JP2003253041A - Method for decomposing thermosetting resin and method for recycling thermosetting resin - Google Patents
Method for decomposing thermosetting resin and method for recycling thermosetting resinInfo
- Publication number
- JP2003253041A JP2003253041A JP2002054178A JP2002054178A JP2003253041A JP 2003253041 A JP2003253041 A JP 2003253041A JP 2002054178 A JP2002054178 A JP 2002054178A JP 2002054178 A JP2002054178 A JP 2002054178A JP 2003253041 A JP2003253041 A JP 2003253041A
- Authority
- JP
- Japan
- Prior art keywords
- thermosetting resin
- resin
- molecular weight
- phenol
- decomposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 81
- 239000011347 resin Substances 0.000 title claims abstract description 81
- 229920001187 thermosetting polymer Polymers 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004064 recycling Methods 0.000 title claims abstract description 11
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 51
- 239000002002 slurry Substances 0.000 claims abstract description 34
- 239000005011 phenolic resin Substances 0.000 claims abstract description 30
- 239000007810 chemical reaction solvent Substances 0.000 claims abstract description 20
- 239000002270 dispersing agent Substances 0.000 claims abstract description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 8
- -1 phenol compound Chemical class 0.000 claims description 18
- 150000002989 phenols Chemical class 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 7
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 5
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 claims description 4
- 150000001299 aldehydes Chemical class 0.000 claims description 4
- 229930003836 cresol Natural products 0.000 claims description 4
- 229960001755 resorcinol Drugs 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 238000006068 polycondensation reaction Methods 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 3
- 239000004640 Melamine resin Substances 0.000 claims description 2
- 150000003739 xylenols Chemical class 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 2
- 229920005992 thermoplastic resin Polymers 0.000 abstract 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000012778 molding material Substances 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229920001568 phenolic resin Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012766 organic filler Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920003261 Durez Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000013064 chemical raw material Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011134 resol-type phenolic resin Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱硬化性樹脂の分
解処理方法およびリサイクル方法に関するものである。
更に詳しくは、工場などから大量に廃棄されている産業
廃棄物や、一般廃棄物中に大量に含まれていながら、こ
れまでリサイクルが実現できていない熱硬化性樹脂を高
速に大量に分解処理することができる熱硬化性樹脂の分
解処理方法、及びその分解処理方法により得られる低分
子量から中分子量の化合物を熱硬化性樹脂の原料として
再利用する熱硬化性樹脂のリサイクル方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decomposition treatment method and a recycling method for thermosetting resins.
More specifically, it decomposes a large amount of industrial waste that has been discarded in large quantities from factories, etc., and thermosetting resins that are not contained in general waste and have not been recycled so far, at high speed. The present invention relates to a method for decomposing a thermosetting resin that can be used, and a method for recycling a thermosetting resin, in which a low to medium molecular weight compound obtained by the decomposing method is reused as a raw material for a thermosetting resin.
【0002】[0002]
【従来の技術】プラスチックの中でも熱硬化性樹脂は、
優れた電気絶縁性・耐熱性・機械的強度を示すため、電
気・電子部品、自動車部品等の材料として広く用いられ
ている。しかし、熱硬化性樹脂は、一旦、硬化すると、
熱により軟化・融解せず、溶剤にも溶解しないため、そ
の硬化物をプラスチック原料として再生することは技術
的に困難であった。2. Description of the Related Art Among plastics, thermosetting resins are
Since it has excellent electrical insulation, heat resistance, and mechanical strength, it is widely used as a material for electrical and electronic parts, automobile parts, and so on. However, thermosetting resins, once cured,
Since it does not soften / melt by heat and does not dissolve in a solvent, it is technically difficult to regenerate the cured product as a plastic raw material.
【0003】近年、これらの課題を克服するための、超
臨界流体を用いて熱硬化性樹脂を分解処理する方法が検
討されている。例えば、超臨界水単独では難分解性な熱
硬化性樹脂を分解処理およびリサイクルするために、超
臨界又は亜臨界状態の、単核フェノール類化合物又は水
/単核フェノール類化合物の溶液中で可溶化処理する方
法が検討されている(特開2001−151933号公
報)。この方法では、酸触媒やアルカリ触媒などを加え
ることなく、10分間程度の短い反応時間で熱硬化性樹
脂が可溶化して、分子量200〜10,000のオリゴ
マー成分を回収できるとしている。In recent years, in order to overcome these problems, a method of decomposing a thermosetting resin using a supercritical fluid has been investigated. For example, in order to decompose and recycle a thermosetting resin that is difficult to decompose with supercritical water alone, it may be used in a solution of a mononuclear phenol compound or a water / mononuclear phenol compound in a supercritical or subcritical state. A method of solution treatment has been studied (Japanese Patent Laid-Open No. 2001-151933). According to this method, the thermosetting resin is solubilized in a short reaction time of about 10 minutes without adding an acid catalyst or an alkali catalyst, and an oligomer component having a molecular weight of 200 to 10,000 can be recovered.
【0004】上記の方法による熱硬化性樹脂のリサイク
ルにおいては、熱硬化性樹脂の分解効率の問題があり、
分解効率を向上させるために、あらかじめ熱硬化性樹脂
と反応溶媒を混合して高濃度スラリーとして分解処理す
る方法が考えられるが、加熱中や反応中にスラリー中の
固体分の凝集や沈降が起こることで、分解効率が低下し
て重合物が生成したり、重合物が反応管の内壁に付着し
て、熱伝導効率を低下させるなどの問題が発生する。さ
らに、流通式装置で連続的に分解処理する場合には、ス
ラリー中の固体分の凝集や沈降により、スラリー供給配
管や反応管が閉塞して、分解処理を行うことができない
場合が生じる。In recycling the thermosetting resin by the above method, there is a problem of decomposition efficiency of the thermosetting resin,
In order to improve the decomposition efficiency, a method of mixing the thermosetting resin and the reaction solvent in advance and decomposing as a high-concentration slurry can be considered, but agglomeration and sedimentation of solids in the slurry occur during heating and reaction. As a result, the decomposition efficiency is lowered and a polymer is produced, or the polymer is attached to the inner wall of the reaction tube to lower the heat conduction efficiency. Furthermore, when continuously decomposing with a flow-through apparatus, the slurry supply pipes and reaction pipes may be blocked due to agglomeration and sedimentation of solids in the slurry, so that the decomposing process may not be possible.
【0005】[0005]
【発明が解決しようとする課題】本発明は、昇温過程お
よび分解反応過程における高濃度スラリー中の固体分の
凝集・沈降を抑制して、安定して高い分解率を達成でき
る、熱硬化性樹脂の分解処理方法及びリサイクル方法を
提供するものである。DISCLOSURE OF THE INVENTION The present invention is a thermosetting resin which can stably achieve a high decomposition rate by suppressing the aggregation / sedimentation of solids in a high-concentration slurry in the temperature rising process and the decomposition reaction process. It is intended to provide a resin decomposition treatment method and a recycling method.
【0006】[0006]
【課題を解決するための手段】本発明者らは、スラリー
安定性を向上させることが可能な分散剤を用いて、熱硬
化性樹脂と反応溶媒からなるスラリーを形成し、超臨界
又は亜臨界状態下で熱硬化性樹脂の分解処理を行うこと
により分解効率を向上させることができることを見出
し、本発明を完成するに至った。DISCLOSURE OF THE INVENTION The inventors of the present invention formed a slurry composed of a thermosetting resin and a reaction solvent by using a dispersant capable of improving the stability of the slurry, and made it supercritical or subcritical. It has been found that the decomposition efficiency of the thermosetting resin can be improved by performing the decomposition treatment of the thermosetting resin under the condition, and the present invention has been completed.
【0007】すなわち、本発明は、(1) 熱硬化性樹
脂を、スラリー化して、単核フェノール類化合物又は水
と単核フェノール類化合物との混合物を反応溶媒とし
て、超臨界又は亜臨界状態において、200〜10,0
00の分子量を有するオリゴマーを主体とする低分子量
から中分子量の化合物に分解する方法であって、熱硬化
性樹脂が、該反応溶媒と、フェノール樹脂からなる分散
剤とを混合してスラリー化されることを特徴とする熱硬
化性樹脂の分解処理方法、(2) フェノール樹脂から
なる分散剤が、フェノール類とアルデヒド類とを縮重合
反応させて合成される、分子量200〜100,000
のノボラック型フェノール樹脂またはレゾール型フェノ
ール樹脂であり、スラリー100重量部に対して0.0
5〜20重量部で添加される、前記第(1)項に記載の
熱硬化性樹脂の分解処理方法、(3) 単核フェノール
類化合物が、フェノール、クレゾール、キシレノール、
レゾルシン、及びアルキル置換フェノールの中から選ば
れる、前記第(1)項又は第(2)項記載の熱硬化性樹
脂の分解処理方法、(4) 単核フェノール類化合物又
は水と単核フェノール類化合物との混合物が、分解処理
して生成した200〜10,000の分子量を有するオ
リゴマーを主体とする低分子量から中分子量の化合物か
ら分離、精製して得られたものである、前記第(1)項
〜第(3)項のいずれかに記載の熱硬化性樹脂の分解処
理方法、(5) 熱硬化性樹脂が、フェノール樹脂、エ
ポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹
脂、メラミン樹脂、及びユリア樹脂の中から選択された
1種又は2種以上である、前記第(1)項〜第(4)項
のいずれかに記載の熱硬化性樹脂の分解処理方法、
(6) 前記第(1)項〜第(5)項のいずれかに記載
の分解処理方法により、熱硬化性樹脂を分解して得られ
た200〜10,000の分子量を有するオリゴマーを
主体とする低分子量から中分子量の化合物を、熱硬化性
樹脂の原料として再利用する熱硬化性樹脂のリサイクル
方法、を提供するものである。That is, according to the present invention, (1) a thermosetting resin is slurried and a mononuclear phenol compound or a mixture of water and a mononuclear phenol compound is used as a reaction solvent in a supercritical or subcritical state. , 200-10,0
A method of decomposing a low molecular weight compound to a medium molecular weight compound mainly composed of an oligomer having a molecular weight of 00, wherein a thermosetting resin is slurried by mixing the reaction solvent and a dispersant composed of a phenol resin. A method for decomposing a thermosetting resin, characterized in that (2) a dispersant comprising a phenol resin is synthesized by subjecting a phenol and an aldehyde to a polycondensation reaction, and a molecular weight of 200 to 100,000.
Novolak type phenolic resin or resol type phenolic resin of 0.0 to 100 parts by weight of the slurry.
5 to 20 parts by weight of the method for decomposing the thermosetting resin according to (1) above, (3) wherein the mononuclear phenol compound is phenol, cresol, xylenol,
A method for decomposing a thermosetting resin according to the above (1) or (2), which is selected from resorcin and alkyl-substituted phenol, (4) a mononuclear phenol compound or water and a mononuclear phenol The mixture with the compound is obtained by separating and purifying from a low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 200 to 10,000 produced by decomposition treatment and purifying the mixture. ) To the method for decomposing a thermosetting resin according to any one of (3) to (3), (5) the thermosetting resin is a phenol resin, an epoxy resin, a polyimide resin, an unsaturated polyester resin, a melamine resin, and The method for decomposing a thermosetting resin according to any one of (1) to (4) above, which is one kind or two or more kinds selected from urea resins.
(6) Mainly composed of an oligomer having a molecular weight of 200 to 10,000 obtained by decomposing a thermosetting resin by the decomposition treatment method according to any one of the items (1) to (5). The present invention provides a method for recycling a thermosetting resin, in which a low to medium molecular weight compound is reused as a raw material for a thermosetting resin.
【0008】[0008]
【発明の実施の形態】本発明の熱硬化性樹脂の分解処理
方法は、分解処理される熱硬化性樹脂をスラリー化し、
単核フェノール類化合物又は水と単核フェノール類化合
物との混合物を反応溶媒として、超臨界又は亜臨界状態
下で分解処理して、200〜10,000の分子量を有
するオリゴマーを主体とする低分子量から中分子量の化
合物に分解する方法であり、スラリー化においては、分
解処理される熱硬化性樹脂と、該反応溶媒と、フェノー
ル樹脂からなる分散剤とを混合してスラリー化されるこ
とを特徴とするものである。BEST MODE FOR CARRYING OUT THE INVENTION A method for decomposing a thermosetting resin of the present invention is to prepare a slurry of a thermosetting resin to be decomposed,
Low molecular weight mainly composed of an oligomer having a molecular weight of 200 to 10,000, which is decomposed in a supercritical or subcritical state using a mononuclear phenol compound or a mixture of water and a mononuclear phenol compound as a reaction solvent. Is a method of decomposing into a medium molecular weight compound, and in the slurry formation, a thermosetting resin to be decomposed, the reaction solvent, and a dispersant composed of a phenol resin are mixed to form a slurry. It is what
【0009】本発明において、スラリー化における分散
剤に用いるフェノール樹脂としては、フェノール類とア
ルデヒド類とを縮重合反応させて合成されるノボラック
型フェノール樹脂またはレゾール型フェノール樹脂が好
適に挙げられる。フェノール類としては、フェノールの
他、レゾルシン,カテコール等の2価フェノール、クレ
ゾール,キシレノール等のアルキル置換フェノール、ビ
スフェノールA,ビスフェノールF,ビスフェノールS
等の2核フェノールなどが挙げられ、いずれを用いたも
のでも良い。また、アルデヒド類としては、ホルマリ
ン、パラホルムアルデヒド、ベンズアルデヒド、アセト
アルデヒド等が挙げられ、いずれを用いたものでも良
い。これらの内、コストの面で、フェノールとホルマリ
ンから合成したノボラック型フェノール樹脂が好まし
い。In the present invention, as a phenol resin used as a dispersant in slurry formation, a novolac type phenol resin or a resol type phenol resin synthesized by subjecting a phenol and an aldehyde to a polycondensation reaction is preferable. Examples of phenols include phenol, dihydric phenols such as resorcinol and catechol, alkyl-substituted phenols such as cresol and xylenol, bisphenol A, bisphenol F, and bisphenol S.
And other binuclear phenols, and any of them may be used. Examples of aldehydes include formalin, paraformaldehyde, benzaldehyde, acetaldehyde and the like, and any of them may be used. Among these, the novolac type phenol resin synthesized from phenol and formalin is preferable in terms of cost.
【0010】スラリー化における分散剤に用いるフェノ
ール樹脂の分子量は、重量平均で200〜 100,0
00程度の範囲であるが、好ましくは200〜50,0
00であり、更に好ましくは400〜20,000の範
囲である。上記範囲よりも低分子量の場合は、スラリー
安定性に与える効果が得られなくなる恐れがある。ま
た、上記範囲よりも高分子量の場合は、反応溶媒へのフ
ェノール樹脂の溶解性が劣る恐れがあり、その場合、均
一なスラリーを調整するために必要な混合時間が長くな
る。The weight average molecular weight of the phenol resin used as the dispersant in the slurry formation is 200 to 100,0.
The range is about 00, preferably 200 to 50,0
00, and more preferably in the range of 400 to 20,000. When the molecular weight is lower than the above range, the effect on the slurry stability may not be obtained. On the other hand, when the molecular weight is higher than the above range, the solubility of the phenol resin in the reaction solvent may be poor, and in that case, the mixing time required for adjusting a uniform slurry becomes long.
【0011】また、スラリー化における分散剤に用いる
フェノール樹脂の添加量は、スラリー100重量部に対
して、好ましくは0.05〜20重量部の範囲であり、
さらに好ましくは、0.1〜5重量部の範囲である。上
記の添加量の範囲より少ないとスラリー安定性に与える
効果が得られなくなる恐れがある。また、添加量が上記
範囲よりも多いと、好ましい上限値の効果と比べ格段の
効果が得られずにコスト高となり、さらに、スラリーの
粘度が増加しすぎることで、その流動性が低下して、分
解反応に悪影響を及ぼす恐れがある。The addition amount of the phenol resin used as the dispersant in slurry formation is preferably in the range of 0.05 to 20 parts by weight with respect to 100 parts by weight of the slurry,
More preferably, it is in the range of 0.1 to 5 parts by weight. If the amount added is less than the above range, the effect on the slurry stability may not be obtained. Further, when the addition amount is more than the above range, the effect is not significantly improved as compared with the effect of the preferred upper limit and the cost becomes high, and further, the viscosity of the slurry is excessively increased, and thus the fluidity is lowered. , It may adversely affect the decomposition reaction.
【0012】本発明においてスラリーの形成は、リボン
型混合機、ボールミル、湿式粉砕攪拌機などの混合装置
を用いて、熱硬化性樹脂、反応溶媒、分散剤を混合する
ことで行う。混合前は、熱硬化性樹脂は固形、液状、ペ
ースト状等、反応溶媒は液状であり、分散剤は、固形、
半固形、液状、ワニス、いずれの状態でもよい。また、
熱硬化性樹脂、反応溶媒、分散剤それぞれを混合する順
番に特に限定はないが、通常は、あらかじめ分散剤を反
応溶媒に溶解させた溶液を調整してから、熱硬化性樹脂
を加えてスラリー化すると効率がよい。さらに、スラリ
ー化する際に、40〜100℃程度で加熱しながら処理
すると効率がよい。In the present invention, the slurry is formed by mixing the thermosetting resin, the reaction solvent and the dispersant using a mixing device such as a ribbon mixer, a ball mill and a wet pulverization stirrer. Before mixing, the thermosetting resin is solid, liquid, paste, etc., the reaction solvent is liquid, the dispersant is solid,
It may be in a semisolid, liquid or varnish state. Also,
The order in which the thermosetting resin, the reaction solvent, and the dispersant are mixed is not particularly limited, but usually, a solution in which the dispersant is dissolved in the reaction solvent is prepared in advance, and then the thermosetting resin is added to the slurry. It is efficient if it is made into. Further, when making a slurry, it is efficient to perform the treatment while heating at about 40 to 100 ° C.
【0013】本発明において反応溶媒として用いる単核
フェノール類化合物は、フェノール、クレゾール、キシ
レノール、レゾルシン、及びアルキル置換フェノールが
好適に挙げられ、これらの1種又は2種以上が用いられ
る。これらの内、コスト面および分解反応に与える効果
から、フェノールが好ましい。Preferable examples of the mononuclear phenol compound used as the reaction solvent in the present invention include phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol, and one or more of these are used. Of these, phenol is preferable in terms of cost and effect on the decomposition reaction.
【0014】本発明において、反応溶媒として用いる、
水と単核フェノール類化合物の混合溶媒の組成は、単核
フェノール類化合物100重量部に対して水0〜500
重量部の範囲が好ましく、更に好ましくは、単核フェノ
ール類化合物100重量部に対して水5〜50重量部の
範囲である。In the present invention, it is used as a reaction solvent,
The composition of the mixed solvent of water and the mononuclear phenol compound is 0 to 500 parts by weight of water based on 100 parts by weight of the mononuclear phenol compound.
The range is preferably 5 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the mononuclear phenolic compound.
【0015】本発明において、分解処理される熱硬化性
樹脂に対して用いる単核フェノール類化合物又は水と単
核フェノール類化合物との混合物の使用割合は、熱硬化
性樹脂100重量部に対して、50〜1000重量部の
範囲が好ましく、更に好ましくは100〜400重量部
の範囲である。単核フェノール類化合物又は水と単核フ
ェノール類化合物との混合物が上記の範囲よりも少なく
なると、熱硬化性樹脂の分解反応を円滑に進行させるの
が困難になる恐れがある。一方、上記の範囲よりも多く
なると、好ましい上限値の効果と比べ格別の効果は得ら
れず、その場合、溶媒を加熱するために要する熱量が増
加するため、熱エネルギーの消費が多くなる。In the present invention, the proportion of the mononuclear phenolic compound or the mixture of water and mononuclear phenolic compound used for the thermosetting resin to be decomposed is 100 parts by weight of the thermosetting resin. The range of 50 to 1000 parts by weight is preferable, and the range of 100 to 400 parts by weight is more preferable. When the amount of the mononuclear phenol compound or the mixture of water and the mononuclear phenol compound is less than the above range, it may be difficult to smoothly proceed the decomposition reaction of the thermosetting resin. On the other hand, when the amount is more than the above range, no particular effect is obtained compared to the effect of the preferable upper limit value, and in that case, the amount of heat required to heat the solvent increases, so that the heat energy consumption increases.
【0016】本発明の方法で分解される熱硬化性樹脂
は、硬化した樹脂、未硬化もしくは半硬化の樹脂、樹脂
を含有するワニスなどを含むものとする。また、単独の
熱硬化性樹脂の他に、シリカ微粒子、ガラス繊維等の無
機質系や、木粉等の有機質系の充填剤を含む成形材料も
しくは成形品、ガラス布のような無機質系や、紙、布等
の有機質系基材を用いた積層板、これに銅箔等の金属箔
を張り合わせた金属張り積層板、さらには銅張り積層板
などを加工して得られるプリント回路板のような熱硬化
性樹脂製品も含むものとする。また、熱硬化性樹脂の種
類としては、特に限定されるものではないが、本発明
は、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、
不飽和ポリエステル樹脂、メラミン樹脂、ユリア樹脂に
ついて、特に効果的に適応できる。The thermosetting resin decomposed by the method of the present invention includes a cured resin, an uncured or semi-cured resin, a resin-containing varnish and the like. Further, in addition to a single thermosetting resin, fine particles of silica, inorganic fibers such as glass fibers, molding materials or molded products containing organic fillers such as wood powder, inorganic materials such as glass cloth, and paper. , A laminated board using an organic base material such as cloth, a metal-clad laminated board in which a metal foil such as a copper foil is laminated, and a heat such as a printed circuit board obtained by processing a copper-clad laminated board. Curable resin products are also included. The type of thermosetting resin is not particularly limited, the present invention is a phenol resin, an epoxy resin, a polyimide resin,
It can be applied particularly effectively to unsaturated polyester resins, melamine resins and urea resins.
【0017】本発明で熱硬化性樹脂から回収できる20
0〜10,000の分子量を有するオリゴマーを主体と
する低分子量から中分子量の化合物は、通常、熱硬化性
樹脂製品を製造する際に用いられるプレポリマーと同程
度の分子量であるため、必要に応じて精製を行うことに
より、熱硬化性樹脂製品の化学原料(プレポリマー)と
して再利用することができる。The present invention can recover 20 from thermosetting resins.
A low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 0 to 10,000 usually has a molecular weight similar to that of a prepolymer used in producing a thermosetting resin product, and thus is required. By carrying out purification accordingly, it can be reused as a chemical raw material (prepolymer) of a thermosetting resin product.
【0018】また、分解処理に供する熱硬化性樹脂の大
きさには特に制限はなく、粉砕に要するコスト、分解速
度、スラリーの安定性を考慮して、最適な大きさを選択
すればよい。安定したスラリ―を調整するために、通常
は粒子径500μm以下であり、好ましくは250μm
以下、更に好ましくは100μm以下である。The size of the thermosetting resin used for the decomposition treatment is not particularly limited, and the optimum size may be selected in consideration of the cost required for pulverization, the decomposition rate and the stability of the slurry. In order to adjust a stable slurry, the particle size is usually 500 μm or less, preferably 250 μm.
Hereafter, it is more preferably 100 μm or less.
【0019】本発明において、分解条件としては、温度
及び圧力を、通常、温度が200〜500℃、圧力が1
〜60Mpaの範囲で、超臨界又は亜臨界の条件に調製
すれば良いが、望ましくは、温度が300〜450℃、
圧力が2〜40MPa範囲で温度および圧力を設定すれ
ば良い。温度が上記の範囲よりも低くなると、熱硬化性
樹脂の分解反応速度が小さいため、短時間での処理が困
難になる。一方、上記の範囲よりも高くなると、熱分解
などの副反応が併発して回収したオリゴマーの化学構造
が変化するため、熱硬化性樹脂製品の化学原料としての
再利用が困難になる。また、反応時間は、1〜60分の
範囲で調製できるが、通常は3〜30分程度で分解処理
が終了する。In the present invention, as decomposition conditions, temperature and pressure are usually 200 to 500 ° C. and 1
It may be prepared under the conditions of supercritical or subcritical in the range of ˜60 Mpa, but desirably the temperature is 300 to 450 ° C.,
The temperature and pressure may be set within a pressure range of 2 to 40 MPa. When the temperature is lower than the above range, the decomposition reaction rate of the thermosetting resin is small, and thus the treatment in a short time becomes difficult. On the other hand, when it is higher than the above range, side reactions such as thermal decomposition occur concurrently and the chemical structure of the recovered oligomer changes, so that it becomes difficult to reuse the thermosetting resin product as a chemical raw material. The reaction time can be adjusted in the range of 1 to 60 minutes, but the decomposition treatment is usually completed in about 3 to 30 minutes.
【0020】本発明の熱硬化性樹脂の分解処理方法及び
リサイクル方法は、酸、アルカリ触媒を用いることな
く、超臨界あるいは亜臨界状態の単核フェノール類化合
物又は水と単核フェノール類化合物との混合物からなる
溶媒中で、熱硬化性樹脂を分解処理することで、分子量
200〜10,000のオリゴマーを主体とする低〜中
分子量化合物を回収することができる。さらに、上記方
法で回収した200〜10,000の分子量を有するオ
リゴマーを主体とする低分子量から中分子量の化合物
を、熱硬化性樹脂の原料として再利用することができ
る。これらの工程の例としては、図1のフローチャート
のように示すことができる。また、分散剤として添加し
たフェノール樹脂も分解するが、その生成物は200〜
10,000の分子量を有するオリゴマーを主体とする
低分子量から中分子量の化合物であるため、熱硬化性樹
脂に由来する分解生成物と分離する必要がなく、そのま
ま熱硬化性樹脂の原料として再利用することができるこ
とが大きな利点である。The method for decomposing and recycling a thermosetting resin of the present invention is a method for preparing a mononuclear phenol compound or water and a mononuclear phenol compound in a supercritical or subcritical state without using an acid or alkali catalyst. By decomposing the thermosetting resin in a solvent composed of a mixture, a low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 200 to 10,000 can be recovered. Further, the low to medium molecular weight compound mainly composed of the oligomer having a molecular weight of 200 to 10,000 recovered by the above method can be reused as a raw material of the thermosetting resin. An example of these steps can be shown as in the flow chart of FIG. The phenol resin added as a dispersant also decomposes, but the product is
Since it is a low to medium molecular weight compound consisting mainly of oligomers having a molecular weight of 10,000, it does not need to be separated from decomposition products derived from thermosetting resins and can be reused as it is as a raw material for thermosetting resins. Being able to do so is a great advantage.
【0021】[0021]
【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明は、これによって何ら限定されるものでは
ない。The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.
【0022】[実施例1]フェノール樹脂成形材料の分
解
熱硬化性樹脂として、フェノール樹脂成形材料(ノボラ
ック型フェノール樹脂:44wt%、有機フィラー(木
粉など):42wt%、無機フィラー(炭酸カルシウム
など):14wt%含有)を粉砕ふるいわけして、粒子
径を250μm以下に調整したものを用いた。上記フェ
ノール樹脂成形材料58.3gと、フェノール85.6
gと水21.3gの混合物からなる反応溶媒とを混合す
る際に、系内を60℃に加熱しながら、フェノールとホ
ルムアルデヒドとを反応させて合成された、数平均分子
量(以下、Mn)1000、重量平均分子量(以下、M
w)10,000のノボラック型フェノール樹脂(住友
デュレズ(株)製 PR−50731)1.0gを添加
してスラリー化した。上記のスラリーを、オートクレー
ブ(内容積200cm3)に仕込んだのち、加熱して内
温を400℃とすることで、反応器内圧を15MPaま
で上昇させ高温高圧状態とした。400℃、15MPa
で5分間保ったのち、冷却して常温常圧に戻した。反応
終了後、分解生成物と反応溶媒の混合物から、常圧およ
び減圧条件下で加熱することで、溶媒(フェノール、
水)を除去して分解生成物64gを得た。この生成物を
テトラヒドロフラン(THF)に溶解させたのち、孔径
1.0μmのフィルターでろ過して、ろ液をTHF可溶
分とした。ろ過した後のフィルターに残った水不溶分
は、フィルターに残ったTHF不溶残渣は、100℃で
12時間乾燥させたのち秤量した。その結果、THF不
溶残渣のほとんどはフェノール樹脂成形材料中の無機フ
ィラーであり、樹脂および有機フィラーは、ほぼ100
%がTHF可溶分まで分解したことを確認した。このT
HF可溶分の分子量を、ゲルパーミエーションクロマト
グラフィー(以下、GPCと略す)により分析したとこ
ろ、Mn:750、Mw:2800のオリゴマーである
ことを確認した。[Example 1] Decomposition of phenol resin molding material As a thermosetting resin, phenol resin molding material (novolac type phenol resin: 44 wt%, organic filler (wood powder etc.): 42 wt%, inorganic filler (calcium carbonate etc.) ): 14 wt%) was pulverized and sieved to adjust the particle size to 250 μm or less. 58.3 g of the above-mentioned phenol resin molding material and 85.6 of phenol
When mixed with a reaction solvent consisting of a mixture of 1 g and 21.3 g of water, the number average molecular weight (hereinafter, Mn) of 1000 was synthesized by reacting phenol and formaldehyde while heating the system to 60 ° C. , Weight average molecular weight (hereinafter, M
w) 1.0 g of 10,000 novolak type phenolic resin (PR-50731 manufactured by Sumitomo Dures Co., Ltd.) was added to form a slurry. The above slurry was charged into an autoclave (internal volume: 200 cm 3 ), and then heated to an internal temperature of 400 ° C. to raise the internal pressure of the reactor to 15 MPa to bring it to a high temperature and high pressure state. 400 ° C, 15 MPa
After keeping it for 5 minutes, it was cooled and returned to normal temperature and pressure. After completion of the reaction, the mixture of the decomposition product and the reaction solvent is heated under normal pressure and reduced pressure conditions to remove the solvent (phenol,
(Water) was removed to obtain 64 g of a decomposition product. This product was dissolved in tetrahydrofuran (THF) and then filtered with a filter having a pore size of 1.0 μm to obtain a filtrate as a THF-soluble component. The water-insoluble matter remaining on the filter after filtration was dried, and the THF-insoluble residue remaining on the filter was dried at 100 ° C. for 12 hours and then weighed. As a result, most of the THF insoluble residue is the inorganic filler in the phenol resin molding material, and the resin and the organic filler are almost 100%.
It was confirmed that 100% was decomposed to THF-soluble content. This T
When the molecular weight of the HF soluble component was analyzed by gel permeation chromatography (hereinafter abbreviated as GPC), it was confirmed to be an oligomer with Mn: 750 and Mw: 2800.
【0023】[実施例2]フェノール樹脂成形材料の分
解
実施例1において、分散剤として、フェノールとホルム
アルデヒドとを反応させて合成されたMn:760、M
w:1,300のノボラック型フェノール樹脂(住友デ
ュレズ(株)製 PR−51714)を用いた以外は、
実施例1と同様な操作を行い、分解反応を行った。分解
処理結果を表1にまとめて示す。Example 2 Decomposition of Phenolic Resin Molding Material In Example 1, Mn: 760, M synthesized by reacting phenol and formaldehyde as a dispersant.
w: 1,300 Novolak type phenolic resin (PR-51714 manufactured by Sumitomo Durez Co., Ltd.) was used, except that
The same operation as in Example 1 was performed to carry out the decomposition reaction. The results of the decomposition treatment are summarized in Table 1.
【0024】[0024]
【表1】 [Table 1]
【0025】[実施例3]フェノール樹脂成形材料の分
解
実施例1において、分散剤として、フェノールとホルム
アルデヒドとを反応させて合成されたMn:240、M
w:440のレゾール型フェノール樹脂(住友デュレズ
(株)製 PR−51501B)を用いた以外は、実施
例1と同様な操作を行い、分解反応を行った。分解処理
結果を表1にまとめて示す。Example 3 Decomposition of Phenolic Resin Molding Material In Example 1, Mn: 240, M synthesized by reacting phenol and formaldehyde as a dispersant.
A decomposition reaction was performed in the same manner as in Example 1 except that a resol type phenolic resin w: 440 (PR-51501B manufactured by Sumitomo Durez Co., Ltd.) was used. The results of the decomposition treatment are summarized in Table 1.
【0026】[実施例4]フェノール樹脂成形材料の分
解
実施例1において、分散剤として加えるノボラック型フ
ェノール樹脂の量を0.3gとした以外は、実施例1と
同様な操作を行い、分解反応を行った。分解処理結果を
表1に示す。Example 4 Decomposition of Phenolic Resin Molding Material Decomposition reaction was performed in the same manner as in Example 1 except that the amount of the novolac type phenol resin added as a dispersant was 0.3 g. I went. The results of the decomposition treatment are shown in Table 1.
【0027】[比較例1]実施例1において、分散剤を
全く加えない以外は、実施例1と同様な操作を行い、分
解反応を行った。分解処理結果を表1に示す。[Comparative Example 1] The decomposition reaction was carried out in the same manner as in Example 1 except that no dispersant was added. The results of the decomposition treatment are shown in Table 1.
【0028】[比較例2]実施例1において、分散剤と
して、アニオン性の界面活性剤である、ナフタレンスル
ホン酸ホルマリン縮合物ナトリウム塩(日本乳化剤
(株)製 デスロールSH)を添加した以外は、実施例
1と同様な操作を行い、分解反応を行った。分解処理結
果を表1に示す。[Comparative Example 2] In Example 1, except that as the dispersant, a sodium salt of naphthalenesulfonic acid formalin condensate (Destrol SH manufactured by Nippon Emulsifier Co., Ltd.) which is an anionic surfactant was added. The same operation as in Example 1 was performed to carry out the decomposition reaction. The results of the decomposition treatment are shown in Table 1.
【0029】表1に示した結果からわかるように、実施
例1〜4に示した分解処理方法では、樹脂成分と有機フ
ィラーの分解率は、ほぼ100%であり、反応容器内壁
に重合物の付着はなかった。それに対して、比較例1,
比較例2の分解処理方法では、樹脂成分と有機フィラー
の分解率は80〜85%程度であり、反応容器内壁に黒
色の重合物が付着していた。比較例1,比較例2では、
スラリーの安定性が不十分のために、加熱中および反応
中にスラリー中の固体成分が沈降・凝集して、反応溶媒
との接触が不十分となり、分解反応が十分に進行しなか
ったものである。それに対して、実施例1〜3では、分
散剤としてスラリーに添加したフェノールノボラックの
効果でスラリーの安定性が向上したために、効率的に分
解反応が進行したものである。As can be seen from the results shown in Table 1, in the decomposition treatment methods shown in Examples 1 to 4, the decomposition rate of the resin component and the organic filler was almost 100%, and the polymerized material was formed on the inner wall of the reaction vessel. There was no adhesion. On the other hand, Comparative Example 1,
In the decomposition treatment method of Comparative Example 2, the decomposition rate of the resin component and the organic filler was about 80 to 85%, and the black polymer adhered to the inner wall of the reaction vessel. In Comparative Example 1 and Comparative Example 2,
Due to insufficient stability of the slurry, solid components in the slurry settled and agglomerated during heating and reaction, resulting in insufficient contact with the reaction solvent and the decomposition reaction did not proceed sufficiently. is there. On the other hand, in Examples 1 to 3, the decomposition reaction proceeded efficiently because the stability of the slurry was improved by the effect of the phenol novolac added to the slurry as the dispersant.
【0030】[0030]
【発明の効果】本発明によれば、スラリー中の固体分の
凝集・沈降を抑制して、高い分解率の達成と、重合物生
成の抑制を実現することができる。また、上記方法で回
収した分子量200〜10,000のオリゴマーを主体
とする低〜中分子量化合物を含む分解生成物を、熱硬化
性樹脂の原料として再利用することができる。According to the present invention, it is possible to suppress the aggregation / sedimentation of the solid content in the slurry, achieve a high decomposition rate, and suppress the formation of a polymer. Further, the decomposition product containing a low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 200 to 10,000 recovered by the above method can be reused as a raw material of a thermosetting resin.
【図1】 本発明の分解処理方法及びリサイクル方法の
例を示すフローチャートである。FIG. 1 is a flowchart showing an example of a decomposition treatment method and a recycling method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 67:06 C08L 67:06 75:00 75:00 79:00 79:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 67:06 C08L 67:06 75:00 75:00 79:00 79:00
Claims (6)
フェノール類化合物又は水と単核フェノール類化合物と
の混合物を反応溶媒として、超臨界又は亜臨界状態にお
いて、200〜10,000の分子量を有するオリゴマ
ーを主体とする低分子量から中分子量の化合物に分解す
る方法であって、熱硬化性樹脂が、該反応溶媒と、フェ
ノール樹脂からなる分散剤とを混合してスラリー化され
ることを特徴とする熱硬化性樹脂の分解処理方法。1. A thermosetting resin is slurried, and a mononuclear phenolic compound or a mixture of water and a mononuclear phenolic compound is used as a reaction solvent in a supercritical or subcritical state to obtain 200 to 10,000 A method for decomposing a low molecular weight to a medium molecular weight compound mainly composed of an oligomer having a molecular weight, wherein a thermosetting resin is made into a slurry by mixing the reaction solvent and a dispersant consisting of a phenol resin. A method for decomposing a thermosetting resin, the method comprising:
ノール類とアルデヒド類とを縮重合反応させて合成され
る、分子量200〜100,000のノボラック型フェ
ノール樹脂またはレゾール型フェノール樹脂であり、ス
ラリー100重量部に対して0.05〜20重量部で添
加される、請求項1に記載の熱硬化性樹脂の分解処理方
法。2. The slurry 100 is a novolac-type phenol resin or a resole-type phenol resin having a molecular weight of 200 to 100,000, which is synthesized by polycondensation reaction of phenols and aldehydes. The decomposition treatment method for a thermosetting resin according to claim 1, wherein the addition amount is 0.05 to 20 parts by weight with respect to parts by weight.
ル、クレゾール、キシレノール、レゾルシン、及びアル
キル置換フェノールの中から選ばれる、請求項1又は2
記載の熱硬化性樹脂の分解処理方法。3. The mononuclear phenolic compound is selected from phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol.
A method for decomposing a thermosetting resin as described.
ェノール類化合物との混合物が、分解処理して生成した
200〜10,000の分子量を有するオリゴマーを主
体とする低分子量から中分子量の化合物から分離、精製
して得られたものである、請求項1〜3のいずれかに記
載の熱硬化性樹脂の分解処理方法。4. A low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 200 to 10,000 produced by decomposition treatment of a mononuclear phenol compound or a mixture of water and a mononuclear phenol compound. The method for decomposing a thermosetting resin according to any one of claims 1 to 3, which is obtained by separating and purifying the resin.
キシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、
メラミン樹脂、及びユリア樹脂の中から選択された1種
又は2種以上である、請求項1〜4のいずれかに記載の
熱硬化性樹脂の分解処理方法。5. The thermosetting resin is a phenol resin, an epoxy resin, a polyimide resin, an unsaturated polyester resin,
The method for decomposing a thermosetting resin according to any one of claims 1 to 4, which is one kind or two or more kinds selected from a melamine resin and a urea resin.
理方法により、熱硬化性樹脂を分解して得られた200
〜10,000の分子量を有するオリゴマーを主体とす
る低分子量から中分子量の化合物を、熱硬化性樹脂の原
料として再利用する熱硬化性樹脂のリサイクル方法。6. A 200 obtained by decomposing a thermosetting resin by the decomposition treatment method according to claim 1.
A method for recycling a thermosetting resin, which comprises reusing a low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 10,000 to a raw material for the thermosetting resin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002054178A JP3922625B2 (en) | 2002-02-28 | 2002-02-28 | Method for decomposing and recycling thermosetting resin |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002054178A JP3922625B2 (en) | 2002-02-28 | 2002-02-28 | Method for decomposing and recycling thermosetting resin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003253041A true JP2003253041A (en) | 2003-09-10 |
| JP3922625B2 JP3922625B2 (en) | 2007-05-30 |
Family
ID=28665406
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002054178A Expired - Fee Related JP3922625B2 (en) | 2002-02-28 | 2002-02-28 | Method for decomposing and recycling thermosetting resin |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3922625B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006104230A (en) * | 2004-09-30 | 2006-04-20 | Sumitomo Bakelite Co Ltd | Method for treating and recycling plastic, treated and recovered plastic material and recycled plastic |
| WO2006051663A1 (en) * | 2004-11-09 | 2006-05-18 | Sumitomo Bakelite Company Limited | Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article |
| JP2006193665A (en) * | 2005-01-14 | 2006-07-27 | Sumitomo Bakelite Co Ltd | Method for producing regenerated resin, regenerated resin, recycling method and recycled plastic |
| WO2010029733A1 (en) | 2008-09-12 | 2010-03-18 | 住友ベークライト株式会社 | Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler |
-
2002
- 2002-02-28 JP JP2002054178A patent/JP3922625B2/en not_active Expired - Fee Related
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006104230A (en) * | 2004-09-30 | 2006-04-20 | Sumitomo Bakelite Co Ltd | Method for treating and recycling plastic, treated and recovered plastic material and recycled plastic |
| WO2006051663A1 (en) * | 2004-11-09 | 2006-05-18 | Sumitomo Bakelite Company Limited | Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article |
| JPWO2006051663A1 (en) * | 2004-11-09 | 2008-05-29 | 住友ベークライト株式会社 | Decomposition reaction apparatus, recycled resin composition raw material manufacturing system, recycled resin composition raw material manufacturing method, recycled resin composition raw material, and molded article |
| US8188154B2 (en) | 2004-11-09 | 2012-05-29 | Sumitomo Bakelite Company, Ltd. | Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article |
| KR101318495B1 (en) * | 2004-11-09 | 2013-10-16 | 스미토모 베이클리트 컴퍼니 리미티드 | Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article |
| EP2894192A3 (en) * | 2004-11-09 | 2015-08-12 | Sumitomo Bakelite Company Limited | Decomposition Reaction Apparatus, System for Producing Raw Material for Recycled Resin Composition, Method for Producing Raw Material for Recycled Resin Composition, Raw Material for Recycled Resin Composition, and Formed Article |
| JP2006193665A (en) * | 2005-01-14 | 2006-07-27 | Sumitomo Bakelite Co Ltd | Method for producing regenerated resin, regenerated resin, recycling method and recycled plastic |
| WO2010029733A1 (en) | 2008-09-12 | 2010-03-18 | 住友ベークライト株式会社 | Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler |
| KR20110070854A (en) | 2008-09-12 | 2011-06-24 | 스미토모 베이클리트 컴퍼니 리미티드 | Decomposition treatment method of polymer material, production method of recycled resin, recovery method of inorganic filler |
| US9085666B2 (en) | 2008-09-12 | 2015-07-21 | Sumitomo Bakelite Co., Ltd. | Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler |
| EP2987823A1 (en) | 2008-09-12 | 2016-02-24 | Sumitomo Bakelite Co., Ltd. | Method for recovering inorganic filler |
| US9822209B2 (en) | 2008-09-12 | 2017-11-21 | Sumitomo Bakelite Co., Ltd. | Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3922625B2 (en) | 2007-05-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5874692B2 (en) | Collection method of inorganic filler | |
| JPH10314713A (en) | Method and apparatus for treating mixed waste | |
| JPH09221565A (en) | Method for recycling waste cured unsaturated polyester resin | |
| JPH1024274A (en) | Method for decomposing and recycling thermosetting resin | |
| KR101318495B1 (en) | Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article | |
| JP2003253041A (en) | Method for decomposing thermosetting resin and method for recycling thermosetting resin | |
| JP3693869B2 (en) | Method for decomposing and recycling thermosetting resin | |
| JPWO2009081974A1 (en) | Decomposition of thermosetting resin and recovery method of decomposition product | |
| JP4806758B2 (en) | Decomposition and recovery method of thermosetting resin | |
| JP5007671B2 (en) | Manufacturing method of recycled resin | |
| JP4317696B2 (en) | Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby | |
| JP3888979B2 (en) | Method for decomposing and recycling thermosetting resin | |
| JPH10287766A (en) | Decomposing and recycling methods for thermosetting resin | |
| JP2003183475A (en) | Phenolic resin recycling composition | |
| JP2003096233A (en) | Method for decomposing thermosetting resin and method for recycling the resin | |
| JP5508025B2 (en) | Decomposition of thermosetting resin and recovery method of decomposition product | |
| JP2006124480A (en) | Plastic regeneration method, regenerated product, recycling method, and recycled plastic | |
| JP2005113096A (en) | Method for solubilization-treating plastic material, method of recycling and plastic-forming material | |
| JP2004115744A (en) | Method for producing phenolic resin composite material | |
| JP2005126667A (en) | Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic | |
| JP2006160794A (en) | Method for treating plastic, recycling method, treated and recovered material and recycled plastic | |
| JP4792750B2 (en) | Manufacturing method of recycled resin | |
| JP4090645B2 (en) | Method for decomposing thermosetting resin | |
| JP2005281427A (en) | Method for treating plastic, recycling method, treated and recovered material and recycled plastic | |
| JP2006233141A (en) | Phenolic resin molding material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041208 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070207 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070216 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070216 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |