[go: up one dir, main page]

JP2003272701A - Nonaqueous electrolyte and lithium secondary battery using the same - Google Patents

Nonaqueous electrolyte and lithium secondary battery using the same

Info

Publication number
JP2003272701A
JP2003272701A JP2002069560A JP2002069560A JP2003272701A JP 2003272701 A JP2003272701 A JP 2003272701A JP 2002069560 A JP2002069560 A JP 2002069560A JP 2002069560 A JP2002069560 A JP 2002069560A JP 2003272701 A JP2003272701 A JP 2003272701A
Authority
JP
Japan
Prior art keywords
group
compound
carbon atoms
battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002069560A
Other languages
Japanese (ja)
Other versions
JP4075416B2 (en
Inventor
Koji Abe
浩司 安部
Takaaki Kuwata
孝明 桑田
Yasuo Matsumori
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002069560A priority Critical patent/JP4075416B2/en
Publication of JP2003272701A publication Critical patent/JP2003272701A/en
Application granted granted Critical
Publication of JP4075416B2 publication Critical patent/JP4075416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high battery characteristics such as cycle characteristics, electric capacity, and a shelf life. <P>SOLUTION: This nonaqueous electrolyte prepared by dissolving electrolyte salts in nonaqueous solvents contains at least one kind of pentafluorophenyl compounds selected from pentafluorophenyl ether compounds, pentafluorobiphenyl compounds, and pentafluorophenyl alkane compounds in the nonaqueous electrolyte. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる非水電解液、およ
びそれを用いたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity, and storage characteristics, and a lithium using the same. Regarding secondary batteries.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液および負極から構成
されており、特に、LiCoO2などのリチウム複合酸
化物を正極とし、炭素材料又はリチウム金属を負極とし
たリチウム二次電池が好適に使用されている。そして、
そのリチウム二次電池用の非水電解液としては、エチレ
ンカーボネート(EC)、プロピレンカーボネート(P
C)などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices and the like. A lithium secondary battery is mainly composed of a positive electrode, a non-aqueous electrolytic solution and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode is It is preferably used. And
As the non-aqueous electrolyte solution for the lithium secondary battery, ethylene carbonate (EC), propylene carbonate (P
Carbonates such as C) are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO2、LiMn24、Li
NiO2などを用いたリチウム二次電池は、非水電解液
中の溶媒が充電時に局部的に一部酸化分解することによ
り、該分解物が電池の望ましい電気化学的反応を阻害す
るために電池性能の低下を生じる。これは正極材料と非
水電解液との界面における溶媒の電気化学的酸化に起因
するものと思われる。また、負極として例えば天然黒鉛
や人造黒鉛などの高結晶化した炭素材料を用いたリチウ
ム二次電池は、非水電解液中の溶媒が充電時に負極表面
で還元分解し、非水電解液溶媒として一般に広く使用さ
れているECにおいても充放電を繰り返す間に一部還元
分解が起こり、電池性能の低下が起こる。このため、電
池のサイクル特性および電気容量などの電池特性は必ず
しも満足なものではないのが現状である。
However, regarding the battery cycle characteristics and battery characteristics such as electric capacity,
There is a demand for secondary batteries having even more excellent characteristics.
As the positive electrode, for example, LiCoO 2 , LiMn 2 O 4 , Li
In a lithium secondary battery using NiO 2 or the like, a solvent in a non-aqueous electrolyte is partially oxidatively decomposed during charging, and the decomposed product inhibits a desired electrochemical reaction of the battery. This results in poor performance. This is probably due to the electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. Further, for example, a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as a negative electrode, the solvent in the non-aqueous electrolytic solution is reductively decomposed on the surface of the negative electrode during charging, and as a non-aqueous electrolytic solution solvent. Even in the generally widely used EC, a part of reductive decomposition occurs during repeated charging and discharging, resulting in deterioration of battery performance. Therefore, at present, the battery cycle characteristics and battery characteristics such as electric capacity are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用非水電解液に関する課題を解決し、電池のサイクル特
性に優れ、さらに電気容量や充電状態での保存特性など
の電池特性にも優れたリチウム二次電池を構成すること
ができるリチウム二次電池に使用できる非水電解液、お
よびそれを用いたリチウム二次電池を提供することを目
的とする。
The present invention solves the problems relating to the non-aqueous electrolyte for a lithium secondary battery as described above, is excellent in battery cycle characteristics, and is also excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. Another object of the present invention is to provide a non-aqueous electrolyte solution that can be used in a lithium secondary battery that can form a lithium secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質塩が溶解されている非水電解液において、該非水電
解液中に、ペンタフルオロフェニルエーテル化合物、ペ
ンタフルオロビフェニル化合物およびペンタフルオロフ
ェニルアルカン化合物から選ばれる少なくとも1種のペ
ンタフルオロフェニル化合物が含有されていることを特
徴とする非水電解液に関する。また、本発明は、正極、
負極および非水溶媒に電解質塩が溶解されている非水電
解液からなるリチウム二次電池において、該非水電解液
中に、ペンタフルオロフェニルエーテル化合物、ペンタ
フルオロビフェニル化合物およびペンタフルオロフェニ
ルアルカン化合物から選ばれる少なくとも1種のペンタ
フルオロフェニル化合物が含有されていることを特徴と
するリチウム二次電池に関する。
The present invention provides a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution contains a pentafluorophenyl ether compound, a pentafluorobiphenyl compound and a pentafluoro The present invention relates to a non-aqueous electrolytic solution containing at least one pentafluorophenyl compound selected from phenylalkane compounds. The present invention also provides a positive electrode,
A lithium secondary battery comprising a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a negative electrode and a non-aqueous solvent, wherein the non-aqueous electrolytic solution contains a pentafluorophenyl ether compound, a pentafluorobiphenyl compound and a pentafluorophenyl alkane compound. The present invention relates to a lithium secondary battery containing at least one pentafluorophenyl compound.

【0006】[0006]

【発明の実施の形態】本発明において、前記ペンタフル
オロフェニルエーテル化合物が、下記一般式(I)、
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the pentafluorophenyl ether compound has the following general formula (I):

【化7】 (式中、Rは炭素数1〜12のアルキル基または炭素
数1〜12のハロアルキル基を示す。)で表わされる化
合物が好ましい。また、前記ペンタフルオロビフェニル
化合物が、下記一般式(II)、
[Chemical 7] (In the formula, R 1 represents an alkyl group having 1 to 12 carbon atoms or a haloalkyl group having 1 to 12 carbon atoms). Further, the pentafluorobiphenyl compound has the following general formula (II),

【化8】 (式中、R、R、R、R、Rはそれぞれ独立
して水素原子、ハロゲン原子、炭素数1〜12のアルコ
キシ基、炭素数2〜12のアシルオキシ基を示す。)で
表わされる化合物が好ましい。また、前記ペンタフルオ
ロフェニルアルカンが、下記一般式(III)、
[Chemical 8] (Wherein, shows the R 2, R 3, R 4 , R 5, R 6 are each independently a hydrogen atom, a halogen atom, an alkoxy group having 1 to 12 carbon atoms, an acyloxy group having 2 to 12 carbon atoms.) Compounds represented by are preferred. Further, the pentafluorophenylalkane is represented by the following general formula (III),

【化9】 (式中、Rは炭素数1〜12のアルキル基を示す。)
で表わされる化合物が好ましい。
[Chemical 9] (In the formula, R 7 represents an alkyl group having 1 to 12 carbon atoms.)
Compounds represented by are preferred.

【0007】本発明において、非水電解液中に含有され
る前記一般式(I)〜(III)で表わされる化合物の具体
例について以下に詳述する。
In the present invention, specific examples of the compounds represented by the above general formulas (I) to (III) contained in the non-aqueous electrolyte will be described in detail below.

【0008】前記一般式(I)において、Rが炭素数
1〜12のアルキル基または炭素数1〜12のハロアル
キル基としては、メチル基、エチル基、プロピル基、ブ
チル基、ペンチル基、ヘキシル基、ヘプチル基、オクチ
ル基、ノニル基、デシル基、ドデシル基のような置換基
が挙げられる。また、イソプロピル基、tert−ブチル
基、2−エチルヘキシル基のような分枝したアルキル基
が挙げられる。さらに、前記置換基が有する水素原子の
うち少なくとも1つがハロゲン原子で置換されたハロア
ルキル基が挙げられ、その具体例として、トリフルオロ
メチル基、1,2−ジクロロエチル基、ペンタフルオロ
エチル基、ヘプタフルオロプロピル基が挙げられる。ま
た、ベンジル基のような前記置換基が有する水素原子の
うち少なくとも1つが芳香族基で置換されたアルキル
基、あるいは、アリル基(CH=CH−CH−)の
如きメチレン基(CH=)のような不飽和結合を有す
る置換基からなるアルキル基が挙げられる。具体的なア
ルキル基またはハロアルキル基を有するペンタフルオロ
フェニルエーテル化合物としては、2,3,4,5,6
−ペンタフルオロアニソール、2’,2’,2’−(ト
リフルオロエトキシ)ペンタフルオロベンゼン、ペンタ
フルオロ−(2,2,3,3−テトラフルオロプロポキ
シ)ベンゼン等が好適に挙げられる。
In the above general formula (I), R 1 is an alkyl group having 1 to 12 carbon atoms or a haloalkyl group having 1 to 12 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group. Substituents such as a group, a heptyl group, an octyl group, a nonyl group, a decyl group and a dodecyl group can be mentioned. Further, a branched alkyl group such as an isopropyl group, a tert-butyl group and a 2-ethylhexyl group can be mentioned. Further, a haloalkyl group in which at least one of the hydrogen atoms contained in the substituent is substituted with a halogen atom can be mentioned, and specific examples thereof include a trifluoromethyl group, a 1,2-dichloroethyl group, a pentafluoroethyl group and a hepta. A fluoropropyl group may be mentioned. Further, at least one alkyl group substituted with an aromatic group of the hydrogen atom of the above substituent group such as a benzyl group, or an allyl group (CH 2 = CH-CH 2 -) of such a methylene group (CH 2 Examples of the alkyl group include a substituent having an unsaturated bond such as =). Specific examples of the pentafluorophenyl ether compound having an alkyl group or a haloalkyl group include 2,3,4,5,6
Pentafluoroanisole, 2 ', 2', 2 '-(trifluoroethoxy) pentafluorobenzene, pentafluoro- (2,2,3,3-tetrafluoropropoxy) benzene and the like are preferable.

【0009】また、前記一般式(II)において、R
、R、R、Rはそれぞれ独立して水素原子、
ハロゲン原子、炭素数1〜12のアルコキシ基、炭素数
2〜12のアシルオキシ基が好ましい。ハロゲン原子と
しては、フッ素原子、塩素原子、臭素原子等が挙げられ
る。また、炭素数1〜12のアルコキシ基としては、メ
トキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペ
ンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ
基、オクチルオキシ基、ノニルオキシ基、デシルオキシ
基、ドデシルオキシ基のような置換基が挙げられる。ま
た、イソプロポキシ基、tert−ブトキシ基、2−エチル
ヘキシルオキシ基のような分枝したアルコキシ基が挙げ
られる。さらに、前記置換基が有する水素原子のうち少
なくとも1つがハロゲン原子または炭素数6〜18のア
リール基で置換された置換基が挙げられ、その具体例と
して、1−クロロエトキシ基、2−クロロエトキシ基、
2,2,2−トリフルオロエトキシ基、2,2,2−ト
リクロロエトキシ基、あるいは、ベンジルオキシ基のよ
うなアルコキシ基が挙げられる。さらに、炭素数2〜1
2のアシルオキシ基としては、メチルカルボニルオキシ
基、エチルカルボニルオキシ基、プロピルカルボニルオ
キシ基、ブチルカルボニルオキシ基、ペンチルカルボニ
ルオキシ基、ヘキシルカルボニルオキシ基、ヘプチルカ
ルボニルオキシ基、オクチルカルボニルオキシ基、ノニ
ルカルボニルオキシ基、デシルカルボニルオキシ基、ド
デシルカルボニルオキシ基のような置換基が挙げられ
る。また、イソプロビルカルボニルオキシ基のような分
枝したアシルオキシ基が挙げられる。具体的なペンタフ
ルオロビフェニル化合物としてはデカフルオロビフェニ
ル、2,3,4,5,6−ペンタフルオロ−1,1’−
ビフェニル、2,3,5,6−テトラフルオロ−4−ペ
ンタフルオロフェニルアニソール、2−ブロモ−2’,
3,3’,4,4’5,5’,6,6’−ノナフルオロ
ビフェニル、4−アセトキシ−2,2’,3,3’,
4’,5,5’,6,6’−ノナフルオロビフェニル等
が好適に挙げられる。
In the general formula (II), R 2 ,
R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom,
A halogen atom, an alkoxy group having 1 to 12 carbon atoms, and an acyloxy group having 2 to 12 carbon atoms are preferable. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Further, as the alkoxy group having 1 to 12 carbon atoms, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, dodecyloxy group. Substituents such as Further, a branched alkoxy group such as an isopropoxy group, a tert-butoxy group and a 2-ethylhexyloxy group can be mentioned. Further, a substituent in which at least one of the hydrogen atoms contained in the substituent is substituted with a halogen atom or an aryl group having 6 to 18 carbon atoms, and specific examples thereof include a 1-chloroethoxy group and a 2-chloroethoxy group. Base,
Examples thereof include a 2,2,2-trifluoroethoxy group, a 2,2,2-trichloroethoxy group, and an alkoxy group such as a benzyloxy group. Furthermore, carbon number 2 to 1
Examples of the acyloxy group of 2 include methylcarbonyloxy group, ethylcarbonyloxy group, propylcarbonyloxy group, butylcarbonyloxy group, pentylcarbonyloxy group, hexylcarbonyloxy group, heptylcarbonyloxy group, octylcarbonyloxy group, nonylcarbonyloxy group. And substituents such as a group, a decylcarbonyloxy group and a dodecylcarbonyloxy group. Also included are branched acyloxy groups such as the isopropoxycarbonyloxy group. Specific pentafluorobiphenyl compounds include decafluorobiphenyl, 2,3,4,5,6-pentafluoro-1,1'-
Biphenyl, 2,3,5,6-tetrafluoro-4-pentafluorophenylanisole, 2-bromo-2 ',
3,3 ', 4,4'5,5', 6,6'-nonafluorobiphenyl, 4-acetoxy-2,2 ', 3,3',
Suitable examples include 4 ', 5,5', 6,6'-nonafluorobiphenyl and the like.

【0010】また、前記一般式(III)において、R
が炭素数1〜12のアルキル基としては、メチル基、エ
チル基、プロピル基、ブチル基、ペンチル基、ヘキシル
基、ヘプチル基、オクチル基、ノニル基、デシル基、ド
デシル基のような置換基が挙げられる。また、イソプロ
ピル基、tert−ブチル基、2−エチルヘキシル基のよう
な分枝したアルキル基が挙げられる。また、ベンジル基
のような前記置換基が有する水素原子のうち少なくとも
1つが芳香族基で置換されたアルキル基、あるいは、ア
リル基(CH=CH−CH−)の如きメチレン基
(CH=)のような不飽和結合を有する置換基からな
るアルキル基が挙げられる。具体的なペンタフルオロフ
ェニルアルカン化合物としては、2,3,4,5,6−
ペンタフルオロトルエンが好適に挙げられる。
Further, in the general formula (III), R 7
Examples of the alkyl group having 1 to 12 carbon atoms include substituents such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and dodecyl group. Can be mentioned. Further, a branched alkyl group such as an isopropyl group, a tert-butyl group and a 2-ethylhexyl group can be mentioned. Further, at least one alkyl group substituted with an aromatic group of the hydrogen atom of the above substituent group such as a benzyl group, or an allyl group (CH 2 = CH-CH 2 -) of such a methylene group (CH 2 Examples of the alkyl group include a substituent having an unsaturated bond such as =). Specific pentafluorophenylalkane compounds include 2,3,4,5,6-
Pentafluorotoluene is preferred.

【0011】本発明において、前記ペンタフルオロフェ
ニルエーテル化合物、ペンタフルオロビフェニル化合物
およびペンタフルオロフェニルアルカン化合物から選ば
れる1種または2種以上のペンタフルオロフェニル化合
物が非水電解液中に含有される。非水電解液中に含有さ
れる前記ペンタフルオロフェニル化合物の含有量は、過
度に多いと電池性能が低下することがあり、また、過度
に少ないと期待した十分な電池性能が得られない。した
がって、その含有量は非水電解液の重量に対して0.0
1〜20重量%、好ましくは0.05〜10重量%、特
に好ましくは0.1〜5重量%の範囲がサイクル特性が
向上するのでよい。
In the present invention, one or more pentafluorophenyl compounds selected from the pentafluorophenyl ether compound, pentafluorobiphenyl compound and pentafluorophenylalkane compound are contained in the non-aqueous electrolyte. If the content of the pentafluorophenyl compound contained in the non-aqueous electrolyte is excessively large, the battery performance may deteriorate, and if it is excessively small, the expected sufficient battery performance cannot be obtained. Therefore, its content is 0.0 with respect to the weight of the non-aqueous electrolyte.
The range of 1 to 20% by weight, preferably 0.05 to 10% by weight, and particularly preferably 0.1 to 5% by weight may improve the cycle characteristics.

【0012】本発明で使用される非水溶媒としては、例
えば、エチレンカーボネート(EC)、プロピレンカー
ボネート(PC)、ブチレンカーボネート(BC)、ビ
ニレンカーボネート(VC)などの環状カーボネート類
や、γ−ブチロラクトンなどのラクトン類、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、アセトニトリルなどのニ
トリル類、プロピオン酸メチル、ピバリン酸メチル、ピ
バリン酸オクチルなどのエステル類、ジメチルホルムア
ミドなどのアミド類が挙げられる。
Examples of the non-aqueous solvent used in the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and vinylene carbonate (VC), and γ-butyrolactone. Such as lactones, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And ethers, nitriles such as acetonitrile, esters such as methyl propionate, methyl pivalate and octyl pivalate, and amides such as dimethylformamide.

【0013】これらの非水溶媒は、1種類で使用しても
よく、また2種類以上を組み合わせて使用してもよい。
非水溶媒の組み合わせは特に限定されないが、例えば、
環状カーボネート類と鎖状カーボネート類との組み合わ
せ、環状カーボネート類とラクトン類との組み合わせ、
環状カーボネート類3種類と鎖状カーボネート類との組
み合わせなど種々の組み合わせが挙げられる。
These non-aqueous solvents may be used alone or in combination of two or more.
The combination of non-aqueous solvents is not particularly limited, for example,
A combination of cyclic carbonates and chain carbonates, a combination of cyclic carbonates and lactones,
Various combinations such as a combination of three types of cyclic carbonates and chain carbonates can be mentioned.

【0014】本発明で使用される電解質塩としては、例
えば、LiPF6、LiBF4、LiClO4、LiN
(SO2CF32、LiN(SO2252、LiC
(SO2CF33、LiPF4(CF32、LiPF
3(C253、LiPF3(CF33、LiPF3(is
o−C373、LiPF5(iso−C37)などが挙
げられる。これらの電解質塩は、1種類で使用してもよ
く、2種類以上組み合わせて使用してもよい。これら電
解質塩は、前記の非水溶媒に通常0.1〜3M、好まし
くは0.5〜1.5Mの濃度で溶解されて使用される。
Examples of the electrolyte salt used in the present invention include LiPF 6 , LiBF 4 , LiClO 4 , and LiN.
(SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC
(SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF
3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (is
o-C 3 F 7) 3 , LiPF 5 (iso-C 3 F 7) , and the like. These electrolyte salts may be used alone or in combination of two or more. These electrolyte salts are used after being dissolved in the above-mentioned non-aqueous solvent at a concentration of usually 0.1 to 3M, preferably 0.5 to 1.5M.

【0015】本発明の電解液は、例えば、前記の非水溶
媒を混合し、これに前記の電解質塩を溶解し、前記ペン
タフルオロフェニル化合物のうち少なくとも1種を溶解
することにより得られる。
The electrolytic solution of the present invention can be obtained, for example, by mixing the above-mentioned non-aqueous solvent, dissolving the above electrolyte salt therein, and dissolving at least one of the pentafluorophenyl compounds.

【0016】本発明の非水電解液は、二次電池、特にリ
チウム二次電池の構成部材として使用される。二次電池
を構成する非水電解液以外の構成部材については特に限
定されず、従来使用されている種々の構成部材を使用で
きる。
The non-aqueous electrolyte of the present invention is used as a constituent member of a secondary battery, especially a lithium secondary battery. The constituent members other than the non-aqueous electrolyte that constitute the secondary battery are not particularly limited, and various conventionally used constituent members can be used.

【0017】例えば、正極活物質としてはコバルトまた
はニッケルを含有するリチウムとの複合金属酸化物が使
用される。これらの正極活物質は、1種類だけを選択し
て使用しても良いし、2種類以上を組み合わせて用いて
も良い。このような複合金属酸化物としては、例えば、
LiCoO2、LiNiO2、LiCo1-xNix
2(0.01<x<1)などが挙げられる。また、Li
CoO2とLiMn24、LiCoO2とLiNiO2
LiMn24とLiNiO2のように適当に混ぜ合わせ
て使用しても良い。
For example, a composite metal oxide with lithium containing cobalt or nickel is used as the positive electrode active material. Only one kind of these positive electrode active materials may be selected and used, or two or more kinds thereof may be used in combination. Examples of such a composite metal oxide include:
LiCoO 2 , LiNiO 2 , LiCo 1-x Ni x O
2 (0.01 <x <1) and the like. Also, Li
CoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 ,
It may be used by suitably combined as LiMn 2 O 4 and LiNiO 2.

【0018】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤およびポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)、スチレンとブタジエンの共重合体(S
BR)、アクリロニトリルとブタジエンの共重合体(N
BR)、カルボキシメチルセルロース(CMC)などの
結着剤と混練して正極合剤とした後、この正極材料を集
電体としてのアルミニウム箔やステンレス製のラス板に
圧延して、50℃〜250℃程度の温度で2時間程度真
空下に加熱処理することにより作製される。
In the positive electrode, a conductive agent such as acetylene black or carbon black and polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (S) is used as the positive electrode active material.
BR), a copolymer of acrylonitrile and butadiene (N
BR), carboxymethyl cellulose (CMC) and other binders to be kneaded into a positive electrode mixture, and the positive electrode material is rolled into an aluminum foil or a stainless steel lath plate as a current collector and then heated at 50 ° C to 250 ° C. It is produced by heat treatment under vacuum at a temperature of about C for about 2 hours.

【0019】負極(負極活物質)としては、リチウム金
属やリチウム合金、およびリチウムを吸蔵・放出可能な
炭素材料〔熱分解炭素類、コークス類、グラファイト類
(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼
体、炭素繊維〕、または複合スズ酸化物などの物質が使
用される。特に、格子面(002)の面間隔(d002
が0.335〜0.340nmである黒鉛型結晶構造を
有する炭素材料を使用することが好ましい。これらの負
極活物質は、1種類だけを選択して使用しても良いし、
2種類以上を組み合わせて用いても良い。なお、炭素材
料のような粉末材料はエチレンプロピレンジエンターポ
リマー(EPDM)、ポリテトラフルオロエチレン(P
TFE)、ポリフッ化ビニリデン(PVDF)、スチレ
ンとブタジエンの共重合体(SBR)、アクリロニトリ
ルとブタジエンの共重合体(NBR)、カルボキシメチ
ルセルロース(CMC)などの結着剤と混練して負極合
剤として使用される。負極の製造方法は、特に限定され
ず、上記の正極の製造方法と同様な方法により製造する
ことができる。
As the negative electrode (negative electrode active material), lithium metal, lithium alloy, and carbon materials capable of inserting and extracting lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic materials Materials such as molecular compound combustor, carbon fiber], or composite tin oxide are used. In particular, the plane spacing (d 002 ) of the lattice plane ( 002 )
It is preferable to use a carbon material having a graphite-type crystal structure having a value of 0.335 to 0.340 nm. Only one of these negative electrode active materials may be selected and used,
You may use in combination of 2 or more types. Powder materials such as carbon materials include ethylene propylene diene terpolymer (EPDM) and polytetrafluoroethylene (PDM).
TFE, polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), copolymer of acrylonitrile and butadiene (NBR), carboxymethyl cellulose (CMC), etc., and kneaded as a negative electrode mixture. used. The method for producing the negative electrode is not particularly limited, and the negative electrode can be produced by the same method as the above-described method for producing the positive electrode.

【0020】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited, and is a coin type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator. An example is a square battery or the like. As the separator, a well-known polyolefin microporous film, woven fabric, non-woven fabric, or the like is used.

【0021】[0021]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔非水電解液の調製〕PC:DMC(容量比)=1:2
の非水溶媒を調製し、これに電解質塩としてLiPF6
を1Mの濃度になるように溶解して非水電解液を調製し
た後、さらに2,3,4,5,6−ペンタフルオロアニ
ソールを非水電解液に対して0.5重量%となるように
加えた。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Example 1 [Preparation of non-aqueous electrolyte] PC: DMC (volume ratio) = 1: 2
A non-aqueous solvent to prepare the, LiPF 6 thereto as an electrolyte salt
Was dissolved to a concentration of 1M to prepare a non-aqueous electrolyte, and then 2,3,4,5,6-pentafluoroanisole was added to 0.5 wt% with respect to the non-aqueous electrolyte. Added to.

【0022】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を90重量%、ア
セチレンブラック(導電剤)を5重量%、ポリフッ化ビ
ニリデン(結着剤)を5重量%の割合で混合し、これに
1−メチル−2−ピロリドン溶剤を加えて混合したもの
をアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処
理して正極を調製した。人造黒鉛(負極活物質)を90
重量%、ポリフッ化ビニリデン(結着剤)を10重量%
の割合で混合し、これに1−メチル−2−ピロリドン溶
剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧
成型、加熱処理して負極を調製した。そして、ポリプロ
ピレン微多孔性フィルムのセパレータを用い、上記の非
水電解液を注入させてコイン電池(直径20mm、厚さ
3.2mm)を作製した。このコイン電池を用いて、室
温(20℃)下、1.1mAの定電流および定電圧で、
終止電圧4.2Vまで5時間充電し、次に1.1mAの
定電流下、終止電圧2.7Vまで放電し、この充放電を
繰り返した。初期充放電容量は、ペンタフルオロフェニ
ル化合物を添加しない1M LiPF−EC/DEC
(容量比3/7)を非水電解液として用いた場合(比較
例2の初期充放電容量を1とする)と比べて0.99で
あり、50サイクル後の電池特性を測定したところ、初
期放電容量を100%としたときの放電容量維持率は9
0.1%であった。コイン電池の作製条件および電池特
性を表1に示す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] 90% by weight of LiCoO 2 (positive electrode active material), 5% by weight of acetylene black (conductive agent), and 5% by weight of polyvinylidene fluoride (binder). %, And a mixture of 1-methyl-2-pyrrolidone solvent added and mixed was applied onto an aluminum foil, dried, pressure-molded, and heat-treated to prepare a positive electrode. 90% artificial graphite (negative electrode active material)
Wt%, polyvinylidene fluoride (binder) 10 wt%
1-Methyl-2-pyrrolidone solvent was added to this, and the mixture was applied onto a copper foil, dried, pressure-molded, and heat-treated to prepare a negative electrode. Then, using a polypropylene microporous film separator, the above non-aqueous electrolyte was injected to prepare a coin battery (diameter 20 mm, thickness 3.2 mm). Using this coin battery, at room temperature (20 ° C.), constant current and constant voltage of 1.1 mA,
The battery was charged to a final voltage of 4.2 V for 5 hours, then discharged to a final voltage of 2.7 V under a constant current of 1.1 mA, and this charging / discharging was repeated. The initial charge and discharge capacity was 1M LiPF 6 -EC / DEC without addition of pentafluorophenyl compound.
It was 0.99 as compared with the case where (capacity ratio 3/7) was used as the non-aqueous electrolyte (the initial charge / discharge capacity of Comparative Example 2 was 1), and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate is 9 when the initial discharge capacity is 100%.
It was 0.1%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0023】実施例2 添加剤として、2,3,4,5,6−ペンタフルオロア
ニソールを非水電解液に対して1重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、50サイクル後の電池特性を測定したところ、放
電容量維持率は90.5%であった。コイン電池の作製
条件および電池特性を表1に示す。
Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight based on the nonaqueous electrolytic solution. Then, a coin battery was produced, and the battery characteristics after 50 cycles were measured, whereupon the discharge capacity retention rate was 90.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0024】実施例3 添加剤として、2,3,4,5,6−ペンタフルオロア
ニソールを非水電解液に対して2重量%使用したほかは
実施例1と同様に非水電解液を調製してコイン電池を作
製し、50サイクル後の電池特性を測定したところ、放
電容量維持率は89.5%であった。コイン電池の作製
条件および電池特性を表1に示す。
Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 2% by weight based on the nonaqueous electrolytic solution. Then, a coin battery was produced, and the battery characteristics after 50 cycles were measured, whereupon the discharge capacity retention rate was 89.5%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0025】実施例4 添加剤として、デカフルオロビフェニルを非水電解液に
対して1重量%使用したほかは実施例1と同様に非水電
解液を調製してコイン電池を作製し、50サイクル後の
電池特性を測定したところ、放電容量維持率は90.3
%であった。コイン電池の作製条件および電池特性を表
1に示す。
Example 4 A coin battery was prepared in the same manner as in Example 1 except that decafluorobiphenyl was used as an additive in an amount of 1% by weight with respect to the non-aqueous electrolyte solution. After that, when the battery characteristics were measured, the discharge capacity retention rate was 90.3.
%Met. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0026】実施例5 添加剤として、2,3,4,5,6−ペンタフルオロト
ルエンを非水電解液に対して1重量%使用したほかは実
施例1と同様に非水電解液を調製してコイン電池を作製
し、50サイクル後の電池特性を測定したところ、放電
容量維持率は89.9%であった。コイン電池の作製条
件および電池特性を表1に示す。
Example 5 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 2,3,4,5,6-pentafluorotoluene was used as an additive in an amount of 1% by weight based on the nonaqueous electrolytic solution. Then, a coin battery was produced, and the battery characteristics after 50 cycles were measured, whereupon the discharge capacity retention rate was 89.9%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0027】実施例6 非水溶媒として、EC/MEC(容量比3/7)を使用
し、添加剤として、2,3,4,5,6−ペンタフルオ
ロアニソールを非水電解液に対して1重量%使用したほ
かは実施例1と同様に非水電解液を調製してコイン電池
を作製し、50サイクル後の電池特性を測定したとこ
ろ、放電容量維持率は91.7%であった。コイン電池
の作製条件および電池特性を表1に示す。
Example 6 EC / MEC (volume ratio 3/7) was used as the non-aqueous solvent, and 2,3,4,5,6-pentafluoroanisole was added as an additive to the non-aqueous electrolyte. A non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that 1% by weight was used to prepare a coin battery, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 91.7%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0028】実施例7 非水溶媒として、EC/MEC(容量比3/7)を使用
し、添加剤として、デカフルオロビフェニルを非水電解
液に対して1重量%使用したほかは実施例1と同様に非
水電解液を調製してコイン電池を作製し、50サイクル
後の電池特性を測定したところ、放電容量維持率は8
9.1%であった。コイン電池の作製条件および電池特
性を表1に示す。
Example 7 Example 1 was repeated except that EC / MEC (volume ratio 3/7) was used as the non-aqueous solvent and decafluorobiphenyl was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in 1. to produce a coin battery, and the battery characteristics after 50 cycles were measured.
It was 9.1%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0029】実施例8 非水溶媒として、EC/MEC(容量比3/7)を使用
し、添加剤として、2,3,4,5,6−ペンタフルオ
ロトルエンを非水電解液に対して1重量%使用したほか
は実施例1と同様に非水電解液を調製してコイン電池を
作製し、50サイクル後の電池特性を測定したところ、
放電容量維持率は90.7%であった。コイン電池の作
製条件および電池特性を表1に示す。
Example 8 EC / MEC (volume ratio 3/7) was used as the non-aqueous solvent, and 2,3,4,5,6-pentafluorotoluene was added as an additive to the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1% by weight was used to prepare a coin battery, and the battery characteristics after 50 cycles were measured.
The discharge capacity retention rate was 90.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0030】実施例9 非水溶媒として、EC/DEC(容量比1/2)を使用
し、添加剤として、2,3,4,5,6−ペンタフルオ
ロアニソールを非水電解液に対して1重量%使用したほ
かは実施例1と同様に非水電解液を調製してコイン電池
を作製し、50サイクル後の電池特性を測定したとこ
ろ、放電容量維持率は90.4%であった。コイン電池
の作製条件および電池特性を表1に示す。
Example 9 EC / DEC (volume ratio 1/2) was used as the non-aqueous solvent, and 2,3,4,5,6-pentafluoroanisole was added as an additive to the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that 1% by weight was used to prepare a coin battery, and the battery characteristics after 50 cycles were measured. The discharge capacity retention rate was 90.4%. . Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0031】実施例10 正極活物質として、LiCoOに代えてLiMn
を使用し、添加剤として、2,3,4,5,6−ペン
タフルオロアニソールを非水電解液に対して1重量%使
用したほかは実施例1と同様に非水電解液を調製してコ
イン電池を作製し、50サイクル後の電池特性を測定し
たところ、放電容量維持率は89.2%であった。コイ
ン電池の作製条件および電池特性を表1に示す。
Example 10 As a positive electrode active material, LiMn 2 O was used instead of LiCoO 2.
4 was used, and 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight with respect to the nonaqueous electrolytic solution, and a nonaqueous electrolytic solution was prepared in the same manner as in Example 1. A coin battery was prepared by using the above method, and the battery characteristics after 50 cycles were measured, whereupon the discharge capacity retention rate was 89.2%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0032】実施例11 負極活物質として、人造黒鉛に代えて天然黒鉛を使用
し、添加剤として、2,3,4,5,6−ペンタフルオ
ロアニソールを非水電解液に対して1重量%使用したほ
かは実施例1と同様に非水電解液を調製してコイン電池
を作製し、50サイクル後の電池特性を測定したとこ
ろ、放電容量維持率は89.8%であった。コイン電池
の作製条件および電池特性を表1に示す。
Example 11 As the negative electrode active material, natural graphite was used in place of artificial graphite, and 2,3,4,5,6-pentafluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that it was used to prepare a coin battery, and the battery characteristics after 50 cycles were measured, whereupon the discharge capacity retention ratio was 89.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0033】比較例1 PC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このときペンタフルオロフェニル化合物は全く添加しな
かった。この非水電解液を使用して実施例1と同様にコ
イン電池を作製し、電池特性を測定したが、全く充放電
しなかった。
Comparative Example 1 A non-aqueous solvent of PC: DMC (volume ratio) = 1: 2 was prepared,
LiPF 6 was dissolved in this to a concentration of 1M.
At this time, no pentafluorophenyl compound was added. Using this non-aqueous electrolyte, a coin battery was prepared in the same manner as in Example 1 and the battery characteristics were measured, but no charge / discharge was performed.

【0034】比較例2 EC:DEC(容量比)=3:7の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このときペンタフルオロフェニル化合物は全く添加しな
かった。この非水電解液を使用して実施例1と同様にコ
イン電池を作製し、電池特性を測定した。初期放電容量
に対し、50サイクル後の放電容量維持率は82.1%
であった。コイン電池の作製条件および電池特性を表1
に示す。
Comparative Example 2 A non-aqueous solvent of EC: DEC (volume ratio) = 3: 7 was prepared,
LiPF 6 was dissolved in this to a concentration of 1M.
At this time, no pentafluorophenyl compound was added. Using this non-aqueous electrolytic solution, a coin battery was produced in the same manner as in Example 1 and the battery characteristics were measured. The discharge capacity retention rate after 50 cycles is 82.1% of the initial discharge capacity.
Met. Table 1 shows the coin battery manufacturing conditions and battery characteristics.
Shown in.

【0035】比較例3 添加剤として、4−フルオロアニソールを非水電解液に
対して1重量%使用したほかは実施例1と同様に非水電
解液を調製してコイン電池を作製し、50サイクル後の
電池特性を測定したが、全く充放電しなかった。コイン
電池の作製条件および電池特性を表1に示す。
Comparative Example 3 A coin battery was prepared by preparing a non-aqueous electrolyte in the same manner as in Example 1 except that 4-fluoroanisole was used as an additive in an amount of 1% by weight based on the non-aqueous electrolyte. The battery characteristics after the cycle were measured, but they were not charged or discharged at all. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0036】比較例4 添加剤として、2,4−ジフルオロアニソールを非水電
解液に対して1重量%使用したほかは実施例1と同様に
非水電解液を調製してコイン電池を作製し、50サイク
ル後の電池特性を測定したが、全く充放電しなかった。
コイン電池の作製条件および電池特性を表1に示す。
Comparative Example 4 A coin battery was prepared by preparing a non-aqueous electrolytic solution in the same manner as in Example 1 except that 1% by weight of 2,4-difluoroanisole was used as an additive in the non-aqueous electrolytic solution. The battery characteristics were measured after 50 cycles, but no charge / discharge was performed.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0037】比較例5 添加剤として、2,4,5−トリフルオロアニソールを
非水電解液に対して1重量%使用したほかは実施例1と
同様に非水電解液を調製してコイン電池を作製し、50
サイクル後の電池特性を測定したが、全く充放電しなか
った。コイン電池の作製条件および電池特性を表1に示
す。
Comparative Example 5 A coin battery was prepared in the same manner as in Example 1, except that 1% by weight of 2,4,5-trifluoroanisole was used as an additive in the non-aqueous electrolyte. And make 50
The battery characteristics after the cycle were measured, but they were not charged or discharged at all. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0038】[0038]

【表1】 [Table 1]

【0039】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
The present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the spirit of the invention are possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0040】[0040]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL07 AM03 AM05 AM07 BJ03 EJ11 HJ02    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ04 AJ05 AK03 AL07                       AM03 AM05 AM07 BJ03 EJ11                       HJ02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質塩が溶解されている非
水電解液において、該非水電解液中に、ペンタフルオロ
フェニルエーテル化合物、ペンタフルオロビフェニル化
合物およびペンタフルオロフェニルアルカン化合物から
選ばれる少なくとも1種のペンタフルオロフェニル化合
物が含有されていることを特徴とする非水電解液。
1. A nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains at least one selected from a pentafluorophenyl ether compound, a pentafluorobiphenyl compound and a pentafluorophenylalkane compound. A non-aqueous electrolytic solution containing a pentafluorophenyl compound of a kind.
【請求項2】 前記ペンタフルオロフェニルエーテル化
合物が、下記一般式(I)、 【化1】 (式中、Rは炭素数1〜12のアルキル基または炭素
数1〜12のハロアルキル基を示す。)で表わされる請
求項1記載の非水電解液。
2. The pentafluorophenyl ether compound is represented by the following general formula (I): (In the formula, R 1 represents an alkyl group having 1 to 12 carbon atoms or a haloalkyl group having 1 to 12 carbon atoms.) The nonaqueous electrolytic solution according to claim 1.
【請求項3】 前記ペンタフルオロビフェニル化合物
が、下記一般式(II)、 【化2】 (式中、R、R、R、R、Rはそれぞれ独立
して水素原子、ハロゲン原子、炭素数1〜12のアルコ
キシ基、炭素数2〜12のアシルオキシ基を示す。)で
表わされる請求項1記載の非水電解液。
3. The pentafluorobiphenyl compound has the following general formula (II): (Wherein, shows the R 2, R 3, R 4 , R 5, R 6 are each independently a hydrogen atom, a halogen atom, an alkoxy group having 1 to 12 carbon atoms, an acyloxy group having 2 to 12 carbon atoms.) The nonaqueous electrolytic solution according to claim 1, which is represented by:
【請求項4】 前記ペンタフルオロフェニルアルカン化
合物が、下記一般式(III)、 【化3】 (式中、Rは炭素数1〜12のアルキル基を示す。)
で表わされる請求項1記載の非水電解液。
4. The pentafluorophenylalkane compound has the following general formula (III): (In the formula, R 7 represents an alkyl group having 1 to 12 carbon atoms.)
The nonaqueous electrolytic solution according to claim 1, which is represented by:
【請求項5】 正極、負極および非水溶媒に電解質塩が
溶解されている非水電解液からなるリチウム二次電池に
おいて、該非水電解液中に、ペンタフルオロフェニルエ
ーテル化合物、ペンタフルオロビフェニル化合物および
ペンタフルオロフェニルアルカン化合物から選ばれる少
なくとも1種のペンタフルオロフェニル化合物が含有さ
れていることを特徴とするリチウム二次電池。
5. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution contains a pentafluorophenyl ether compound, a pentafluorobiphenyl compound, and A lithium secondary battery containing at least one pentafluorophenyl compound selected from pentafluorophenylalkane compounds.
【請求項6】 前記ペンタフルオロフェニルエーテル化
合物が、下記一般式(I)、 【化4】 (式中、Rは炭素数1〜12のアルキル基または炭素
数1〜12のハロアルキル基を示す。)で表わされる請
求項5記載のリチウム二次電池。
6. The pentafluorophenyl ether compound has the following general formula (I): (In the formula, R 1 represents an alkyl group having 1 to 12 carbon atoms or a haloalkyl group having 1 to 12 carbon atoms.) The lithium secondary battery according to claim 5.
【請求項7】 前記ペンタフルオロビフェニル化合物
が、下記一般式(II)、 【化5】 (式中、R、R、R、R、Rはそれぞれ独立
して水素原子、ハロゲン原子、炭素数1〜12のアルコ
キシ基、炭素数2〜12のアシルオキシ基を示す。)で
表わされる請求項5記載のリチウム二次電池。
7. The pentafluorobiphenyl compound has the following general formula (II): (Wherein, shows the R 2, R 3, R 4 , R 5, R 6 are each independently a hydrogen atom, a halogen atom, an alkoxy group having 1 to 12 carbon atoms, an acyloxy group having 2 to 12 carbon atoms.) The lithium secondary battery according to claim 5, represented by:
【請求項8】 前記ペンタフルオロフェニルアルカン化
合物が、下記一般式(III)、 【化6】 (式中、Rは炭素数1〜12のアルキル基を示す。)
で表わされる請求項6記載のリチウム二次電池。
8. The pentafluorophenylalkane compound has the following general formula (III): (In the formula, R 7 represents an alkyl group having 1 to 12 carbon atoms.)
The lithium secondary battery according to claim 6, represented by:
JP2002069560A 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Fee Related JP4075416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069560A JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069560A JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2003272701A true JP2003272701A (en) 2003-09-26
JP4075416B2 JP4075416B2 (en) 2008-04-16

Family

ID=29200365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069560A Expired - Fee Related JP4075416B2 (en) 2002-03-14 2002-03-14 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4075416B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
KR100760763B1 (en) * 2006-10-17 2007-10-04 삼성에스디아이 주식회사 Electrolyte for high voltage lithium secondary battery and high voltage lithium secondary battery employing same
EP1672729A4 (en) * 2003-09-17 2009-01-28 Ube Industries WATER-FREE ELECTROLYTE SOLUTION AND LITHIUM SECONDARY BATTERY THEREWITH
JP2009524206A (en) * 2006-01-23 2009-06-25 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
WO2009102604A1 (en) * 2008-02-12 2009-08-20 3M Innovative Properties Company Redox shuttles for high voltage cathodes
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store
CN119361834A (en) * 2024-12-23 2025-01-24 浙江大学 Electrolyte, battery containing the electrolyte, and electrical device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672729A4 (en) * 2003-09-17 2009-01-28 Ube Industries WATER-FREE ELECTROLYTE SOLUTION AND LITHIUM SECONDARY BATTERY THEREWITH
US8530080B2 (en) 2005-01-20 2013-09-10 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2006077763A1 (en) * 2005-01-20 2006-07-27 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2010118356A (en) * 2005-01-20 2010-05-27 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US7754380B2 (en) 2005-01-20 2010-07-13 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2013239468A (en) * 2005-01-20 2013-11-28 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2012079711A (en) * 2005-01-20 2012-04-19 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US8440349B2 (en) 2005-01-20 2013-05-14 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2009524206A (en) * 2006-01-23 2009-06-25 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
KR100760763B1 (en) * 2006-10-17 2007-10-04 삼성에스디아이 주식회사 Electrolyte for high voltage lithium secondary battery and high voltage lithium secondary battery employing same
US7655361B2 (en) 2006-10-17 2010-02-02 Samsung Sdi Co., Ltd. Electrolyte for high voltage lithium rechargeable battery and high voltage lithium rechargeable battery employing the same
WO2009102604A1 (en) * 2008-02-12 2009-08-20 3M Innovative Properties Company Redox shuttles for high voltage cathodes
US8101302B2 (en) 2008-02-12 2012-01-24 3M Innovative Properties Company Redox shuttles for high voltage cathodes
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store
CN119361834A (en) * 2024-12-23 2025-01-24 浙江大学 Electrolyte, battery containing the electrolyte, and electrical device

Also Published As

Publication number Publication date
JP4075416B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3475911B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN109687025A (en) Electrolyte, electrochemical appliance and electronic device comprising the electrolyte
JP4561013B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000195545A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001313071A (en) Non-aqueous electrolyte and lithium secondary battery using the same
US10243235B2 (en) Lithium secondary battery electrolyte and lithium secondary battery comprising same
JP2001313072A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2003272700A (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4304404B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
CN103326064B (en) A kind of electrolyte of safe lithium ion battery
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2003272701A (en) Nonaqueous electrolyte and lithium secondary battery using the same
WO2025156897A1 (en) Electrolyte, lithium ion battery, and electric device
JP2001023688A (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH11273724A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH11329494A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
CN118970190A (en) Electrolyte additive, electrolyte and lithium ion battery
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000149986A (en) Non-aqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees