JP2003105533A - Method for producing transparent conductive film and transparent conductive film - Google Patents
Method for producing transparent conductive film and transparent conductive filmInfo
- Publication number
- JP2003105533A JP2003105533A JP2001305775A JP2001305775A JP2003105533A JP 2003105533 A JP2003105533 A JP 2003105533A JP 2001305775 A JP2001305775 A JP 2001305775A JP 2001305775 A JP2001305775 A JP 2001305775A JP 2003105533 A JP2003105533 A JP 2003105533A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- transparent conductive
- conductive film
- zno
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/251—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising zinc oxide [ZnO]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
Landscapes
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】
【課題】 下地層としてのa−Si層を結晶化させるこ
となく、かつドーピングした不純物の拡散を生じない透
明導電膜の製造方法、および約150℃の基板温度で低
抵抗であり、かつ膜厚100nm以下で高透過率を示す
透明導電膜を提供する。
【解決手段】 真空容器中において、膜材料となるIII
B族元素の酸化物またはIVB族元素の酸化物を1〜7重
量%添加したZnOターゲットを有するスパッタ源を、
基板と向き合わせて配置し、真空容器内に希ガスと水素
ガスとからなるプロセスガスを導入し、ZnOターゲッ
トに高周波を印加して放電を発生させ、ZnOターゲッ
ト表面より膜材料からなるスパッタ粒子を飛び出させ、
ZnOスパッタ粒子を水素雰囲気中で基板上に堆積させ
る。
PROBLEM TO BE SOLVED: To produce a transparent conductive film without crystallizing an a-Si layer as an underlayer and not causing diffusion of doped impurities, and a low resistance at a substrate temperature of about 150 ° C. And a transparent conductive film exhibiting high transmittance at a film thickness of 100 nm or less. SOLUTION: In a vacuum vessel, a film material III
A sputtering source having a ZnO target to which 1 to 7% by weight of an oxide of a Group B element or an oxide of a Group IVB element is added,
Arranged facing the substrate, a process gas consisting of a rare gas and a hydrogen gas is introduced into the vacuum vessel, a high frequency is applied to the ZnO target to generate a discharge, and sputter particles made of a film material are generated from the surface of the ZnO target. Let out,
Sputter ZnO particles are deposited on the substrate in a hydrogen atmosphere.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた電気伝導性
を有する透明導電膜の製造方法及び透明導電膜に関す
る。TECHNICAL FIELD The present invention relates to a method for producing a transparent conductive film having excellent electrical conductivity and a transparent conductive film.
【0002】[0002]
【従来の技術】例えば、アモルファスシリコン(以下a
−Siと表示)太陽電池の電極として透明導電膜が用い
られている。図7に示すように、従来のa−Si太陽電
池においては、ガラス基板101の上に表面透明電極と
して酸化錫(SnO2)からなる透明導電膜102を、
その一部の上にp層、i層、n層からなるa−Si層1
03を、その上に裏面透明電極として酸化インジウム・
酸化錫複合酸化物(ITO)からなる透明導電膜104
を順次積層し、更にその上に金属電極としてのアルミニ
ウム電極105を積層するとともに、別に集電電極とし
てのアルミニウム電極106が透明導電膜102の上に
形成されている。光107が基板101及び透明導電膜
102を介してa−Si層103に入射すると、a−S
i層103における光電変換により光起電力が発生する
ようになっている。2. Description of the Related Art For example, amorphous silicon (hereinafter a)
A transparent conductive film is used as an electrode of a solar cell. As shown in FIG. 7, in a conventional a-Si solar cell, a transparent conductive film 102 made of tin oxide (SnO 2 ) is used as a surface transparent electrode on a glass substrate 101.
A-Si layer 1 consisting of a p-layer, an i-layer and an n-layer on a part thereof
03, and indium oxide
Transparent conductive film 104 made of tin oxide composite oxide (ITO)
Are sequentially laminated, an aluminum electrode 105 as a metal electrode is further laminated thereon, and an aluminum electrode 106 as a collector electrode is separately formed on the transparent conductive film 102. When the light 107 enters the a-Si layer 103 through the substrate 101 and the transparent conductive film 102, a-S
Photoelectric power is generated by photoelectric conversion in the i layer 103.
【0003】透明導電膜102は、公知の熱化学的蒸着
法により形成され、その厚みは約1μmである。また、
透明導電膜102とa−Si層103との界面(膜が露
出している部分では表面)には0.1μm以下の凹凸が
形成されている。この凹凸は光起電力の増大、すなわち
発電効率の向上に大きく貢献するものである。その理由
は、ガラス基板101側から入射した光107は、透明
導電膜102とa−Si層103との界面の凹凸により
反射され難くなり、a−Si層103のなかに効率良く
取り込まれるからである。ここで、透明導電膜104
は、a−Si層103との界面に到達した長波長の光
の、a−Si層103への反射率を増加させ、さらに発
電効率を向上させるものである。The transparent conductive film 102 is formed by a known thermochemical vapor deposition method and has a thickness of about 1 μm. Also,
The interface between the transparent conductive film 102 and the a-Si layer 103 (the surface where the film is exposed) has irregularities of 0.1 μm or less. These irregularities greatly contribute to increase in photovoltaic power, that is, improvement in power generation efficiency. The reason is that the light 107 incident from the glass substrate 101 side is less likely to be reflected by the unevenness of the interface between the transparent conductive film 102 and the a-Si layer 103, and is efficiently taken into the a-Si layer 103. is there. Here, the transparent conductive film 104
Is to increase the reflectance of the long-wavelength light reaching the interface with the a-Si layer 103 to the a-Si layer 103 and further improve the power generation efficiency.
【0004】[0004]
【発明が解決しようとする課題】このような透明導電膜
104の材料として従来はITOが用いられていたが、
ITOは高価であるので、低コストの代替材料が各方面
から要望されている。これを受けて代替材料の候補の1
つとして酸化錫(ZnO)があげられている。Conventionally, ITO has been used as a material for the transparent conductive film 104.
Since ITO is expensive, low-cost alternative materials are being demanded from various fields. In response to this, one of the alternative material candidates
One of them is tin oxide (ZnO).
【0005】ZnOを製膜する方法の1つとして反応性
真空蒸着法がある。しかし、反応性真空蒸着法では1×
10-3Ω・cmの低抵抗の透明導電膜104を製造する
ことは可能であるが、基材を350℃以上の温度に加熱
する必要がある。また、膜厚も300nm以上としなけ
れば、この抵抗率は得られない。Reactive vacuum deposition is one of the methods for forming a film of ZnO. However, with the reactive vacuum deposition method, 1 ×
Although it is possible to manufacture the transparent conductive film 104 having a low resistance of 10 −3 Ω · cm, it is necessary to heat the base material to a temperature of 350 ° C. or higher. Further, unless the film thickness is 300 nm or more, this resistivity cannot be obtained.
【0006】さらに、350℃以上の温度域でa−Si
層103の上に透明導電膜104を堆積させると、a−
Si層103が結晶化し、ドーピングした不純物の拡散
により発電効率が大幅に低下するという問題を生じる。Further, in the temperature range of 350 ° C. or higher, a-Si
When the transparent conductive film 104 is deposited on the layer 103, a-
The Si layer 103 is crystallized and diffusion of the doped impurities causes a problem that power generation efficiency is significantly reduced.
【0007】このような背景から、製膜時にa−Si層
が結晶化することなく、かつドーピングした不純物の拡
散を生じることがないZnO透明導電膜の製造方法と、
約150℃以下の基板温度で低抵抗であり、かつ膜厚1
00nm以下で、高透過率を示すZnO透明導電膜とを
開発実用化することが強く要望されている。From such a background, a method for manufacturing a ZnO transparent conductive film in which the a-Si layer is not crystallized during film formation, and the doped impurities are not diffused,
Low resistance at a substrate temperature of about 150 ° C or less and a film thickness of 1
It is strongly desired to develop and put into practical use a ZnO transparent conductive film having a high transmittance of 00 nm or less.
【0008】本発明は上記の課題を解決するためになさ
れたものであって、下地層としてのa−Si層を結晶化
させることなく、かつドーピングした不純物の拡散を生
じない透明導電膜の製造方法を提供することを目的とす
る。The present invention has been made in order to solve the above problems, and is for producing a transparent conductive film without crystallizing an a-Si layer as an underlayer and without causing diffusion of a doped impurity. The purpose is to provide a method.
【0009】また、本発明は、本発明は約150℃の基
板温度で低抵抗であり、かつ膜厚100nm以下で高透
過率を示す透明導電膜を提供することを目的とする。It is another object of the present invention to provide a transparent conductive film having a low resistance at a substrate temperature of about 150 ° C. and a high transmittance at a film thickness of 100 nm or less.
【0010】[0010]
【課題を解決するための手段】本発明に係る透明導電膜
の製造方法は、真空容器中において、膜材料となるIII
B族元素の酸化物またはIVB族元素の酸化物を1〜7重
量%添加したZnOターゲットを有するスパッタ源を、
基板と向き合わせて配置し、前記真空容器内に希ガスと
水素ガスとからなるプロセスガスを導入し、前記ZnO
ターゲットに高周波を印加して放電を発生させ、前記Z
nOターゲット表面より膜材料からなるスパッタ粒子を
飛び出させ、該ZnOスパッタ粒子を水素を含む雰囲気
中で基板上に堆積させることを特徴とする。The method for producing a transparent conductive film according to the present invention is a film material in a vacuum container III
A sputtering source having a ZnO target to which 1 to 7% by weight of an oxide of a group B element or an oxide of a group IVB element is added,
The substrate is arranged so as to face the substrate, a process gas composed of a rare gas and a hydrogen gas is introduced into the vacuum container, and the ZnO
A high frequency is applied to the target to generate a discharge, and the Z
It is characterized in that sputtered particles made of a film material are ejected from the surface of the nO target and the ZnO sputtered particles are deposited on the substrate in an atmosphere containing hydrogen.
【0011】上記のプロセスガスは、80〜99体積%
の希ガスおよび20〜1体積%の水素ガスを含むことが
好ましい。水素ガス添加量が1体積%を下回ると、図2
に示すように膜の抵抗率が急激に増加するので、水素ガ
ス添加量の下限値は1体積%とした。また、水素ガス添
加量が20体積%を上回ると、図2に示すように膜の抵
抗率が無視できないほど漸増するので、水素ガス添加量
の上限値は20体積%とした。The above process gas is 80 to 99% by volume.
It is preferable that the rare gas and hydrogen gas of 20 to 1 volume% are included. If the amount of hydrogen gas added falls below 1% by volume,
Since the resistivity of the film rapidly increases as shown in, the lower limit of the amount of hydrogen gas added was set to 1% by volume. Further, when the added amount of hydrogen gas exceeds 20% by volume, the resistivity of the film gradually increases so that it cannot be ignored as shown in FIG. 2, so the upper limit of the added amount of hydrogen gas was set to 20% by volume.
【0012】なお、希ガスは、アルゴン、ネオン、クリ
プトン、キセノンのいずれでもよいが、特にアルゴンガ
スを用いることが望ましい。The rare gas may be any of argon, neon, krypton and xenon, but it is particularly preferable to use argon gas.
【0013】本発明に係る透明導電膜の製造方法は、真
空容器中において、膜材料となるIIIB族元素の酸化物
またはIVB族元素の酸化物を1〜7重量%添加したZn
O蒸着材料を有する蒸発源を、基板と向き合わせて配置
し、前記真空容器内に酸素ガスまたは酸素/希ガスの混
合ガスと水素ガスとからなるプロセスガスを導入し、前
記ZnO蒸着材料を加熱して蒸発させ、該ZnO蒸気を
水素雰囲気中で基板上に堆積させることを特徴とする。According to the method for producing a transparent conductive film of the present invention, Zn containing 1 to 7% by weight of an oxide of a IIIB group element or an oxide of a IVB group element serving as a film material is added in a vacuum container.
An evaporation source having an O vapor deposition material is arranged facing the substrate, and a process gas consisting of oxygen gas or a mixed gas of oxygen / rare gas and hydrogen gas is introduced into the vacuum container to heat the ZnO vapor deposition material. And vaporized, and the ZnO vapor is deposited on the substrate in a hydrogen atmosphere.
【0014】上記のプロセスガスは、酸素ガスまたは酸
素/希ガスの混合ガスを99.0〜99.9体積%、水
素ガスを1.0〜0.1体積%含むことが好ましい。水
素ガス添加量が0.1体積%を下回ると、図5に示すよ
うに膜の抵抗率が急激に増加するので、水素ガス添加量
の下限値は0.1体積%とした。また、水素ガス添加量
が1.0体積%を上回ると、図5に示すように膜の抵抗
率が無視できないほど漸増するので、水素ガス添加量の
上限値は1.0体積%とした。The above process gas preferably contains 99.0 to 99.9% by volume of oxygen gas or a mixed gas of oxygen / rare gas and 1.0 to 0.1% by volume of hydrogen gas. When the amount of hydrogen gas added falls below 0.1% by volume, the resistivity of the film sharply increases as shown in FIG. 5, so the lower limit of the amount of hydrogen gas added was set to 0.1% by volume. Further, when the added amount of hydrogen gas exceeds 1.0% by volume, the resistivity of the film gradually increases so that it cannot be ignored as shown in FIG. 5, so the upper limit of the added amount of hydrogen gas was set to 1.0% by volume.
【0015】なお、希ガスは、アルゴン、ネオン、クリ
プトン、キセノンのいずれでもよいが、特にアルゴンガ
スを用いることが望ましい。The rare gas may be any of argon, neon, krypton and xenon, but it is particularly preferable to use argon gas.
【0016】また、蒸発源と基板との間にガスの放電プ
ラズマを生成させ、この放電プラズマを通過したZnO
蒸気を基板上に堆積させることが望ましい。放電プラズ
マの作用により高い成膜速度を得ることができる。Further, gas discharge plasma is generated between the evaporation source and the substrate, and ZnO that has passed through this discharge plasma
It is desirable to deposit the vapor on the substrate. A high deposition rate can be obtained by the action of the discharge plasma.
【0017】本発明に係る透明導電膜は、下地層として
のアモルファスシリコン層の上に形成される透明導電膜
であって、水素を含む不活性ガス雰囲気中において、II
IB族元素の酸化物またはIVB族元素の酸化物を1〜7
重量%添加したZnOターゲットから飛び出させたスパ
ッタ粒子をアモルファスシリコン層の上に堆積させる
か、または、水素を含む酸素ガス雰囲気中において、II
IB族元素の酸化物またはIVB族元素の酸化物を1〜7
重量%添加したZnO蒸着材料から蒸発させた蒸気をア
モルファスシリコン層の上に堆積させることにより形成
されたことを特徴とする。The transparent conductive film according to the present invention is a transparent conductive film formed on an amorphous silicon layer as a base layer, and is II in an inert gas atmosphere containing hydrogen.
1 to 7 group IB element oxides or IVB group element oxides
The sputtered particles ejected from the ZnO target added by weight% are deposited on the amorphous silicon layer, or in an oxygen gas atmosphere containing hydrogen, II
1 to 7 group IB element oxides or IVB group element oxides
It is characterized by being formed by depositing vapor evaporated from a ZnO vapor deposition material added by weight% on the amorphous silicon layer.
【0018】[0018]
【発明の実施の形態】以下、添付の図面を参照して本発
明の種々の好ましい実施の形態について説明する。Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
【0019】(実施例1;スパッタ法)実施例1に用い
たスパッタ装置の構成の概要について図1を参照して説
明する。スパッタ装置は、排気口16を介して図示しな
い真空排気装置により真空排気される真空容器1を備え
ている。この真空容器1内にはスパッタ源2と基板電極
12とが対向配置されている。(Embodiment 1; Sputtering method) The outline of the structure of the sputtering apparatus used in Embodiment 1 will be described with reference to FIG. The sputtering apparatus includes a vacuum container 1 that is evacuated through an exhaust port 16 by a vacuum exhaust device (not shown). In this vacuum container 1, a sputter source 2 and a substrate electrode 12 are arranged so as to face each other.
【0020】スパッタ源2は、Al2O3を添加したZn
Oからなるターゲット3と、複数の磁場発生用磁石4
と、水冷機能を備えた電極としてのターゲットホルダ5
と、シールド6と、真空シール機能を有する絶縁体7と
を備えている。The sputtering source 2 is Zn containing Al 2 O 3 added.
A target 3 made of O and a plurality of magnetic field generating magnets 4
And a target holder 5 as an electrode having a water cooling function
A shield 6 and an insulator 7 having a vacuum sealing function.
【0021】ターゲットホルダ5は整合器8を介して高
周波電源9に接続されている。ターゲットホルダ5によ
りターゲット3を保持し、通電すると、スパッタリング
作用によりターゲット3から所望成分が飛び出し、基板
10上に堆積されるようになっている。なお、ターゲッ
トホルダ5と真空容器1とは絶縁体7で絶縁されてい
る。また、電源9には高周波電源の他に直流電源を用い
てもよい。直流電源を用いる場合には整合器8は不要に
なる。The target holder 5 is connected to a high frequency power source 9 via a matching unit 8. When the target 3 is held by the target holder 5 and energized, a desired component is ejected from the target 3 by the sputtering action and is deposited on the substrate 10. The target holder 5 and the vacuum container 1 are insulated by the insulator 7. In addition to the high frequency power source, a DC power source may be used as the power source 9. When using a DC power supply, the matching box 8 is unnecessary.
【0022】ヒータ11を備えた基板電極12がターゲ
ット3と向き合うように配置されている。基板電極12
は基板を吸着保持するための保持機構を具備し、基板1
0が電極12の下面に保持されるようになっている。A substrate electrode 12 having a heater 11 is arranged so as to face the target 3. Substrate electrode 12
Is provided with a holding mechanism for holding the substrate by suction.
0 is held on the lower surface of the electrode 12.
【0023】ガス導入管15が真空容器1の側壁を貫通
して容器内部に挿入され、ターゲット3近傍の上方にて
ガス導入口が開口している。ガス導入管15は図示しな
い流量制御装置を備えたガス供給源に連通し、所定流量
のアルゴンガスと所定流量の水素ガスとが真空容器1内
にそれぞれ導入されるようになっている。なお、アルゴ
ンガスと水素ガスとは真空容器1に導入する前に所望の
比率に予め混合しておき、混合ガスとして真空容器1に
導入するようにしてもよい。A gas introduction pipe 15 penetrates the side wall of the vacuum container 1 and is inserted into the interior of the container, and a gas introduction port is opened above the vicinity of the target 3. The gas introduction pipe 15 communicates with a gas supply source equipped with a flow rate control device (not shown), and a predetermined flow rate of argon gas and a predetermined flow rate of hydrogen gas are introduced into the vacuum container 1, respectively. The argon gas and the hydrogen gas may be mixed in a desired ratio in advance before being introduced into the vacuum container 1, and may be introduced into the vacuum container 1 as a mixed gas.
【0024】次に、上記のスパッタ装置を用いてガラス
基板上にZnO透明導電膜を形成する場合について説明
する。Next, a case where a ZnO transparent conductive film is formed on a glass substrate using the above sputtering device will be described.
【0025】無アルカリガラスからなる基板10を有機
溶剤(例えばアセトン)下で超音波洗浄した後に、真空
容器1内の基材電極12に設置し、2×10-6torr以下
に予備排気する。ZnOターゲット3への、IIIB族元
素の酸化物であるAl2O3の添加量は2重量%である。
ヒータ11により基板10を150℃に加熱する。The substrate 10 made of non-alkali glass is ultrasonically cleaned in an organic solvent (for example, acetone), placed on the substrate electrode 12 in the vacuum container 1 and pre-evacuated to 2 × 10 -6 torr or less. The addition amount of Al 2 O 3 , which is an oxide of a Group IIIB element, to the ZnO target 3 is 2% by weight.
The substrate 11 is heated to 150 ° C. by the heater 11.
【0026】次いで、希ガスとしてアルゴンガス75〜
100体積%、水素ガス25〜0体積%をそれぞれ真空
容器1内に導入する。この時の真空容器1の内圧を5×
10 -3torrになるように調整する。Then, as a rare gas, an argon gas 75-
100% by volume and 25 to 0% by volume of hydrogen gas are vacuumed respectively.
It is introduced into the container 1. The internal pressure of the vacuum container 1 at this time is 5 ×
10 -3Adjust so that it becomes torr.
【0027】高周波電力を電源9から整合器8を介して
ターゲットホルダ5に印加すると、放電が発生し、生成
したアルゴンイオンがターゲット3の表面に衝突し、タ
ーゲット表面よりスパッタ粒子が飛び出し、水素を含む
雰囲気下でスパッタ粒子が基板10上に順次堆積する。
これにより所望の成分と膜厚のZnO膜14が基板10
上に形成される。なお、ZnO膜14の膜厚は80nm
であった。When high frequency power is applied from the power source 9 to the target holder 5 through the matching unit 8, a discharge is generated, the generated argon ions collide with the surface of the target 3, sputter particles fly out from the target surface, and hydrogen is generated. Sputtered particles are sequentially deposited on the substrate 10 in an atmosphere containing the sputtered particles.
As a result, the ZnO film 14 having a desired component and thickness is formed on the substrate 10.
Formed on. The thickness of the ZnO film 14 is 80 nm.
Met.
【0028】図2は、横軸に水素ガス組成(体積%)を
とり、縦軸に膜の抵抗率(×10-3Ω・cm)をとって
両者の相関について調べた結果を示す特性線図である。
図から明らかなように、水素ガス無添加(0体積%)の
ZnO膜では20×10-3Ω・cmと高い抵抗率を示
す。これに対して水素ガス1体積%添加したZnO膜で
は抵抗率は3×10-3Ω・cmと大幅に減少することが
判明した。さらに、水素ガス8体積%添加のZnO膜で
は抵抗率は0.7×10-3Ω・cmと低い値を示すこと
が判明した。FIG. 2 is a characteristic line showing the results of investigating the correlation between the hydrogen gas composition (volume%) on the horizontal axis and the film resistivity (× 10 −3 Ω · cm) on the vertical axis. It is a figure.
As is clear from the figure, the ZnO film containing no hydrogen gas (0% by volume) exhibits a high resistivity of 20 × 10 −3 Ω · cm. On the other hand, it was found that the resistivity of the ZnO film containing 1% by volume of hydrogen gas was significantly reduced to 3 × 10 −3 Ω · cm. Further, it was found that the ZnO film containing 8% by volume of hydrogen gas has a low resistivity of 0.7 × 10 −3 Ω · cm.
【0029】また、水素ガス20体積%以下の添加では
膜抵抗率は3×10-3Ω・cm以下にとどまっている
が、水素ガス25体積%の添加では膜抵抗率が8×10
-3Ω・cmに増加した。この理由は、ZnO膜が還元さ
れ、酸素欠損が多く発生したことによる。The film resistivity was 3 × 10 −3 Ω · cm or less when hydrogen gas was added in an amount of 20% by volume or less, whereas the film resistivity was 8 × 10 when hydrogen gas was added in an amount of 25% by volume.
It increased to -3 Ω · cm. The reason for this is that the ZnO film was reduced and oxygen vacancies were generated in large numbers.
【0030】Al2O3の添加量は1〜7質量%とするこ
とが好ましい。Al2O3が1質量%未満か、又は7質量
%を超えると、抵抗率が1×10-2Ω・cm台まで増加
する。ZnOへの添加材料をAl2O3以外のIIIB族元
素の酸化物、またはIVB族元素の酸化物としても、いず
れも0.7×10-3Ω・cm前後の低抵抗率を示した。
また、希ガスをアルゴン以外の他のネオン、クリプト
ン、キセノンに種々替えてみても、0.7×10-3Ω・
cm前後の低抵抗率を示した。The amount of Al 2 O 3 added is preferably 1 to 7 mass%. When Al 2 O 3 is less than 1 mass% or exceeds 7 mass%, the resistivity increases up to the order of 1 × 10 −2 Ω · cm. Even if the additive material to ZnO was an oxide of a group IIIB element other than Al 2 O 3 or an oxide of a group IVB element, both showed low resistivity of about 0.7 × 10 −3 Ω · cm.
In addition, when the rare gas is changed to neon, krypton, or xenon other than argon, 0.7 × 10 −3 Ω ·
It showed a low resistivity of around cm.
【0031】図3は、アルゴンガス95体積%と水素ガ
ス5体積%の存在下で作製したZnO透明導電膜(実施
例1)を有するa−Si太陽電池の短絡電流と、従来の
ITO透明導電膜(比較例1)を有するa−Si太陽電
池の短絡電流とを比べて示すグラフ図である。実施例1
および比較例1ともに太陽電池は図7に示す構成とし
た。比較例1の短絡電流を基準値1とした場合に、実施
例1の短絡電流は1.1程度となった。これから実施例
1のZnO透明導電膜をもつ太陽電池は、従来品と比べ
て同等以上の光電変換効率を有することが判明した。FIG. 3 shows a short circuit current of an a-Si solar cell having a ZnO transparent conductive film (Example 1) prepared in the presence of 95% by volume of argon gas and 5% by volume of hydrogen gas, and a conventional ITO transparent conductive film. It is a graph figure which compares with the short circuit current of the a-Si solar cell which has a film (Comparative example 1). Example 1
The solar cell of both Comparative Example 1 and Comparative Example 1 had the structure shown in FIG. When the short circuit current of Comparative Example 1 was set to the reference value 1, the short circuit current of Example 1 was about 1.1. From this, it was found that the solar cell having the ZnO transparent conductive film of Example 1 had a photoelectric conversion efficiency equal to or higher than that of the conventional product.
【0032】本実施例の透明導電膜の製造方法によれ
ば、下地層のa−Si層を結晶化させることなく、かつ
ドーピングした不純物の拡散を生じないで高品質の透明
導電膜をa−Si層の上に形成することができる。この
ため、太陽電池製品の歩留まりが向上し、生産コストを
大幅に減少させることができる。According to the method for producing a transparent conductive film of this embodiment, a high-quality transparent conductive film can be obtained without crystallizing the a-Si layer of the underlayer and without diffusing the doped impurities. It can be formed on the Si layer. Therefore, the yield of solar cell products can be improved and the production cost can be significantly reduced.
【0033】また、本実施例の透明導電膜は、150℃
以下の基板温度で低抵抗であり、高透過率を示し、これ
を用いた太陽電池は大きな短絡電流が得られ、光電変換
効率を大幅に向上させることができる。Further, the transparent conductive film of this embodiment is 150 ° C.
It has a low resistance and a high transmittance at the following substrate temperatures, and a solar cell using the same can obtain a large short-circuit current and greatly improve the photoelectric conversion efficiency.
【0034】(実施例2;プラズマ蒸着)次に、実施例
2に用いたプラズマ蒸着装置の構成の概要について図4
を参照して説明する。(Embodiment 2; Plasma deposition) Next, an outline of the configuration of the plasma deposition apparatus used in Embodiment 2 is shown in FIG.
Will be described with reference to.
【0035】プラズマ蒸着装置は、排気口31を介して
図示しない真空排気装置により真空排気される真空容器
21を備えている。この真空容器21内には蒸発源22
と基板ホルダ29とが対向配置されている。The plasma deposition apparatus is equipped with a vacuum container 21 which is evacuated by an unillustrated vacuum evacuation device through an evacuation port 31. In this vacuum container 21, an evaporation source 22
And the substrate holder 29 are opposed to each other.
【0036】蒸発源22は溶融加熱手段を備えた耐火ル
ツボであり、このなかにAl2O3を1〜7重量%添加し
たZnOからなる適量の蒸着材料23が収容されてい
る。なお、蒸発源22の溶融加熱手段には電子ビームや
抵抗発熱コイル等を用いることができる。The evaporation source 22 is a refractory crucible provided with a melting and heating means, in which an appropriate amount of the vapor deposition material 23 made of ZnO containing 1 to 7% by weight of Al 2 O 3 is contained. An electron beam, a resistance heating coil, or the like can be used as the melting and heating means of the evaporation source 22.
【0037】ヒータ30を備えた基板ホルダ29が蒸発
源22と向き合うように配置されている。基板ホルダ2
9は基板を吸着保持するための保持機構を具備し、基板
10がホルダ29の下面に保持されるようになってい
る。A substrate holder 29 having a heater 30 is arranged so as to face the evaporation source 22. Board holder 2
9 has a holding mechanism for sucking and holding the substrate, and the substrate 10 is held on the lower surface of the holder 29.
【0038】ガス導入管28が真空容器21の側壁を貫
通して容器内部に挿入され、蒸発源22近傍の上方にて
ガス導入口が開口している。ガス導入管28は図示しな
い流量制御装置を備えたガス供給源に連通し、所定流量
の酸素ガスと所定流量の水素ガスとが真空容器21内に
それぞれ導入されるようになっている。なお、酸素ガス
と水素ガスとは真空容器21に導入する前に所望の比率
に予め混合しておき、混合ガスとして真空容器21に導
入するようにしてもよい。A gas introduction pipe 28 penetrates the side wall of the vacuum container 21 and is inserted into the interior of the container, and a gas introduction port is opened above the vicinity of the evaporation source 22. The gas introduction pipe 28 communicates with a gas supply source equipped with a flow rate control device (not shown) so that a predetermined flow rate of oxygen gas and a predetermined flow rate of hydrogen gas are introduced into the vacuum container 21, respectively. The oxygen gas and the hydrogen gas may be mixed in advance in a desired ratio before being introduced into the vacuum container 21, and may be introduced into the vacuum container 21 as a mixed gas.
【0039】放電プラズマ生成用の高周波コイル24が
蒸発源22と基板ホルダ29との間に配置されている。
高周波コイル24は、整合器26を介して電源27に接
続されている。また、高周波コイル24は真空シール機
能を備えた絶縁体25を介して真空容器21内に導入さ
れている。A high frequency coil 24 for generating discharge plasma is arranged between the evaporation source 22 and the substrate holder 29.
The high frequency coil 24 is connected to a power source 27 via a matching unit 26. The high frequency coil 24 is introduced into the vacuum container 21 via an insulator 25 having a vacuum sealing function.
【0040】次に、上記のプラズマ蒸着装置を用いてガ
ラス基板上にZnO透明導電膜を形成する場合について
説明する。Next, the case of forming a ZnO transparent conductive film on a glass substrate using the above plasma deposition apparatus will be described.
【0041】無アルカリガラス等の基板10を有機溶剤
(例えばアセトン)で超音波洗浄した後に、真空容器2
1内の基板ホルダ29に設置し、2×10-6torr以下に
予備排気する。ZnO蒸着材料23への、IIIB族元素
の酸化物であるAl2O3の添加量は3重量%である。ヒ
ータ30により基板10を150℃に加熱する。After ultrasonically cleaning the substrate 10 made of non-alkali glass or the like with an organic solvent (for example, acetone), the vacuum container 2
It is installed on the substrate holder 29 in 1 and pre-evacuated to 2 × 10 −6 torr or less. The added amount of Al 2 O 3 , which is an oxide of a Group IIIB element, to the ZnO vapor deposition material 23 was 3% by weight. The substrate 10 is heated to 150 ° C. by the heater 30.
【0042】次いで、酸素ガスを100〜99体積%、
水素ガスを0〜1.4体積%導入する。この時の真空容
器21の内圧を8×10-4torrに調整する。Next, 100 to 99% by volume of oxygen gas,
0 to 1.4% by volume of hydrogen gas is introduced. At this time, the internal pressure of the vacuum container 21 is adjusted to 8 × 10 −4 torr.
【0043】蒸発源22により蒸着材料23を加熱し、
ZnO成分を蒸発させると同時に、整合器26を介して
高周波電源27より高周波電力を高周波コイル24に印
加し、放電によりプラズマ33を生成させる。水素を含
む雰囲気下でZnO蒸気が基板10上に順次堆積し、こ
れにより所望の成分と膜厚のZnO膜14が基板10上
に形成される。なお、ZnO膜14の膜厚は80nmで
あった。The evaporation material 23 is heated by the evaporation source 22,
At the same time as evaporating the ZnO component, high-frequency power is applied to the high-frequency coil 24 from the high-frequency power source 27 via the matching device 26, and plasma 33 is generated by discharge. ZnO vapor is sequentially deposited on the substrate 10 in an atmosphere containing hydrogen, whereby a ZnO film 14 having a desired component and film thickness is formed on the substrate 10. The film thickness of the ZnO film 14 was 80 nm.
【0044】図5は、横軸に水素ガス組成(体積%)を
とり、縦軸に膜の抵抗率(×10-3Ω・cm)をとって
両者の相関について調べた結果を示す特性線図である。
図から明らかなように、水素ガス無添加(0体積%)の
ZnO膜では15×10-3Ω・cmと高い抵抗率を示
す。これに対して水素ガス0.2体積%添加したZnO
膜では、抵抗率は3×10-3Ω・cmと大幅に減少し
た。さらに、水素ガス0.6体積%添加したZnO膜で
は、抵抗率は0.7×10-3Ω・cmと低い値を示し
た。FIG. 5 is a characteristic line showing the results of investigating the correlation between hydrogen gas composition (volume%) on the horizontal axis and film resistivity (× 10 −3 Ω · cm) on the vertical axis. It is a figure.
As is clear from the figure, the ZnO film with no hydrogen gas added (0% by volume) shows a high resistivity of 15 × 10 −3 Ω · cm. On the other hand, ZnO added with 0.2% by volume of hydrogen gas
The resistivity of the film was significantly reduced to 3 × 10 −3 Ω · cm. Further, the ZnO film added with 0.6% by volume of hydrogen gas had a low resistivity of 0.7 × 10 −3 Ω · cm.
【0045】また、水素ガス添加量が1体積%までの抵
抗率は2×10-3Ω・cm以下であるが、水素ガス添加
量が1.4体積%に増えると抵抗率は7×10-3Ω・c
mに増加した。これはZnO膜が還元され、酸素欠損が
多く発生したためである。The resistivity up to 1% by volume of hydrogen gas is 2 × 10 −3 Ω · cm or less, but the resistivity increases to 7 × 10 when the amount of hydrogen gas added increases to 1.4% by volume. -3 Ω ・ c
increased to m. This is because the ZnO film was reduced and many oxygen vacancies were generated.
【0046】Al2O3の添加量は1〜7質量%とするこ
とが好ましい。Al2O3の添加量が1質量%未満か、又
は7質量%を超えると、抵抗率が1×10-2Ω・cm台
まで増加する。ZnOへの添加材料をAl2O3以外のII
IB族元素の酸化物、またはIVB族元素の酸化物として
も、いずれも0.7×10-3Ω・cm前後の低抵抗率を
示した。また、酸素ガスの代わりに酸素ガスとアルゴン
ガスとの混合ガスを用いると、ZnO膜の密着性が向上
する。The amount of Al 2 O 3 added is preferably 1 to 7 mass%. If the added amount of Al 2 O 3 is less than 1% by mass or exceeds 7% by mass, the resistivity increases to the order of 1 × 10 −2 Ω · cm. Other than Al 2 O 3 as the additive material to ZnO II
Both of the oxides of Group IB elements and the oxides of Group IVB elements showed low resistivity around 0.7 × 10 −3 Ω · cm. Moreover, when a mixed gas of oxygen gas and argon gas is used instead of oxygen gas, the adhesion of the ZnO film is improved.
【0047】図6は、酸素ガス99.4体積%と水素ガ
ス0.6体積%の存在下で作製したZnO透明導電膜
(実施例2)を有するa−Si太陽電池の短絡電流と、
従来のITO透明導電膜(比較例2)を有するa−Si
太陽電池の短絡電流とを比べて示すグラフ図である。実
施例2および比較例2ともに太陽電池は図7に示す構成
とした。比較例2の短絡電流を基準値1とした場合に、
実施例2の短絡電流は1.05となった。これから実施
例2のZnO透明導電膜をもつ太陽電池は、従来品と比
べて同等以上の光電変換効率を有することが判明した。FIG. 6 shows the short-circuit current of an a-Si solar cell having a ZnO transparent conductive film (Example 2) prepared in the presence of 99.4% by volume of oxygen gas and 0.6% by volume of hydrogen gas.
A-Si having a conventional ITO transparent conductive film (Comparative Example 2)
It is a graph figure which compares with the short circuit current of a solar cell. The solar cells of both Example 2 and Comparative Example 2 were configured as shown in FIG. When the short-circuit current of Comparative Example 2 is set to the reference value 1,
The short-circuit current of Example 2 was 1.05. From this, it was revealed that the solar cell having the ZnO transparent conductive film of Example 2 had a photoelectric conversion efficiency equal to or higher than that of the conventional product.
【0048】本実施例の透明導電膜の製造方法によれ
ば、下地層のa−Si層を結晶化させることなく、かつ
ドーピングした不純物の拡散を生じないで高品質の透明
導電膜をa−Si層の上に形成することができる。この
ため、太陽電池製品の歩留まりが向上し、生産コストを
大幅に減少させることができる。According to the method for producing a transparent conductive film of this embodiment, a high quality transparent conductive film can be obtained without crystallizing the a-Si layer of the underlayer and without causing diffusion of the doped impurities. It can be formed on the Si layer. Therefore, the yield of solar cell products can be improved and the production cost can be significantly reduced.
【0049】また、本実施例の透明導電膜は、150℃
以下の基板温度で低抵抗であり、高透過率を示し、これ
を用いた太陽電池は大きな短絡電流が得られ、光電変換
効率を大幅に向上させることができる。Further, the transparent conductive film of this embodiment is 150 ° C.
It has a low resistance and a high transmittance at the following substrate temperatures, and a solar cell using the same can obtain a large short-circuit current and greatly improve the photoelectric conversion efficiency.
【0050】[0050]
【発明の効果】本発明によれば、下地層のa−Si層を
結晶化させることなく、かつドーピングした不純物の拡
散を生じないで高品質の透明導電膜をa−Si層の上に
形成することができるので、歩留まりが向上し、生産コ
ストを大幅に減少させることができる。According to the present invention, a high-quality transparent conductive film is formed on an a-Si layer without crystallizing the a-Si layer as an underlayer and without causing diffusion of doped impurities. Therefore, the yield can be improved and the production cost can be significantly reduced.
【0051】本発明の透明導電膜は、優れた導電性を有
するのみならず、可視域全域での透明性に優れるので、
光透過性に優れたディスプレイや太陽電池用の電極等と
して特に有用である。Since the transparent conductive film of the present invention has not only excellent conductivity but also excellent transparency in the entire visible region,
It is particularly useful as a light-transmitting display or an electrode for solar cells.
【図1】本発明の第1の実施形態に係る透明導電膜の製
造方法に用いられた装置の概要を示すブロック断面図。FIG. 1 is a block cross-sectional view showing an outline of an apparatus used in a method for manufacturing a transparent conductive film according to a first embodiment of the present invention.
【図2】水素ガス組成と透明導電膜の抵抗率との相関を
示す特性線図。FIG. 2 is a characteristic diagram showing a correlation between a hydrogen gas composition and a resistivity of a transparent conductive film.
【図3】透明導電膜の短絡電流について実施例1と比較
例1を比べて示すグラフ図。FIG. 3 is a graph showing a short circuit current of a transparent conductive film in comparison between Example 1 and Comparative Example 1.
【図4】本発明の第2の実施形態に係る透明導電膜の製
造方法に用いられた装置の概要を示すブロック断面図。FIG. 4 is a block cross-sectional view showing an outline of an apparatus used in a method for manufacturing a transparent conductive film according to a second embodiment of the present invention.
【図5】水素ガス組成と透明導電膜の抵抗率との相関を
示す特性線図。FIG. 5 is a characteristic diagram showing the correlation between the hydrogen gas composition and the resistivity of the transparent conductive film.
【図6】透明導電膜の短絡電流について実施例2比較例
2比べて示すグラフ図。FIG. 6 is a graph showing a short circuit current of a transparent conductive film in comparison with Example 2 and Comparative Example 2.
【図7】従来の透明導電膜を有する太陽電池を示す断面
模式図。FIG. 7 is a schematic sectional view showing a solar cell having a conventional transparent conductive film.
1…真空容器、 2…スパッタ源、 3…ターゲット、 4…磁場発生用磁石、 5…ターゲットホルダ、 6…シールド、 7…絶縁体、 8…整合器、 9…高周波電源、 10…基板、 11…ヒータ、 12…基板電極、 13…絶縁体、 14…ZnO膜、 15…ガス導入管、 16…排気口、 21…真空容器、 22…蒸発源、 23…蒸着材料、 24…高周波コイル、 25…絶縁体、 26…整合器、 27…高周波電源、 28…ガス導入管、 29…基板ホルダ、 30…ヒータ、 31…排気口、 33…プラズマ、 101…ガラス基板、 102…透明導電膜(SnO2)、 103…a−Si層、 104…透明導電膜(ITO)、 105…金属電極膜(Al)、 106…集電電極(Al)、 107…光。DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Sputter source, 3 ... Target, 4 ... Magnet for magnetic field generation, 5 ... Target holder, 6 ... Shield, 7 ... Insulator, 8 ... Matching device, 9 ... High frequency power supply, 10 ... Substrate, 11 ... heater, 12 ... substrate electrode, 13 ... insulator, 14 ... ZnO film, 15 ... gas introduction pipe, 16 ... exhaust port, 21 ... vacuum container, 22 ... evaporation source, 23 ... deposition material, 24 ... high frequency coil, 25 ... Insulator, 26 ... Matching device, 27 ... High frequency power supply, 28 ... Gas introduction tube, 29 ... Substrate holder, 30 ... Heater, 31 ... Exhaust port, 33 ... Plasma, 101 ... Glass substrate, 102 ... Transparent conductive film (SnO) 2 ), 103 ... a-Si layer, 104 ... Transparent conductive film (ITO), 105 ... Metal electrode film (Al), 106 ... Current collecting electrode (Al), 107 ... Light.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 勝彦 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 Fターム(参考) 4K029 AA09 BA49 BC09 BD00 CA03 CA05 DC05 DD02 EA05 5F051 AA05 BA16 FA02 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsuhiko Kondo 3-5-1, 717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Hishi Heavy Industries Ltd. Nagasaki Research Center F-term (reference) 4K029 AA09 BA49 BC09 BD00 CA03 CA05 DC05 DD02 EA05 5F051 AA05 BA16 FA02
Claims (9)
B族元素の酸化物またはIVB族元素の酸化物を1〜7重
量%添加したZnOターゲットを有するスパッタ源を、
基板と向き合わせて配置し、 前記真空容器内に希ガスと水素ガスとからなるプロセス
ガスを導入し、 前記ZnOターゲットに高周波を印加して放電を発生さ
せ、前記ZnOターゲット表面より膜材料からなるスパ
ッタ粒子を飛び出させ、該ZnOスパッタ粒子を水素を
含む雰囲気中で基板上に堆積させることを特徴とする透
明導電膜の製造方法。1. A film material III in a vacuum container
A sputtering source having a ZnO target to which 1 to 7% by weight of an oxide of a group B element or an oxide of a group IVB element is added,
A process gas composed of a rare gas and a hydrogen gas is introduced into the vacuum container, and a high frequency is applied to the ZnO target to generate a discharge, which is formed of a film material from the surface of the ZnO target. A method for producing a transparent conductive film, characterized in that sputtered particles are ejected and the ZnO sputtered particles are deposited on a substrate in an atmosphere containing hydrogen.
9体積%、水素ガスを20〜1体積%含むことを特徴と
する請求項1記載の方法。2. The process gas is a rare gas of 80-9.
The method according to claim 1, characterized in that it contains 9% by volume and 20 to 1% by volume of hydrogen gas.
0〜99体積%、水素ガスを20〜1体積%含むことを
特徴とする請求項1記載の方法。3. The process gas is argon gas 8
The method according to claim 1, comprising 0 to 99% by volume and 20 to 1% by volume of hydrogen gas.
B族元素の酸化物またはIVB族元素の酸化物を1〜7重
量%添加したZnO蒸着材料を有する蒸発源を、基板と
向き合わせて配置し、 前記真空容器内に酸素ガスまたは酸素/希ガスの混合ガ
スと水素ガスとからなるプロセスガスを導入し、 前記ZnO蒸着材料を加熱して蒸発させ、該ZnO蒸気
を水素雰囲気中で基板上に堆積させることを特徴とする
透明導電膜の製造方法。4. A film material III in a vacuum container
An evaporation source having a ZnO vapor deposition material added with an oxide of a group B element or an oxide of a group IVB element in an amount of 1 to 7% by weight is arranged to face a substrate, and oxygen gas or oxygen / rare gas is placed in the vacuum container. A process gas comprising a mixed gas of 1) and a hydrogen gas is introduced, the ZnO vapor deposition material is heated and evaporated, and the ZnO vapor is deposited on a substrate in a hydrogen atmosphere. .
素/希ガスの混合ガスを99.0〜99.9体積%、水
素ガスを1.0〜0.1体積%含むことを特徴とする請
求項4記載の方法。5. The process gas contains 99.0 to 99.9% by volume of oxygen gas or a mixed gas of oxygen / rare gas and 1.0 to 0.1% by volume of hydrogen gas. Item 4. The method according to Item 4.
素/アルゴンガスの混合ガスを99.0〜99.9体積
%、水素ガスを1.0〜0.1体積%含むことを特徴と
する請求項4記載の方法。6. The process gas contains 99.0 to 99.9% by volume of oxygen gas or a mixed gas of oxygen / argon gas and 1.0 to 0.1% by volume of hydrogen gas. Item 4. The method according to Item 4.
電プラズマを生成させ、この放電プラズマを通過したZ
nO蒸気を基板上に堆積させることを特徴とする請求項
4記載の方法。7. A discharge plasma of the gas is generated between the evaporation source and the substrate, and Z is passed through the discharge plasma.
The method of claim 4, wherein nO vapor is deposited on the substrate.
の上に形成される透明導電膜であって、 水素を含む不活性ガス雰囲気中において、IIIB族元素
の酸化物またはIVB族元素の酸化物を1〜7重量%添加
したZnOターゲットから飛び出させたスパッタ粒子を
アモルファスシリコン層の上に堆積させることにより形
成されたことを特徴とする透明導電膜。8. A transparent conductive film formed on an amorphous silicon layer as a base layer, wherein an oxide of a Group IIIB element or an oxide of a Group IVB element is added in an inert gas atmosphere containing hydrogen. A transparent conductive film formed by depositing sputtered particles, which are ejected from a ZnO target added by up to 7% by weight, on an amorphous silicon layer.
の上に形成される透明導電膜であって、 水素を含む不活性ガス雰囲気中において、IIIB族元素
の酸化物またはIVB族元素の酸化物を1〜7重量%添加
したZnO蒸着材料から蒸発させた蒸気をアモルファス
シリコン層の上に堆積させることにより形成されたこと
を特徴とする透明導電膜。9. A transparent conductive film formed on an amorphous silicon layer as a base layer, wherein an oxide of a Group IIIB element or an oxide of a Group IVB element is added in an inert gas atmosphere containing hydrogen. A transparent conductive film formed by depositing vapor evaporated from a ZnO vapor deposition material added to ˜7 wt% on an amorphous silicon layer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001305775A JP2003105533A (en) | 2001-10-01 | 2001-10-01 | Method for producing transparent conductive film and transparent conductive film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001305775A JP2003105533A (en) | 2001-10-01 | 2001-10-01 | Method for producing transparent conductive film and transparent conductive film |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003105533A true JP2003105533A (en) | 2003-04-09 |
Family
ID=19125512
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001305775A Withdrawn JP2003105533A (en) | 2001-10-01 | 2001-10-01 | Method for producing transparent conductive film and transparent conductive film |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003105533A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006249540A (en) * | 2005-03-14 | 2006-09-21 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Method for forming low resistance transparent conductive thin film |
| WO2006129410A1 (en) * | 2005-05-30 | 2006-12-07 | Nippon Mining & Metals Co., Ltd. | Sputtering target and process for producing the same |
| JP2007154255A (en) * | 2005-12-05 | 2007-06-21 | Kanazawa Inst Of Technology | Method and apparatus for producing transparent conductive film |
| KR100810629B1 (en) | 2004-12-08 | 2008-03-06 | 삼성에스디아이 주식회사 | Method for manufacturing organic light emitting device using opposing target sputtering device |
| KR100835666B1 (en) | 2007-01-02 | 2008-06-09 | 한국과학기술연구원 | Method of directly preparing nanocrystals on silicon substrate |
| JP2010185127A (en) * | 2009-01-13 | 2010-08-26 | Mitsubishi Materials Corp | METHOD FOR DEPOSITING ZnO FILM |
| JP2011171384A (en) * | 2010-02-16 | 2011-09-01 | Kaneka Corp | Thin-film photoelectric conversion device |
| JP2012504306A (en) * | 2008-09-30 | 2012-02-16 | エルジー・ケム・リミテッド | Transparent conductive film and transparent electrode provided with the same |
| JP2012506486A (en) * | 2008-10-21 | 2012-03-15 | アプライド マテリアルズ インコーポレイテッド | Transparent conductive zinc oxide display film and method for producing the same |
| JP2012160661A (en) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | Substrate with transparent conductive film, solar cell, and method for manufacturing substrate and solar cell |
| CN103132018A (en) * | 2013-03-12 | 2013-06-05 | 电子科技大学 | Method for improving electric conductivity of amorphous silicon membrane |
| WO2017025554A1 (en) * | 2015-08-13 | 2017-02-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for the deposition of thin layers |
| JP2022546072A (en) * | 2019-08-30 | 2022-11-02 | ダイソン・テクノロジー・リミテッド | deposition system |
-
2001
- 2001-10-01 JP JP2001305775A patent/JP2003105533A/en not_active Withdrawn
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100810629B1 (en) | 2004-12-08 | 2008-03-06 | 삼성에스디아이 주식회사 | Method for manufacturing organic light emitting device using opposing target sputtering device |
| JP2006249540A (en) * | 2005-03-14 | 2006-09-21 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Method for forming low resistance transparent conductive thin film |
| JP4828529B2 (en) * | 2005-05-30 | 2011-11-30 | Jx日鉱日石金属株式会社 | Sputtering target and manufacturing method thereof |
| WO2006129410A1 (en) * | 2005-05-30 | 2006-12-07 | Nippon Mining & Metals Co., Ltd. | Sputtering target and process for producing the same |
| JP2007154255A (en) * | 2005-12-05 | 2007-06-21 | Kanazawa Inst Of Technology | Method and apparatus for producing transparent conductive film |
| KR100835666B1 (en) | 2007-01-02 | 2008-06-09 | 한국과학기술연구원 | Method of directly preparing nanocrystals on silicon substrate |
| US7732054B2 (en) | 2007-01-02 | 2010-06-08 | Korea Institute Of Science And Technology | Method for preparing ZnO nanocrystals directly on silicon substrate |
| US9966495B2 (en) | 2008-09-30 | 2018-05-08 | Lg Chem, Ltd. | Transparent conductive layer and transparent electrode comprising the same |
| JP2012504306A (en) * | 2008-09-30 | 2012-02-16 | エルジー・ケム・リミテッド | Transparent conductive film and transparent electrode provided with the same |
| EP2333818A4 (en) * | 2008-09-30 | 2015-06-17 | Lg Chemical Ltd | TRANSPARENT CONDUCTIVE FILM AND TRANSPARENT ELECTRODE COMPRISING THE SAME |
| TWI494452B (en) * | 2008-09-30 | 2015-08-01 | Lg Chemical Ltd | Transparent conductive layer and transparent electrode including the same |
| JP2012506486A (en) * | 2008-10-21 | 2012-03-15 | アプライド マテリアルズ インコーポレイテッド | Transparent conductive zinc oxide display film and method for producing the same |
| JP2010185127A (en) * | 2009-01-13 | 2010-08-26 | Mitsubishi Materials Corp | METHOD FOR DEPOSITING ZnO FILM |
| JP2011171384A (en) * | 2010-02-16 | 2011-09-01 | Kaneka Corp | Thin-film photoelectric conversion device |
| JP2012160661A (en) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | Substrate with transparent conductive film, solar cell, and method for manufacturing substrate and solar cell |
| CN103132018A (en) * | 2013-03-12 | 2013-06-05 | 电子科技大学 | Method for improving electric conductivity of amorphous silicon membrane |
| WO2017025554A1 (en) * | 2015-08-13 | 2017-02-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method and device for the deposition of thin layers |
| JP2022546072A (en) * | 2019-08-30 | 2022-11-02 | ダイソン・テクノロジー・リミテッド | deposition system |
| JP7738548B2 (en) | 2019-08-30 | 2025-09-12 | ダイソン・テクノロジー・リミテッド | Deposition System |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101238926B1 (en) | Method and apparatus for forming transparent conductive film | |
| CN105951053B (en) | A kind of preparation method of titania-doped transparent conductive film of niobium and the titania-doped transparent conductive film of niobium | |
| US20110146785A1 (en) | Photovoltaic device including doped layer | |
| US20110041917A1 (en) | Doped Transparent Conductive Oxide | |
| JP2003105533A (en) | Method for producing transparent conductive film and transparent conductive film | |
| JP5165765B2 (en) | Manufacturing method of solar cell | |
| CN105821378A (en) | Niobium-doped tin dioxide transparent electric conducting film and preparation method thereof | |
| EP0659905B1 (en) | Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder | |
| WO2025113589A1 (en) | Heterojunction solar cell and preparation method therefor | |
| JP3697190B2 (en) | Solar cell | |
| CN109841691A (en) | A kind of Electrochromic Molybdenum Oxide Coatings preparation method and using Electrochromic Molybdenum Oxide Coatings as the silicon heterojunction solar battery of hole transmission layer | |
| JP2009176927A (en) | Method of manufacturing solar battery | |
| US20100193352A1 (en) | Method for manufacturing solar cell | |
| WO2009084527A1 (en) | Method for manufacturing solar cell, and solar cell | |
| CN101821819B (en) | Transparent conductive film and manufacturing method thereof | |
| JP3723366B2 (en) | Substrate with ITO transparent conductive film and method for forming ITO transparent conductive film | |
| JP2017193755A (en) | Method of manufacturing transparent conductive film, and transparent conductive film | |
| CN112951930B (en) | Titanium dioxide/silver/titanium dioxide transparent conductive film and preparation method and application thereof | |
| JP3453329B2 (en) | Transparent conductive film and method for manufacturing the same | |
| CN101790795A (en) | Manufacturing method of solar cell | |
| JPH0273963A (en) | Formation of thin film on low-temperature substrate | |
| Ishibashi et al. | Large area deposition of ITO films by cluster type sputtering system | |
| JP2004165080A (en) | Substrate with ito transparent conductive film used for dye sensitizing solar battery | |
| CN116356273A (en) | Preparation method of heterojunction TCO film | |
| CN117646171A (en) | Preparation method of tin-based transparent conductive layer for silicon heterojunction solar cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041207 |