雰囲気
下、600℃以上800℃以下で熱処理することにより得る構
成である。
As described above, the carbon material for a negative electrode of the present invention is prepared by mixing at least one of artificial graphite and natural graphite with pitch at a weight ratio of 95/5 to 50/50, and under an inert atmosphere. The structure is obtained by heat treatment at 600 ° C or higher and 800 ° C or lower.

【0044】それゆえ、人造黒鉛、天然黒鉛をベースと
した高容量かつ高効率なリチウムイオン二次電池に好適
に用いられる負極用炭素材料、及びこれを用いたリチウ
ムイオン二次電池を提供できるという効果を奏する。
Therefore, it is possible to provide a carbon material for a negative electrode which is suitable for a high capacity and high efficiency lithium ion secondary battery based on artificial graphite or natural graphite, and a lithium ion secondary battery using the same. Produce an effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 浩一 大阪府大阪市酉島5−11−151 大阪ガス ケミカル株式会社内 Fターム(参考) 4G046 CA00 CA07 CB08 CC02 CC03 5H029 AJ03 AJ14 AK03 AL07 AL08 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ28 HJ01 HJ07 HJ14 5H050 AA08 AA19 BA17 CA07 CA08 CA09 CB08 CB09 EA10 GA02 GA10 GA27 HA01 HA07 HA14   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichi Morita             Osaka Prefecture Osaka City Torishima Island 5-11-151 Osaka Gas             Within Chemical Co., Ltd. F-term (reference) 4G046 CA00 CA07 CB08 CC02 CC03                 5H029 AJ03 AJ14 AK03 AL07 AL08                       AM03 AM04 AM05 AM07 CJ02                       CJ08 CJ28 HJ01 HJ07 HJ14                 5H050 AA08 AA19 BA17 CA07 CA08                       CA09 CB08 CB09 EA10 GA02                       GA10 GA27 HA01 HA07 HA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 人造黒鉛及び天然黒鉛の少なくともいず
れか一方と、ピッチとを、重量比95/5〜50/50で混合
し、不活性雰囲気下、600℃以上800℃以下で熱処理する
ことにより得られる負極用炭素材料。
1. At least one of artificial graphite and natural graphite and pitch are mixed in a weight ratio of 95/5 to 50/50, and heat treated at 600 ° C. or higher and 800 ° C. or lower in an inert atmosphere. The obtained carbon material for negative electrodes.
【請求項2】 人造黒鉛及び天然黒鉛の少なくともいず
れか一方と、ピッチとを、重量比95/5〜50/50で混合
し、不活性雰囲気下、600℃以上700℃以下で熱処理する
ことにより得られる負極用炭素材料。
2. At least one of artificial graphite and natural graphite and pitch are mixed in a weight ratio of 95/5 to 50/50, and heat-treated at 600 ° C. or more and 700 ° C. or less in an inert atmosphere. The obtained carbon material for negative electrodes.
【請求項3】 人造黒鉛及び天然黒鉛の少なくともいず
れか一方と、ピッチとの混合比が、重量比として90/10
〜60/40である請求項1または請求項2に記載の負極用
炭素材料。
3. The mixing ratio of at least one of artificial graphite and natural graphite and pitch is 90/10 as a weight ratio.
The carbon material for a negative electrode according to claim 1 or 2, wherein the carbon material is 60/40.
【請求項4】 比表面積が0.1m2/g以上3m2/g以下で
あることを特徴とする請求項1〜3のいずれか1項に記
載の負極用炭素材料。
4. The carbon material for a negative electrode according to claim 1, which has a specific surface area of 0.1 m 2 / g or more and 3 m 2 / g or less.
【請求項5】 人造黒鉛及び天然黒鉛の少なくともいず
れか一方と、常温で固体であるピッチとを、固相混合し
た後、不活性雰囲気下、600℃以上800℃以下で熱処理す
ることを特徴とする負極用炭素材料の製造方法。
5. An artificial graphite and / or a natural graphite, and a pitch which is solid at room temperature are solid-phase mixed and then heat-treated at 600 ° C. or more and 800 ° C. or less in an inert atmosphere. A method for producing a carbon material for a negative electrode.
【請求項6】 人造黒鉛及び天然黒鉛の少なくともいず
れか一方と、常温で固体であるピッチとを、固相混合し
た後、不活性雰囲気下、600℃以上700℃以下で熱処理す
ることを特徴とする負極用炭素材料の製造方法。
6. At least one of artificial graphite and natural graphite, and a pitch which is solid at room temperature are solid-phase mixed, and then heat-treated at 600 ° C. or more and 700 ° C. or less in an inert atmosphere. A method for producing a carbon material for a negative electrode.
【請求項7】 請求項1〜4のいずれか1項に記載の負
極用炭素材料を負極に用いることを特徴とするリチウム
イオン二次電池。
7. A lithium ion secondary battery comprising the negative electrode carbon material according to claim 1 for a negative electrode.
JP2001288495A 2001-09-21 2001-09-21 Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same Pending JP2003100292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288495A JP2003100292A (en) 2001-09-21 2001-09-21 Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288495A JP2003100292A (en) 2001-09-21 2001-09-21 Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2003100292A true JP2003100292A (en) 2003-04-04

Family

ID=19111134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288495A Pending JP2003100292A (en) 2001-09-21 2001-09-21 Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2003100292A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044969A (en) * 2004-08-02 2006-02-16 Sumitomo Metal Ind Ltd Carbon powder and manufacturing method thereof
CN1314150C (en) * 2004-01-19 2007-05-02 陈闻杰 Modified natural graphite cell negative polar material and preparing method
WO2008093724A1 (en) 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. Carbon material and process for producing the carbon material
JP2008288153A (en) * 2007-05-21 2008-11-27 Sumitomo Metal Ind Ltd Carbon material powder and method for producing the same
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
US8038977B2 (en) 2008-02-06 2011-10-18 Chuo Denki Kogyo Co., Ltd. Carbon powder suitable as a negative electrode material for nonaqueous secondary batteries
CN103794790A (en) * 2012-10-30 2014-05-14 上海杉杉科技有限公司 Lithium ion battery composite graphite negative electrode material and preparation method thereof
KR20160053156A (en) 2014-10-31 2016-05-13 한국에너지기술연구원 Carbon electrode and method for manufacturing thereof
JP2017183205A (en) * 2016-03-31 2017-10-05 大阪ガスケミカル株式会社 Material for lithium secondary battery negative electrode and production method thereof
CN114514638A (en) * 2019-10-04 2022-05-17 株式会社Lg新能源 Spheroidized carbonaceous negative electrode active material, method for producing the same, and negative electrode and lithium secondary battery comprising the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314150C (en) * 2004-01-19 2007-05-02 陈闻杰 Modified natural graphite cell negative polar material and preparing method
JP2006044969A (en) * 2004-08-02 2006-02-16 Sumitomo Metal Ind Ltd Carbon powder and manufacturing method thereof
JP2012046419A (en) * 2007-01-31 2012-03-08 Chuo Denki Kogyo Co Ltd Method for producing carbon material
WO2008093724A1 (en) 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. Carbon material and process for producing the carbon material
JPWO2008093724A1 (en) * 2007-01-31 2010-05-20 住友金属工業株式会社 Carbon material and manufacturing method thereof
US8394530B2 (en) 2007-01-31 2013-03-12 Chuo Denki Kogyo Co., Ltd. Carbon material and a process for its manufacture
JP4840449B2 (en) * 2007-01-31 2011-12-21 中央電気工業株式会社 Carbon material and manufacturing method thereof
JP2008288153A (en) * 2007-05-21 2008-11-27 Sumitomo Metal Ind Ltd Carbon material powder and method for producing the same
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
US8038977B2 (en) 2008-02-06 2011-10-18 Chuo Denki Kogyo Co., Ltd. Carbon powder suitable as a negative electrode material for nonaqueous secondary batteries
CN103794790A (en) * 2012-10-30 2014-05-14 上海杉杉科技有限公司 Lithium ion battery composite graphite negative electrode material and preparation method thereof
KR20160053156A (en) 2014-10-31 2016-05-13 한국에너지기술연구원 Carbon electrode and method for manufacturing thereof
US9768442B2 (en) 2014-10-31 2017-09-19 Korea Institute Of Energy Research Carbon electrode and method for manufacturing thereof
JP2017183205A (en) * 2016-03-31 2017-10-05 大阪ガスケミカル株式会社 Material for lithium secondary battery negative electrode and production method thereof
CN114514638A (en) * 2019-10-04 2022-05-17 株式会社Lg新能源 Spheroidized carbonaceous negative electrode active material, method for producing the same, and negative electrode and lithium secondary battery comprising the same
US12431497B2 (en) 2019-10-04 2025-09-30 Lg Energy Solution, Ltd. Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
CN101515640B (en) Cathode and lithium ion secondary battery containing same
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
AU2008279196B2 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
JP2007335325A (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
KR20160141676A (en) Lithium ion secondary battery
JP2003132889A (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR102832010B1 (en) Composite graphite material and method for producing the same, secondary battery and device
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP2003100292A (en) Carbon material for negative electrode and manufacturing method thereof, and lithium ion secondary battery using the same
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2017075091A (en) Free carbon graphitized particles and process for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4335596B2 (en) Method for producing polycrystalline mesocarbon microsphere graphitized product
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
Triwibowo et al. Electrochemical performance of LiFe (1-x) MnxPO4 (x= 0, 0.10, 0.15, 0.2) synthesized by solid state process as cathode material for Li-ion battery
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2017183046A (en) Lithium ion secondary battery
TW202408926A (en) Non-graphitizable carbon, mixed carbon powder, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery