JP2003254172A - Evaporative fuel processing mechanism diagnostic device - Google Patents
Evaporative fuel processing mechanism diagnostic deviceInfo
- Publication number
- JP2003254172A JP2003254172A JP2002052826A JP2002052826A JP2003254172A JP 2003254172 A JP2003254172 A JP 2003254172A JP 2002052826 A JP2002052826 A JP 2002052826A JP 2002052826 A JP2002052826 A JP 2002052826A JP 2003254172 A JP2003254172 A JP 2003254172A
- Authority
- JP
- Japan
- Prior art keywords
- switching valve
- evaporation path
- atmosphere side
- path
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
Abstract
(57)【要約】
【課題】切換弁の応答性低下に対して適切な対策を講じ
ることができるように、当該切換弁の応答性低下を的確
に検出することのできる蒸発燃料処理機構の診断装置を
提供する。
【解決手段】エバポ経路4内の圧力を高めてリーク診断
を行った後、エバポ経路4内の圧力を徐々に低下させる
べく、エバポ経路4と大気側との連通・遮断が繰り返さ
れるよう電動ポンプモジュール10内の切換弁が強制的
に切換制御される。この課程であって切換弁が連通状態
から遮断状態に移行するとき、同切換弁の応答性が低下
していると上記移行に遅れが生じ、移行開始後の所定期
間におけるエバポ経路4内の圧力低下量Pdが大のまま
に維持される。この圧力低下量Pdに基づき切換弁の応
答性を評価することにより、切換弁の応答性低下の検出
が的確に行われる。
(57) [Summary] [Problem] Diagnosis of an evaporative fuel processing mechanism capable of accurately detecting a decrease in response of a switching valve so that appropriate measures can be taken against the decrease in response of the switching valve. Providing equipment. An electric pump that repeats communication / blocking between the evaporation path 4 and the atmosphere side in order to gradually reduce the pressure in the evaporation path 4 after performing leak diagnosis by increasing the pressure in the evaporation path 4 The switching valve in the module 10 is forcibly switched. In this process, when the switching valve shifts from the communication state to the shut-off state, if the responsiveness of the switching valve is lowered, a delay occurs in the transition, and the pressure in the evaporation path 4 in a predetermined period after the transition starts. The decrease amount Pd is kept large. By evaluating the responsiveness of the switching valve based on the pressure drop amount Pd, it is possible to accurately detect the responsiveness of the switching valve.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、蒸発燃料処理機構
の故障診断装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure diagnosis device for an evaporated fuel processing mechanism.
【0002】[0002]
【従来の技術】従来より、自動車等の車両においては、
原動機として搭載される内燃機関の燃料供給系、例えば
燃料タンクで発生する蒸発燃料を内燃機関の吸気系に送
り出すエバポ経路を備えた蒸発燃料処理機構が設けられ
ている。この機構のエバポ経路には、蒸発燃料を吸着す
る吸着材が設けられたキャニスタと、同キャニスタを内
燃機関の吸気系に接続するパージ通路とが含まれてい
る。そして、内燃機関の運転中には、同機関の吸気系に
生じる負圧を利用して、大気中の空気が大気通路を通じ
てキャニスタに導入され、この空気と共にキャニスタ内
の蒸発燃料がパージ通路を介して吸気系に送り出され
る。その結果、上記蒸発燃料が内燃機関で燃焼され、大
気中に放出することなく処理されるようになる。2. Description of the Related Art Conventionally, in vehicles such as automobiles,
A fuel supply system of an internal combustion engine mounted as a prime mover, for example, an evaporative fuel processing mechanism having an evaporation path for sending evaporative fuel generated in a fuel tank to an intake system of the internal combustion engine is provided. The evaporation path of this mechanism includes a canister provided with an adsorbent that adsorbs evaporated fuel, and a purge passage that connects the canister to the intake system of the internal combustion engine. During operation of the internal combustion engine, the negative pressure generated in the intake system of the engine is used to introduce air in the atmosphere into the canister through the atmosphere passage, and along with this air, the evaporated fuel in the canister passes through the purge passage. Is sent to the intake system. As a result, the vaporized fuel is burned in the internal combustion engine and is processed without being released into the atmosphere.
【0003】このような蒸発燃料処理機構では、大気中
への蒸発燃料の放出抑制についての信頼性を確保するた
め、エバポ経路での穴あき、裂傷、及びシール不良等に
よる同経路からの蒸発燃料の漏れ(リーク)を定期的に
診断することが行われる。こうしたリーク診断は、例え
ば、エバポ経路を閉鎖した状態で当該経路内を加圧し、
その際のエバポ経路内の圧力状態に基づき行われること
となる。なお、上記エバポ経路を閉鎖する際の同経路の
大気側との遮断は、前記大気通路を連通状態若しくは遮
断状態とすべく切換動作する切換弁の切り換えによって
実現される。In such an evaporative fuel processing mechanism, in order to secure the reliability of suppressing the emission of the evaporative fuel into the atmosphere, the evaporative fuel from the evaporative route due to perforation, laceration, defective sealing, etc. The leakage is regularly diagnosed. Such leak diagnosis, for example, pressurizes the evaporative pathway in a closed state,
It will be performed based on the pressure state in the evaporation path at that time. The closing of the evaporation path from the atmosphere side of the same path is realized by switching a switching valve that performs a switching operation to bring the atmosphere passage into a communication state or a blocking state.
【0004】ところで、上記のようにリーク診断が行わ
れた直後には、エバポ経路内の圧力が大気圧よりも高く
なっているため、その圧力を低下させるべく上記切換弁
によってエバポ経路が大気側と連通させられ、エバポ経
路内の気体がキャニスタを経由して燃料蒸気を除去した
状態で大気側に放出される。Immediately after the leak diagnosis is performed as described above, the pressure inside the evaporation path is higher than the atmospheric pressure. Therefore, the switching path is used to move the evaporation path to the atmosphere side in order to reduce the pressure. The gas in the evaporation path is discharged to the atmosphere side via the canister with the fuel vapor being removed.
【0005】しかし、エバポ経路内から大気側への気体
の放出が急激に行われると、気体の流量及び流速が大と
なってキャニスタでの蒸発燃料の吸着効率が低下するよ
うになる。そのため、上記気体がキャニスタを通過する
ときに同気体に含まれる蒸発燃料を吸着しきれなくなっ
たり、既にキャニスタに吸着された蒸発燃料が上記気体
の通過によってキャニスタから離脱させられたりして、
蒸発燃料を含んだ気体が大気側に放出されるおそれがあ
る。However, when the gas is rapidly released from the evaporation path to the atmosphere side, the flow rate and flow velocity of the gas increase, and the adsorption efficiency of the evaporated fuel in the canister decreases. Therefore, when the gas passes through the canister, the vaporized fuel contained in the gas cannot be adsorbed, or the vaporized fuel already adsorbed in the canister is released from the canister by the passage of the gas,
Gas containing evaporated fuel may be released to the atmosphere.
【0006】そこで、例えば特開2000−20505
8公報に示されるように、リーク診断後における上記の
ような気体の放出が徐々に行われるよう、切換弁を制御
することも考えられている。このように切換弁を制御す
ることで、リーク診断後にエバポ経路から大気側に放出
される気体の流量及び流速が大となるのを抑制し、その
気体が蒸発燃料を含んだ状態で大気側に放出されるのを
抑制することができる。Therefore, for example, Japanese Patent Laid-Open No. 2000-20505.
As disclosed in Japanese Unexamined Patent Publication No. 8 (1998), it has been considered to control the switching valve so that the above-described gas release is gradually performed after the leak diagnosis. By controlling the switching valve in this way, the flow rate and flow velocity of the gas released from the evaporation path to the atmosphere side after the leak diagnosis is suppressed from increasing, and the gas containing the evaporated fuel enters the atmosphere side. The release can be suppressed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、切換弁
を制御する際の応答性が同切換弁の劣化など何らかの理
由で低下している場合、エバポ経路からの気体の放出が
徐々に行われるように切換弁を動作させようとしても、
それを実現することは困難である。従って、切換弁の応
答性が低下しているときには、当該低下を検出して適切
な対策を講じないと、リーク診断後に切換弁を制御して
エバポ経路内の気体を大気側に放出するとき、蒸発燃料
を含んだ気体が大気側に放出されることとなる。However, when the responsiveness in controlling the switching valve is lowered for some reason such as deterioration of the switching valve, the gas is gradually released from the evaporation path. Even if you try to operate the switching valve,
That is difficult to achieve. Therefore, when the responsiveness of the switching valve is reduced, if the reduction is detected and appropriate measures are not taken, when controlling the switching valve after leak diagnosis to release the gas in the evaporation path to the atmosphere side, The gas containing the evaporated fuel is released to the atmosphere side.
【0008】本発明はこのような実情に鑑みてなされた
ものであって、その目的は、切換弁の応答性低下に対し
て適切な対策を講じることができるように、当該切換弁
の応答性低下を的確に検出することのできる蒸発燃料処
理機構の診断装置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a responsiveness of a switching valve so that appropriate measures can be taken against a reduction in the responsiveness of the switching valve. An object of the present invention is to provide a diagnostic device for an evaporated fuel processing mechanism that can accurately detect a decrease.
【0009】[0009]
【課題を解決するための手段】以下、上記目的を達成す
るための手段及びその作用効果について記載する。上記
目的を達成するため、請求項1記載の発明では、内燃機
関の燃料供給系で発生する蒸発燃料を同機関の吸気系に
送り出すエバポ経路と、このエバポ経路と大気側とを連
通・遮断すべく切り換えられる切換弁とを備える蒸発燃
料処理機構に適用され、前記切換弁によって前記エバポ
経路と前記大気側とを遮断し、この状態で同経路内を加
圧したときの圧力状態に基づきリーク診断を行い、当該
診断後に前記エバポ経路内の気体が徐々に大気側に放出
されるよう前記切換弁を制御する蒸発燃料処理機構の診
断装置において、前記リーク診断後に前記エバポ経路内
から大気側への気体の放出が行われているとき、前記エ
バポ経路と大気側とを遮断するように前記切換弁を制御
する制御手段と、前記制御手段によって前記切換弁が前
記エバポ経路と大気側とを遮断するように制御されると
きの前記エバポ経路内の圧力変化に基づき、同切換弁の
応答性を評価する評価手段とを備えるようにした。[Means for Solving the Problems] Means for achieving the above-mentioned objects and their effects will be described below. In order to achieve the above object, in the invention according to claim 1, an evaporation path for sending evaporated fuel generated in a fuel supply system of an internal combustion engine to an intake system of the engine and a communication path between the evaporation path and the atmosphere side are cut off. It is applied to an evaporative fuel processing mechanism including a switching valve that can be switched as needed, and the leak is diagnosed based on the pressure state when the evaporative path and the atmosphere side are shut off by the switching valve and the inside of the path is pressurized in this state. In the diagnostic device of the evaporated fuel processing mechanism that controls the switching valve so that the gas in the evaporation path is gradually discharged to the atmosphere side after the diagnosis, in the evaporation path from the evaporation path to the atmosphere side after the leak diagnosis. Control means for controlling the switching valve so as to shut off the evaporation path and the atmosphere side when the gas is being discharged; and the switching valve by the control means. Based on the change in pressure in the evaporation route when it is controlled to cut off the atmosphere side, and so and a evaluation means for evaluating the response of the switching valve.
【0010】制御手段によって切換弁がエバポ経路と大
気側とを遮断するように制御されるとき、切換弁の応答
性が低下しているならば、エバポ経路内の圧力低下量が
大のままに維持されることになる。従って、このときの
エバポ経路内の圧力状態に基づき切換弁の応答性を評価
することにより、切換弁の応答性低下を的確に検出する
ことができ、当該応答性低下に対して適切な対策を講じ
ることができるようになる。When the switching valve is controlled by the control means so as to shut off the evaporation path from the atmosphere side, if the responsiveness of the switching valve is lowered, the pressure drop amount in the evaporation path remains large. Will be maintained. Therefore, by evaluating the responsiveness of the switching valve based on the pressure state in the evaporation path at this time, it is possible to accurately detect the responsiveness of the switching valve, and take appropriate measures against the responsiveness deterioration. You will be able to take action.
【0011】請求項2記載の発明では、請求項1記載の
発明において、前記評価手段は、前記制御手段によって
前記切換弁がエバポ経路と大気側とを遮断するように制
御されるとき、前記エバポ経路内の圧力低下量が所定期
間、所定値以上であり続けることに基づき、前記切換弁
の応答性が低下していると評価するものとした。According to a second aspect of the present invention, in the first aspect of the present invention, the evaluation means is configured so that when the control means controls the switching valve to shut off the evaporation path from the atmosphere side, Based on the fact that the amount of pressure decrease in the path continues to be equal to or greater than a predetermined value for a predetermined period, it is evaluated that the responsiveness of the switching valve is deteriorated.
【0012】切換弁の応答性が低下しているときには、
上記所定期間においてエバポ経路内の圧力低下量が所定
値以上であり続けるため、そのことに基づき切換弁の応
答性が低下している旨の評価を的確に行うことができ
る。そして、このように切換弁の応答性について評価を
行うことで、切換弁の応答性低下を的確に検出すること
ができるようになる。When the responsiveness of the switching valve is low,
Since the amount of pressure decrease in the evaporation path continues to be equal to or more than the predetermined value during the predetermined period, it is possible to accurately evaluate that the responsiveness of the switching valve is reduced based on that. Then, by evaluating the responsiveness of the switching valve in this manner, it becomes possible to accurately detect a decrease in the responsiveness of the switching valve.
【0013】請求項3記載の発明では、請求項1又は2
記載の発明において、前記制御手段は、前記切換弁の応
答性評価のために前記エバポ経路と大気側とを遮断させ
るように前記切換弁を制御する前に、前記エバポ経路と
大気側とが連通するように前記切換弁を強制的に制御す
るものとした。According to the invention of claim 3, claim 1 or 2
In the invention described above, the control means establishes communication between the evaporation path and the atmosphere side before controlling the switching valve so as to shut off the evaporation path and the atmosphere side for the responsiveness evaluation of the switching valve. The switching valve is forcibly controlled so that
【0014】上記構成によれば、切換弁の応答性評価に
際し、まず切換弁が強制的にエバポ経路と大気側とを連
通させるように制御され、その後にエバポ経路と大気側
とが遮断されるように制御されるため、その際のエバポ
経路内の圧力変化が明確に現れるようになる。従って、
同圧力変化に基づく切換弁の応答性評価を的確に行うこ
とができる。According to the above construction, when the response of the switching valve is evaluated, the switching valve is first controlled so as to communicatively connect the evaporation path and the atmosphere side, and then the evaporation path and the atmosphere side are shut off. Since it is controlled as described above, the pressure change in the evaporation path at that time becomes apparent. Therefore,
The responsiveness of the switching valve based on the pressure change can be accurately evaluated.
【0015】請求項4記載の発明では、請求項1〜3の
いずれかに記載の発明において、前記制御手段は、前記
リーク診断が終了したとき、前記エバポ経路と大気側と
が連通するように前記切換弁を強制的に制御するものと
した。According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the control means causes the evaporation route and the atmosphere side to communicate with each other when the leak diagnosis is completed. The switching valve is forcibly controlled.
【0016】上記構成によれば、リーク診断が終了した
とき、切換弁が強制的にエバポ経路と大気側とを遮断さ
せるように制御されるため、その後に直ちにエバポ経路
と大気側とを遮断するように切換弁を制御し、応答性低
下の評価を行うことが可能となる。従って、リーク診断
が終了した後の早い時期に切換弁の応答性を評価し、当
該応答性低下をいち早く検出することができるようにな
る。According to the above construction, when the leak diagnosis is completed, the switching valve is controlled so as to forcibly shut off the evaporation path and the atmosphere side, so that immediately after that, the evaporation path and the atmosphere side are shut off. By controlling the switching valve in this manner, it is possible to evaluate the decrease in responsiveness. Therefore, the responsiveness of the switching valve can be evaluated at an early stage after the leak diagnosis is completed, and the decrease in responsiveness can be detected promptly.
【0017】請求項5記載の発明では、請求項1〜4の
いずれかに記載の発明において、前記制御手段は、前記
リーク診断が終了した後、前記エバポ経路と大気側との
連通・遮断が所定周期毎に繰り返されるよう前記切換弁
を制御するものとした。According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the control means connects or disconnects the evaporation path and the atmosphere side after the leak diagnosis is completed. The switching valve is controlled so as to be repeated every predetermined period.
【0018】上記構成によれば、リーク診断後の切換弁
による周期的なエバポ経路と大気側との連通・遮断を通
じて、エバポ経路から大気側への気体の放出が急激に行
われるのを抑制することができる。更に、上記周期的な
連通・遮断において切換弁がエバポ通路と大気側とを遮
断するよう制御されるときには、エバポ経路内の圧力変
化に基づく切換弁の応答性の評価も行われる。従って、
エバポ経路からの大気側への急激な気体の放出を極力抑
制しながら、切換弁の応答性を評価することができる。According to the above construction, rapid release of gas from the evaporation path to the atmosphere side is suppressed by periodically opening and closing the communication between the evaporation path and the atmosphere side by the switching valve after the leak diagnosis. be able to. Furthermore, when the switching valve is controlled so as to block the evaporative passage and the atmosphere side in the periodic communication / shutoff, the responsiveness of the switching valve is evaluated based on the pressure change in the evaporative path. Therefore,
It is possible to evaluate the responsiveness of the switching valve while suppressing the sudden release of gas from the evaporation path to the atmosphere side as much as possible.
【0019】[0019]
【発明の実施の形態】以下、本発明を自動車に搭載され
る蒸発燃料処理機構の診断装置に具体化した一実施形態
を図1〜図13に基づき説明する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is embodied in a diagnostic device for an evaporated fuel processing mechanism mounted on an automobile will be described below with reference to FIGS.
【0020】図1に示される蒸発燃料処理機構は、エン
ジン1の燃料供給系、例えば燃料タンク2で発生した蒸
発燃料をエンジン1の吸気通路3に送り出すエバポ経路
4を備えている。このエバポ経路4には、蒸発燃料を吸
着する吸着材が設けられたキャニスタ5と、燃料タンク
2で発生した蒸発燃料をキャニスタ5に導入するベーパ
通路6と、キャニスタ5内の蒸発燃料を空気と共に吸気
通路3に送り出すパージ通路7とが含まれている。The evaporated fuel processing mechanism shown in FIG. 1 is provided with an evaporation path 4 for sending evaporated fuel generated in a fuel supply system of the engine 1, for example, a fuel tank 2 to an intake passage 3 of the engine 1. In the evaporation path 4, a canister 5 provided with an adsorbent that adsorbs the evaporated fuel, a vapor passage 6 that introduces the evaporated fuel generated in the fuel tank 2 into the canister 5, and the evaporated fuel in the canister 5 together with air. A purge passage 7 that is sent to the intake passage 3 is included.
【0021】燃料タンク2で発生した蒸発燃料は、ベー
パ通路6を通ってキャニスタ5内の吸着材に一旦吸着さ
れる。そして、エンジン運転時には、吸気通路3に生じ
る負圧の作用によって、キャニスタ5内に大気通路8を
介して外部からの空気が導入される。この空気と共にキ
ャニスタ5内の蒸発燃料が、上記負圧によりパージ通路
7を通じてパージガスとして吸気通路3に送り出され、
エンジン1で燃焼されて処理されるようになる。The evaporated fuel generated in the fuel tank 2 passes through the vapor passage 6 and is once adsorbed by the adsorbent in the canister 5. Then, when the engine is operating, air from the outside is introduced into the canister 5 through the atmosphere passage 8 by the action of the negative pressure generated in the intake passage 3. Along with this air, the evaporated fuel in the canister 5 is sent to the intake passage 3 as purge gas through the purge passage 7 due to the negative pressure.
The engine 1 is burned and processed.
【0022】パージ通路7には、上記パージガスの流量
を調整すべく開閉されるパージ制御弁9が設けられてい
る。また、大気通路8には、エバポ経路4からの蒸発燃
料等の漏れを診断する際に、エバポ経路4内に空気を強
制的に送り込む電動ポンプモジュール10が設けられて
いる。これらパージ制御弁9及び電動ポンプモジュール
10は、自動車に搭載された電子制御装置(ECU)1
1によって駆動制御される。The purge passage 7 is provided with a purge control valve 9 which is opened and closed to adjust the flow rate of the purge gas. Further, the atmosphere passage 8 is provided with an electric pump module 10 for forcibly sending air into the evaporation path 4 when diagnosing a leak of evaporated fuel or the like from the evaporation path 4. The purge control valve 9 and the electric pump module 10 are an electronic control unit (ECU) 1 mounted on an automobile.
The drive is controlled by 1.
【0023】ここで、上記電動ポンプモジュール10の
詳細構造について、図2及び図3を参照して説明する。
電動ポンプモジュール10は、大気通路8を連通状態と
遮断状態とのいずれかにすべく切換動作する切換弁12
を備えている。切換弁12は、大気通路8を連通状態と
する場合には図2に示されるように切り換えられ、大気
通路8を遮断状態とする場合には図3に示されるように
切り換えられる。上記のように切換弁12を切換動作さ
せることによって、キャニスタ5(エバポ経路4)と大
気側とが連通・遮断される。そして、切換弁12でキャ
ニスタ5と大気側とを遮断し、且つパージ制御弁9を閉
じた状態(遮断状態)とすることにより、エバポ経路4
が閉鎖された空間とされる。The detailed structure of the electric pump module 10 will be described with reference to FIGS. 2 and 3.
The electric pump module 10 includes a switching valve 12 that performs a switching operation to switch the atmosphere passage 8 between a communication state and a cutoff state.
Is equipped with. The switching valve 12 is switched as shown in FIG. 2 when the atmosphere passage 8 is in the communication state, and is switched as shown in FIG. 3 when the atmosphere passage 8 is in the cutoff state. By switching the switching valve 12 as described above, the canister 5 (evaporation path 4) and the atmosphere side are communicated / blocked. Then, the switching valve 12 shuts off the canister 5 from the atmosphere side, and the purge control valve 9 is closed (shut-off state).
Is a closed space.
【0024】また、切換弁12は、大気通路8を遮断状
態とするように切り換えられたとき(図3)、即ちキャ
ニスタ5と大気側とを遮断しているとき、キャニスタ5
(エバポ経路4)と電動式エアポンプ13とを連通す
る。この電動式エアポンプ13と切換弁12との間に
は、エバポ経路4側から同ポンプ13側への気体の流れ
を抑止する逆止弁15が設けられている。更に、逆止弁
15と切換弁12との間には圧力センサ16が設けら
れ、エバポ経路4と電動式エアポンプ13とが切換弁1
2を介して連通したときには、上記圧力センサ16から
電子制御装置11にエバポ経路4内の圧力に対応した信
号が出力される。Further, the switching valve 12 is switched so that the atmosphere passage 8 is shut off (FIG. 3), that is, when the canister 5 and the atmosphere side are shut off, the canister 5 is opened.
The (evaporation path 4) and the electric air pump 13 are communicated with each other. A check valve 15 is provided between the electric air pump 13 and the switching valve 12 to prevent gas from flowing from the evaporation path 4 side to the pump 13 side. Further, a pressure sensor 16 is provided between the check valve 15 and the switching valve 12, and the evaporation path 4 and the electric air pump 13 are connected to each other by the switching valve 1.
When the communication is established via 2, the pressure sensor 16 outputs a signal corresponding to the pressure in the evaporation path 4 to the electronic control unit 11.
【0025】上記電動式エアポンプ13は、電子制御装
置11を通じて駆動制御されるものであって、エバポ経
路4を上記のように閉鎖した状態で駆動されると、エバ
ポ経路4に空気を送り込むんで同経路4内を加圧する。
このようにエバポ経路4内を加圧する際、仮に同経路4
に穴があいて漏れ(リーク)が生じていたとすると、圧
力センサ16からの検出信号に基づき求められる圧力が
正常時よりも低くなる。従って、この圧力が所定の基準
値Pよりも低いか否かに基づき、エバポ経路4でリーク
が生じているか否かを判断することが可能になる。The electric air pump 13 is driven and controlled by the electronic control unit 11, and when it is driven with the evaporation path 4 closed as described above, air is sent to the evaporation path 4 and the same operation is performed. The inside of the path 4 is pressurized.
In this way, when pressurizing the inside of the evaporation path 4,
If there is a hole in and there is a leak (leak), the pressure obtained based on the detection signal from the pressure sensor 16 becomes lower than in the normal state. Therefore, it becomes possible to determine whether or not a leak has occurred in the evaporation path 4 based on whether or not this pressure is lower than the predetermined reference value P.
【0026】上記電動式エアポンプ13は、上記逆止弁
15を介してバイパス通路14とも連通している。この
バイパス通路14は、切換弁12を迂回して、大気通路
8においてキャニスタ5(エバポ経路4)と切換弁12
との間に位置する部分に繋がっている。また、バイパス
通路14側から電動式エアポンプ13側への気体の流れ
は上記逆止弁15によって抑止される。従って、切換弁
12によってエバポ経路4と大気側とが連通した状態
(図2)で電動式エアポンプ13が駆動されると、同ポ
ンプ13から吐出された空気がバイパス通路14を通っ
て大気通路8に送り込まれ、更に大気通路8を通って大
気中に放出される。このときのバイパス通路14と逆止
弁15との間の圧力は、バイパス通路14の内径に応じ
た所定の値に向かって上昇した後、その値に収束するよ
うになる。The electric air pump 13 is also in communication with the bypass passage 14 via the check valve 15. This bypass passage 14 bypasses the switching valve 12, and the canister 5 (evaporation path 4) and the switching valve 12 are bypassed in the atmosphere passage 8.
It is connected to the part located between and. Further, the flow of gas from the bypass passage 14 side to the electric air pump 13 side is suppressed by the check valve 15. Therefore, when the electric air pump 13 is driven in a state where the evaporation path 4 and the atmosphere side are communicated with each other by the switching valve 12 (FIG. 2), the air discharged from the pump 13 passes through the bypass passage 14 and the atmosphere passage 8 Is discharged to the atmosphere through the atmosphere passage 8. At this time, the pressure between the bypass passage 14 and the check valve 15 rises toward a predetermined value according to the inner diameter of the bypass passage 14 and then converges to that value.
【0027】この圧力は、圧力センサ16からの検出信
号に基づき求められ、バイパス通路14の内径と同径の
穴のあいたエバポ経路4内を上記のように閉鎖して電動
式エアポンプ13で加圧したと仮定した場合の同経路4
内の圧力に近い値になる。従って、上述したようにエバ
ポ経路4でのリーク発生の有無を判断する際、その判断
に用いられる基準値Pを、上記バイパス通路14と逆止
弁15との間の圧力に基づき求めることができる。な
お、本実施形態では、同圧力が上記基準値Pを求めるの
に適切な値となるように、バイパス通路14にその内径
を例えば0.5mmとする基準孔17が形成されてい
る。This pressure is obtained based on the detection signal from the pressure sensor 16, and the evaporation path 4 having a hole having the same diameter as the inner diameter of the bypass passage 14 is closed as described above and pressurized by the electric air pump 13. Same route 4 when it is assumed that
It is close to the internal pressure. Therefore, as described above, when the presence or absence of the leak in the evaporation path 4 is determined, the reference value P used for the determination can be obtained based on the pressure between the bypass passage 14 and the check valve 15. . In this embodiment, a reference hole 17 having an inner diameter of 0.5 mm is formed in the bypass passage 14 so that the pressure becomes a value suitable for obtaining the reference value P.
【0028】次に、エバポ経路4のリーク診断につい
て、図4のタイムチャートを参照して説明する。エンジ
ン停止後に所定時間が経過すると、電子制御装置11が
自動的に起動される。電子制御装置11の起動直後に
は、切換弁12がエバポ経路4と大気側とを連通させた
状態(連通状態)となっており、エバポ経路4内の圧力
が大気圧と等しくなっている。その後、電子制御装置1
1を通じてリーク診断が実行される。このリーク診断に
おいては、まず診断開始後の所定期間T1,T2で上述
した基準値Pの設定が行われ、続く所定期間T3では当
該基準値Pを用いてエバポ経路4からの漏れ発生の有無
が判断される。以下、所定期間T1、T2での処理、及
び所定期間T3での処理について説明する。Next, the leak diagnosis of the evaporation route 4 will be described with reference to the time chart of FIG. When a predetermined time has elapsed after the engine was stopped, the electronic control unit 11 is automatically activated. Immediately after the activation of the electronic control unit 11, the switching valve 12 is in a state (communication state) in which the evaporation path 4 and the atmosphere side are in communication, and the pressure in the evaporation path 4 is equal to the atmospheric pressure. After that, the electronic control unit 1
Leak diagnosis is executed through 1. In this leak diagnosis, first, the above-mentioned reference value P is set in predetermined periods T1 and T2 after the diagnosis is started, and in the following predetermined period T3, whether or not there is a leak from the evaporation route 4 is used by using the reference value P. To be judged. Hereinafter, the processing in the predetermined periods T1 and T2 and the processing in the predetermined period T3 will be described.
【0029】[所定期間T1,T2]所定期間T1で
は、電動式エアポンプ13を停止したままで、切換弁1
2が図3に示されるようにエバポ経路4と大気側とを遮
断させた状態(遮断状態)に切り換えられるとともに、
パージ制御弁9が閉じられる。これによりエバポ経路4
が閉鎖される。そして、所定期間T1中でのエバポ経路
4内の圧力変化量ΔPに基づき、閉鎖されたエバポ経路
4内での蒸発燃料の発生に伴う圧力上昇率が算出され
る。[Predetermined period T1, T2] During the predetermined period T1, the switching valve 1 is operated while the electric air pump 13 is stopped.
2 is switched to a state in which the evaporation path 4 and the atmosphere side are blocked as shown in FIG. 3 (blocking state),
The purge control valve 9 is closed. As a result, the evaporation route 4
Will be closed. Then, based on the pressure change amount ΔP in the evaporation path 4 during the predetermined period T1, the pressure increase rate due to the generation of evaporated fuel in the closed evaporation path 4 is calculated.
【0030】その後、所定期間T2では、切換弁12が
図2に示されるようにエバポ経路4と大気側とを連通さ
せた状態(連通状態)に切り換えられるとともに、電動
式エアポンプ13が駆動されてバイパス通路14に空気
が送り込まれる。この状態にあっては、バイパス通路1
4と逆止弁15との間の圧力が、基準孔17の径に対応
した所定値P1に向かって上昇した後に当該所定値P1
に収束する。このときのバイパス通路14と逆止弁15
との間の圧力(所定値P1)は、バイパス通路14の基
準孔17と同径の穴のあいたエバポ経路4を閉鎖して電
動式エアポンプ13で加圧したと仮定した場合の同経路
4内の圧力に近い値になる。従って、上記バイパス通路
14と逆止弁15との間の圧力(所定値P1)に基づき
基準値Pを求めることが可能である。Thereafter, in a predetermined period T2, the switching valve 12 is switched to a state (communication state) in which the evaporation path 4 and the atmosphere side are communicated with each other as shown in FIG. 2, and the electric air pump 13 is driven. Air is sent into the bypass passage 14. In this state, the bypass passage 1
4 and the check valve 15 increase in pressure toward a predetermined value P1 corresponding to the diameter of the reference hole 17, and then the predetermined value P1.
Converge to. Bypass passage 14 and check valve 15 at this time
The pressure (predetermined value P1) between the inside of the bypass passage 14 and the reference hole 17 of the bypass passage 14 is the same as the reference passage 17 in the same passage 4 assuming that the evaporation passage 4 is closed and pressurized by the electric air pump 13. It is close to the pressure of. Therefore, it is possible to obtain the reference value P based on the pressure (predetermined value P1) between the bypass passage 14 and the check valve 15.
【0031】ただし、基準値Pについては、閉鎖された
エバポ経路4内での蒸発燃料の発生に伴う圧力上昇に応
じて最適値が変化する。そのため、基準値Pを求める際
には、上記バイパス通路14と逆止弁15との間の圧力
(所定値P1)の他に、所定期間T1で算出された圧力
上昇率も加味される。即ち、当該圧力上昇率に基づき上
記所定期間T3での蒸発燃料の発生に伴う圧力上昇量が
算出され、この圧力上昇量と上記所定値P1とを用いて
基準値Pが求められる。これにより、基準値Pはエバポ
経路4からの漏れ判断に用いられる値として適切なもの
とされる。即ち、基準値Pは、上記圧力上昇量が小であ
るときには低圧側の値に設定され、同圧力上昇量が大で
あるほど高圧側の値に設定されるようになる。However, with respect to the reference value P, the optimum value changes in accordance with the pressure increase accompanying the generation of evaporated fuel in the closed evaporation path 4. Therefore, when the reference value P is obtained, in addition to the pressure (predetermined value P1) between the bypass passage 14 and the check valve 15, the rate of pressure increase calculated in the predetermined period T1 is also taken into consideration. That is, the amount of pressure increase associated with the generation of evaporated fuel in the predetermined period T3 is calculated based on the pressure increase rate, and the reference value P is obtained using the amount of pressure increase and the predetermined value P1. As a result, the reference value P is made appropriate as a value used for the determination of leakage from the evaporation route 4. That is, the reference value P is set to a low-pressure side value when the pressure increase amount is small, and is set to a high-pressure side value as the pressure increase amount is large.
【0032】[所定期間T3]所定期間T3では、電動
式エアポンプ13を駆動したままで、切換弁12がエバ
ポ経路4と大気通路8とを遮断する状態に切り換えられ
る。これにより、エバポ経路4が閉鎖されて加圧される
ため、同経路4内の圧力が徐々に高くなる。そして、所
定期間T3が経過するまでに、上記圧力が図4に実線で
示されるように基準値P以上に高くなれば、エバポ経路
4での漏れが生じていない旨判断される。また、所定期
間T3が経過するまでに、上記圧力が図4に一点鎖線で
示されるように基準値Pに達しないならば、エバポ経路
4での漏れが生じている旨判断される。[Predetermined Period T3] In the predetermined period T3, the switching valve 12 is switched to the state in which the evaporation path 4 and the atmosphere passage 8 are shut off while the electric air pump 13 is still driven. As a result, the evaporation path 4 is closed and pressurized, so that the pressure in the path 4 gradually increases. Then, if the pressure becomes higher than the reference value P as shown by the solid line in FIG. 4 before the elapse of the predetermined period T3, it is determined that no leak occurs in the evaporation route 4. Further, if the pressure does not reach the reference value P as shown by the alternate long and short dash line in FIG. 4 before the elapse of the predetermined period T3, it is determined that the leak occurs in the evaporation route 4.
【0033】ところで、所定期間T3が経過してリーク
診断が終了した後には、エバポ経路4内の圧力が高くな
っているため、その圧力を低下させるために切換弁12
が例えばエバポ経路4と大気側とを連通する状態に切り
換えられる。この状態にあっては、エバポ経路4内の気
体がキャニスタ5を経由して蒸発燃料を除去した後に大
気通路8を通じて外部に放出され、エバポ経路4内の圧
力が低下させられる。By the way, after the leak diagnosis is completed after the elapse of the predetermined period T3, the pressure in the evaporation path 4 is high, and therefore the switching valve 12 is used to reduce the pressure.
Is switched to a state in which the evaporation path 4 and the atmosphere side communicate with each other, for example. In this state, the gas in the evaporation path 4 is released to the outside through the atmosphere passage 8 after removing the evaporated fuel via the canister 5, and the pressure in the evaporation path 4 is reduced.
【0034】しかし、エバポ経路4内から大気側への気
体の放出が急激に行われると、気体の流量及び流速が大
となってキャニスタ5での蒸発燃料の吸着効率が低下す
るようになる。そのため、上記気体がキャニスタ5を通
過するときに同気体に含まれる蒸発燃料を吸着しきれな
くなったり、既にキャニスタ5に吸着された蒸発燃料が
上記気体の通過によってキャニスタ5から離脱させられ
たりして、蒸発燃料を含んだ気体が大気側に放出される
おそれがある。However, when the gas is rapidly released from the evaporation path 4 to the atmosphere side, the flow rate and the flow velocity of the gas are increased and the adsorption efficiency of the evaporated fuel in the canister 5 is lowered. Therefore, when the gas passes through the canister 5, the vaporized fuel contained in the gas can no longer be adsorbed, or the vaporized fuel already adsorbed by the canister 5 is separated from the canister 5 by the passage of the gas. , Gas containing vaporized fuel may be released to the atmosphere side.
【0035】これを抑制するために、エバポ経路4内の
圧力が例えば1分〜2分をかけて大気圧まで徐々に低下
するような態様で上記気体の放出を行うべく、上記切換
弁12を制御することも考えられる。こうした切換弁1
2の制御として、エバポ経路4と大気側との連通・遮断
を所定周期毎に繰り返す切換弁12の制御、例えば遮断
状態を65ms続けた後に連通状態を195ms続ける
という連通・遮断を繰り返す切換弁12の制御が強制的
に実行される。In order to suppress this, the switching valve 12 is operated so as to release the gas in such a manner that the pressure in the evaporation path 4 gradually decreases to atmospheric pressure over, for example, 1 to 2 minutes. It is also possible to control. Such a switching valve 1
As the control of 2, the control of the switching valve 12 that repeats communication / interruption between the evaporation path 4 and the atmosphere side every predetermined cycle, for example, the switching valve 12 that repeats communication / interruption in which the communication state continues for 195 ms after the interruption state continues for 65 ms Control is forced to be executed.
【0036】このように切換弁12を制御することで、
エバポ経路4から大気側への気体の放出が徐々に行われ
る。そのため、リーク診断後においてエバポ経路4から
大気側に放出される気体の総量(気体放出量)が図5に
示されるように徐々に多くなるとともに、エバポ経路4
内の圧力が図6に示されるように徐々に低下するように
なる。従って、エバポ経路4から大気側への気体の放出
が急激に行われることに伴い、上述したように蒸発燃料
を含んだ気体が大気側に放出されるのを抑制することが
できる。By controlling the switching valve 12 in this way,
The gas is gradually released from the evaporation path 4 to the atmosphere side. Therefore, after the leak diagnosis, the total amount of gas (gas release amount) released from the evaporation route 4 to the atmosphere side gradually increases as shown in FIG.
The internal pressure gradually decreases as shown in FIG. Therefore, as the gas is rapidly released from the evaporation path 4 to the atmosphere side, it is possible to suppress the gas containing the evaporated fuel from being released to the atmosphere side as described above.
【0037】しかしながら、上記のように切換弁12を
制御する際の応答性が同切換弁12の劣化など何らかの
理由で低下していると、エバポ経路4からの気体の放出
が徐々に行われるように切換弁12を作動させようとし
ても、それを実現することは困難である。即ち、切換弁
12の応答性が低下しているときには、例えば連通状態
から遮断状態への切換弁12の切り換えの際、遮断状態
への移行に遅れが生じてエバポ経路4から大気側への気
体の放出が急なものになる。その結果、リーク診断後に
おける気体放出量が図7に示されるように急に多くなる
とともに、エバポ経路4内の圧力も図8に示されるよう
に急に低下し、蒸発燃料を含んだ気体がエバポ経路4か
ら大気側に放出されることとなる。However, if the responsiveness when controlling the switching valve 12 is lowered for some reason such as deterioration of the switching valve 12 as described above, the gas is gradually released from the evaporation path 4. Even if the switching valve 12 is operated, it is difficult to realize it. That is, when the responsiveness of the switching valve 12 is lowered, for example, when the switching valve 12 is switched from the communication state to the cutoff state, the transition to the cutoff state is delayed, and the gas from the evaporation path 4 to the atmosphere side is delayed. The release of is sudden. As a result, the amount of gas released after the leak diagnosis suddenly increases as shown in FIG. 7, and the pressure in the evaporation path 4 also sharply decreases as shown in FIG. It will be released to the atmosphere side from the evaporation route 4.
【0038】従って、切換弁12の応答性が低下してい
るときには、当該低下を検出して適切な対策を講じない
と、リーク診断後に切換弁12を制御してエバポ経路4
内の気体を大気側に徐々に放出しようとするとき、蒸発
燃料を含んだ気体が大気側に放出されるという不具合が
生じることになる。Therefore, when the responsiveness of the switching valve 12 is deteriorated, if the deterioration is detected and appropriate countermeasures are not taken, the switching valve 12 is controlled after the leakage diagnosis to control the evaporation path 4.
When the gas inside is gradually released to the atmosphere side, a problem occurs that the gas containing evaporated fuel is released to the atmosphere side.
【0039】そこで本実施形態では、リーク診断後にお
いて、エバポ経路4から大気側に気体を放出させるよう
切換弁12が制御されている状態(連通状態)から、エ
バポ経路4と大気通路8とを遮断する状態(遮断状態)
に切換弁12が切り換えられるとき、エバポ経路4内の
圧力変化に基づき切換弁12の応答性を評価する。こう
した評価を行うことにより、切換弁12の応答性低下が
的確に検出されるようになる。In view of this, in the present embodiment, after the leak diagnosis, the evaporation path 4 and the atmosphere passage 8 are connected to each other from the state in which the switching valve 12 is controlled so as to discharge the gas from the evaporation path 4 to the atmosphere side (communication state). Shutdown state (shutoff state)
When the switching valve 12 is switched to, the responsiveness of the switching valve 12 is evaluated based on the pressure change in the evaporation path 4. By performing such an evaluation, it is possible to accurately detect a decrease in the responsiveness of the switching valve 12.
【0040】そして、切換弁12の応答性低下が検出さ
れたとき、電子制御装置11は、切換弁12の応答性が
低下しているとの評価がなされた旨を、例えば異常ラン
プ18(図1)の点灯によって運転者等に知らせる。こ
のように切換弁12の応答性低下を知らせることによ
り、当該応答性低下に対し速やかに適切な対策を講じる
ことができるようになる。When the responsiveness of the switching valve 12 is detected, the electronic control unit 11 indicates that the responsiveness of the switching valve 12 has been evaluated, for example, the abnormal lamp 18 (see FIG. Notify the driver etc. by lighting 1). In this way, by notifying that the responsiveness of the switching valve 12 has deteriorated, it is possible to promptly take appropriate measures against the responsiveness deterioration.
【0041】ここで、上記切換弁12の応答性評価につ
いて、図9〜図12を併せ参照して具体的に説明する。
なお、図9及び図11は、リーク診断後の切換弁12の
制御において、同切換弁12の連通状態から遮断状態へ
の切換指示があったときのエバポ経路4内の圧力変化を
示すタイムチャートである。この圧力は、切換弁12の
応答性が低下していないときには図9に示されるように
変化し、切換弁12の応答性が低下しているときには図
11に示されるように変化する。Here, the responsiveness evaluation of the switching valve 12 will be specifically described with reference to FIGS.
9 and 11 are time charts showing changes in pressure in the evaporation path 4 when there is an instruction to switch the switching valve 12 from the open state to the closed state in the control of the switching valve 12 after the leak diagnosis. Is. This pressure changes as shown in FIG. 9 when the responsiveness of the switching valve 12 is not lowered, and changes as shown in FIG. 11 when the responsiveness of the switching valve 12 is lowered.
【0042】上記切換弁12の制御の際、図9及び図1
1に示されるように、65msの間だけ連通状態となっ
ていた切換弁12に対し遮断状態への切り換えが指示さ
れると(タイミングa)、切換弁12が遮断状態へと移
行するようになる。切換弁12が遮断状態に制御されて
いるとき(195msの間)、65ms経過毎にタイミ
ングb,c,dでエバポ経路4の圧力低下量が算出され
る。即ち、タイミングb,c,dにおいてそれぞれ、タ
イミングa,b間での圧力差、タイミングb,c間での
圧力差、タイミングc,d間での圧力差が算出され、そ
れら圧力差がタイミングb,c,dでの圧力低下量Pd
とされる。When controlling the switching valve 12, as shown in FIG. 9 and FIG.
As shown in 1, when the switching valve 12 that has been in the communication state for 65 ms is instructed to switch to the shutoff state (timing a), the switching valve 12 shifts to the shutoff state. . When the switching valve 12 is controlled to be in the shutoff state (during 195 ms), the pressure decrease amount of the evaporation path 4 is calculated at timings b, c, and d every 65 ms. That is, at timings b, c, and d, the pressure difference between timings a and b, the pressure difference between timings b and c, and the pressure difference between timings c and d are calculated, and these pressure differences are calculated as timing b. , C, d pressure drop Pd
It is said that
【0043】そして、タイミングb,c,dでの圧力低
下量Pdに応じて切換弁12の応答性が評価される。切
換弁12の応答性が低下していない場合、上記切換弁1
2の遮断状態への移行が遅れることはないため、そのと
きのエバポ経路4内の圧力低下が切換弁12の遮断状態
への移行に伴い小となる。従って、例えば図10に示さ
れるように、タイミングb,c,dでの圧力低下量Pd
のうちのいずれか一つでも判定値Xよりも小であれば、
切換弁12の応答性は低下していないと評価される。Then, the responsiveness of the switching valve 12 is evaluated according to the pressure decrease amount Pd at the timings b, c and d. When the responsiveness of the switching valve 12 is not deteriorated, the switching valve 1
Since there is no delay in the shift of the switching valve 2 to the shutoff state, the pressure drop in the evaporation path 4 at that time becomes small as the switching valve 12 shifts to the shutoff state. Therefore, for example, as shown in FIG. 10, the pressure decrease amount Pd at the timings b, c, d
If any one of them is smaller than the judgment value X,
It is evaluated that the responsiveness of the switching valve 12 has not deteriorated.
【0044】一方、切換弁12の応答性が低下している
場合、上記切換弁12の遮断状態への移行が遅れるた
め、そのときのエバポ経路4内の圧力低下が小とはなり
にくい。従って、図12に示されるように、タイミング
b,c,dでの圧力低下量Pdが全て判定値Xよりも大
であり、切換弁12の遮断状態への制御開始後の所定期
間(195msの間)において圧力低下量Pdが判定値
X以下であり続けるときには、切換弁12の応答性が低
下していると評価される。On the other hand, when the responsiveness of the switching valve 12 is lowered, the changeover of the switching valve 12 to the shut-off state is delayed, so that the pressure drop in the evaporation path 4 at that time is unlikely to be small. Therefore, as shown in FIG. 12, all the pressure decrease amounts Pd at the timings b, c, and d are larger than the determination value X, and a predetermined period (195 ms of start of control of the switching valve 12 to the closed state) If the pressure decrease amount Pd continues to be equal to or less than the determination value X during (interval), it is evaluated that the responsiveness of the switching valve 12 is decreasing.
【0045】次に、切換弁12の応答性を評価して同切
換弁12の応答性低下を検出する手順について、切換弁
評価ルーチンを示す図13のフローチャートを参照して
説明する。この切換弁評価ルーチンは、電子制御装置1
1を通じて、上記圧力低下量Pdの算出周期(65m
s)よりも短い所定時間毎の時間割り込みにて実行され
る。Next, the procedure for evaluating the responsiveness of the switching valve 12 and detecting the decrease in the responsiveness of the switching valve 12 will be described with reference to the flowchart of FIG. 13 showing the switching valve evaluation routine. This switching valve evaluation routine is performed by the electronic control unit 1.
1 through the calculation cycle of the pressure decrease amount Pd (65 m
It is executed by interruption every predetermined time shorter than s).
【0046】切換弁評価ルーチンにおいては、リーク診
断が終了しているとき(S101:YES)、エバポ経
路4からの気体の放出を徐々に行わせるべく、切換弁1
2の切換動作(連通・遮断)の繰り返しが実行される
(S102)。その後、切換弁12の応答性低下が検出
済みであるか否かの判断に用いられる検出完了フラグF
として「0(応答性低下未検出)」が、電子制御装置1
1におけるバックアップRAMの所定領域に記憶されて
いるか否かが判断される(S103)。In the switching valve evaluation routine, when the leak diagnosis is completed (S101: YES), the switching valve 1 is operated so as to gradually release the gas from the evaporation path 4.
The switching operation (communication / interruption) of 2 is repeated (S102). After that, the detection completion flag F used for determining whether or not the responsiveness deterioration of the switching valve 12 has been detected.
Is "0 (decrease in responsiveness not detected)" as the electronic control unit 1
It is determined whether or not it is stored in a predetermined area of the backup RAM in No. 1 (S103).
【0047】ステップS103で肯定判定であれば、切
換弁12がエバポ経路4を遮断する側に制御されている
最中であることを条件に(S104:YES)、65m
s毎にエバポ経路4内の圧力低下量Pdが算出され(S
105)、この圧力低下量Pdが判定値X以上であるか
否かの判断が行われる(S106)。そして、65ms
毎に算出される圧力低下量Pdが3回連続して判定値X
以下であるか否かが判断される(S107)。If an affirmative decision is made in step S103, the condition is that the switching valve 12 is being controlled to the side that shuts off the evaporation path 4 (S104: YES), and 65 m
The pressure drop amount Pd in the evaporation path 4 is calculated for each s (S
105), it is determined whether or not the pressure decrease amount Pd is equal to or greater than the determination value X (S106). And 65ms
The pressure decrease amount Pd calculated for each of the three consecutive judgment values X
It is determined whether or not the following (S107).
【0048】ステップS107で肯定判定であって、切
換弁12が遮断状態に制御されている期間中(195m
s)、圧力低下量Pdが判定値X以下であり続けている
場合には、切換弁12の応答性が低下していると評価さ
れる。そして、電子制御装置11におけるバックアップ
RAMの所定領域に、検出完了フラグFとして「1(応
答性低下検出済み)」が記憶される(S108)。こう
して切換弁12の応答性低下が検出されることとなる。
そして、検出完了フラグFが「1(応答性低下検出
済)」に設定されると、電子制御装置11を通じて異常
ランプ18が点灯され、切換弁12の応答性低下が運転
者等に知らされる。In step S107, an affirmative determination is made and during the period when the switching valve 12 is controlled to be in the shut-off state (195 m
s) If the pressure decrease amount Pd continues to be equal to or less than the determination value X, it is evaluated that the responsiveness of the switching valve 12 is decreasing. Then, "1 (decreased responsiveness)" is stored as the detection completion flag F in a predetermined area of the backup RAM in the electronic control unit 11 (S108). In this way, the decrease in the responsiveness of the switching valve 12 is detected.
Then, when the detection completion flag F is set to "1 (decrease in responsiveness detected)", the abnormal lamp 18 is turned on through the electronic control unit 11, and the driver etc. are notified of the responsiveness decrease of the switching valve 12. .
【0049】以上詳述した本実施形態によれば、以下に
示す効果が得られるようになる。(1)リーク診断後に
はエバポ経路4内の圧力を徐々に低下させるべく、エバ
ポ経路4と大気側との連通・遮断が繰り返されるよう切
換弁12が強制的に切換制御される。この課程であって
切換弁12が連通状態から遮断状態に移行するとき、同
切換弁12の応答性が低下していると上記移行に遅れが
生じ、移行開始後の所定期間(195ms)におけるエ
バポ経路4内の圧力低下量Pdが大のままに維持される
こととなる。従って、この圧力低下量Pdに基づき切換
弁12の応答性を評価することにより、切換弁12の応
答性低下の検出を的確に行うことができる。そして、切
換弁12の応答性低下が検出されたときには、その旨を
異常ランプ18の点灯によって運転者等に知らせるよう
にしたため、切換弁12の応答性低下に対して速やかに
対策を講じることができる。According to this embodiment described in detail above, the following effects can be obtained. (1) After the leak diagnosis, in order to gradually reduce the pressure in the evaporation path 4, the switching valve 12 is compulsorily controlled so that the communication and disconnection between the evaporation path 4 and the atmosphere side are repeated. In this process, when the switching valve 12 shifts from the communication state to the shutoff state, if the responsiveness of the switching valve 12 is deteriorated, the shift is delayed, and the evaporation in the predetermined period (195 ms) after the start of the shift is reduced. The pressure drop amount Pd in the path 4 is maintained to be large. Therefore, by evaluating the responsiveness of the switching valve 12 based on the pressure decrease amount Pd, it is possible to accurately detect the decrease in the responsiveness of the switching valve 12. When a decrease in the responsiveness of the switching valve 12 is detected, the fact is notified to the driver or the like by lighting the abnormal lamp 18, so that prompt measures can be taken against the decrease in the responsiveness of the switching valve 12. it can.
【0050】(2)切換弁12の応答性が低下している
との評価は、上記所定期間において65ms毎に圧力低
下量Pdが判定値X以上であるか否かを判断し、圧力低
下量Pdが判定値X以上である旨の判断が3回続いたと
きになされる。一方、実際に切換弁12の応答性が低下
しているときには、上記所定期間(195ms)におい
て圧力低下量Pdが判定値X以下であり続けることにな
る。従って、切換弁12の応答性が低下しているとの評
価を上記のように行うことで、切換弁12の応答性低下
の検出を的確に行うことができるようになる。(2) The evaluation that the responsiveness of the switching valve 12 has deteriorated is made by judging whether or not the pressure decrease amount Pd is not less than the judgment value X every 65 ms in the above-mentioned predetermined period. The determination is made when Pd is equal to or greater than the determination value X three times. On the other hand, when the responsiveness of the switching valve 12 is actually decreasing, the pressure decrease amount Pd continues to be equal to or less than the determination value X during the predetermined period (195 ms). Therefore, by performing the evaluation that the responsiveness of the switching valve 12 is degraded as described above, it becomes possible to accurately detect the responsiveness degradation of the switching valve 12.
【0051】(3)切換弁12の応答性評価は、リーク
診断後にエバポ経路4から気体を徐々に放出するための
切換弁12の周期的な連通・遮断と同時に行われる。従
って、エバポ経路4からの急激な気体の放出を極力抑制
しながら、切換弁12の応答性を評価することができ
る。(3) The responsiveness evaluation of the switching valve 12 is performed at the same time as the periodic communication / blocking of the switching valve 12 for gradually releasing the gas from the evaporation path 4 after the leakage diagnosis. Therefore, the responsiveness of the switching valve 12 can be evaluated while suppressing the rapid release of gas from the evaporation path 4 as much as possible.
【0052】(4)切換弁12の応答性評価は、切換弁
12による上記のような周期的な連通・遮断の実行時に
なされる。従って、圧力低下量Pdを算出すべくエバポ
経路4と大気側とが遮断するよう切換弁12を制御する
前には、エバポ経路4と大気側とが連通するよう切換弁
12が強制的に制御される。そのため、上記圧力低下量
Pdの算出期間(195ms)中に、エバポ経路4の圧
力変化が的確に現れるようになり、圧力低下量Pdに基
づく切換弁12応答性評価を的確に行うことができる。(4) The responsiveness evaluation of the switching valve 12 is performed when the switching valve 12 executes the above-described periodic communication / blocking. Therefore, before controlling the switching valve 12 so that the evaporation path 4 and the atmosphere side are shut off in order to calculate the pressure decrease amount Pd, the switching valve 12 is forcibly controlled so that the evaporation path 4 and the atmosphere side communicate with each other. To be done. Therefore, the pressure change in the evaporation path 4 can be accurately displayed during the calculation period (195 ms) of the pressure decrease amount Pd, and the responsiveness of the switching valve 12 based on the pressure decrease amount Pd can be accurately evaluated.
【0053】(5)上記切換弁12の周期的な連通・遮
断、及び応答性評価は、リーク診断が終了したときに開
始される。従って、リーク診断が終了したとき、エバポ
経路4と大気側とが連通するように切換弁12が強制的
に制御され、その後直ちに切換弁12がエバポ経路4と
大気側とを遮断するように制御される。この遮断状態へ
の移行開始後の所定期間(195ms)中に、圧力低下
量Pdに基づく切換弁12の応答性評価がなされるた
め、リーク診断が終了した後の早い時期に切換弁12の
応答性を評価することができるようになる。従って、リ
ーク診断後にいち早く切換弁12の応答性低下を検出す
ることが可能になる。(5) The periodic communication / shutoff of the switching valve 12 and the responsiveness evaluation are started when the leak diagnosis is completed. Therefore, when the leak diagnosis is completed, the switching valve 12 is forcibly controlled so that the evaporation path 4 and the atmosphere side communicate with each other, and immediately thereafter, the switching valve 12 is controlled so as to shut off the evaporation path 4 and the atmosphere side. To be done. Since the responsiveness of the switching valve 12 is evaluated based on the pressure drop amount Pd during a predetermined period (195 ms) after the start of the transition to the shutoff state, the response of the switching valve 12 is obtained at an early stage after the leak diagnosis is completed. It becomes possible to evaluate sex. Therefore, it becomes possible to detect the decrease in the responsiveness of the switching valve 12 as soon as possible after the leak diagnosis.
【0054】なお、上記実施形態は、例えば以下のよう
に変更することもできる。
・本実施形態では、切換弁12の応答性低下が検出され
たとき、そのことを知らせるべく異常ランプ18を点灯
したが、本発明はこれに限定されない。例えば、切換弁
12の応答性低下が検出されたとき、以降はリーク診断
を行わないようにして、同リーク診断後に行われるエバ
ポ経路4からの気体の放出の際、蒸発燃料を含んだ気体
が大気側に放出されるのを抑制してもよい。The above embodiment can be modified as follows, for example. In the present embodiment, when the responsiveness decrease of the switching valve 12 is detected, the abnormality lamp 18 is turned on to notify the fact, but the present invention is not limited to this. For example, when a decrease in the responsiveness of the switching valve 12 is detected, the leak diagnosis is not performed thereafter, and when the gas is released from the evaporation path 4 after the leak diagnosis, the gas containing the evaporated fuel is not released. Release to the atmosphere side may be suppressed.
【0055】・切換弁12と電動式エアポンプ13とを
電動ポンプモジュール10として一体に設けたが、これ
ら切換弁12と電動式エアポンプ13とを別々に設けて
も良い。Although the switching valve 12 and the electric air pump 13 are integrally provided as the electric pump module 10, the switching valve 12 and the electric air pump 13 may be separately provided.
【0056】・必ずしもリーク診断終了後に直ちに切換
弁12の応答性の評価を行う必要はなく、例えばリーク
診断終了後に所定時間が経過してから切換弁12の応答
性の評価を開始してもよい。It is not always necessary to evaluate the responsiveness of the switching valve 12 immediately after the completion of the leak diagnosis. For example, the evaluation of the responsiveness of the switching valve 12 may be started after a predetermined time has elapsed after the completion of the leak diagnosis. .
【0057】次に、以上の実施形態から把握することの
できる技術思想をその効果とともに以下に記載する。
(1)請求項1〜5のいずれかに記載の蒸発燃料処理機
構の診断装置において、前記評価手段によって前記切換
弁の応答性が低下していると評価されたとき、その旨を
知らせる報知手段を更に備えることを特徴とする蒸発燃
料処理機構の診断装置。Next, the technical idea which can be understood from the above embodiment will be described below together with its effects. (1) In the diagnostic device for an evaporated fuel processing mechanism according to any one of claims 1 to 5, when the evaluation means evaluates that the responsiveness of the switching valve is low, a notification means for notifying the effect An apparatus for diagnosing an evaporated fuel processing mechanism, further comprising:
【0058】上記構成によれば、切換弁の応答性が低下
していることを報知手段によって知ることができるた
め、切換弁の応答性低下に対して速やかに対策を講じる
ことができる。According to the above configuration, since it can be known by the informing means that the responsiveness of the switching valve is lowered, it is possible to promptly take measures against the lowered responsiveness of the switching valve.
【0059】(2)請求項1〜5、及び上記(1)のい
ずれかに記載の蒸発燃料処理機構の診断装置において、
前記評価手段によって前記切換弁の応答性が低下してい
ると評価されたとき、それ以降は前記リーク診断のため
の前記エバポ経路内の加圧を禁止する禁止手段を更に備
えることを特徴とする蒸発燃料処理機構の診断装置。(2) In the diagnostic apparatus for the evaporated fuel processing mechanism according to any one of claims 1 to 5 and (1) above,
When the responsiveness of the switching valve is evaluated to be deteriorated by the evaluation means, further comprising prohibition means for prohibiting pressurization in the evaporative path for the leak diagnosis thereafter. Evaporative fuel processing mechanism diagnostic device.
【0060】上記構成によれば、切換弁の応答性が低下
していると評価された後もリーク診断が行われ、同診断
後に行われるエバポ経路から大気側への気体の放出の際
に、切換弁の応答性低下に起因して蒸発燃料を含んだ気
体が放出されるようになるのを回避することができる。According to the above configuration, the leak diagnosis is performed even after it is evaluated that the responsiveness of the switching valve is deteriorated, and the gas is released from the evaporation route to the atmosphere side after the diagnosis. It is possible to prevent the gas containing the evaporated fuel from being released due to the decrease in the responsiveness of the switching valve.
【図1】本実施形態の蒸発燃料処理機構の診断装置を示
す略図。FIG. 1 is a schematic diagram showing a diagnostic device for an evaporated fuel processing mechanism according to the present embodiment.
【図2】蒸発燃料処理機構に設けられた電動ポンプモジ
ュールの内部構造を示す略図。FIG. 2 is a schematic diagram showing an internal structure of an electric pump module provided in an evaporated fuel processing mechanism.
【図3】蒸発燃料処理機構に設けられた電動ポンプモジ
ュールの内部構造を示す略図。FIG. 3 is a schematic diagram showing an internal structure of an electric pump module provided in an evaporated fuel processing mechanism.
【図4】エバポ経路のリーク診断が行われるときの切換
弁、及び電動式エアポンプの動作態様、並びに圧力セン
サで検出される圧力の推移を示すタイムチャート。FIG. 4 is a time chart showing changes in pressure detected by a pressure sensor and operation modes of a switching valve and an electric air pump when leak diagnosis of an evaporation path is performed.
【図5】リーク診断後にエバポ経路から大気側に放出さ
れる気体の総流量(気体放出量)の推移を示すタイムチ
ャート。FIG. 5 is a time chart showing changes in the total flow rate (gas release amount) of the gas released from the evaporation route to the atmosphere side after the leak diagnosis.
【図6】リーク診断後にエバポ経路から大気側に気体を
放出する際の同経路内の圧力の推移を示すタイムチャー
ト。FIG. 6 is a time chart showing changes in pressure inside the evaporative path when gas is released from the evaporative path to the atmosphere side after a leak diagnosis.
【図7】リーク診断後にエバポ経路から大気側に放出さ
れる気体の総流量(気体放出量)の時間経過に伴う推移
を示すタイムチャート。FIG. 7 is a time chart showing changes over time in the total flow rate (gas release amount) of gas released from the evaporation route to the atmosphere side after a leak diagnosis.
【図8】リーク診断後にエバポ経路から大気側に気体を
放出する際の同経路内の圧力の推移を示すタイムチャー
ト。FIG. 8 is a time chart showing changes in pressure inside the evaporative path when gas is released from the evaporative path to the atmosphere side after a leak diagnosis.
【図9】リーク診断後に切換弁の切換動作を繰り返す
際、同切換弁が連通状態から遮断状態に移行するときの
エバポ経路内の圧力の推移を示すタイムチャート。FIG. 9 is a time chart showing a change in pressure in the evaporation path when the switching valve repeats the switching operation after the leak diagnosis and the switching valve shifts from the communication state to the cutoff state.
【図10】上記のように切換弁が連通状態とされるとき
のエバポ経路の圧力低下量を時間経過毎に示すグラフ。FIG. 10 is a graph showing the amount of pressure decrease in the evaporation path when the switching valve is in the communication state as described above, with respect to each elapsed time.
【図11】リーク診断後に切換弁の切換動作を繰り返す
際、同切換弁が連通状態から遮断状態に移行するときの
エバポ経路内の圧力の推移を示すタイムチャート。FIG. 11 is a time chart showing the transition of the pressure in the evaporation path when the switching valve shifts from the communication state to the shutoff state when the switching operation of the switching valve is repeated after the leak diagnosis.
【図12】上記のように切換弁が連通状態とされるとき
のエバポ経路の圧力低下量を時間経過毎に示すグラフ。FIG. 12 is a graph showing the amount of pressure decrease in the evaporation path when the switching valve is in the communication state as described above, with respect to each elapsed time.
【図13】切換弁の応答性を評価して同応答性の低下を
検出する手順を示すフローチャート。FIG. 13 is a flowchart showing a procedure for evaluating the response of the switching valve and detecting a decrease in the response.
【符号の説明】
1…エンジン、2…燃料タンク、3…吸気通路、4…エ
バポ経路、5…キャニスタ、6…ベーパ通路、7…パー
ジ通路、8…大気通路、9…パージ制御弁、10…電動
ポンプモジュール、11…電子制御装置、12…切換
弁、13…電動式エアポンプ、14…バイパス通路、1
5…逆止弁、16…圧力センサ、17…基準孔、18…
異常センサ。[Explanation of Codes] 1 ... Engine, 2 ... Fuel tank, 3 ... Intake passage, 4 ... Evaporation passage, 5 ... Canister, 6 ... Vapor passage, 7 ... Purge passage, 8 ... Atmosphere passage, 9 ... Purge control valve, 10 ... electric pump module, 11 ... electronic control device, 12 ... switching valve, 13 ... electric air pump, 14 ... bypass passage, 1
5 ... Check valve, 16 ... Pressure sensor, 17 ... Reference hole, 18 ...
Anomaly sensor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 登喜司 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 花井 修一 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 市川 彰 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 長崎 賢司 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3G044 BA22 BA23 DA04 DA07 EA18 EA32 EA55 EA57 FA02 FA39 GA04 GA24 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Tokiji Ito 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto Car Co., Ltd. (72) Inventor Shuichi Hanai 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto Car Co., Ltd. (72) Inventor Akira Ichikawa 1-1, Showa-cho, Kariya city, Aichi stock market Inside the company DENSO (72) Inventor Kenji Nagasaki 1-1, Showa-cho, Kariya city, Aichi stock market Inside the company DENSO F-term (reference) 3G044 BA22 BA23 DA04 DA07 EA18 EA32 EA55 EA57 FA02 FA39 GA04 GA24
Claims (5)
を同機関の吸気系に送り出すエバポ経路と、このエバポ
経路と大気側とを連通・遮断すべく切り換えられる切換
弁とを備える蒸発燃料処理機構に適用され、前記切換弁
によって前記エバポ経路と前記大気側とを遮断し、この
状態で同経路内を加圧したときの圧力状態に基づきリー
ク診断を行い、当該診断後に前記エバポ経路内の気体が
徐々に大気側に放出されるよう前記切換弁を制御する蒸
発燃料処理機構の診断装置において、 前記リーク診断後に前記エバポ経路内から大気側への気
体の放出が行われているとき、前記エバポ経路と大気側
とを遮断するように前記切換弁を制御する制御手段と、 前記制御手段によって前記切換弁が前記エバポ経路と前
記大気側とを遮断するように制御されるときの前記エバ
ポ経路内の圧力変化に基づき、同切換弁の応答性を評価
する評価手段と、 を備えることを特徴とする蒸発燃料処理機構の診断装
置。1. An evaporative fuel provided with an evaporation path for sending evaporated fuel generated in a fuel supply system of an internal combustion engine to an intake system of the engine, and a switching valve which can be switched so as to connect or disconnect the evaporation path and the atmosphere side. It is applied to a processing mechanism, and the leak is diagnosed based on the pressure state when the evaporative path and the atmosphere side are shut off by the switching valve and the inside of the same path is pressurized in this state, and after the diagnosis, the evaporative path In the diagnostic device of the evaporated fuel processing mechanism that controls the switching valve so that the gas is gradually released to the atmosphere side, when the gas is being released from the inside of the evaporation path to the atmosphere side after the leak diagnosis, Control means for controlling the switching valve to shut off the evaporation path and the atmosphere side; and control for the switching valve to shut off the evaporation path and the atmosphere side by the control means. Based on said change in pressure in the evaporation route, diagnostic apparatus for evaporative fuel processing mechanism, characterized in that it comprises an evaluation means for evaluating the response of the switching valve when.
記切換弁がエバポ経路と大気側とを遮断するように制御
されるとき、前記エバポ経路内の圧力低下量が所定期
間、所定値以上であり続けることに基づき、前記切換弁
の応答性が低下していると評価する請求項1記載の蒸発
燃料処理機構の診断装置。2. The evaluation means, when the switching valve is controlled by the control means so as to shut off the evaporation path from the atmosphere side, a pressure drop amount in the evaporation path is a predetermined value or more for a predetermined period. 2. The evaporative fuel processing mechanism diagnostic device according to claim 1, wherein the responsiveness of the switching valve is evaluated to be lowered based on the existence of the switching valve.
のために前記エバポ経路と前記大気側とを遮断させるよ
うに前記切換弁を制御する前に、前記エバポ経路と前記
大気側とが連通するように前記切換弁を強制的に制御す
る請求項1又は2記載の蒸発燃料処理機構の診断装置。3. The control means connects the evaporation path and the atmosphere side before controlling the switching valve so as to shut off the evaporation path and the atmosphere side for responsiveness evaluation of the switching valve. 3. The diagnostic apparatus for the evaporated fuel processing mechanism according to claim 1, wherein the switching valve is forcibly controlled so that the fuel cells communicate with each other.
たとき、前記エバポ経路と前記大気側とが連通するよう
に前記切換弁を強制的に制御するものである請求項1〜
3のいずれかに記載の蒸発燃料処理機構の診断装置。4. The control means forcibly controls the switching valve so that the evaporation path and the atmosphere side communicate with each other when the leak diagnosis is completed.
4. The evaporative fuel treatment mechanism diagnostic device according to any one of 3 above.
た後、前記エバポ経路と前記大気側との連通・遮断が所
定周期毎に繰り返されるよう前記切換弁を制御する請求
項1〜4のいずれかに記載の蒸発燃料処理機構の診断装
置。5. The control means controls the switching valve such that communication / interruption between the evaporation path and the atmosphere side is repeated every predetermined period after the leak diagnosis is completed. A diagnostic device for an evaporated fuel processing mechanism according to any one of claims.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002052826A JP3746456B2 (en) | 2002-02-28 | 2002-02-28 | Evaporative fuel processing mechanism diagnostic device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002052826A JP3746456B2 (en) | 2002-02-28 | 2002-02-28 | Evaporative fuel processing mechanism diagnostic device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003254172A true JP2003254172A (en) | 2003-09-10 |
| JP3746456B2 JP3746456B2 (en) | 2006-02-15 |
Family
ID=28664417
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002052826A Expired - Lifetime JP3746456B2 (en) | 2002-02-28 | 2002-02-28 | Evaporative fuel processing mechanism diagnostic device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3746456B2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005330923A (en) * | 2004-05-21 | 2005-12-02 | Suzuki Motor Corp | Evaporated fuel control device for internal combustion engine |
| EP1722249A1 (en) | 2005-05-10 | 2006-11-15 | Denso Corporation | A relay test device |
| EP1722248A1 (en) | 2005-05-10 | 2006-11-15 | Denso Corporation | A relay test device |
| US7165446B2 (en) | 2004-04-14 | 2007-01-23 | Toyota Jidosha Kabushiki Kaisha | Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus |
| US7475234B2 (en) | 2004-02-10 | 2009-01-06 | Denso Corporation | Electronic control apparatus equipped with malfunction monitor |
-
2002
- 2002-02-28 JP JP2002052826A patent/JP3746456B2/en not_active Expired - Lifetime
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7475234B2 (en) | 2004-02-10 | 2009-01-06 | Denso Corporation | Electronic control apparatus equipped with malfunction monitor |
| US7165446B2 (en) | 2004-04-14 | 2007-01-23 | Toyota Jidosha Kabushiki Kaisha | Failure diagnostic apparatus for fuel vapor purge system and fuel vapor purge apparatus and combustion engine having failure diagnostic apparatus |
| JP2005330923A (en) * | 2004-05-21 | 2005-12-02 | Suzuki Motor Corp | Evaporated fuel control device for internal combustion engine |
| EP1722249A1 (en) | 2005-05-10 | 2006-11-15 | Denso Corporation | A relay test device |
| EP1722248A1 (en) | 2005-05-10 | 2006-11-15 | Denso Corporation | A relay test device |
| US7446428B2 (en) | 2005-05-10 | 2008-11-04 | Denso Corproation | Method of diagnosing main relay by use of electronic control unit and electronic control unit |
| US7518261B2 (en) | 2005-05-10 | 2009-04-14 | Denso Corporation | Method of diagnosing main relay by use of electronic control unit and electronic control unit |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3746456B2 (en) | 2006-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2541756C (en) | Vehicle evaporative system diagnostic | |
| KR101884970B1 (en) | A fuel cell system and a method of detecting a hydrogen gas leak | |
| JP2009264207A (en) | Flow diagnosis apparatus for fuel vaporized gas purge system | |
| JP2004156498A (en) | Evaporative fuel processor for internal combustion engines | |
| CN111692021A (en) | System and method for diagnosing dual path extraction engine system injector system degradation | |
| JP2001214817A (en) | Evaporative fuel processing device | |
| JP2016003575A (en) | Evaporative gas purge system abnormality diagnosis device | |
| JP2003269265A (en) | Failure diagnosis device for fuel vapor purge system | |
| JP6421927B2 (en) | Fuel evaporative emission control device | |
| JP2005098125A (en) | Air supply device diagnostic device | |
| US6679111B2 (en) | Malfunction diagnostic apparatus for evaporated fuel purge system | |
| US7204237B2 (en) | Evaporative system leak detection upon refueling | |
| JP6315187B2 (en) | Fuel evaporative emission control device | |
| JP2003254172A (en) | Evaporative fuel processing mechanism diagnostic device | |
| JP2016217359A (en) | Abnormality detection device | |
| JP4497293B2 (en) | Evaporative fuel control device for internal combustion engine | |
| JP2004300997A (en) | Leakage diagnostic device for evaporated gas purging system | |
| JP6711465B2 (en) | Fuel evaporative emission control device | |
| JP4117839B2 (en) | Evaporative gas purge system leak diagnosis device | |
| JP4303537B2 (en) | Pressure reducer | |
| JP2004293438A (en) | Leak diagnosing device of evaporation gas purging system | |
| JP2012107590A (en) | Leak detection apparatus of fuel-transpiration-gas processing device | |
| JP2002202008A (en) | Failure diagnosis device for evaporative fuel treatment equipment | |
| JP6233591B2 (en) | Fuel evaporative emission control device | |
| JP2005069047A (en) | Diagnostic system for failure of equipment for volatile-fuel treatment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040906 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051110 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051115 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051122 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3746456 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |