[go: up one dir, main page]

JP2003255401A - Device and method for picture displayer - Google Patents

Device and method for picture displayer

Info

Publication number
JP2003255401A
JP2003255401A JP2002318572A JP2002318572A JP2003255401A JP 2003255401 A JP2003255401 A JP 2003255401A JP 2002318572 A JP2002318572 A JP 2002318572A JP 2002318572 A JP2002318572 A JP 2002318572A JP 2003255401 A JP2003255401 A JP 2003255401A
Authority
JP
Japan
Prior art keywords
particles
display device
image display
electric field
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318572A
Other languages
Japanese (ja)
Inventor
Mitsuharu Takagi
光治 高木
Kazuya Murata
和也 村田
Norio Nihei
則夫 二瓶
Manabu Yakushiji
薬師寺  学
So Kitano
北野  創
Yoshitomo Masuda
善友 増田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002318572A priority Critical patent/JP2003255401A/en
Publication of JP2003255401A publication Critical patent/JP2003255401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a picture displayer in which particles fly ideally when an electric field is formed and a favorable picture can be obtained stably with a sufficient contrast in the picture display device for displaying a picture by filling the particles of two or more kinds of colors and electrification characteristics between a transparent substrate and a counter substrate, and making the particles flight-moving by applying an electric field to the particles from two kinds of electrodes at different potentials. <P>SOLUTION: An absolute value of a difference between surface charge density of two kinds of particles measured by the blow-off method using the same kind of carriers is made to be not less than 5 μC/m<SP>2</SP>and not more than 150 μC/m<SP>2</SP>. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クーロン力などを利用
した粒子の飛翔移動に伴い画像を繰り返し画像表示、消
去できる画像表示装置および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display apparatus and method capable of repeatedly displaying and erasing an image as particles fly and move using Coulomb force or the like.

【0002】[0002]

【従来の技術】液晶(LCD)に代わる画像表示装置と
して、電気泳動方式、エレクトロクロミック方式、サー
マル方式、2色粒子回転方式などの技術を用いた画像表
示装置(ディスプレイ)が提案されている。これらの画
像表示装置は、LCDに比べて、通常の印刷物に近い広
い視野角が得られる、消費電力が小さい、メモリー機能
を有している等のメリットから、次世代の安価な表示装
置として考えられ、携帯端末用表示、電子ペーパー等へ
の展開が期待されている。
2. Description of the Related Art As an image display device replacing liquid crystal (LCD), an image display device (display) using a technique such as an electrophoretic system, an electrochromic system, a thermal system, and a two-color particle rotation system has been proposed. These image display devices are considered as next-generation inexpensive display devices because they have a wider viewing angle than ordinary printed matter, lower power consumption, and a memory function than LCDs. Therefore, it is expected to be applied to displays for mobile terminals and electronic papers.

【0003】最近、分散粒子と着色溶液からなる分散液
をマイクロカプセル化し、これを対向する基板間に配置
する電気泳動方式が提案されている。しかしながら、電
気泳動方式では、液中に粒子が泳動するために液の粘性
抵抗により応答速度が遅いという問題がある。また、低
比重の溶液中に酸化チタンなどの高比重の粒子を分散さ
せているために、沈降しやすく、分散状態の安定性維持
が難しく、画像繰り返し安定性に欠けるという問題を抱
えている。マイクロカプセル化にしても、セルサイズを
マイクロカプセルレベルにし、見かけ上、このような欠
点が現れ難くしているだけで、本質的な問題は何ら解決
されていない。
Recently, an electrophoretic method has been proposed in which a dispersion liquid composed of dispersed particles and a coloring solution is formed into microcapsules and the microcapsules are arranged between opposed substrates. However, the electrophoretic method has a problem that the response speed is slow due to the viscous resistance of the liquid because the particles migrate in the liquid. Further, since particles having a high specific gravity such as titanium oxide are dispersed in a solution having a low specific gravity, there is a problem in that they easily settle, it is difficult to maintain the stability of the dispersed state, and the stability of image repetition is lacking. Even in the case of microencapsulation, the cell size is set to the microcapsule level, and such defects are apparently difficult to appear, and no essential problem is solved.

【0004】以上のような溶液中での挙動を利用した電
気泳動方式に対し、最近では溶液を使わず、色と帯電極
性が異なる2種類の粒子を2枚の基板間において、静電
界をかけて互いに異なる方向の基板に飛翔付着させて表
示装置も提案されている。この方式は電気泳動方式に対
し乾式であるから粒子の移動抵抗が小さく応答速度が速
いという長所がある。このような乾式表示装置の動作メ
カニズムは、色および帯電極性の異なる2種類の粒子を
混合したものを電極板で挟み込み、電極板に電圧を印加
することで極板間に電界を発生させて極性の異なる帯電
粒子を異なる方向へ飛翔させることにより表示素子とし
て使用するものである。しかしながら、乾式表示装置に
おいて、電界を形成した際に粒子の理想的な飛翔が行な
われず、表示画像のコントラストが不十分で良好な画像
が安定して得られない場合がある。
In contrast to the electrophoretic method utilizing the behavior in a solution as described above, recently, a solution is not used, and an electrostatic field is applied between two kinds of particles having different colors and different charging polarities. A display device has also been proposed in which the substrates are attached to the substrates in different directions by flying. Since this method is a dry method as compared with the electrophoresis method, it has the advantage that the movement resistance of particles is small and the response speed is fast. The operation mechanism of such a dry display device is that a mixture of two kinds of particles having different colors and charged polarities is sandwiched between electrode plates, and a voltage is applied to the electrode plates to generate an electric field between the electrode plates to polarize them. It is used as a display element by flying differently charged particles of different directions in different directions. However, in a dry display device, particles may not ideally fly when an electric field is formed, and the contrast of a displayed image may be insufficient, so that a good image may not be stably obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みて鋭意検討されたものであり、粒子を飛翔させるタ
イプの乾式画像表示装置において、電界を形成した際に
粒子の理想的な飛翔が行なわれ、コントラストが十分で
良好な画像が安定して得らる画像表示装置および方法を
提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been earnestly studied in view of the above circumstances, and in a dry image display device of a type that causes particles to fly, ideal flight of particles when an electric field is formed. It is an object of the present invention to provide an image display device and method capable of stably obtaining a good image with sufficient contrast.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を重ねた結果、同じ種類のキ
ャリアを用いてブローオフ法により測定した2種類の粒
子の表面電荷密度の差の絶対値が、5μC/m2 以上1
50μC/m2 以下とすることで、電界の印加・反転に
よる粒子の飛翔が理想的に追従し、コントラストが十分
で良好な画像が安定して得らることを見出し、本発明に
至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the surface charge densities of two types of particles measured by a blow-off method using the same type of carrier. The absolute value of the difference is 5 μC / m 2 or more 1
The present invention has been found out that when it is 50 μC / m 2 or less, the flight of particles due to the application and reversal of an electric field ideally follows, and a satisfactory image with a sufficient contrast can be stably obtained.

【0007】すなわち本発明は、以下の画像表示装置お
よび方法を提供するものである。 1.透明基板および対向基板の間に2種類以上の色およ
び帯電特性の異なる粒子を封入し、電位の異なる2種類
の電極から該粒子に電界を与えて、粒子を飛翔移動させ
画像を表示する画像表示装置において、同じ種類のキャ
リアを用いてブローオフ法により測定した2種類の粒子
の表面電荷密度の差の絶対値が、5μC/m2 以上15
0μC/m2 以下であることを特徴とする画像表示装
置。 2.少なくとも片方の粒子の表面電荷密度が絶対値で5
〜150μC/m2 である上記1の画像表示装置。 3.粒子の平均粒子径d0.5 が0.1〜50μmである
上記1又は2の画像表示装置。 4.粒子が、体積固有抵抗1×1010Ω・cm以上の絶縁
性粒子である上記1〜3のいずれかの画像表示装置。 5.粒子が、その表面と1mmの間隔をもって配置され
たコロナ放電器に、8KVの電圧を印加してコロナ放電
を発生させて表面を帯電させた場合に、0.3秒後にお
ける表面電位の最大値が300Vより大きい粒子である
上記1〜4のいずれかの画像表示装置。 6.透明基板および対向基板の間に2種類以上の色およ
び帯電特性の異なる粒子を封入し、電位の異なる2種類
の電極から該粒子に電界を与えて、粒子を飛翔移動させ
画像を表示する画像表示装置において、同じ種類のキャ
リアを用いてブローオフ法により測定した2種類の粒子
の表面電荷密度の差の絶対値が、5μC/m2 以上15
0μC/m2 以下とし、少なくとも片方の粒子の表面電
荷密度が絶対値で5〜150μC/m2 とすることを特
徴とする画像表示方法。
That is, the present invention provides the following image display device and method. 1. An image display in which two or more types of particles having different colors and different charging characteristics are enclosed between a transparent substrate and a counter substrate, and an electric field is applied to the particles from two types of electrodes having different potentials to cause the particles to fly and move to display an image. In the apparatus, the absolute value of the difference between the surface charge densities of two types of particles measured by the blow-off method using the same type of carrier is 5 μC / m 2 or more 15
An image display device, which is 0 μC / m 2 or less. 2. The surface charge density of at least one particle is 5 in absolute value.
The image display device according to 1 above, wherein the image display device has a density of 150 μC / m 2 . 3. The image display device according to 1 or 2 above, wherein the average particle size d 0.5 of the particles is 0.1 to 50 μm. 4. The image display device according to any one of 1 to 3 above, wherein the particles are insulating particles having a volume resistivity of 1 × 10 10 Ω · cm or more. 5. The maximum value of the surface potential after 0.3 seconds when the particles are charged with a corona discharge by applying a voltage of 8 KV to a corona discharger arranged at a distance of 1 mm from the surface to generate corona discharge. The image display device according to any one of 1 to 4 above, wherein the particles are larger than 300V. 6. An image display in which two or more types of particles having different colors and different charging characteristics are enclosed between a transparent substrate and a counter substrate, and an electric field is applied to the particles from two types of electrodes having different potentials to cause the particles to fly and move to display an image. In the apparatus, the absolute value of the difference between the surface charge densities of two types of particles measured by the blow-off method using the same type of carrier is 5 μC / m 2 or more 15
And 0μC / m 2 or less, an image display method, wherein a surface charge density of at least one of the particles is in absolute value 5~150μC / m 2.

【0008】[0008]

【発明の実施の形態】本発明の画像表示装置は、透明基
板および対向基板の間に、2種類以上の粒子を封入し、
電位の異なる2種類の電極から該粒子に電界を与えて、
クーロン力などにより粒子を飛翔移動させ画像を表示す
る画像表示装置である。ここで粒子にかかる力は、粒子
同士のクーロン力により引き付けあう力、分子間力、極
板とのクーロン力、さらに液架橋力、重力などが考えら
れる。これらの総合的な力と電界によって粒子に働きか
けられる力との相対関係により電界による力が上回った
際に粒子自身の飛翔が起こることとなるが、ここで特に
粒子自身の帯電量は電界により発生する力、ならびに粒
子同士、ないしは極板における付着力を制御する際に最
も重要となるパラメータである。ここで粒子の帯電量が
十分に高くない場合には、電界を形成した際に理想的な
飛翔が行われず良好な表示デバイスとして作用しない。
また、2粒子が理想的に電界反転に追従するには2粒子
の帯電量を相互に最適化する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION The image display device of the present invention has two or more kinds of particles enclosed between a transparent substrate and a counter substrate,
An electric field is applied to the particles from two types of electrodes with different potentials,
It is an image display device that displays an image by causing particles to fly and move by Coulomb force or the like. Here, the force exerted on the particles may be a force attracting each other by Coulomb force between particles, an intermolecular force, a Coulomb force with an electrode plate, a liquid bridge force, gravity, and the like. Due to the relative relationship between these total forces and the force exerted on the particles by the electric field, the particles themselves fly when the force due to the electric field exceeds, but here the charge amount of the particles themselves is generated by the electric field. It is the most important parameter when controlling the force of adhesion and the adhesion force between particles or between electrode plates. Here, if the charge amount of the particles is not sufficiently high, ideal flight is not performed when an electric field is formed, and the device does not function as a good display device.
Further, in order for the two particles to ideally follow the electric field reversal, it is necessary to mutually optimize the charge amounts of the two particles.

【0009】粒子の帯電量は当然その測定条件に依存す
るが、画像表示装置における粒子の帯電量はほぼ、初期
帯電量、基板との接触、種類の異なる粒子との接触、経
過時間に伴う電荷減衰に依存し、特に「種類の異なる粒
子との接触」、すなわち2粒子間の接触に伴う帯電挙動
の飽和値が支配因子となっているということが分かって
いる。したがって、帯電量においてはこの2粒子間の帯
電特性の差、すなわち仕事関数の差を知ることが重要で
あるが、これは簡易測定では難しい。本発明者らは鋭意
検討の結果、ブローオフ法において同じキャリアを用い
て、それぞれの粒子の帯電量測定を行なうことにより相
対的に評価できることを見出し、これを表面電荷密度に
よって規定することにより、画像表示装置として適当な
粒子の帯電量を予測できることを見出した。測定方法は
詳しくは後で述べるが、ブローオフ法によって、粒子と
キャリア粒子とを十分に接触させ、その飽和帯電量を測
定することにより該粒子に単位重量あたりの帯電量を測
定することができる。そして、該粒子の粒径と比重を別
途求めることにより該粒子の表面電荷密度を算出するこ
とができる。
The charge amount of the particles naturally depends on the measurement conditions, but the charge amount of the particles in the image display device is almost the same as the initial charge amount, the contact with the substrate, the contact with particles of different types, and the charge with the passage of time. It has been found that the "contact with particles of different types", that is, the saturation value of the charging behavior associated with the contact between two particles, is the controlling factor depending on the attenuation. Therefore, it is important to know the difference in the charging characteristics between the two particles, that is, the difference in the work function in the charge amount, but this is difficult to perform by simple measurement. As a result of intensive studies, the present inventors have found that the same carrier can be used in the blow-off method, and the relative charge can be evaluated by measuring the charge amount of each particle. It was found that the charge amount of particles suitable for a display device can be predicted. Although the measuring method will be described later in detail, the amount of charge per unit weight of the particles can be measured by bringing the particles and the carrier particles into sufficient contact by the blow-off method and measuring the saturated amount of charge. Then, the surface charge density of the particles can be calculated by separately determining the particle size and the specific gravity of the particles.

【0010】画像表示装置においては、用いる粒子の粒
径は小さく、重力の影響はほぼ無視できるほど小さいた
め、粒子の比重は粒子の動きに対して影響しない。しか
し、粒子の帯電量においては、同じ粒径の粒子で単位重
量あたりの平均帯電量が同じであっても、粒子の比重が
2倍異なる場合に保持する帯電量は2倍異なることとな
る。従って、画像表示装置に用いられる粒子の帯電特性
は比重に無関係な表面電荷密度(単位、μC/m2 )で
評価するのが好ましいことが分かった。そして、粒子間
においてこの表面電荷密度の差が十分にある時、2種類
の粒子はお互いの接触により異なる極性の帯電量を保持
し、電界により移動する機能を保持するのである。ここ
で、表面電荷密度は2粒子の帯電極性を異なるものにす
るためにある程度の差が必要であるが、大きいほど良い
というものではない。粒子移動による画像表示装置にお
いては粒子の粒径が大きいときは主に電気影像力が飛翔
電界(電圧)を決定する因子となる傾向が強いため、こ
の粒子を低い電界(電圧)で動かすためには帯電量は低
い方が良いこととなる。また、粒子の粒径が小さい時は
分子間力・液架橋力等の非電気的な力が飛翔電界(電
圧)決定因子となることが多いため、この粒子を低い電
界(電圧)で動かすためには帯電量が高い方が良いこと
となる。しかし、これは粒子の表面性(材料、形状)に
も大きく依存するため一概に粒径と帯電量で規定するこ
とができない。本発明者らは平均粒子径d0.5 が0.1
〜50μmの粒子においては、同じ種類のキャリアを用
いてブローオフ法により測定した2種類の粒子の表面電
荷密度の差の絶対値が、5μC/m2 以上150μC/
2 以下である場合に画像表示装置として使用できる粒
子と成り得ることを見出したものである。
In the image display device, since the particle size of the particles used is small and the influence of gravity is small enough to be ignored, the specific gravity of the particles does not affect the movement of the particles. However, regarding the charge amount of the particles, even if the particles having the same particle size have the same average charge amount per unit weight, the charge amount held when the specific gravity of the particles is two times different will be two times different. Therefore, it was found that it is preferable to evaluate the charging characteristics of the particles used in the image display device by the surface charge density (unit: μC / m 2 ) irrelevant to the specific gravity. When there is a sufficient difference in the surface charge density between the particles, the two types of particles hold different amounts of charges of different polarities due to contact with each other, and the function of moving due to an electric field. Here, the surface charge density needs to have a certain difference in order to make the charging polarities of the two particles different, but the larger the surface charge density, the better. In an image display device based on particle movement, when the particle size is large, the electric image force tends to be a factor that mainly determines the flight electric field (voltage). Therefore, it is necessary to move the particles at a low electric field (voltage). The lower the charge amount, the better. In addition, when the particle size is small, non-electrical forces such as intermolecular force and liquid bridging force are often determinants of the flight electric field (voltage), so this particle is moved by a low electric field (voltage). The higher the charge amount, the better. However, this largely depends on the surface properties (material, shape) of the particles and cannot be unconditionally defined by the particle size and the charge amount. The present inventors have found that the average particle diameter d 0.5 is 0.1.
In the case of particles of ˜50 μm, the absolute value of the difference between the surface charge densities of the two types of particles measured by the blow-off method using the same type of carrier is 5 μC / m 2 or more and 150 μC / m 2 or more.
It has been found that particles having a particle size of m 2 or less can be used as an image display device.

【0011】乾式画像表示装置には、図1に示すように
2種以上の色および帯電特性の異なる粒子を基板と垂直
方向に移動させることによる表示方式と、図2に示すよ
うに1種の色の粒子を基板と平行方向に移動させること
による表示方式があるが、本発明は図1に示す前者の方
式に適用するもので、安定性が高い。図3は画像表示装
置の構造の一例を示す説明図であり、対向する基板1、
基板2及び粒子3により形成され、必要に応じて隔壁4
が設けられる。
In the dry image display device, as shown in FIG. 1, two or more kinds of particles having different colors and different charging characteristics are moved in the direction perpendicular to the substrate, and one type as shown in FIG. Although there is a display method in which color particles are moved in a direction parallel to the substrate, the present invention is applied to the former method shown in FIG. 1 and has high stability. FIG. 3 is an explanatory diagram showing an example of the structure of the image display device, which includes the opposing substrate 1,
The partition wall 4 is formed by the substrate 2 and the particles 3, and if necessary, the partition wall 4
Is provided.

【0012】基板に関しては、基板1、基板2の少なく
とも一方は装置外側から粒子の色が確認できる透明基板
であり、可視光の透過率が高くかつ耐熱性の良い材料が
好適である。画像表示装置としての可撓性の有無は用途
により適宜選択され、例えば、電子ペーパー等の用途に
は可撓性のある材料、携帯電話、PDA、ノートパソコ
ン類の携帯機器表示等の用途には可撓性のない材料が用
いられる。
Regarding the substrate, at least one of the substrate 1 and the substrate 2 is a transparent substrate from which the color of particles can be confirmed from the outside of the device, and a material having a high visible light transmittance and a high heat resistance is suitable. Whether or not the image display device is flexible is appropriately selected depending on the application. For example, for an application such as electronic paper, a flexible material, a mobile phone, a PDA, and a display of a portable device such as a notebook computer are used. An inflexible material is used.

【0013】基板材料を例示すると、ポリエチレンテレ
フタレート、ポリエーテルサルフォン、ポリエチレン、
ポリカーボネートなどのポリマーシートや、ガラス、石
英などの無機シートが挙げられる。基板厚みは、2〜5
000μm、好ましくは5〜1000μmが好適であ
り、薄すぎると、強度、基板間の間隔均一性を保ちにく
くなり、厚すぎると、表示機能としての鮮明さ、コント
ラストの低下が発生し、特に、電子ペーパー用途の場合
には可撓性に欠ける。
Examples of the substrate material include polyethylene terephthalate, polyether sulfone, polyethylene,
Examples include polymer sheets such as polycarbonate and inorganic sheets such as glass and quartz. Substrate thickness is 2-5
000 μm, preferably 5 to 1000 μm is suitable, and when it is too thin, it becomes difficult to maintain strength and uniformity of spacing between substrates, and when it is too thick, sharpness as a display function and deterioration of contrast occur. It lacks flexibility in paper applications.

【0014】電極は透明基板上に透明かつパターン形成
可能である導電性材料で形成され、アルミニウム、銀、
ニッケル、銅、金等の金属やITO、導電性酸化錫、導
電性酸化亜鉛等の透明導電金属酸化物をスパッタリング
法、真空蒸着法、CVD法、塗布法等で薄膜状に形成し
たものや、導電剤を溶媒や合成樹脂バインダに混合して
塗布したものが用いられる。導電剤としてはベンジルト
リメチルアンモニウムクロライド、テトラブチルアンモ
ニウムパークロレート等のカチオン性高分子電解質、ポ
リスチレンスルホン酸塩、ポリアクリル酸塩等のアニオ
ン性高分子電解質や導電性の酸化亜鉛、酸化スズ、酸化
インジウム微粉末等が用いられる。なお、電極厚みは、
導電性が確保でき光透過性に支障なければ良く、3〜1
000nm、好ましくは5〜400nmが好適である。
対向基板上には透明電極材料を使用することもできる
が、アルミニウム、銀、ニッケル、銅、金等の非透明電
極材料も使用できる。この場合の外部電圧印加は、直流
あるいはそれに交流を重畳しても良い。各電極は帯電し
た粒子の電荷が逃げないように絶縁性のコート層を形成
することが好ましい。このコート層は、負帯電粒子に対
しては正帯電性の樹脂を、正帯電粒子に対しては負帯電
性の樹脂を用いると粒子の電荷が逃げ難いので特に好ま
しい。
The electrodes are made of a transparent and patternable conductive material on a transparent substrate, such as aluminum, silver,
A thin film of a metal such as nickel, copper or gold, or a transparent conductive metal oxide such as ITO, conductive tin oxide or conductive zinc oxide formed by a sputtering method, a vacuum deposition method, a CVD method, a coating method, or the like, A conductive agent mixed with a solvent or a synthetic resin binder and applied is used. Examples of the conductive agent include cationic polymer electrolytes such as benzyltrimethylammonium chloride and tetrabutylammonium perchlorate, anionic polymer electrolytes such as polystyrene sulfonate and polyacrylate, and conductive zinc oxide, tin oxide and indium oxide. Fine powder or the like is used. The electrode thickness is
It is sufficient if the conductivity can be secured and the light transmittance is not hindered. 3-1
000 nm, preferably 5 to 400 nm is suitable.
Although a transparent electrode material can be used on the counter substrate, a non-transparent electrode material such as aluminum, silver, nickel, copper, or gold can also be used. In this case, the external voltage may be applied by superimposing DC or AC on it. It is preferable to form an insulating coat layer on each electrode so that the charges of the charged particles do not escape. In this coat layer, it is particularly preferable to use a resin having a positive charging property for the negatively charged particles and a resin having a negative charging property for the positively charged particles because it is difficult for the charge of the particles to escape.

【0015】隔壁は各表示素子の四周に設けるのが好ま
しい。隔壁を平行する二方向に設けることもできる。こ
れにより、基板平行方向の余分な粒子移動を阻止し、耐
久繰り返し性、メモリー保持性を介助すると共に、基板
間の間隔を均一にかつ補強し画像表示板の強度を上げる
こともできる。隔壁の形成方法としては、特に限定され
ないが、例えば、スクリーン版を用いて所定の位置にペ
ーストを重ね塗りするスクリーン印刷法や、基板上に所
望の厚さの隔壁材をベタ塗りし、隔壁として残したい部
分のみレジストパターンを隔壁材上に被覆した後、ブラ
スト材を噴射して隔壁部以外の隔壁材を切削除去するサ
ンドブラスト法や、該基板上に感光性樹脂を用いてレジ
ストパターンを形成し、レジスト凹部へペーストを埋込
んだ後レジスト除去するリフトオフ法(アディティブ
法)や、該基板上に、隔壁材料を含有した感光性樹脂組
成物を塗布し、露光・現像により所望のパターンを得る
感光性ペースト法や、該基板上に隔壁材料を含有するペ
ーストを塗布した後、凹凸を有する金型等を圧着・加圧
成形して隔壁形成する鋳型成形法等、種々の方法が採用
される。さらに鋳型成形法を応用し、鋳型として感光性
樹脂組成物により設けたレリーフパターンを使用する、
レリーフ型押し法も採用される。
It is preferable that the partition walls are provided on the four circumferences of each display element. The partition walls can be provided in two parallel directions. As a result, excessive movement of particles in the direction parallel to the substrate can be prevented, durability repeatability and memory retention can be assisted, and the distance between the substrates can be made uniform and reinforced to increase the strength of the image display plate. The method for forming the partition wall is not particularly limited, for example, a screen printing method in which paste is applied in a predetermined position using a screen plate, or a partition material having a desired thickness is solidly coated on a substrate to form a partition wall. After coating the resist pattern only on the part to be left on the partition wall material, a blasting material is sprayed to remove the partition wall material other than the partition wall by sandblasting, or a resist pattern is formed on the substrate using a photosensitive resin. , A lift-off method (additive method) in which the resist is removed after the paste is embedded in the resist recesses, or a photosensitive resin composition containing a partition material is applied onto the substrate, and a desired pattern is obtained by exposure and development. Paste method or a mold forming method of forming barrier ribs by applying a paste containing a barrier rib material on the substrate, and then pressure-bonding and pressure-molding a mold or the like having irregularities. Various methods are employed. Further applying the mold forming method, using the relief pattern provided by the photosensitive resin composition as a mold,
The relief stamping method is also adopted.

【0016】粒子は、球形であることが好ましく、クー
ロン力などにより飛翔移動するものであり、以下に述べ
る特性を有するものを用いることが重要である。すなわ
ち、同じ種類のキャリアを用いてブローオフ法により測
定した2種類の粒子の表面電荷密度の差の絶対値が、5
μC/m2 以上150μC/m2 以下とすることにより
電界印加・反転により粒子の飛翔が理想的に追従するこ
とができる。このブローオフ法においては、両端に網を
張った円筒容器中に粉体とキャリアの混合体を入れ、一
端から高圧ガスを吹き込んで粉体とキャリアとを分離
し、網の目開きから粉体のみをブローオフ(吹き飛ば
し)する。この時、粉体が容器外に持ち去った帯電量と
等量で逆の帯電量がキャリアに残る。そして、この電荷
による電束の全てはファラデーケージで集められ、この
分だけコンデンサーに充電される。そこでコンデンサー
両端の電位を測定することにより粉体の電荷量は、Q=
CV (C:コンデンサー容量、V:コンデンサー両端
の電圧)として求められる。そして、この帯電量と別途
測定した該粒子の平均粒子径および比重とから表面電荷
密度が求められる種類の異なる2粒子間の表面電荷密度
の差の絶対値が5μC/m2 に満たない場合は、電界を
印加した場合でも粒子にかかる力は微弱であり粒子の飛
翔を達成するためには非常に大きな電圧印加が必要とな
る。また、粒子の種類毎に表面電荷密度が分布を持ち、
2粒子の表面電荷密度の差の絶対値が5μC/m2 に満
たない場合は、この2粒子の表面電荷密度分布が重なる
部分が多くなる。そのような状況下では、電圧印加によ
って2粒子は両電極へ理想的な分離ができず、表示デバ
イスとしては十分な性能が発揮できない。
The particles are preferably spherical particles, which fly and move by Coulomb force, and it is important to use particles having the following characteristics. That is, the absolute value of the difference between the surface charge densities of the two types of particles measured by the blow-off method using the same type of carrier is 5
by applying an electric field-reversed by the [mu] C / m 2 or more 150μC / m 2 or less may be flying particles ideally follow. In this blow-off method, a mixture of powder and carrier is placed in a cylindrical container having meshes on both ends, high-pressure gas is blown from one end to separate the powder and carrier, and only the powder is opened from the mesh opening. To blow off. At this time, a charge amount opposite to the charge amount of the powder carried away from the container remains in the carrier. Then, all of the electric flux due to this electric charge is collected in the Faraday cage, and the capacitor is charged by this amount. Therefore, by measuring the potential across the capacitor, the charge amount of the powder can be calculated as Q =
It is obtained as CV (C: capacitor capacity, V: voltage across capacitor). When the absolute value of the difference in surface charge density between two particles of different types whose surface charge density is determined from this charge amount and the average particle diameter and specific gravity of the particles separately measured is less than 5 μC / m 2. Even when an electric field is applied, the force exerted on the particles is weak, and it is necessary to apply a very large voltage to achieve the flight of the particles. Also, the surface charge density has a distribution for each type of particle,
When the absolute value of the difference between the surface charge densities of the two particles is less than 5 μC / m 2 , the surface charge density distributions of the two particles overlap each other. Under such a condition, the two particles cannot be ideally separated into both electrodes by the voltage application, and the display device cannot exhibit sufficient performance.

【0017】更に、少なくとも片方の粒子の表面電荷密
度の絶対値を5〜150μC/m2とすることで、電界
印加・反転による粒子の飛翔において、より良好な状況
が得られる。すなわち、どちらか一方の粒子の表面電荷
密度の絶対値が5〜150μC/m2 であるときには、
その粒子が電界によって理想的に飛翔するため、もう一
方の粒子は物理的に電極面から排除されることから、結
果的に表示デバイスとして十分機能する。なお、粒子は
その帯電電荷を保持する必要があるので、体積固有抵抗
が1×1010Ω・cm以上の絶縁性粒子が好ましく、特に
1×1012Ω・cm以上の絶縁性粒子が好ましい。
Furthermore, by setting the absolute value of the surface charge density of at least one of the particles to 5 to 150 μC / m 2 , a better situation can be obtained in the flight of the particles due to the application and reversal of the electric field. That is, when the absolute value of the surface charge density of one of the particles is 5 to 150 μC / m 2 ,
Since the particles ideally fly by the electric field, the other particles are physically excluded from the electrode surface, and as a result, they sufficiently function as a display device. Since the particles are required to retain the charged electric charge, insulating particles having a volume resistivity of 1 × 10 10 Ω · cm or more are preferable, and insulating particles having a volume resistivity of 1 × 10 12 Ω · cm or more are particularly preferable.

【0018】粒子の平均粒子径d0.5 は、0.1〜50
μmが好ましく、特に1〜30μmが好ましい。粒径が
この範囲より小さいと粒子の電荷密度が大きすぎて電極
や基板への鏡像力が強すぎ、メモリー性はよいが、電界
を反転した場合の追随性が悪くなる。反対に粒子径がこ
の範囲より大きいと追随性は良いが、メモリー性が悪く
なる。なお、本発明において平均粒子径d0.5 (μm)
は、Mastersizer2000(Malvern instruments Ltd.) 測定
機に各粒子を投入し、付属の解析ソフト(体積基準分布
を基に粒子径分布、粒子径を算出するソフト)を用い
て、粒子の50%がこれより大きく、50%がこれより小さ
いという粒径をμmで表した数値である。
The average particle diameter d 0.5 of the particles is 0.1 to 50.
μm is preferable, and 1 to 30 μm is particularly preferable. When the particle size is smaller than this range, the charge density of the particles is too large and the image force on the electrode or the substrate is too strong, and the memory property is good, but the followability when the electric field is reversed becomes poor. On the contrary, if the particle size is larger than this range, the followability is good, but the memory property becomes poor. In the present invention, the average particle diameter d 0.5 (μm)
Is a Mastersizer2000 (Malvern instruments Ltd.) put each particle into a measuring machine and use the attached analysis software (software that calculates the particle size distribution and particle size based on the volume standard distribution) It is a numerical value expressed in μm that the particle size is larger and 50% is smaller than this.

【0019】また、粒子は、以下に述べる方法で評価し
た電荷減衰性の遅い粒子が更に好ましい。即ち、粒子
を、別途、プレス、加熱溶融、キャストなどにより、厚
み5〜100μm範囲のフィルム状にして、そのフィル
ム表面と1mmの間隔をもって配置されたコロナ放電器
に、8KVの電圧を印加してコロナ放電を発生させて表
面を帯電させ、その表面電位の変化を測定し判定する。
この場合、0.3秒後における表面電位の最大値が30
0Vより大きく、好ましくは400Vより大きくなるよ
うに、粒子構成材料を選択、作製することが望ましい。
なお、上記表面電位の測定は、例えば図4に示した装置
(QEA社製CRT2000)により行なうことが出来
る。この装置の場合は、前述したフィルムを表面に配置
したロールシャフト両端部をチャック21にて保持し、
小型のコロトロン放電器22と表面電位計23とを所定
間隔離して併設した計測ユニットを上記フィルムの表面
と1mmの間隔を持って対向配置し、上記ロールシャフ
トを静止した状態のまま、上記計測ユニットをロールシ
ャフトの一端から他端まで一定速度で移動させることに
より、表面電荷を与えつつその表面電位を測定する方法
が好適に採用される。測定環境は温度25±3℃、湿度
55±5RH%とする。
Further, the particles are more preferably particles having a slow charge decay property evaluated by the method described below. That is, the particles are separately formed into a film having a thickness in the range of 5 to 100 μm by pressing, heat melting, casting, etc., and a voltage of 8 KV is applied to a corona discharger arranged at a distance of 1 mm from the film surface. Corona discharge is generated to charge the surface, and the change in the surface potential is measured and judged.
In this case, the maximum value of the surface potential after 0.3 seconds is 30
It is desirable to select and prepare the particle constituent material so as to be higher than 0 V, and preferably higher than 400 V.
The surface potential can be measured by, for example, the device (CRT2000 manufactured by QEA) shown in FIG. In the case of this device, both ends of the roll shaft having the above-mentioned film arranged on the surface are held by the chuck 21,
A measuring unit having a small corotron discharger 22 and a surface electrometer 23, which are separated from each other by a predetermined distance, is arranged opposite to the surface of the film with a distance of 1 mm, and the measuring unit is kept with the roll shaft stationary. A method of measuring the surface potential while applying the surface charge by moving the roller from one end to the other end of the roll shaft at a constant speed is preferably adopted. The measurement environment is a temperature of 25 ± 3 ° C. and a humidity of 55 ± 5 RH%.

【0020】粒子の作製は、必要な樹脂、帯電制御剤、
着色剤、その他の添加剤を混練り粉砕しても、またはモ
ノマーから重合しても、あるいは既存の粒子を樹脂、帯
電制御剤、着色剤、その他の添加剤でコーティングして
も良い。樹脂の例としては、ウレタン樹脂、ウレア樹
脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタ
ン樹脂、アクリルウレタンシリコーン樹脂、アクリルウ
レタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹
脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチ
レン樹脂、スチレンアクリル樹脂、ポリオレフイン樹
脂、ブチラール樹脂、塩化ビニリデン樹脂、メラミン樹
脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹
脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミ
ド樹脂などが挙げられ、特に基板との付着力を制御する
上から、アクリルウレタン樹脂、アクリルシリコーン樹
脂、アクリルフッ素樹脂、アクリルウレタンシリコーン
樹脂、アクリルウレタンフッ素樹脂、フッ素樹脂、シリ
コーン樹脂が好適である。2種以上混合することもでき
る。
The particles are prepared by using the required resin, charge control agent,
Colorants and other additives may be kneaded and ground, or may be polymerized from monomers, or existing particles may be coated with resins, charge control agents, colorants, and other additives. Examples of the resin include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin, polystyrene resin, styrene. Acrylic resin, polyolefin resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, fluororesin, polycarbonate resin, polysulfone resin, polyether resin, polyamide resin, etc. are mentioned, especially for controlling the adhesion to the substrate. Therefore, acrylic urethane resin, acrylic silicone resin, acrylic fluororesin, acrylic urethane silicone resin, acrylic urethane fluororesin, fluororesin, and silicone resin are preferable. It is also possible to mix two or more kinds.

【0021】荷電制御剤としては、特に制限はないが、
負荷電制御剤としては例えば、サリチル酸金属錯体、含
金属アゾ染料、含金属(金属イオンや金属原子を含む)
の油溶性染料、4級アンモニウム塩系化合物、カリック
スアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯
体)、ニトロイミダゾール誘導体等が挙げられる。正荷
電制御剤としては例えば、ニグロシン染料、トリフエニ
ルメタン系化合物、4級アンモニウム塩系化合物、ポリ
アミン樹脂、イミダゾール誘導体等が挙げられる。その
他、超微粒子シリカ、超微粒子酸化チタン、超微粒子ア
ルミナ等の金属酸化物、ピリジン等の含窒素環状化合物
及びその誘導体や塩、各種有機顔料、弗素、塩素、窒素
等を含んだ樹脂等も荷電制御剤として用いることもでき
る。
The charge control agent is not particularly limited,
Examples of negative charge control agents include salicylic acid metal complexes, metal-containing azo dyes, metal-containing (including metal ions and metal atoms).
Oil-soluble dyes, quaternary ammonium salt compounds, calixarene compounds, boron-containing compounds (boric acid benzyl complex), nitroimidazole derivatives and the like. Examples of the positive charge control agent include a nigrosine dye, a triphenylmethane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative. In addition, ultrafine silica, ultrafine titanium oxide, metal oxides such as ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and their derivatives and salts, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. are also charged. It can also be used as a control agent.

【0022】着色剤としては、以下に例示すような、有
機又は無機の各種、各色の顔料、染料が使用可能であ
る。黒色顔料としては、カーボンブラック、酸化銅、二
酸化マンガン、アニリンブラック、活性炭などがある。
黄色顔料としては、黄鉛、亜鉛黄、カドミウムイエロ
ー、黄色酸化鉄、ミネラルファストイエロー、ニッケル
チタンイエロー、ネーブルイエロー、ナフトールイエロ
ーS、ハンザイエローG、ハンザイエロー10G、ベン
ジジンイエローG、ベンジジンイエローGR、キノリン
イエローレーキ、パーマネントイエローNCG、タート
ラジンレーキなどがある。橙色顔料としては、赤色黄
鉛、モリブデンオレンジ、パーマネントオレンジGT
R、ピラゾロンオレンジ、バルカンオレンジ、インダス
レンブリリアントオレンジRK、ベンジジンオレンジ
G、インダスレンブリリアントオレンジGKなどがあ
る。
As the colorant, various organic or inorganic pigments and dyes of various colors can be used as shown below. Examples of black pigments include carbon black, copper oxide, manganese dioxide, aniline black and activated carbon.
Examples of yellow pigments include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa yellow G, Hansa yellow 10G, benzidine yellow G, benzidine yellow GR, quinoline. Yellow rake, permanent yellow NCG, tartrazine rake, etc. Orange pigments include red yellow lead, molybdenum orange, permanent orange GT
R, pyrazolone orange, vulcan orange, induslen brilliant orange RK, benzidine orange G, induslen brilliant orange GK and the like.

【0023】赤色顔料としては、ベンガラ、カドミウム
レッド、鉛丹、硫化水銀、カドミウム、パーマネントレ
ッド4R、リソールレッド、ピラゾロンレッド、ウォッ
チングレツド、カルシウム塩、レーキレッドD、ブリリ
アントカーミン6B、エオシンレーキ、ローダミンレー
キB、アリザリンレーキ、ブリリアントカーミン3Bな
どがある。紫色顔料としては、マンガン紫、ファストバ
イオレットB、メチルバイオレットレーキなどがある。
青色顔料としては、紺青、コバルトブルー、アルカリブ
ルーレーキ、ビクトリアブルーレーキ、フタロシアニン
ブルー、無金属フタロシアニンブルー、フタロシアニン
ブルー部分塩素化物、ファストスカイブルー、インダス
レンブルーBCなどがある。緑色顔料としては、クロム
グリーン、酸化クロム、ピグメントグリーンB、マラカ
イトグリーンレーキ、ファイナルイエローグリーンGな
どがある。
Examples of red pigments include red iron oxide, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, resole red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine. Rake B, Alizarin Rake, Brilliant Carmine 3B, etc. Examples of purple pigments include manganese purple, fast violet B, and methyl violet lake.
Examples of blue pigments include dark blue, cobalt blue, alkali blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partially chlorinated compound, fast sky blue, and indanthrene blue BC. Examples of green pigments include chrome green, chrome oxide, pigment green B, malachite green lake, and final yellow green G.

【0024】体質顔料としては、バライト粉、炭酸バリ
ウム、クレー、シリカ、ホワイトカーボン、タルク、ア
ルミナホワイトなどがある。更に、塩基性、酸性、分
散、直接染料などの各種染料として、ニグロシン、メチ
レンブルー、ローズベンガル、キノリンイエロー、ウル
トラマリンブルーなどがある。これらの着色剤は、単独
で或いは複数組合せて用いることができる。
Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Further, various dyes such as basic dyes, acid dyes, dispersion dyes and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow and ultramarine blue. These colorants can be used alone or in combination.

【0025】本発明の画像表示装置における透明基板と
対向基板の間隔は、粒子が飛翔移動でき、コントラスト
を維持できれば良いが、通常10〜5000μm、好ま
しくは10〜500μmに調整される。対向する基板間
の空間における粒子の体積占有率は10〜80%が好ま
しく、更に好ましくは10〜60%である。80%を超
える場合には粒子の移動の支障をきたし、10%未満の
場合にはコントラストが不明確になり易い。
The distance between the transparent substrate and the counter substrate in the image display device of the present invention is adjusted so that particles can fly and move and the contrast can be maintained, but it is usually adjusted to 10 to 5000 μm, preferably 10 to 500 μm. The volume occupancy of the particles in the space between the opposing substrates is preferably 10 to 80%, more preferably 10 to 60%. If it exceeds 80%, the movement of particles may be hindered, and if it is less than 10%, the contrast tends to be unclear.

【0026】本発明の画像表示装置は、ノートパソコ
ン、PDA、携帯電話などのモバイル機器の画像表示
部、電子ブック、電子新聞などの電子ペーパー、看板、
ポスター、黒板などの掲示板、コピー機、プリンター用
紙代替のリライタブルペーパー、電卓、家電製品の画像
表示部、ポイントカードの画像表示部などに用いられ
る。
The image display device of the present invention is an image display unit of a mobile device such as a notebook computer, a PDA, a mobile phone, an electronic book, an electronic paper such as an electronic newspaper, a signboard,
It is used for posters, bulletin boards such as blackboards, copiers, rewritable paper as a substitute for printer paper, calculators, image display parts of home appliances, and image display parts of point cards.

【0027】[0027]

【実施例】次に実施例を示して、本発明を更に具体的に
説明する。但し本発明は以下の実施例により限定される
ものではない。なお、各実施例および比較例において、
粒子特性および表示機能評価を次のように行なった。 (1)平均粒子径d0.5 Mastersizer2000(Malvern instruments Ltd.)測定機を
用いて、窒素気流中に粒子を投入し、付属の解析ソフト
(Mail理論を用いた体積基準分布を基に粒子径分布、粒
子径を算出するソフト)を用いて、粒子の50%がこれよ
り大きく、50%がこれより小さいという粒子径をμmで
表した数値を平均粒子径(μm)とする。 (2)表面電荷密度(μC/m2 ) ブローオフ粉体帯電量測定装置として東芝ケミカル
(株)製のTB−200を用いた。キャリアとして正帯
電性・負帯電性の2種類のものを用い、それぞれの場合
の単位面積あたり電荷密度(単位:μC/m2 )を測定
した。すなわち、正帯電性キャリア(相手を正に帯電さ
せ自らは負に帯電しやすいキャリア)としてパウダーテ
ック(株)製のF963−2535を、負帯電性キャリ
ア(相手を負に帯電させ自らは正に帯電しやすいキャリ
ア)としてパウダーテック粒子のF921−2535を
用いた。測定された帯電量と別途測定した該粒子の平均
粒子径及び比重とから表面電荷密度を求めた。なお、平
均粒子径は上述の方法により、また、比重は、株式会社
島津製作所製比重計(商品名:マルチボリウム密度計H
130)を用いて測定した。 (3)表示機能の評価 作製した表示装置に、500Vを印加し、極性を反転さ
せることにより、黒色〜白色の表示を繰り返した。表示
機能の評価は、黒色と白色の表示を反射画像濃度計(M
acbeth社製RD918)を用いて測定した。ここ
で、コントラスト比とは白色表示時に対する黒色表示時
反射濃度(コントラスト比=黒色表示時反射濃度/白色
表示時反射濃度)である。また、全面表示時のムラを以
下の基準で判定した。 ○:全面がほぼ100%黒色/白色に呈色する。 △:黒色表示にやや一部白色が混ざるか、その逆であ
る。 ×:かなり黒色/白色が混ざった表示となる。
EXAMPLES Next, the present invention will be described more specifically by showing examples. However, the present invention is not limited to the following examples. In each Example and Comparative Example,
Particle characteristics and display function evaluation were performed as follows. (1) Average particle size d 0.5 Using a Mastersizer2000 (Malvern instruments Ltd.) measuring machine, particles were put into a nitrogen stream, and attached analysis software (particle size distribution based on volume standard distribution using Mail theory, The average particle size (μm) is defined as the numerical value expressed in μm, that is, 50% of the particles are larger than 50% and 50% are smaller than this, using software for calculating the particle size. (2) Surface charge density (μC / m 2 ) As a blow-off powder charge amount measuring device, TB-200 manufactured by Toshiba Chemical Co., Ltd. was used. Two types of carriers, positively charged and negatively charged, were used, and the charge density per unit area (unit: μC / m 2 ) in each case was measured. That is, F963-2535 manufactured by Powder Tech Co., Ltd. is used as a positively chargeable carrier (a carrier that makes a partner positively charged and is easily negatively charged by itself), and a negatively charged carrier (a partner is negatively charged and made positive by itself). As the carrier (which is easily charged), powder tech particles F921-2535 were used. The surface charge density was determined from the measured charge amount and the separately measured average particle diameter and specific gravity of the particles. The average particle diameter is determined by the above-described method, and the specific gravity is determined by a specific gravity meter (trade name: multi-volume densitometer H manufactured by Shimadzu Corporation).
130). (3) Evaluation of display function By applying 500 V to the manufactured display device and inverting the polarity, black-white display was repeated. For the evaluation of the display function, a black and white display is used for the reflection image densitometer (M
It was measured using RD918 manufactured by acbeth. Here, the contrast ratio is the reflection density at the time of black display with respect to the time of white display (contrast ratio = reflection density at the time of black display / reflection density at the time of white display). Further, the unevenness at the time of full-screen display was judged according to the following criteria. ◯: The entire surface is colored 100% black / white. B: Some white is mixed in black display, or vice versa. X: The display is a mixture of black and white.

【0028】実施例1 粒子Aは、エタノールに荷電制御剤:ボントロンE84
(オリエント化学製:サリチル酸系金属錯体)5重量%
をミキサーで溶解し、濾過により未溶解分を除去した
後、該濾液にパーノックCFB200W−40(白色ウ
レタン粒子:大日本インキ製)を添加して攪拌し、得ら
れた混合液を5Cの濾紙で濾過し、110℃で乾燥し
た。粒子Bは、エタノールに荷電制御剤:ボントロンN
21(オリエント化学製)5重量%をミキサーで溶解
し、濾過により未溶解分を除去した後、該濾液にウレタ
ン粒子:パーノックCFB620C−40(黒色ウレタ
ン粒子:大日本インキ製)を添加して攪拌し、得られた
混合液を5Cの濾紙で濾過し、110℃で乾燥した。次
に表示装置は以下のように作製した。すなわち、約50
0Å厚みの酸化インジウム電極を設けた一対のガラス基
板を、間隔200μmになるようにスペーサーで調整し
たガラス基板間に、前述粒子A、Bを入れ、ガラス基板
周辺をエポキシ系接着剤にて接着すると共に、粒子を封
入し、表示装置を作製した。粒子Aと粒子Bの混合率は
同重量づつとし、それら粒子のガラス基板間への体積占
有率は60容量%となるように調整した。粒子特性およ
び表示機能の評価結果を第1表に示す。
Example 1 Particle A was prepared by adding ethanol to a charge control agent: Bontron E84.
(Orient Chemical: salicylic acid type metal complex) 5% by weight
Was dissolved in a mixer, and undissolved components were removed by filtration. Then, Pernock CFB200W-40 (white urethane particles: made by Dainippon Ink) was added to the filtrate and stirred, and the resulting mixed liquid was filtered with 5C filter paper. Filtered and dried at 110 ° C. Particle B is a charge control agent for ethanol: Bontron N
21 (manufactured by Orient Chemical Co., Ltd.) was dissolved in a mixer by 5% by weight, undissolved components were removed by filtration, and then urethane particles: Pernock CFB620C-40 (black urethane particles: manufactured by Dainippon Ink) were added to the filtrate and stirred. Then, the obtained mixed solution was filtered through a 5C filter paper and dried at 110 ° C. Next, the display device was manufactured as follows. That is, about 50
Particles A and B are put between a pair of glass substrates provided with 0Å indium oxide electrodes and adjusted with a spacer so that the distance between them is 200 μm, and the periphery of the glass substrates is bonded with an epoxy adhesive. At the same time, the particles were enclosed to manufacture a display device. The mixing ratios of the particles A and the particles B were the same weight, and the volume occupancy ratio of the particles between the glass substrates was adjusted to be 60% by volume. Table 1 shows the evaluation results of the particle characteristics and the display function.

【0029】実施例2 実施例1における粒子Bの荷電制御剤に代えてアミノシ
ランカップリング剤(日本ユニカー製A1120)を用
いた以外は、実施例1と同様にして粒子およびを表示装
置を作製した。粒子特性および表示機能の評価結果を第
1表に示す。
Example 2 A particle and a display device were produced in the same manner as in Example 1 except that an aminosilane coupling agent (A1120 manufactured by Nippon Unicar) was used in place of the charge control agent for the particle B in Example 1. . Table 1 shows the evaluation results of the particle characteristics and the display function.

【0030】実施例3 実施例1における粒子Aの荷電制御剤を用いなかった以
外は実施例1と同様にして粒子およびを表示装置を作製
した。粒子特性および表示機能の評価結果を第1表に示
す。
Example 3 A particle and a display device were produced in the same manner as in Example 1 except that the charge control agent for the particle A in Example 1 was not used. Table 1 shows the evaluation results of the particle characteristics and the display function.

【0031】比較例1 実施例2における粒子Aの荷電制御剤を用いなかった以
外は実施例1と同様にして粒子およびを表示装置を作製
した。粒子特性および表示機能の評価結果を第1表に示
す。
Comparative Example 1 A particle and a display device were produced in the same manner as in Example 1 except that the charge control agent for particle A in Example 2 was not used. Table 1 shows the evaluation results of the particle characteristics and the display function.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明の画像表示装置は、透明基板およ
び対向基板の間に2種類以上の色および帯電特性の異な
る粒子を封入し、電位の異なる2種類の電極から該粒子
に電界を与えて粒子を飛翔移動させ画像を表示する画像
表示装置において、同じ種類のキャリアを用いてブロー
オフ法により測定した2種類の粒子の表面電荷密度の差
の絶対値が、5μC/m2 以上150μC/m2 以下で
あるものであるが、このように2粒子間の帯電量を管理
することにより、電界を形成した際に粒子の理想的な飛
翔が行なわれ、コントラストが十分でムラのない良好な
画像が安定して得られる。
According to the image display device of the present invention, two or more kinds of particles having different colors and different charging characteristics are enclosed between a transparent substrate and a counter substrate, and an electric field is applied to the particles from two kinds of electrodes having different electric potentials. In an image display device for displaying an image by moving particles by flying, the absolute value of the difference between the surface charge densities of two types of particles measured by the blow-off method using the same type of carrier is 5 μC / m 2 or more and 150 μC / m 2 or more. Although it is 2 or less, by controlling the charge amount between two particles in this way, ideal flight of particles is performed when an electric field is formed, and a good image with sufficient contrast and no unevenness is obtained. Can be obtained stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】画像表示装置における表示方式を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a display system in an image display device.

【図2】画像表示装置における表示方式を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a display system in the image display device.

【図3】画像表示装置の構造の一例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of a structure of an image display device.

【図4】表面電位の測定法を示す説明図である。FIG. 4 is an explanatory diagram showing a method of measuring a surface potential.

【符号の説明】[Explanation of symbols]

1、2:基板 3:粒子 4:隔壁 21:チャック 22:コロトン放電器 23:表面電位計 1, 2: substrate 3: Particle 4: Partition wall 21: Chuck 22: Coroton discharger 23: Surface electrometer

フロントページの続き (72)発明者 薬師寺 学 東京都小平市小川東町3−2− 6−408 (72)発明者 北野 創 東京都小平市小川東町3−5−5 (72)発明者 増田 善友 東京都羽村市神明台3−5−28 (72)発明者 川越 隆博 埼玉県所沢市青葉台1302−57Continued front page    (72) Inventor Yakushiji Manabu             3-2- 6-408 Ogawahigashi-cho, Kodaira-shi, Tokyo (72) Inventor Hajime Kitano             3-5-5 Ogawahigashi-cho, Kodaira-shi, Tokyo (72) Inventor Yoshitomo Masuda             3-5-28 Shinmeidai, Hamura-shi, Tokyo (72) Inventor Takahiro Kawagoe             1302-57 Aobadai, Tokorozawa, Saitama Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明基板および対向基板の間に2種類以
上の色および帯電特性の異なる粒子を封入し、電位の異
なる2種類の電極から該粒子に電界を与えて、粒子を飛
翔移動させ画像を表示する画像表示装置において、同じ
種類のキャリアを用いてブローオフ法により測定した2
種類の粒子の表面電荷密度の差の絶対値が、5μC/m
2 以上150μC/m2 以下であることを特徴とする画
像表示装置。
1. An image in which two or more kinds of particles having different colors and different charging characteristics are enclosed between a transparent substrate and a counter substrate, and an electric field is applied to the particles from two kinds of electrodes having different electric potentials to cause the particles to fly and move. In an image display device that displays, the same type of carrier was used to measure by the blow-off method.
The absolute value of the difference in the surface charge densities of the different types of particles is 5 μC / m
An image display device, characterized in that at least two 150μC / m 2 or less.
【請求項2】 少なくとも片方の粒子の表面電荷密度が
絶対値で5〜150μC/m2 である請求項1に記載の
画像表示装置。
2. The image display device according to claim 1, wherein the surface charge density of at least one of the particles is 5 to 150 μC / m 2 in absolute value.
【請求項3】 粒子の平均粒子径d0.5 が0.1〜50
μmである請求項1または請求項2に記載の画像表示装
置。
3. The average particle diameter d 0.5 of the particles is 0.1 to 50.
The image display device according to claim 1, wherein the image display device has a thickness of μm.
【請求項4】 粒子が、体積固有抵抗1×1010Ω・cm
以上の絶縁性粒子である請求項1〜3のいずれかに記載
の画像表示装置。
4. The particles have a volume resistivity of 1 × 10 10 Ω · cm.
The image display device according to claim 1, wherein the image display device comprises the above insulating particles.
【請求項5】 粒子が、その表面と1mmの間隔をもっ
て配置されたコロナ放電器に、8KVの電圧を印加して
コロナ放電を発生させて表面を帯電させた場合に、0.
3秒後における表面電位の最大値が300Vより大きい
粒子である請求項1〜4のいずれかに記載の画像表示装
置。
5. When the particles are charged with a voltage of 8 KV to generate a corona discharge to a corona discharger arranged at a distance of 1 mm from the surface of the particles to charge the surface,
The image display device according to claim 1, wherein the maximum value of the surface potential after 3 seconds is particles larger than 300V.
【請求項6】 透明基板および対向基板の間に2種類以
上の色および帯電特性の異なる粒子を封入し、電位の異
なる2種類の電極から該粒子に電界を与えて、粒子を飛
翔移動させ画像を表示する画像表示装置において、同じ
種類のキャリアを用いてブローオフ法により測定した2
種類の粒子の表面電荷密度の差の絶対値が、5μC/m
2 以上150μC/m2 以下とし、少なくとも片方の粒
子の表面電荷密度が絶対値で5〜150μC/m2 とす
ることを特徴とする画像表示方法。
6. An image in which two or more types of particles having different colors and different charging characteristics are enclosed between a transparent substrate and a counter substrate, and an electric field is applied to the particles from two types of electrodes having different potentials to cause the particles to fly and move. In an image display device that displays, the same type of carrier was used to measure by the blow-off method.
The absolute value of the difference in the surface charge densities of the different types of particles is 5 μC / m
2 or more and 150 μC / m 2 or less, and the surface charge density of at least one particle is 5 to 150 μC / m 2 in absolute value.
JP2002318572A 2001-12-27 2002-10-31 Device and method for picture displayer Pending JP2003255401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318572A JP2003255401A (en) 2001-12-27 2002-10-31 Device and method for picture displayer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001396744 2001-12-27
JP2001-396744 2001-12-27
JP2002318572A JP2003255401A (en) 2001-12-27 2002-10-31 Device and method for picture displayer

Publications (1)

Publication Number Publication Date
JP2003255401A true JP2003255401A (en) 2003-09-10

Family

ID=28677254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318572A Pending JP2003255401A (en) 2001-12-27 2002-10-31 Device and method for picture displayer

Country Status (1)

Country Link
JP (1) JP2003255401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300831A (en) * 2004-04-09 2005-10-27 Bridgestone Corp Image display panel, particle group combination determination method used therefor, and image display device
JP2006018248A (en) * 2004-06-03 2006-01-19 Bridgestone Corp Information display panel and information display apparatus
JP2006072345A (en) * 2004-08-05 2006-03-16 Bridgestone Corp Particle for display medium, and information display panel using the same
JP2010002499A (en) * 2008-06-18 2010-01-07 Toppan Forms Co Ltd Display erasing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300831A (en) * 2004-04-09 2005-10-27 Bridgestone Corp Image display panel, particle group combination determination method used therefor, and image display device
JP2006018248A (en) * 2004-06-03 2006-01-19 Bridgestone Corp Information display panel and information display apparatus
JP2006072345A (en) * 2004-08-05 2006-03-16 Bridgestone Corp Particle for display medium, and information display panel using the same
JP2010002499A (en) * 2008-06-18 2010-01-07 Toppan Forms Co Ltd Display erasing device

Similar Documents

Publication Publication Date Title
JPWO2003091799A1 (en) Image display particles and apparatus
JP2003322880A (en) Image display
JP4518736B2 (en) Image display device
JP4397157B2 (en) Image display device
JP4264250B2 (en) Image display device
JP2003255401A (en) Device and method for picture displayer
JP4458743B2 (en) Image display device
JP2003255402A (en) Picture display panel and picture display device
JP2004004469A (en) Particle and device for image display
JP2003255404A (en) Particles and device for displaying picture
JP4373068B2 (en) Reversible image display board and image display device
JP4233856B2 (en) Image display device
JP2003248246A (en) Reversible image display sheet and image display
JP2003222912A (en) Device and method for displaying image
JP2003248244A (en) Reversible image display sheet and image display
JP4418145B2 (en) Image display device
JP2003315848A (en) Image display device
JP4484424B2 (en) Image display device
JP2003255409A (en) Particle and device for displaying image
JP2004046056A (en) Image display particle and image display device
JP2003255406A (en) Particle and device for displaying image
JP2003255405A (en) Particles for displaying picture and picture display device
JP2006072223A (en) Particle for picture display medium and picture display device using the same
JP4436600B2 (en) Image display device
JP2004004468A (en) Image display device and particle for image display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526