[go: up one dir, main page]

JP2003120513A - Geothermal power generation device - Google Patents

Geothermal power generation device

Info

Publication number
JP2003120513A
JP2003120513A JP2001310510A JP2001310510A JP2003120513A JP 2003120513 A JP2003120513 A JP 2003120513A JP 2001310510 A JP2001310510 A JP 2001310510A JP 2001310510 A JP2001310510 A JP 2001310510A JP 2003120513 A JP2003120513 A JP 2003120513A
Authority
JP
Japan
Prior art keywords
steam
water
evaporator
power generation
geothermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001310510A
Other languages
Japanese (ja)
Inventor
Hiroo Ura
啓夫 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001310510A priority Critical patent/JP2003120513A/en
Publication of JP2003120513A publication Critical patent/JP2003120513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binary type geothermal power generation device using water instead of low boiling point medium. SOLUTION: This geothermal power generation device is provided with an evaporator 11 heating and vaporizing supplied water by steam and/or hot water from a heat source well 1 and returning the steam and/or hot water to a return well 2, a steam turbine 3 receiving steam generated by the evaporator 11, a generator 4 driven by the stream turbine 3, and a direct contact type condenser 5 or an air cooled condenser cooled by a fan receiving steam discharged from the steam turbine 3 and condensing the same. Condensed water from the condenser 5 is supplied to the evaporator 11 as the supplied water. The geothermal power generation device is preferably provided with an air extracting device 8 for extracting air from discharged water of the condenser 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地熱や産業廃熱を
熱源として発電を行う熱利用発電装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-utilizing power generator that generates electricity using geothermal heat or industrial waste heat as a heat source.

【0002】[0002]

【従来の技術】従来の地熱発電システムには様々な方式
が採用されてきており、それらについて図3〜図7を参
照して簡単に説明すると、図3は、地熱井戸より蒸気の
みが噴出する場合に地熱蒸気を直接蒸気タービンへ導入
する方式のシステムを示している。
2. Description of the Related Art Various types of conventional geothermal power generation systems have been adopted, and briefly described with reference to FIGS. 3 to 7, FIG. 3 shows that only steam is ejected from a geothermal well. In this case, a system is shown in which geothermal steam is directly introduced into the steam turbine.

【0003】図3において、地熱井戸1より噴出した蒸
気は蒸気タービン3内へ導かれ、そこで仕事を行って回
転軸3aを回し発電機4を駆動する。仕事を終り蒸気タ
ービン3を出た蒸気は、直触式復水器5において、一部
が凝縮されて復水となり、循環水ポンプ6により冷却塔
7に送られ、残部が空気抽出装置8を介して大気に放出
される。そして、冷却塔7からの排水は、直触式復水器
5における冷却水として使用されると共に、還元井戸2
に戻されるようになっている。
In FIG. 3, the steam ejected from the geothermal well 1 is guided into the steam turbine 3, where it performs work to rotate the rotary shaft 3a and drive the generator 4. The steam that has finished the work and has exited the steam turbine 3 is partially condensed in the direct contact condenser 5 to be condensed water, which is sent to the cooling tower 7 by the circulating water pump 6, and the rest is supplied to the air extraction device 8. It is released to the atmosphere via. Then, the drainage water from the cooling tower 7 is used as cooling water in the direct contact condenser 5 and the reduction well 2
It is supposed to be returned to.

【0004】図4〜図7は、地熱井戸より蒸気及び熱水
が、或いは熱水のみが噴出する場合のシステムで、これ
には図4のシングルフラッシュ方式と、図5のダブルフ
ラッシュ方式と、図6及び7のバイナリ方式とがある。
FIGS. 4 to 7 show systems in which steam and hot water, or only hot water are jetted from a geothermal well, which includes a single flash system shown in FIG. 4 and a double flash system shown in FIG. There is a binary method of FIGS. 6 and 7.

【0005】図4のシングルフラッシュ方式は、蒸気タ
ービン3の手前にセパレータ9が設けられている点が図
3の従来例と異なっており、セパレータ9にて分離した
蒸気を蒸気タービン3へ導入し、図3の方式と同様に動
力を得る。また、図5のダブルフラッシュ方式では、セ
パレータ9に加えて更にフラッシャ10が設けられてい
て、セパレータ9で分離した蒸気を蒸気タービン3の高
圧部へ送ると共に、分離した熱水をフラッシャ10へ導
いて低圧蒸気を発生させて蒸気タービン3の低圧部に導
入し、その後は、図3の方式と同様に動力を得る。
The single flash system of FIG. 4 differs from the conventional example of FIG. 3 in that a separator 9 is provided in front of the steam turbine 3, and the steam separated by the separator 9 is introduced into the steam turbine 3. , Power is obtained in the same manner as in the method of FIG. In addition, in the double flash system of FIG. 5, a flasher 10 is further provided in addition to the separator 9, and the steam separated by the separator 9 is sent to the high pressure part of the steam turbine 3 and the separated hot water is guided to the flasher 10. To generate low-pressure steam and introduce the low-pressure steam into the low-pressure portion of the steam turbine 3. After that, power is obtained in the same manner as in the system of FIG.

【0006】図6及び図7のバイナリ方式は、地熱によ
りフロン、イソペンタン等のような低沸点媒体を加熱し
て蒸気化するもので、図6においては、地熱井戸1から
の蒸気及び/又は熱水により低沸点媒体が蒸発器11に
おいて蒸気化され、そこで仕事を行って回転軸を回し発
電機4を駆動する。仕事を終り蒸気タービン3を出た蒸
気は、表面冷却式の復水器14において、冷却水ポンプ
12により冷却塔7から給送される冷却水で冷却されて
液媒体となり、媒体循環ポンプ13により蒸発器11に
戻される。一方、図7においては、図6の表面冷却式復
水器14及び冷却塔7の代わりに空冷式復水器16が用
いられている。
The binary method shown in FIGS. 6 and 7 is for heating a low boiling point medium such as CFC or isopentane by means of geothermal heat to vaporize it. In FIG. 6, steam and / or heat from the geothermal well 1 is used. The low-boiling-point medium is vaporized by water in the evaporator 11, where it performs work to rotate the rotating shaft to drive the generator 4. The steam that has finished the work and has exited the steam turbine 3 is cooled in the surface cooling type condenser 14 by the cooling water fed from the cooling tower 7 by the cooling water pump 12 to become a liquid medium, and by the medium circulation pump 13. It is returned to the evaporator 11. On the other hand, in FIG. 7, an air-cooled condenser 16 is used instead of the surface-cooled condenser 14 and the cooling tower 7 of FIG. 6.

【0007】図6及び図7に示したバイナリ方式の地熱
発電システムは、図3〜図5の地熱発電方式のものと比
較して、以下のような様々な利点を有している。 (1)地熱蒸気、熱水中の地熱ガスは蒸発器11を経て
そのまま還元井戸2へ戻され、大気へ放出しないので、
環境を汚染しない。 (2)図3〜図5の地熱発電方式は大容量の地熱ガスの
抽出装置を必要とするが、図6及び図7に示したバイナ
リ方式は冷却水中の僅かな空気を排出する装置であれば
よく、ガス抽出装置設備費の低減及び補機動力の低減が
可能である。 (3)図3〜図5の地熱発電方式では蒸気ラインや、循
環水ラインに腐食成分及びスケール成分が含まれてしま
うので、耐腐食性の高級な材料を使用する必要があり、
初期費用や保守費用が嵩む問題があるが、バイナリ方式
では二次蒸気の発生装置(蒸発器)に対する配慮だけで
すむ。 (4)図3〜図5の地熱発電方式では、地熱蒸気及び/
又は熱水の一部を大気へ放出するため、還元井戸におい
てシリカの濃縮が生じ閉塞の可能性があるのに対して、
バイナリ方式では、地熱井戸からの蒸気及び/又は熱水
は蒸発器において熱のみ吸収されるので、還元水の濃縮
が生じることがなく、従って、還元水の濃縮も生じ難
い。
The binary type geothermal power generation system shown in FIGS. 6 and 7 has various advantages as compared with the geothermal power generation system shown in FIGS. (1) Geothermal steam and geothermal gas in hot water are returned to the reduction well 2 through the evaporator 11 as they are and are not released to the atmosphere.
Does not pollute the environment. (2) The geothermal power generation system of FIGS. 3 to 5 requires a large-capacity geothermal gas extraction device, but the binary system shown in FIGS. 6 and 7 is a device that discharges a small amount of air in the cooling water. It is sufficient to reduce the equipment cost of the gas extractor and the power of auxiliary equipment. (3) In the geothermal power generation system shown in FIGS. 3 to 5, since the steam line and the circulating water line include the corrosion component and the scale component, it is necessary to use a high-grade material having corrosion resistance.
Although there is a problem that the initial cost and maintenance cost increase, the binary method only requires consideration for the secondary steam generator (evaporator). (4) In the geothermal power generation system of FIGS. 3 to 5, geothermal steam and / or
Or, since a part of hot water is released to the atmosphere, silica may be concentrated in the reduction well, which may cause blockage.
In the binary method, the steam and / or hot water from the geothermal well absorbs only heat in the evaporator, so that reducing water does not concentrate, and thus reducing water does not concentrate easily.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来のバイナ
リ方式のように低沸点媒体を使用していると、この媒体
は環境だけでなく人体にも有害であるため、系外に漏れ
出た場合に非常に危険であり、また、媒体が可燃性及び
/又は爆発性である場合には、その取扱いにも十分な配
慮が必要であり、しかも低沸点媒体は一般に高価であ
る。
However, when a low boiling point medium is used as in the conventional binary method, this medium is harmful not only to the environment but also to the human body, and therefore, when it leaks out of the system. Is extremely dangerous, and when the medium is flammable and / or explosive, it needs to be carefully handled, and the low boiling point medium is generally expensive.

【0009】従って、本発明の目的は、このような低沸
点媒体を使用しないバイナリ式の熱利用発電装置を提供
することである。
Accordingly, it is an object of the present invention to provide a binary heat-utilizing power generator which does not use such a low boiling point medium.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1に記載の本発明によると、地熱発電装置
は、熱源井戸からの蒸気及び/又は熱水により給水を加
熱して蒸気化すると共に、前記蒸気及び/又は熱水を還
元井戸に戻す蒸発器と、該蒸発器により発生された蒸気
を受ける蒸気タービンと、該蒸気タービンにより駆動さ
れる発電機と、前記蒸気タービンからの排出蒸気を受け
て冷却水により復水する直触式復水器とを備え、該復水
器からの復水を前記給水として前記蒸発器に供給する。
In order to achieve the above object, according to the present invention as set forth in claim 1, a geothermal power generation apparatus heats feed water with steam and / or hot water from a heat source well to steam. From the steam turbine, an evaporator returning the steam and / or hot water to a reduction well, a steam turbine receiving steam generated by the evaporator, a generator driven by the steam turbine, A direct-contact condenser that receives discharged steam and condenses with cooling water is provided, and the condensate from the condenser is supplied to the evaporator as the supply water.

【0011】また、上述の目的を達成するため、請求項
2に記載の本発明によると、地熱発電装置は、熱源井戸
からの蒸気及び/又は熱水により給水を加熱して蒸気化
すると共に、前記蒸気及び/又は熱水を還元井戸に戻す
蒸発器と、該蒸発器により発生された蒸気を受ける蒸気
タービンと、該蒸気タービンにより駆動される発電機
と、前記蒸気タービンからの排出蒸気を受けてファン冷
却により復水する空冷式復水器とを備え、該復水器から
の復水を前記給水として前記蒸発器に供給している。
In order to achieve the above-mentioned object, according to the present invention as set forth in claim 2, the geothermal power generation device heats the feed water with steam and / or hot water from the heat source well to vaporize it. An evaporator that returns the steam and / or hot water to the reduction well, a steam turbine that receives the steam generated by the evaporator, a generator that is driven by the steam turbine, and a steam that is discharged from the steam turbine. And an air-cooled condenser that condenses water by fan cooling, and the condensed water from the condenser is supplied to the evaporator as the water supply.

【0012】また、請求項1又は2に記載の地熱発電装
置は、前記復水器の排出水から空気を抽出するための空
気抽出装置を備えていることが好ましい。
Further, the geothermal power generator according to the first or second aspect is preferably equipped with an air extractor for extracting air from the water discharged from the condenser.

【0013】[0013]

【発明の実施の形態】次に、添付図面を参照して、本発
明の好適な実施の形態について詳細に説明するが、図
中、同一符号は同一又は対応部分を示すものとする。ま
た、本発明は、以下の説明から分かるように、この実施
形態に限定されるものではなく、種々の改変が可能であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications can be made.

【0014】本発明の実施例に係るバイナリ式の地熱発
電装置を示す図1において、地熱井戸1より噴出した蒸
気及び/又は熱水は、蒸発器11に導かれ、そこで後述
する冷却水を加熱した後、還元井戸2に戻される。冷却
水は蒸発器11において蒸気となり蒸気タービン3内へ
導かれ、そこで仕事を行って回転軸3aを回し発電機4
を駆動する。仕事を終り蒸気タービン3を出た蒸気は、
直触式復水器5において、一部が凝縮されて復水とな
り、循環水ポンプ6により冷却塔7に一部が送られると
共に、残部が前述した冷却水として蒸発器11に戻され
る。直触式復水器5の気相部はガスもしくは空気抽出装
置8を介して大気に放出される。そして、冷却塔7から
の排水は、直触式復水器5における冷却用の散水として
使用される。
In FIG. 1 showing a binary type geothermal power generation apparatus according to an embodiment of the present invention, steam and / or hot water ejected from a geothermal well 1 is introduced to an evaporator 11, where cooling water described later is heated. After that, it is returned to the reduction well 2. The cooling water becomes steam in the evaporator 11 and is introduced into the steam turbine 3, where it performs work to rotate the rotary shaft 3a and to rotate the generator 4
To drive. The steam that finished the work and exited the steam turbine 3
In the direct contact condenser 5, a part is condensed into condensate, which is sent to the cooling tower 7 by the circulating water pump 6 and the rest is returned to the evaporator 11 as the above-mentioned cooling water. The gas phase portion of the direct contact condenser 5 is discharged to the atmosphere via a gas or air extraction device 8. The drainage water from the cooling tower 7 is used as sprinkling water for cooling in the direct contact condenser 5.

【0015】図2は、本発明の別の実施例を示す概要図
であり、復水器として空冷式のものが採用されている。
この実施例において、地熱井戸1より噴出した蒸気及び
/又は熱水は、蒸発器11に導かれ、そこで後述する冷
却水を加熱した後、還元井戸2に戻される。加熱された
冷却水は蒸発器11において蒸気となって蒸気タービン
3内へ導かれ、そこで仕事を行って回転軸3aを回し発
電機4を駆動する。仕事を終り蒸気タービン3を出た蒸
気は、ファン16aを備えた空冷式復水器16におい
て、凝縮されて復水となり、循環水ポンプ6により前述
した冷却水として蒸発器11に戻されるようになってい
る。そして復水中の気相部はガスもしくは空気抽出装置
8を介して大気に放出される。
FIG. 2 is a schematic view showing another embodiment of the present invention, in which an air cooling type condenser is adopted.
In this embodiment, the steam and / or hot water ejected from the geothermal well 1 is guided to the evaporator 11, where the cooling water described below is heated and then returned to the reduction well 2. The heated cooling water becomes steam in the evaporator 11 and is introduced into the steam turbine 3, where it performs work to rotate the rotating shaft 3a and drive the generator 4. The steam that has finished the work and has exited the steam turbine 3 is condensed into condensate in the air-cooled condenser 16 equipped with the fan 16a, and is returned to the evaporator 11 as the cooling water by the circulating water pump 6. Has become. Then, the gas phase portion of the condensate is discharged to the atmosphere via the gas or air extraction device 8.

【0016】本発明を地熱発電装置に適用した実施例に
ついて説明したが、本発明は、この実施例に限定される
ものではなく、熱源として例えば産業廃棄物の燃焼によ
り生ずる熱を利用する発電装置にも適用することができ
る。
Although the embodiment in which the present invention is applied to a geothermal power generation device has been described, the present invention is not limited to this embodiment, and a power generation device utilizing heat generated by combustion of industrial waste, for example, as a heat source. Can also be applied to.

【0017】[0017]

【発明の効果】以上の説明から分かるように、本発明に
よる熱利用発電装置は、バイナリ方式のものであるから
バイナリ方式の利点を備えているにも拘わらず、媒体と
して水を採用しているので低沸点媒体の使用に伴う欠点
を有していない。具体的に述べると、請求項1及び2に
記載の本発明による地熱発電装置においては、バイナリ
方式であるから、(1)地熱蒸気及び/又は熱水中の地
熱ガスは蒸発器を経てそのまま還元井戸へ戻され、大気
へ放出しないので、環境を汚染することがなく、(2)
冷却水中の僅かな空気を排出する装置があればよく、ガ
ス抽出装置設備費の低減及び補機動力の低減が可能であ
り、(3)従来の地熱発電方式では、蒸気ラインや循環
水ラインに腐食成分及びスケール成分が含まれてしまう
ので、耐腐食性の高級な材料を使用する必要があり、初
期費用や保守費用が嵩む問題があるが、バイナリ方式で
は二次蒸気の発生装置(蒸発器)に対する配慮だけです
み、経済的であり、(4)従来の地熱発電方式では、地
熱蒸気及び/又は熱水の一部を大気へ放出するため、還
元井戸においてシリカの濃縮が生じ閉塞の可能性がある
のに対して、バイナリ方式では、地熱井戸からの蒸気及
び/又は熱水は蒸発器において熱のみ吸収されるので、
還元水の濃縮が生じることがなく、従って、還元水の濃
縮も生じ難い。
As can be seen from the above description, the heat-utilizing power generator according to the present invention is of the binary type, and therefore has the advantage of the binary type, but uses water as the medium. Therefore, it does not have the drawbacks associated with the use of low boiling media. More specifically, in the geothermal power generation device according to the present invention described in claims 1 and 2, since it is a binary system, (1) geothermal steam and / or geothermal gas in hot water is directly reduced through an evaporator. Since it is returned to the well and not released to the atmosphere, it does not pollute the environment. (2)
It is sufficient if there is a device that discharges a small amount of air in the cooling water, and it is possible to reduce the gas extraction device equipment cost and auxiliary machine power. (3) In the conventional geothermal power generation system, the steam line and circulating water line Since corrosion and scale components are included, it is necessary to use high-grade corrosion-resistant materials, which increases the initial cost and maintenance costs.However, the binary method uses a secondary steam generator (evaporator). (4) In the conventional geothermal power generation method, part of the geothermal steam and / or hot water is released to the atmosphere, so silica can be concentrated in the reduction well and blockage can occur. In contrast, in the binary method, steam and / or hot water from the geothermal well absorbs only heat in the evaporator,
The reduced water does not concentrate, so that the reduced water does not concentrate easily.

【0018】しかも、請求項1及び2に記載の本発明に
よれば、低沸点媒体ではなく水を使用しているので、
(1)取扱いが容易であるばかりか、媒体コストが実質
的に無視することができ、(2)水が媒体であるため特
殊な漏れ防止装置が不要であるから、設備費が安価です
み、更に(3)熱特性の差に由来して低沸点媒体よりも
循環水流量が少なくなるので、循環ポンプも小型で消費
動力を小さくすることができる。
Moreover, according to the present invention as set forth in claims 1 and 2, since water is used instead of the low boiling point medium,
(1) Not only is it easy to handle, but the medium cost can be practically ignored, and (2) Since water is the medium, no special leak prevention device is required, so the equipment cost is low, Further, (3) the circulating water flow rate is smaller than that of the low boiling point medium due to the difference in thermal characteristics, so that the circulating pump can be downsized and power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】直触式復水器を採用した本発明による地熱発電
装置の第1実施例を示す概要図である。
FIG. 1 is a schematic view showing a first embodiment of a geothermal power generation device according to the present invention that employs a direct contact condenser.

【図2】空冷式復水器を採用した本発明による地熱発電
装置の第2実施例を示す概要図である。
FIG. 2 is a schematic diagram showing a second embodiment of the geothermal power generator according to the present invention which employs an air-cooled condenser.

【図3】地熱蒸気を井戸より蒸気タービンに直接導入す
る方式の従来の地熱発電装置の概要図である。
FIG. 3 is a schematic diagram of a conventional geothermal power generation system of a type in which geothermal steam is directly introduced into a steam turbine from a well.

【図4】地熱井戸より蒸気及び熱水が、又は熱水のみが
噴出する場合の従来のシングルフラッシュ式地熱発電装
置の概要図である。
FIG. 4 is a schematic diagram of a conventional single flash type geothermal power generation device when steam and hot water, or only hot water is jetted from a geothermal well.

【図5】地熱井戸より蒸気及び熱水が、又は熱水のみが
噴出する場合の従来のダブルフラッシュ式地熱発電装置
の概要図である。
FIG. 5 is a schematic diagram of a conventional double flash type geothermal power generation device when steam and hot water, or only hot water is jetted from a geothermal well.

【図6】表面冷却式の復水器を採用した従来の低沸点媒
体を用いるバイナリ式地熱発電装置の概要図である。
FIG. 6 is a schematic diagram of a conventional binary geothermal power generation device using a conventional low-boiling-point medium that employs a surface-cooled condenser.

【図7】空冷式の復水器を採用した従来の低沸点媒体を
用いるバイナリ式地熱発電装置の概要図である。
FIG. 7 is a schematic diagram of a conventional binary geothermal power generation device that uses a conventional low boiling point medium that employs an air-cooled condenser.

【符号の説明】 1 地熱井戸 2 還元井戸 3 蒸気タービン 4 発電機 5 直触式復水器 6 循環水ポンプ 7 冷却塔 8 空気抽出装置 11 蒸発器 16 空冷式復水器 16a ファン[Explanation of symbols] 1 geothermal well 2 reduction wells 3 steam turbine 4 generator 5 Direct touch condenser 6 circulating water pump 7 cooling tower 8 Air extractor 11 evaporator 16 Air-cooled condenser 16a fan

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱源井戸からの蒸気及び/又は熱水によ
り給水を加熱して蒸気化すると共に、前記蒸気及び/又
は熱水を還元井戸に戻す蒸発器と、該蒸発器により発生
された蒸気を受ける蒸気タービンと、該蒸気タービンに
より駆動される発電機と、前記蒸気タービンからの排出
蒸気を受けて冷却水により復水する直触式復水器とを備
え、該復水器からの復水を前記給水として前記蒸発器に
供給する地熱発電装置。
1. An evaporator that heats feed water with steam and / or hot water from a heat source well to vaporize it, and returns the steam and / or hot water to a reduction well, and steam generated by the evaporator. A steam turbine that receives the steam, a generator that is driven by the steam turbine, and a direct-contact condenser that receives the exhaust steam from the steam turbine and condenses it with cooling water. A geothermal power generation device that supplies water to the evaporator as the water supply.
【請求項2】 熱源井戸からの蒸気及び/又は熱水によ
り給水を加熱して蒸気化すると共に、前記蒸気及び/又
は熱水を還元井戸に戻す蒸発器と、該蒸発器により発生
された蒸気を受ける蒸気タービンと、該蒸気タービンに
より駆動される発電機と、前記蒸気タービンからの排出
蒸気を受けてファン冷却により復水する空冷式復水器と
を備え、該復水器からの復水を前記給水として前記蒸発
器に供給する地熱発電装置。
2. An evaporator that heats feed water with steam and / or hot water from a heat source well to vaporize it, and returns the steam and / or hot water to a reduction well, and steam generated by the evaporator. A steam turbine that receives the steam, a generator that is driven by the steam turbine, and an air-cooled condenser that receives the exhaust steam from the steam turbine and condenses the water by fan cooling. A geothermal power generator that supplies water to the evaporator as the water supply.
【請求項3】 前記復水器の排出水から空気を抽出する
ための空気抽出装置を更に備える請求項1又は2に記載
の地熱発電装置。
3. The geothermal power generation device according to claim 1, further comprising an air extraction device for extracting air from the discharge water of the condenser.
JP2001310510A 2001-10-05 2001-10-05 Geothermal power generation device Pending JP2003120513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310510A JP2003120513A (en) 2001-10-05 2001-10-05 Geothermal power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310510A JP2003120513A (en) 2001-10-05 2001-10-05 Geothermal power generation device

Publications (1)

Publication Number Publication Date
JP2003120513A true JP2003120513A (en) 2003-04-23

Family

ID=19129472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310510A Pending JP2003120513A (en) 2001-10-05 2001-10-05 Geothermal power generation device

Country Status (1)

Country Link
JP (1) JP2003120513A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013582A1 (en) * 2011-07-25 2013-01-31 Lu Ming Device and method for drawing high-temperature geothermal heat to generate power
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same
US9512741B2 (en) 2011-08-19 2016-12-06 Fuji Electric Co., Ltd. Power plant
JPWO2016204287A1 (en) * 2015-06-19 2018-04-05 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system, geothermal power generation apparatus, geothermal power generation method or medium transfer pipe, geothermal power generation apparatus and geothermal power generation method using the medium transfer pipe, and method of installing a medium transfer pipe in a crushing zone
JP2019078185A (en) * 2017-10-20 2019-05-23 松尾 栄人 Thermal storage type solar thermal power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013582A1 (en) * 2011-07-25 2013-01-31 Lu Ming Device and method for drawing high-temperature geothermal heat to generate power
US9512741B2 (en) 2011-08-19 2016-12-06 Fuji Electric Co., Ltd. Power plant
US9358498B2 (en) 2011-10-19 2016-06-07 Fuji Electric Co., Ltd. Mixed air removal device and power generator including the same
JPWO2016204287A1 (en) * 2015-06-19 2018-04-05 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system, geothermal power generation apparatus, geothermal power generation method or medium transfer pipe, geothermal power generation apparatus and geothermal power generation method using the medium transfer pipe, and method of installing a medium transfer pipe in a crushing zone
JP2019078185A (en) * 2017-10-20 2019-05-23 松尾 栄人 Thermal storage type solar thermal power generation system

Similar Documents

Publication Publication Date Title
RU2485331C2 (en) Method and device for conversion of thermal energy of low-temperature source of heat into mechanical energy
EP1921281B1 (en) Seawater desalinating apparatus using blowdown water of heat recovery steam generator
JPH06341368A (en) Device and method for obtaining power from high pressure geothermal fluid
JPH06221114A (en) Operating method of combination device of gas turbo group and steam turbine device
JPH07208116A (en) Combined cycle power plant
JP2008101521A (en) Power generation system using exhaust heat
US20110056227A1 (en) Heat recovery system of plant using heat pump
JP2012533017A (en) Combined cycle power unit
JP3753760B2 (en) Heat recovery in liquid ring pump seal liquid cooler system
US7237383B2 (en) Method and device for extracting water in a power plant
KR20210104067A (en) District heating network including heat pump unit and heat pump unit
JPH09203304A (en) Compound power generating system using waste as fuel
KR101935637B1 (en) Combined cycle power generation system
JP2003120513A (en) Geothermal power generation device
JP7079151B2 (en) Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
JPH0925830A (en) Steam injection gas turbine system and operating method thereof
JP5658473B2 (en) Power generation device and operation method of power generation device
KR100678705B1 (en) Waste heat recovery system of steam power plant
JP2019162591A (en) Evaporation concentrator
US20060037320A1 (en) Process and device for utilizing waste heat
CA2740203C (en) Combined circulation condenser
JP3973412B2 (en) Waste heat recovery system by gas turbine
JPH09112214A (en) Power generating system
JP2019105251A (en) Geothermal power generation system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227