[go: up one dir, main page]

JP2003272954A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor

Info

Publication number
JP2003272954A
JP2003272954A JP2002076317A JP2002076317A JP2003272954A JP 2003272954 A JP2003272954 A JP 2003272954A JP 2002076317 A JP2002076317 A JP 2002076317A JP 2002076317 A JP2002076317 A JP 2002076317A JP 2003272954 A JP2003272954 A JP 2003272954A
Authority
JP
Japan
Prior art keywords
power supply
film
holder
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002076317A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yoshida
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002076317A priority Critical patent/JP2003272954A/en
Publication of JP2003272954A publication Critical patent/JP2003272954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the quality of a solid electrolyte which is used for a solid electrolytic capacitor and formed of an electrolytic polymer film so as to improve the solid electrolytic capacitor in ESR characteristics. <P>SOLUTION: When an electrolytic polymer film as a second solid electrolyte is formed on the surface of a first solid electrolytic layer formed of a conductive polymer of an inorganic semiconductor film or a chemical polymer film, a feeding terminal having a prescribed resistance or a part of a feeding wiring circuit anode with a prescribed resistance is arranged apart from the first solid electrolytic layer to feed an electric power, so that the surface (dielectric layer, inorganic semiconductor film, chemical polymer film or the like) of the pellet is hardly damaged by the feeding terminal because the feeding terminal is hardly brought into contact with the pellet. Integrating currents become nearly equal to each other in amount through the pellets, and the electrolytic polymer films are uniformly formed through the pellets, so that the solid electrolytic capacitors which each have a low ESR, uniform and stable qualities, and is superior in productivity. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
の製造方法に関し、特に固体電解質としての導電性高分
子の電解重合膜を形成する固体電解コンデンサの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor which forms an electropolymerized film of a conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】従来の固体電解コンデンサの製造方法に
ついて説明する。 多孔質陽極体の形成工程;まず、Ta等の弁作用金属
粉末に成形性を高めるためのバインダを混合し、プレス
成形用の造粒粉を作成する。次にこの造粒粉を使用して
プレス工法により陽極リード(Ta等の弁作用金属金属
を使用)を埋設した圧縮成形体を作成する。この成形体
を1300〜1600℃程度の高温で、10−6Tor
r程度の高真空中で焼結することにより固体電解コンデ
ンサ用の多孔質陽極体を得る。以降、この陽極体に種々
の処理を施したものをペレットと称する。
2. Description of the Related Art A conventional method for manufacturing a solid electrolytic capacitor will be described. Step of forming porous anode body: First, a valve-action metal powder such as Ta is mixed with a binder for enhancing the moldability to prepare a granulated powder for press molding. Next, using this granulated powder, a compression molded body in which an anode lead (valve metal such as Ta is used) is embedded is prepared by a pressing method. This molded body was heated at a high temperature of about 1300 to 1600 ° C. for 10 −6 Torr.
A porous anode body for a solid electrolytic capacitor is obtained by sintering in a high vacuum of about r. Hereinafter, the anode body obtained by subjecting the anode body to various treatments is referred to as a pellet.

【0003】誘電体層の形成;次に、前述の多孔質陽
極体の表面に、陽極酸化と呼ばれる手法により誘電体層
としての酸化物層を形成する。陽極酸化は多孔質陽極体
と通電のための対向電極を電解質溶液中に浸漬し、多孔
質陽極体をアノード、対向電極をカソードとして通電す
ることにより多孔質陽極体表面に酸化物層を形成する。
このときの多孔質陽極体―対向電極間の電位差を化成電
圧と呼んでいるが、この化成電圧を制御することにより
酸化物層の厚みが制御される。
Formation of Dielectric Layer: Next, an oxide layer as a dielectric layer is formed on the surface of the above-mentioned porous anode body by a method called anodic oxidation. In anodic oxidation, the porous anode body and the counter electrode for energization are immersed in an electrolyte solution, and the porous anode body is used as an anode and the counter electrode is energized to form an oxide layer on the surface of the porous anode body. .
The potential difference between the porous anode body and the counter electrode at this time is called the formation voltage. By controlling this formation voltage, the thickness of the oxide layer is controlled.

【0004】固体電解質層の形成工程(無機半導体膜
又は化学重合膜の形成)及び固体電解質層の形成工程
(電解重合膜の形成);次に前述の誘電体層(酸化物層)
の表面に陽極体金属に対応する対向電極面としての導電
性物質膜を形成し、コンデンサとしての基本構造が得ら
れる。この導電性物質膜は固体電解質層と呼ばれる硝酸
マンガンを熱分解して得られる二酸化マンガン層が一般
的に使用されているが、最近はポリピロール等の導電性
有機高分子を化学重合により化学重合膜を形成し、次に
その表面に電解重合により電解重合膜を形成したものも
使用されるようになった。
Solid electrolyte layer forming step (inorganic semiconductor film or chemically polymerized film forming step) and solid electrolyte layer forming step
(Formation of electrolytically polymerized film); Next, the above-mentioned dielectric layer (oxide layer)
By forming a conductive material film as a counter electrode surface corresponding to the anode metal on the surface of, a basic structure as a capacitor can be obtained. As the conductive material film, a manganese dioxide layer called a solid electrolyte layer obtained by thermally decomposing manganese nitrate is generally used, but recently, a conductive organic polymer such as polypyrrole is chemically polymerized by chemical polymerization. Then, a film having an electrolytic polymerized film formed on the surface thereof by electrolytic polymerization has also come to be used.

【0005】この導電性高分子は二酸化マンガンよりも
抵抗が小さいためコンデンサの等価直列抵抗(ESR)
を小さくでき、また、熱に対する絶縁化反応がはやいた
め素子が発煙・発火しにくい等の長所を有する。
Since this conductive polymer has a lower resistance than manganese dioxide, the equivalent series resistance (ESR) of the capacitor is high.
Has a merit that the element can hardly smoke or ignite because the insulating reaction to heat is quick.

【0006】導電性高分子膜の形成手段としては大別し
て薬品による化学反応のみにより形成する化学重合と、
外部から電極を近接または接触させて電気化学的に形成
する電解重合の2種類がある。但し、電解重合では電気
的に絶縁性である誘電体層上には重合膜の形成はできな
いために電解重合適用時には、事前に無機半導体膜の二
酸化マンガン層や導電性高分子膜の化学重合膜等の導電
層を誘電体層上に下地として形成しておく必要がある。
更に電解重合時には通電のための給電端子を重合膜形成
部分に接近又は接触させる必要がある。
Means for forming a conductive polymer film are roughly classified into chemical polymerization, which is formed only by a chemical reaction by a chemical,
There are two types of electrolytic polymerization in which electrodes are electrochemically formed by bringing electrodes into close proximity or contact with each other. However, since electrolytic polymerization cannot form a polymerized film on a dielectric layer that is electrically insulating, a manganese dioxide layer of an inorganic semiconductor film or a chemically polymerized film of a conductive polymer film must be prepared before applying electrolytic polymerization. It is necessary to form a conductive layer such as the above as a base on the dielectric layer.
Further, at the time of electrolytic polymerization, it is necessary to bring a power supply terminal for energization close to or in contact with the polymer film forming portion.

【0007】このように電解重合は化学重合よりも工程
が複雑になる面があるが、生成される重合膜が低抵抗で
あり、また、短時間で層を厚く形成できる等の長所を持
つため導電性高分子膜の形成の有力な手法の一つとして
用いられている。
As described above, the electrolytic polymerization has a more complicated process than the chemical polymerization, but it has the advantages that the polymer film produced has a low resistance and that the layer can be formed thick in a short time. It is used as one of the leading methods for forming a conductive polymer film.

【0008】再化成工程;次に、前述で形成された固
体電解質層を形成したペレットに対して前述の陽極酸化
で用いた手法とほぼ同様な方法により、リン酸溶液等の
化成液中で再度電圧印加を行う。
Re-formation step: Next, the pellets on which the solid electrolyte layer formed as described above is re-formed in a chemical conversion solution such as a phosphoric acid solution by a method substantially similar to the method used in the anodic oxidation described above. Apply voltage.

【0009】このとき印加する電圧は先の陽極酸化時に
印加した値以下にする。この工程は再化成と呼ばれ、こ
の再化成を施すことにより固体電解質層形成時に機械的
・化学的ストレスで発生した軽度の欠陥が修復され、コ
ンデンサとしての品質がより安定化する。
The voltage applied at this time is set to be equal to or lower than the value applied during the previous anodic oxidation. This process is called re-formation, and by performing this re-formation, minor defects caused by mechanical / chemical stress at the time of forming the solid electrolyte layer are repaired, and the quality of the capacitor is further stabilized.

【0010】陰極層の形成工程;次に、再化成を実施
したペレット上にグラファイトペースト,銀ペーストの
ような導電性物質膜の陰極層を形成する。陰極層は固体
電解質層と実装用の外部端子(陰極)を接続させ、接続
抵抗の減少、コンデンサの外装時・実装時のストレス緩
和等の作用を併せ持つ。
Step of forming cathode layer: Next, a cathode layer of a conductive material film such as graphite paste or silver paste is formed on the re-formed pellets. The cathode layer connects the solid electrolyte layer and the external terminal (cathode) for mounting, and also has the functions of reducing the connection resistance and relieving stress when the capacitor is packaged and mounted.

【0011】外部端子・外装工程;最後に、陰極形成
後の素子に実装のための金属製の外部端子を溶接・接着
等で付加し、さらに耐湿性向上、ハンドリング性向上等
を目的として、エポキシ樹脂等で外装し固体電解コンデ
ンサが得られる。
External terminal / exterior step: Finally, an external terminal made of metal for mounting is added to the element after the cathode is formed by welding, adhesion, etc., and further epoxy resin is used for the purpose of improving moisture resistance and handling. A solid electrolytic capacitor is obtained by coating with resin or the like.

【0012】[0012]

【発明が解決しようとする課題】電解重合実施時には給
電するための給電端子が必要となり、この給電端子は電
気化学的な反応性が小さいことが要求されるため、通常
は白金、SUS等の金属材料が使用される。しかし、そ
れらは通常硬質材料であるため、電解重合実施時にペレ
ットに接触すると容易に誘電体層や下地導電体層(化学
重合膜等)が破壊される。
When carrying out electrolytic polymerization, a power supply terminal for supplying power is required, and this power supply terminal is required to have low electrochemical reactivity. Therefore, a metal such as platinum or SUS is usually used. Material is used. However, since they are usually hard materials, the dielectric layer and the underlying conductor layer (chemically polymerized film, etc.) are easily destroyed when they come into contact with the pellets during electrolytic polymerization.

【0013】破壊されると、次工程の再化成で破壊箇所
から大電流が流れその周囲の導電性高分子が絶縁化され
てしまう。その結果、導電性高分子膜は全体的に高抵抗
化しコンデンサのESR特性を劣化させる。この不具合
を避けるためには給電端子をペレットに接触させないこ
とが最も有効であるが、給電端子がペレットから離れす
ぎると、給電端子から伸びる電解重合膜(以降、電解重
合リード部と称す)がペレットまで届かなくなり、ペレ
ット上の電解重合膜の形成ができなくなる。このため、
このペレットと給電端子間の距離(隙間)は0.1mm
以下の精度で制御する必要がある。この距離制御の精度
はペレットを一個ずつ処理していく場合は比較的容易で
ある。
When destroyed, a large current flows from the destroyed portion in the re-formation in the next step, and the conductive polymer around it is insulated. As a result, the conductive polymer film has a high resistance as a whole and deteriorates the ESR characteristic of the capacitor. In order to avoid this problem, it is most effective not to contact the power supply terminal with the pellet, but if the power supply terminal is too far from the pellet, the electrolytically polymerized film (hereinafter referred to as the electrolytically polymerized lead part) extending from the power supply terminal will be pelletized. And the electrolytic polymerized film on the pellet cannot be formed. For this reason,
The distance (gap) between this pellet and the power supply terminal is 0.1 mm
It is necessary to control with the following accuracy. The accuracy of this distance control is relatively easy when the pellets are processed one by one.

【0014】しかし、図8(a)〜図8(d)に示すように同
時に多数のペレットを処理する場合は非常に困難とな
る。即ち、図8には従来における固体電解コンデンサの
製造方法の電解重合膜の成形を説明する概略図であり、
前述の多孔質陽極体を得た後、誘電体層の形成工程
〜陰極層の形成工程までの準備作業として、同時に多
数のペレット3を処理するために、図8(b)に示すよう
に多孔質陽極体のペレット3を第1の矩形状のホルダー
4(例えば、アルミ、チタン等)に所定の間隔に吊持状態
で溶接接合して誘電体層の形成工程〜陰極層の形成
工程まで行い、この形成工程内の固体電解質層の形成
工程(無機半導体膜又は化学重合膜を形成後、電解重
合膜の形成では図8(a)に示すように給電端子20を第
4の矩形状のホルダー21(例えば、アルミなど導電性
の高い金属板)に所定の間隔に溶接などで接合して、図
8(c)のペレット3を拡大した図9に示すように給電端
子20をペレット3とに隙間Sを設けて近設し、図8
(d)に示す対向電極13(陰極側)と第1の矩形状のホル
ダー4(陽極側)との間に配接したDC電源25にて給電
するが、電解重合膜9を形成する場合は非常にに困難と
なる。
However, it becomes very difficult to process a large number of pellets simultaneously as shown in FIGS. 8 (a) to 8 (d). That is, FIG. 8 is a schematic view for explaining molding of an electrolytically polymerized film in a conventional method for manufacturing a solid electrolytic capacitor,
After obtaining the above-mentioned porous anode body, as a preparatory work from the step of forming the dielectric layer to the step of forming the cathode layer, in order to simultaneously process a large number of pellets 3, as shown in FIG. The pellets 3 of the positive electrode body are welded and joined to the first rectangular holder 4 (for example, aluminum, titanium, etc.) at a predetermined interval in a suspended state, and the steps from the dielectric layer forming step to the cathode layer forming step are performed. In the forming step of the solid electrolyte layer in this forming step (after forming the inorganic semiconductor film or the chemically polymerized film, in forming the electrolytic polymerized film, as shown in FIG. 21 (for example, a highly conductive metal plate such as aluminum) by welding or the like at a predetermined interval, and the pellet 3 of FIG. 8 (c) is enlarged. A space S is provided between them, and they are arranged close to each other, as shown in FIG.
Power is supplied by a DC power source 25 connected between the counter electrode 13 (cathode side) and the first rectangular holder 4 (anode side) shown in (d), but when the electrolytic polymerization film 9 is formed, It will be very difficult.

【0015】この困難となる理由は、ペレット3からの
陽極リード1が曲がりやすいこと、給電端子20の長さ
を均一にし難いこと等の理由により、隙間Sが各々のペ
レット3に対して異なってくるからである。工業的には
図8に示したような第4の矩形状ホルダー4に吊持状態
で多数のペレット3を一度に処理する方式でなければ非
常に作業効率が悪く、実用的でないため、図8(d)に示
すように電解重合膜9の形成不良をある程度許容して図
8の示すようなペレット3を多数同時処理を行ってい
る。また、ペレット3に下地として形成された化学重合
膜も各ペレットで形成が完全に均一ではないため、例
え、図8のペレット3と給電端子20間の距離を全ペレ
ットに対して同一に出来たとしても、電解重合膜23に
は形成過多品23a及び形成不足品23b或いは未形成品
などのバラツキが多く発生してしまう。
The reason for this difficulty is that the anode lead 1 from the pellet 3 is easily bent, and it is difficult to make the length of the power supply terminal 20 uniform, and so on. Because it comes. Industrially, the work efficiency is very poor and it is not practical unless the method of treating a large number of pellets 3 at a time in a suspended state by the fourth rectangular holder 4 as shown in FIG. As shown in (d), a large number of pellets 3 as shown in FIG. 8 are simultaneously treated by allowing the defective formation of the electropolymerized film 9 to some extent. Further, since the chemically polymerized film formed as a base on the pellet 3 is not completely uniform in each pellet, the distance between the pellet 3 and the power supply terminal 20 in FIG. 8 can be made the same for all the pellets. In this case, however, the electrolytically polymerized film 23 will have many variations such as over-formed products 23a and under-formed products 23b or unformed products.

【0016】このバラツキが生じる理由は、電解重合用
の給電端子とペレットの間の距離が一定でないこと、及
びペレットに下地として形成された化学重合膜の状態が
各ペレットで異なることである。まず給電端子−ペレッ
ト間のバラツキは電解重合リード部がペレットに到達す
るまでの時間を不均一にする。前述にべた電解重合リー
ド部がペレットに接触した時点からペレットへの電解重
合膜の形成が開始されるため、電解重合時間を一定にす
ると、リード部が早く接触したペレットの電解重合膜は
厚く形成され(形成過多品23a)、接触が遅れたペレッ
トでは薄い(形成不足品23b)、または未形成状態とな
る。次に、下地の化学重合膜の形成バラツキであるが、
これは電解重合リード部がペレットに接触した後の電解
重合膜の形成速度を左右する。即ち、下地の伝導度が高
く、被覆面積が大きい方が速やかに電解重合膜が形成さ
れる。この場合も、電解重合時間を一定にすると各ペレ
ットの重合層の形成状態にバラツキが生じる。上記のい
ずれの場合も、各ペレットの電解重合膜の形成状態をモ
ニターしながら重合を行えば形成を均一にできるが、そ
のような方法は煩雑であり量産用の製造方法としては使
用できない。
The reason why this variation occurs is that the distance between the feed terminal for electrolytic polymerization and the pellet is not constant, and the state of the chemically polymerized film formed as a base on the pellet is different for each pellet. First, the variation between the power supply terminal and the pellet makes the time required for the electrolytic polymerization lead portion to reach the pellet uneven. Since the formation of the electropolymerized film on the pellets starts from the time when the solid electrolytically polymerized lead parts come into contact with the pellets, if the electropolymerization time is kept constant, the electropolymerized film on the pellets that the lead parts come into contact with earlier will be thicker. If the pellets are over-formed (over-formed article 23a) and contact is delayed, they become thin (under-formed article 23b) or unformed. Next, regarding the variation in the formation of the underlying chemically polymerized film,
This affects the rate of formation of the electropolymerized film after the electropolymerized lead portion comes into contact with the pellet. That is, when the conductivity of the base is high and the coating area is large, the electrolytically polymerized film is formed more quickly. Also in this case, if the electrolytic polymerization time is kept constant, the state of formation of the polymerization layer of each pellet varies. In any of the above cases, the formation can be made uniform by conducting the polymerization while monitoring the formation state of the electropolymerized film of each pellet, but such a method is complicated and cannot be used as a production method for mass production.

【0017】このように電解重合は良質な重合膜が得ら
れる手法として有力であるが、給電時にペレットを損傷
しやすい、または給電方式が複雑化するという点が障害
となり量産方式として採用しにくい面を有していた。
As described above, electrolytic polymerization is effective as a method for obtaining a high-quality polymer film, but it is difficult to use it as a mass production method because it is apt to damage pellets during power supply or the power supply system becomes complicated. Had.

【0018】前述した給電端子20とペレット3とに隙
間Sを設けて処理する方法(非接触にて処理する方法)
に対し、接触面を有する給電端子22とペレット3とを
接触して処理する方法には、例えば、特開平05−28
3289号公報が開示されており、図12に示すように
ペレット3上に導電性高分子の電解重合膜24を電解重
合する際にペレットのキズ防止のためにペレットに接触
させるステンレスや白金製給電端子22の接触面22a
の構造をU字状または球状にする技術が開示されている
が、給電端子22が硬質のためにペレットのキズ発生は
完全に防止できない問題があった。
A method of processing by providing a gap S between the power supply terminal 20 and the pellet 3 described above (method of processing without contact)
On the other hand, as a method for treating the power supply terminal 22 having a contact surface with the pellet 3 by contact, for example, Japanese Patent Laid-Open No. 05-28
Japanese Patent No. 3289 discloses a power supply made of stainless steel or platinum that is brought into contact with a pellet to prevent damage to the pellet when electrolytically polymerizing an electropolymerized film 24 of a conductive polymer on the pellet 3 as shown in FIG. Contact surface 22a of terminal 22
Although a technique of making the structure of U-shaped or spherical has been disclosed, there is a problem that the generation of flaws in the pellet cannot be completely prevented because the power supply terminal 22 is hard.

【0019】また、この問題を解決すべく、例えば、特
開2001−102257号には、図13に示すように
電解重合膜9を形成するための給電端子に軟質給電端子
24(例えば、導電性ゴム)をペレット3に接触させ使
用し、給電端子24による誘電体層5や化学重合膜7の
損傷を低減し、再化成工程における電解重合膜23の絶
縁化を防止する技術が開示されているが、この給電端子
24の接触した箇所は電解重合膜23の形成が不充分と
なり、この箇所が修復しないと特性、品質などに影響す
る問題があった。
In order to solve this problem, for example, in Japanese Unexamined Patent Publication No. 2001-102257, as shown in FIG. 13, a soft power feeding terminal 24 (for example, a conductive material) is used as a power feeding terminal for forming an electrolytic polymerized film 9. A technique is disclosed in which rubber) is used in contact with the pellet 3 to reduce damage to the dielectric layer 5 and the chemical polymerization film 7 due to the power supply terminal 24 and prevent the electrolytic polymerization film 23 from being insulated in the re-forming step. However, the formation of the electropolymerized film 23 becomes insufficient at the contact point of the power supply terminal 24, and there is a problem that the characteristics, quality, etc. are affected unless this section is repaired.

【0020】本発明の目的は、ペレット上に導電性高分
子膜を電解重合する給電に関し、電解重合膜の形成を均
一して固体電解コンデンサのESR特性およびバラツキ
を小さくする。且つ給電方式が簡単で量産性に優れた固
体電解コンデンサの製造方法を提供することにある。
An object of the present invention relates to a power supply for electrolytically polymerizing a conductive polymer film on a pellet, and makes the formation of the electrolytically polymerized film uniform to reduce the ESR characteristics and variations of the solid electrolytic capacitor. Another object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor which has a simple power feeding method and is excellent in mass productivity.

【0021】[0021]

【課題を解決するための手段】前記課題を解決するため
に提供する本願第一の発明に係る請求項1、2、3に記
載の固体電解コンデンサの製造方法は、弁作用金属粉末
の焼結体を多孔質陽極体とし、この表面に誘電体層、無
機半導体膜または化学重合膜の導電性高分子からなる第
1の固体電解質層、電解重合膜の導電性高分子膜からな
る第2の固体電解質層、陰極層を順次形成し、次いで前
記多孔質陽極体および陰極層に外部端子を接続した後、
樹脂外装して製造する固体電解コンデンサの製造方法に
おいて、前記電解重合膜を形成する給電を、所定の抵抗
を有する給電端子を前記第1の固体電解質層に離間し配
置して行うことを特徴とする。また、前記電解重合膜を
形成する給電を、前記給電端子以外の給電配線回路陽極
側の一部に所定の抵抗を用いて行うことを特徴とする。
並びに、前記給電端子及び給電端子以外の給電配線回路
陽極側の一部に用いた抵抗の値が、10Ω〜1000Ω
であることを特徴とする。
A method for manufacturing a solid electrolytic capacitor according to claim 1, 2 or 3 according to the first invention of the present application, which is provided for solving the above-mentioned problems, comprises a method of sintering a valve metal powder. The body is a porous anode body, and a dielectric layer, a first solid electrolyte layer made of a conductive polymer of an inorganic semiconductor film or a chemically polymerized film, and a second layer made of a conductive polymer film of an electrolytic polymerized film on the surface of the body. After sequentially forming a solid electrolyte layer and a cathode layer, and then connecting external terminals to the porous anode body and the cathode layer,
In a method of manufacturing a solid electrolytic capacitor manufactured by coating with a resin, the power supply for forming the electrolytically polymerized film is performed by disposing a power supply terminal having a predetermined resistance in the first solid electrolyte layer. To do. Further, it is characterized in that power supply for forming the electrolytically polymerized film is performed by using a predetermined resistor in a part of the power supply wiring circuit anode side other than the power supply terminal.
Also, the value of the resistance used for the power supply terminal and a part of the power supply wiring circuit anode side other than the power supply terminal is 10Ω to 1000Ω.
Is characterized in that.

【0022】係る製造方法を採用することにより、電解
重合膜を形成する際に、電解重合膜を形成する給電を、
所定の抵抗を有する給電端子或いは前記給電端子以外の
給電配線回路陽極側の一部に所定の抵抗を用いて前記化
学重合膜にして離間し配置して行うことにより、給電端
子が接触していないためペレット表面(誘電体層)の損
傷がない。また、各ペレット間の積算電流量はほぼ均一
となり、ペレット間の電解重合膜の形成は均一となり、
固体電解コンデンサのESR(等価直列抵抗)およびバラ
ツキを小さく品質の安定した固体電解コンデンサを製造
できる有利な効果を奏する。
By adopting such a manufacturing method, when forming the electrolytic polymerized film, the power supply for forming the electrolytic polymerized film is
Since the chemical polymerization film is formed by using a predetermined resistance on a part of the power supply terminal having a predetermined resistance or the power supply wiring circuit anode other than the power supply terminal, the power supply terminals are not in contact with each other. Therefore, the pellet surface (dielectric layer) is not damaged. Further, the integrated current amount between the pellets becomes almost uniform, and the formation of the electropolymerized film between the pellets becomes uniform,
There is an advantageous effect that it is possible to manufacture a solid electrolytic capacitor having stable ESR (equivalent series resistance) and variation of the solid electrolytic capacitor with stable quality.

【0023】前記課題を解決するために提供する本願第
二の発明に係る固体電解コンデンサの製造方法は、請求
項4記載の固体電解コンデンサの製造方法において、複
数の前記多孔質陽極体を第1のホルダーに接続し、複数
の前記所定の抵抗を有する給電端子を導電性を有する第
2のホルダーに接続し形成して、前記接続した給電端子
を前記接続した多孔質陽極体の第1の固体電解質層にそ
れぞれ離間し配置して、前記第2のホルダーの単位毎に
前記電解重合膜を形成する給電を行うことを特徴とす
る。
A method for manufacturing a solid electrolytic capacitor according to a second invention of the present application, which is provided for solving the above-mentioned problems, is the method for manufacturing a solid electrolytic capacitor according to claim 4, wherein a plurality of the porous anode bodies are provided. Connected to the holder, and a plurality of power supply terminals having the predetermined resistance are connected to a second holder having conductivity to be formed, and the connected power supply terminals are connected to the first solid of the porous anode body. It is characterized in that they are arranged separately from each other in the electrolyte layer and power is supplied to form the electrolytic polymerized film for each unit of the second holder.

【0024】係る製造方法を採用することにより、各ペ
レット間の積算電流量はほぼ均一となり、ペレット間の
電解重合膜の形成は均一となり、給電方式も簡単で量産
方式として採用し易く生産効率が向上する。
By adopting such a manufacturing method, the integrated current amount between the pellets becomes substantially uniform, the formation of the electrolytically polymerized film between the pellets becomes uniform, and the power feeding method is simple and the mass production method is easy to adopt and the production efficiency is high. improves.

【0025】前記課題を解決するために提供する本願第
三の発明に係る固体電解コンデンサの製造方法は、請求
項5記載の固体電解コンデンサの製造方法において、複
数の前記多孔質陽極体を第1のホルダーに接続し、数個
の給電端子を導電性を有する第3のホルダーに接続する
と共に、前記第3のホルダー毎に1つの所定の抵抗を接
続し形成して、前記接続した給電端子を前記接続した多
孔質陽極体の第1の固体電解質層にそれぞれ離間し配置
して、前記第3のホルダー単位毎に前記接続した抵抗を
介して前記電解重合膜を形成する給電を行うことを特徴
とする。
A method for manufacturing a solid electrolytic capacitor according to a third aspect of the present invention, which is provided for solving the above-mentioned problems, is the method for manufacturing a solid electrolytic capacitor according to claim 5, wherein a plurality of the porous anode bodies are provided. Connected to the holder, several power supply terminals are connected to a third holder having conductivity, and one predetermined resistor is connected to each third holder to form the connected power supply terminals. The first solid electrolyte layer of the connected porous anode body is arranged separately from each other, and power is supplied to each of the third holder units to form the electropolymerized film through the connected resistor. And

【0026】係る製造方法を採用することにより、第3
のホルダー内での数個のペレットの電解重合膜の形成の
バラツキは抑制できないが、前述の従来の製造方法より
は許容できるバラツキの抑制が可能であり、給電端子部
分の構造が簡易で生産効率が向上する。
By adopting such a manufacturing method, the third
Although it is not possible to suppress the variation in the formation of the electropolymerized film of several pellets in the holder of the above, it is possible to suppress the variation that is more acceptable than the conventional manufacturing method described above, and the structure of the power supply terminal part is simple and the production efficiency is high. Is improved.

【0027】[0027]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。図1(a)〜図1(d)は
本発明の第1、第2の実施の形態の固体電解コンデンサ
の製造方法の電解重合膜の形成を説明する概略図であ
る。図2は本発明の図1(c)の抵抗入り給電端子とペレ
ットとの位置関係の拡大図である。図3は本発明の図1
(d)の電解重合膜の形成後のペレットの部分拡大図であ
る。図4は本発明の図1(a)の第2のホルダに抵抗入り給
電端子を接合した拡大図である。図5は本発明の電解重
合時間に対する電解重合膜の先端電位と電解重合電流と
電解重合電流積算値との相関模式図である。図6は本発
明の電解重合膜の形成後の状態図である。図7は本発明
の第3の実施の形態の固体電解コンデンサの製造方法の
第3のホルダー単位毎に抵抗を介して給電するブロック
型抵抗入り給電端子図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail with reference to the drawings. 1 (a) to 1 (d) are schematic views for explaining the formation of an electrolytically polymerized film in the method for producing a solid electrolytic capacitor according to the first and second embodiments of the present invention. FIG. 2 is an enlarged view of the positional relationship between the power feed terminal with resistance and the pellet of FIG. 1 (c) of the present invention. FIG. 3 is a diagram of the present invention.
FIG. 3D is a partially enlarged view of the pellet after the formation of the electropolymerized film of (d). FIG. 4 is an enlarged view in which a power feeding terminal with resistance is joined to the second holder of FIG. 1 (a) of the present invention. FIG. 5 is a schematic correlation diagram of the tip potential of the electrolytic polymerization film, the electrolytic polymerization current, and the integrated value of the electrolytic polymerization current with respect to the electrolytic polymerization time of the present invention. FIG. 6 is a state diagram after formation of the electropolymerized film of the present invention. FIG. 7 is a block-type resistor-containing power supply terminal diagram for supplying power via a resistor for each third holder unit in the method for manufacturing a solid electrolytic capacitor according to the third embodiment of the present invention.

【0028】多孔質陽極体の形成工程;多孔質陽極体
の形成方法は従来の製造方法と同一である。本発明で使
用した弁作用金属のTa粉末は,平均粒径10μm,バ
インダ添加量は5wt%として,プレス成形用の造粒T
a粉末を作成し、プレス工法により陽極リード1を埋設
した成型体を作成した。この成形体を10−6Torr
以下の真空中または不活性ガス雰囲気中で1600℃に
て30分焼結し、固体電解コンデンサ用の多孔質陽極体
2を得た。(以降,この多孔質陽極体およびそれに種々
の処理を加えたものをペレット3と呼称する)。
Step of forming porous anode body: The method of forming the porous anode body is the same as the conventional manufacturing method. The valve metal Ta powder used in the present invention has an average particle size of 10 μm and a binder addition amount of 5 wt%.
Powder a was prepared, and a molded body in which the anode lead 1 was embedded was prepared by a pressing method. This molded body is 10 −6 Torr
The porous anode body 2 for a solid electrolytic capacitor was obtained by sintering at 1600 ° C. for 30 minutes in the following vacuum or inert gas atmosphere. (Hereinafter, this porous anode body and one obtained by subjecting it to various treatments are referred to as pellet 3).

【0029】前述の多孔質陽極体の形成工程で多孔質
陽極体2を得た後、以降の誘電体層の形成工程〜陰
極層の形成工程までの準備作業として、同時に多数のペ
レット3を処理するために、図1(a)に示すように多孔
質陽極体2のペレット3をアルミ、チタン等などの導電
性を有する第1の矩形状のホルダー4にペレットの大き
さに応じ定間隔に吊持状態で溶接などで接合して、この
ホルダー4を所望の間隔にバッチ治具(図示省略)にセッ
トしておく。
After obtaining the porous anode body 2 in the above-mentioned porous anode body forming step, a large number of pellets 3 are simultaneously treated as a preparatory work from the subsequent dielectric layer forming step to cathode layer forming step. In order to do so, as shown in FIG. 1 (a), the pellets 3 of the porous anode body 2 are placed in a first rectangular holder 4 having conductivity such as aluminum or titanium at regular intervals according to the size of the pellets. The holders 4 are joined by welding or the like in a suspended state, and the holders 4 are set in a batch jig (not shown) at desired intervals.

【0030】誘電体層の形成工程;前述の多孔質陽極
体2の多数のペレツト3が第1の矩形状のホルダー4に
吊持状態で接合されセットされたバッチ治具を用いて、
誘電体層5(例えばTa2O5層)の形成は、の多孔
質陽極体の表面・多孔質内部に誘電体層5を形成するた
め従来で述べた製造方法と同じように陽極酸化により誘
電体層5を形成する。この時,化成電圧を18V,化成
液を0.6%リン酸水溶液とした。
Step of forming a dielectric layer: Using the batch jig in which a large number of pellets 3 of the porous anode body 2 are joined to a first rectangular holder 4 in a suspended state and set.
The formation of the dielectric layer 5 (for example, Ta2O5 layer) is performed by anodic oxidation in the same manner as in the manufacturing method described above because the dielectric layer 5 is formed on the surface and inside the porous anode body. To form. At this time, the chemical conversion voltage was 18 V and the chemical conversion liquid was a 0.6% phosphoric acid aqueous solution.

【0031】固体電解質層の形成工程;(化学重合膜
の形成) 化学重合膜7の導電性高分子からなる第1の固体電解質
層8の形成は従来の製造方法と同様に、前述の誘電体
層5の形成後、図1(b )の形態で図3に示すようにペレ
ット3の誘電体層5の上に無機半導体膜6または化学重
合膜7の導電性高分子からなる第1の固体電解質層8を
形成する。先ず化学重合によりペレット3に導電性高分
子からなる化学重合膜7を形成し、この膜は次の電解重
合用の下地となる。この時,酸化剤溶液として60%ド
デシルベンゼンスルホン酸鉄(Fe・DBS)メタノー
ル溶液を使用し,それにペレットを5分浸漬した後,乾
燥させた.次いで,重合液としてピロールを5%溶解さ
せた水溶液を使用し,それにペレット3を20分浸漬し
た後,乾燥させた.次いで,メタノールでペレット3を
洗浄することにより残留未反応物,および導電性に寄与
しない副生成物等を除去して化学重合膜7を形成し、電
解重合実施用のペレット3(図1(b)のペレット付きホ
ルダー参照)を得る。
Solid Electrolyte Layer Forming Step; (Formation of Chemically Polymerized Film) The formation of the first solid electrolyte layer 8 made of a conductive polymer of the chemically polymerized film 7 is carried out in the same manner as in the conventional manufacturing method. After the formation of the layer 5, as shown in FIG. 3 in the form of FIG. 1 (b), the first solid of the conductive polymer of the inorganic semiconductor film 6 or the chemically polymerized film 7 is formed on the dielectric layer 5 of the pellet 3. The electrolyte layer 8 is formed. First, a chemical polymerization film 7 made of a conductive polymer is formed on the pellet 3 by chemical polymerization, and this film serves as a base for the next electrolytic polymerization. At this time, a 60% iron dodecylbenzenesulfonate (Fe.DBS) methanol solution was used as the oxidant solution, and the pellets were immersed therein for 5 minutes and then dried. Then, an aqueous solution in which pyrrole was dissolved by 5% was used as a polymerization liquid, and the pellet 3 was immersed therein for 20 minutes and then dried. Then, the pellet 3 is washed with methanol to remove residual unreacted substances and by-products that do not contribute to the conductivity to form the chemical polymerization film 7, and the pellet 3 for carrying out the electrolytic polymerization (see FIG. 1 (b ), Refer to the holder with pellets)).

【0032】固体電解質層の形成工程;(電解重合膜
の形成) 前述の第1の矩形状のホルダー4に定間隔に複数のペレ
ット3が接続された形態で、第2の固体電解質層の電解
重合膜9の形成方法は、前述ので形成した化学重合膜
7の形成済みのペレット3を電解重合用溶液16に図1
(b)に示すように浸漬し,図1(a)及び拡大した図4に示
すように導電性を有する第2の矩形状のホルダー10
(例えば、ステンレスやアルミ等)に定間隔に接合された
複数の抵抗入り給電端子11にそれぞれに20Ωの抵抗
を持たせる。この抵抗値の範囲は10Ω〜1000Ωが
好ましく、10Ω未満では重合の制御が困難となり電解
重合膜形成のバラツキが大となり、1000Ωを越える
と重合電圧が高圧化してペレットへの特性的な悪影響
(例えば、LC特性の劣化など)はもとより作業での安
全性も問題となる。この抵抗入り給電端子11を化学重
合膜7の導電性高分子からなる第1の固体電解質層8が
形成されたペレット上部に0.1mm以下の隙間Sで図
1(c)及び拡大した図2に示すように第1の固体電解質
層8にそれぞれ離間し配置して、図1(d)に示す対向電
極13(−極)と第1の矩形状のホルダー4(+極)との間
に配接した定電流DC電源17にて給電する。この給電
は給電端子11を介して1ペレット当たり5mAの電流
となるように電源電流を設定して行う(例えば、1度に
10pに対して電解重合を行う場合、通電量の設定は5
0mAとなる)。給電端子11に抵抗12を組み込む方
法としては、例えば、市販のリード端子付き抵抗のリー
ド部分をSUS等の耐酸化性の強い材質に替える。この
状態で、図1(d)に示すような状態で対向電極13(−
極)と抵抗入り給電端子11が複数接続された第2の矩
形状のホルダー10(+極)との間に20分間通電するこ
とにより、図1(d)に示すように各ペレットに電解重合
膜9を形成する。この結果、ペレットの拡大断面図3及
び図6に示すようなペレット1に均一な電解重合膜9の
形成が得られる。一方、図11には従来の製造方法での
ペレットの電解重合後の状態を示しているような電解重
合膜の形成不足(23b)、電解重合膜の形成過剰(23a)
とは異なり、本発明の実施の形態の電解重合膜は明らか
に形状的にも均一した効果が判明できる。
Solid Electrolyte Layer Forming Step: (Formation of Electropolymerized Membrane) Electrolysis of the second solid electrolyte layer in a form in which a plurality of pellets 3 are connected to the first rectangular holder 4 at regular intervals. The method of forming the polymerized film 9 is as follows.
The second rectangular holder 10 having conductivity is immersed as shown in FIG. 1 (b), and has conductivity as shown in FIG.
A plurality of resistance-containing power supply terminals 11 joined at regular intervals (for example, stainless steel or aluminum) are provided with a resistance of 20Ω. The range of this resistance value is preferably 10 Ω to 1000 Ω, and if it is less than 10 Ω, the control of polymerization becomes difficult and the dispersion of the electropolymerized film becomes large, and if it exceeds 1000 Ω, the polymerization voltage becomes high and the pellet has a characteristic adverse effect (eg, , Deterioration of LC characteristics, etc., and also safety in work becomes a problem. This resistor-containing power supply terminal 11 is shown in FIG. 1 (c) and an enlarged view with a gap S of 0.1 mm or less on the upper part of the pellet of the chemically polymerized film 7 on which the first solid electrolyte layer 8 made of a conductive polymer is formed. As shown in FIG. 2, the first solid electrolyte layer 8 is spaced apart from each other, and is disposed between the counter electrode 13 (− pole) and the first rectangular holder 4 (+ pole) shown in FIG. 1 (d). Electric power is supplied by the constant current DC power source 17 arranged. This power supply is performed through the power supply terminal 11 by setting the power supply current so that the current per pellet is 5 mA (for example, when electrolytic polymerization is performed on 10 p at a time, the energization amount is set to 5).
0 mA). As a method of incorporating the resistor 12 into the power supply terminal 11, for example, the lead portion of a commercially available resistor with a lead terminal is replaced with a material having strong oxidation resistance such as SUS. In this state, the counter electrode 13 (-
(Pole) and a second rectangular holder 10 (+ pole) to which a plurality of power-supply terminals 11 with resistances are connected, by energizing for 20 minutes, electrolytic polymerization is performed on each pellet as shown in FIG. 1 (d). The film 9 is formed. As a result, a uniform electropolymerized film 9 can be formed on the pellet 1 as shown in the enlarged sectional views 3 and 6 of the pellet. On the other hand, FIG. 11 shows the state after the electropolymerization of the pellets by the conventional manufacturing method, such as insufficient formation of the electrolytic polymerization film (23b) and excessive formation of the electrolytic polymerization film (23a).
Unlike the above, the electrolytic polymerized film of the embodiment of the present invention can be clearly found to have a uniform shape.

【0033】再化成工程;前述ので電解重合膜14
を形成したペレット3に対して従来の製造方法と同様に
再化成を実施する。この時,再化成用溶液として0.0
1%リン酸を用い15Vの電圧を20分印加する。
Re-formation step: As described above, the electrolytically polymerized film 14
Reforming is performed on the formed pellets 3 in the same manner as in the conventional manufacturing method. At this time, it was 0.0
A voltage of 15 V is applied for 20 minutes using 1% phosphoric acid.

【0034】陰極層の形成工程;次に、陰極層の形成
は、前述の固体電解質層形成(電解重合膜)と再化成
を実施した後にペレット上に従来の従来の製造方法と同
様にグラファイトペースト,銀ペーストのような導電性
物質膜の陰極層を形成する。陰極層は固体電解質層と実
装用の外部端子(陰極)を接続させて、接続抵抗の減
少、コンデンサの外装時・実装時のストレス緩和等の作
用を併せ持つ。
Step of forming cathode layer: Next, the cathode layer is formed by carrying out the above solid electrolyte layer formation (electropolymerization film) and re-formation, and then forming a graphite paste on the pellets in the same manner as in the conventional manufacturing method. Then, a cathode layer of a conductive material film such as silver paste is formed. The cathode layer connects the solid electrolyte layer and the external terminal (cathode) for mounting, and also has the functions of reducing the connection resistance and relieving the stress when the capacitor is packaged and mounted.

【0035】外部端子形成・外装工程;最後に、前述
の陰極形成後のペレットに従来の製造方法と同様に金
属製の外部端子を接着し、更に耐湿性及びハンドリング
性向上などのためエポキシ樹脂等で外装を行い、タンタ
ル固体電解コンデンサを得る。
External terminal forming / exterior process: Finally, a metal external terminal is adhered to the above-mentioned pellet after the cathode is formed in the same manner as in the conventional manufacturing method, and further epoxy resin or the like is used for improving moisture resistance and handling property. External packaging is performed to obtain a tantalum solid electrolytic capacitor.

【0036】本発明では評価特性として、電解重合膜の
外観状態を目視する方法を採用した。これは同時に電解
重合を実施した複数のペレットに、明確に電解重合膜が
薄い部分や厚い部分または未形成の部分を外観で判定す
る方法である。
In the present invention, a method of visually observing the appearance state of the electrolytically polymerized film is adopted as the evaluation characteristic. This is a method in which a plurality of pellets that have been subjected to electrolytic polymerization at the same time are visually judged to have a thin portion, a thick portion, or a non-formed portion of the electrolytic polymerization film.

【0037】本発明の電解重合工法と従来の製造方法と
で比較したペレットの電解重合した外観状態を本図6及
び図11に示す。この従来の図11では電解重合膜23
の形成不足23b或いは形成過剰23aが見られ、一方、
本発明で製造した図6ではペレットの電解重合膜9の方
か明らかに均一に形成されペレット間のバラツキが少な
いことが判る。
FIG. 6 and FIG. 11 show the appearance states of the pellets obtained by the electropolymerization in which the electrolytic polymerization method of the present invention and the conventional manufacturing method are compared. In this prior art FIG.
Of under-formation 23b or over-formation 23a is observed, while
In FIG. 6 manufactured according to the present invention, it can be seen that the electrolytic polymerized film 9 of the pellets is clearly formed uniformly and the variation between the pellets is small.

【0038】本発明の製造方法で均一な電解重合膜が得
られる理由を、本発明の相関模式図5と従来の相関模式
図10とを比較した図にて説明する。図5は本発明の製
造方法を用いて2個のペレットIとペレットIIに同時
に抵抗入り給電端子11を介して給電し電解重合を実施
したときの、電解重合時間に対する電解重合膜の先端電
位(a)と電解重合電流(b)と電解重合電流積算値(c)との
相関を示すグラフである。また、図5(d)には電解重合
電流の方向と電解重合層の先端電位の位置を表す模式図
である。この図に関して基礎的な部分をまず補足説明す
ると、単位時間当たりの電解重合膜の形成速度は、重合
電流に比例する。また、重合電流は重合電位が上がるほ
ど大きくなり、従って重合膜の形成も早くなる。さら
に、電解重合膜の形成面積が増えるとその分通電のため
の面積が増えるため、電流も流れやすくなり、電解重合
膜の形成が加速度的に早くなっていく。最終的な電解重
合膜の形成量は、通電量の積算値にほぼ比例する。よっ
て、本発明の図5の場合、図5(b)に示すペレットIの
重合電流が上がると給電端子の持つ抵抗のため図5(a)
に示す重合電位が低下して電解重合膜の形成を遅くし、
逆に図5(b)に示すペレットIIの重合電流が下がると
図5(a)に示す重合電位が上昇するため電解重合膜の形
成が早められる。この動作が電解重合時間の経過に伴い
図5(c)に示すように各ペレット間の積算電流量はほぼ
均一となって、図6に示すように結果的にペレット間の
電解重合膜9の形成は均一となる。
The reason why a uniform electrolytically polymerized film can be obtained by the production method of the present invention will be explained with reference to a diagram comparing the correlation schematic diagram 5 of the present invention and the conventional correlation schematic diagram 10. FIG. 5 shows the tip potential of the electropolymerized film with respect to the electropolymerization time when two pellets I and two pellets II are simultaneously fed with electric power through the resistive-feeding terminal 11 to carry out electrolytic polymerization using the production method of the present invention. 3 is a graph showing the correlation between a), electrolytic polymerization current (b), and integrated value of electrolytic polymerization current (c). Further, FIG. 5D is a schematic diagram showing the direction of the electrolytic polymerization current and the position of the tip potential of the electrolytic polymerization layer. The supplementary explanation of the basic part of this figure will be made first. The rate of formation of an electropolymerized film per unit time is proportional to the polymerization current. Further, the polymerization current increases as the polymerization potential increases, so that the formation of the polymerized film becomes faster. Furthermore, as the area where the electropolymerized film is formed increases, the area for energization increases accordingly, so that the current easily flows, and the formation of the electropolymerized film accelerates. The final formation amount of the electrolytically polymerized film is almost proportional to the integrated value of the energization amount. Therefore, in the case of FIG. 5 of the present invention, when the polymerization current of the pellet I shown in FIG.
The polymerization potential shown in 1 decreases to slow the formation of the electrolytic polymerization film,
Conversely, when the polymerization current of the pellet II shown in FIG. 5 (b) decreases, the polymerization potential shown in FIG. 5 (a) rises, so that the formation of the electrolytic polymerization film is accelerated. This operation is such that as the electropolymerization time elapses, the integrated current amount between the pellets becomes almost uniform as shown in FIG. 5 (c), and as a result, as shown in FIG. The formation is uniform.

【0039】一方、図10は、図8の図9で示したよう
に給電端子20を介して給電する従来の製造方法を用い
て2個のペレットIとペレットIIに同時に電解重合を
実施したときの、電解重合時間に対する電解重合膜の先
端電位(図10(a))と電解重合電流(図10(b))と電解重
合電流積算値(図10(c))との相関を示すグラフであ
り、また、図10(d)には電解重合電流の方向と電解重
合層の先端電位の位置を表す模式図である。この場合は
重合電位が各ペレットでほぼ同一になるため(図10
(a))、電解重合膜が早く形成した方により多くの電流が
流れることになり(図10(b))、図10(c)に示すように
ペレットI、ペレットIIの積算電流量に大きな差が生
じるため、電解重合膜の形成状態も大きく異なることに
なり、図11に示すように電解重合形成不足23b、電
解重合膜の形成過剰23aのようなものが発生しバラツ
キのある電解重合膜23となってしまう。
On the other hand, FIG. 10 shows the case where two pellets I and II are simultaneously subjected to electrolytic polymerization by using the conventional manufacturing method in which power is supplied through the power supply terminal 20 as shown in FIG. 9 of FIG. Is a graph showing the correlation between the tip potential of the electropolymerized film (Fig. 10 (a)), the electropolymerization current (Fig. 10 (b)) and the integrated value of the electropolymerization current (Fig. 10 (c)) with respect to the electropolymerization time. FIG. 10 (d) is a schematic diagram showing the direction of the electrolytic polymerization current and the position of the tip potential of the electrolytic polymerization layer. In this case, the polymerization potential is almost the same for each pellet (Fig. 10).
(a)), the faster the electropolymerized film is formed, the more current will flow (FIG. 10 (b)). As shown in FIG. 10 (c), the integrated current amount of pellet I and pellet II is large. Because of the difference, the state of formation of the electropolymerized film is also greatly different, and as shown in FIG. 11, the electrolytic polymerized film is insufficiently formed 23b, and the electrolytic polymerized film is excessively formed 23a. It will be 23.

【0040】次に本発明の第2の実施の形態の固体電解
コンデンサの製造方法について説明する。本発明では、
電解重合用の下地として無機半導体膜4である二酸化マ
ンガンを用いているが、それ以外の動作・効果等は、第
1の実施の形態と同様の方法である。多孔質陽極体の
形成〜誘電体層(Ta2O5層)の形成は、第1の実施
の形態と同じである。固体電解質層の形成(化学重合
膜の形成)は、第1の実施の形態と同じであるが、本第
3の実施の形態では電解重合用の下地として二酸化マン
ガン層を形成した。二酸化マンガン層は硝酸マンガン5
0%水溶液にペレットを浸漬し、それを250±50℃
の温度で熱処理することにより形成する。固体電解質
層の電解重合膜の形成工程、再化成工程、陰極層の
形成工程、外部端子形成・外装工程は、第1の実施の
形態と同じである。第1の実施の形態の導電性高分子の
化学重合膜7に対し、第2の実施の形態の無機半導体の
二酸化マンガン層では導電性に関し多少悪くなるが、電
解重合膜の形成状態としては第1の実施の形態と何ら変
わらなく均一に形成できる。
Next, a method of manufacturing the solid electrolytic capacitor of the second embodiment of the present invention will be described. In the present invention,
Although manganese dioxide, which is the inorganic semiconductor film 4, is used as a base for electrolytic polymerization, the other operations and effects are the same as those in the first embodiment. The formation of the porous anode body to the formation of the dielectric layer (Ta2O5 layer) is the same as in the first embodiment. The formation of the solid electrolyte layer (formation of the chemically polymerized film) is the same as in the first embodiment, but in the third embodiment, the manganese dioxide layer is formed as the base for electrolytic polymerization. The manganese dioxide layer is manganese nitrate 5
Immerse the pellet in a 0% aqueous solution and put it at 250 ± 50 ° C.
It is formed by heat treatment at the temperature of. The steps of forming the electrolytically polymerized film of the solid electrolyte layer, the re-formation step, the step of forming the cathode layer, and the step of forming / external terminals are the same as those in the first embodiment. In contrast to the conductive polymer chemically polymerized film 7 of the first embodiment, the manganese dioxide layer of the inorganic semiconductor of the second embodiment is somewhat inferior in terms of conductivity. It can be formed uniformly without any difference from the first embodiment.

【0041】次に本発明の第3の実施の形態の固体電解
コンデンサの製造方法について、図7を参照して詳細に
説明する。多孔質陽極体の形成工程〜誘電体層(T
a2O5層)、固体電解質層の形成(化学重合膜の形成)
は、第1、第2の実施の形態と同じである。固体電解
質層の電解重合膜の形成工程は、用いる電解重合用溶
液、通電電流量、通電時間等は第1、第2の実施の形態
と同じであるが、本実施の形態では、図7に示すような
数個の給電端子を導電性を有する第3の矩形状のホルダ
ー15に定間隔に接続し1ブロックに形成して、第3の
ホルダーのブロック毎に1つの所定の抵抗12を接続し
て電気的に共通化し、接続した給電端子を接続した多孔
質陽極体2の第1の固体電解質層8にそれぞれ離間し配
置して、第3のホルダー15のブロック単位毎に給電し
て電解重合するブロック型抵抗入り給電端子14を用い
て、図7に示すような給電端子は、給電端子の各々に抵
抗を持たせる代わりに、複数の給電端子を1ブロックと
して各ブロックに対して1つの抵抗12を入れるように
してブロック単位毎に給電して電解重合を行う。次の
再化成工程、陰極層の形成工程、外部端子形成・外
装工程は、第1、第2の実施の形態と同じである。本実
施の形態の図7のブロック型抵抗入り給電端子14で
は、1ブロック内での電解重合膜の形成バラツキは抑制
できないが、従来の製造方法よりは電解重合膜形成の許
容範囲でのバラツキ抑制が図れ、また、給電端子部分の
構造が簡単で生産効率向上する長所がある。
Next, a method of manufacturing the solid electrolytic capacitor according to the third embodiment of the present invention will be described in detail with reference to FIG. Porous anode body forming process-dielectric layer (T
a2O5 layer), formation of solid electrolyte layer (formation of chemically polymerized film)
Is the same as in the first and second embodiments. In the step of forming the electrolytic polymerized film of the solid electrolyte layer, the electrolytic polymerization solution to be used, the amount of energizing current, the energizing time, etc. are the same as those in the first and second embodiments, but in the present embodiment, as shown in FIG. Several power supply terminals as shown are connected to a third rectangular holder 15 having conductivity at regular intervals to form one block, and one predetermined resistor 12 is connected to each block of the third holder. Then, they are electrically commonized, and are separately arranged in the first solid electrolyte layer 8 of the porous anode body 2 to which the connected power supply terminals are connected, and power is supplied to each block unit of the third holder 15 for electrolysis. By using the block-type resistor-supplied power supply terminal 14 that overlaps, a power supply terminal as shown in FIG. 7 has a plurality of power supply terminals as one block instead of having a resistance in each of the power supply terminals. Block the resistor 12 Performing electrolytic polymerization by feeding for each unit. The subsequent re-forming step, cathode layer forming step, and external terminal forming / exterior step are the same as those in the first and second embodiments. In the block-type resistor-containing power supply terminal 14 of FIG. 7 of the present embodiment, the variation in the formation of the electropolymerized film in one block cannot be suppressed, but the variation in the allowable range of the electropolymerized film formation is suppressed as compared with the conventional manufacturing method. In addition, the structure of the power supply terminal is simple and the production efficiency is improved.

【0042】[0042]

【発明の効果】以上説明したように、本発明では固体電
解コンデンサの無機半導体膜または化学重合膜の導電性
高分子膜からなる第1の固体電解質層の表面に電解重合
膜を形成するに際し、電解重合膜を形成する給電を、所
定の抵抗を有する給電端子或いは給電端子以外の給電配
線回路陽極側の一部に所定の抵抗を用いて第1の固体電
解質層に離間し配置して行う。また、複数の多孔質陽極
体を第1のホルダーに接続し、複数の所定の抵抗を有す
る給電端子を導電性を有する第2のホルダーに接続し形
成して、接続した給電端子を接続した多孔質陽極体の第
1の固体電解質層にそれぞれ離間し配置して、第2のホ
ルダーの単位毎に電解重合膜を形成する給電を行うこと
により、給電端子が接触していないためペレット表面
(誘電体層)の損傷がない。また、各ペレット間の積算
電流量はほぼ均一となり、ペレット間の電解重合膜の形
成は均一となり、固体電解コンデンサのESR特性およ
びバラツキも小さく品質の安定化ができ、且つ給電方式
も簡単で量産方式として採用し易く生産性に優れた固体
電解コンデンサを製造できる有利な効果を奏する。
As described above, according to the present invention, when the electrolytic polymerized film is formed on the surface of the first solid electrolyte layer made of the conductive polymer film of the inorganic semiconductor film or the chemically polymerized film of the solid electrolytic capacitor, The power supply for forming the electrolytic polymerized film is performed by arranging the power supply terminal having a predetermined resistance or a part of the side of the anode of the power supply wiring circuit other than the power supply terminal with a predetermined resistance so as to be spaced apart from the first solid electrolyte layer. In addition, a plurality of porous anode bodies are connected to a first holder, a plurality of power supply terminals having a predetermined resistance are connected to a second holder having conductivity, and formed, and the connected power supply terminals are connected to a porous body. Since the power supply terminals are not in contact with each other by arranging them separately in the first solid electrolyte layer of the porous anode body and forming an electropolymerized film for each unit of the second holder, the pellet surface (dielectric There is no damage to the body layer). In addition, the cumulative amount of current between pellets is almost uniform, the formation of electrolytic polymerized film between pellets is uniform, the ESR characteristics and variations of solid electrolytic capacitors are small, and the quality can be stabilized. This has the advantageous effect of being able to manufacture a solid electrolytic capacitor that is easy to adopt as a system and has excellent productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1、第2の実施の形態の固体電解コ
ンデンサの製造方法の電解重合膜の形成を説明する概略
図である。
FIG. 1 is a schematic diagram illustrating formation of an electrolytically polymerized film in a method for manufacturing a solid electrolytic capacitor according to first and second embodiments of the present invention.

【図2】本発明の図1(c)の抵抗入り給電端子とペレッ
トとの位置関係の拡大図である。
FIG. 2 is an enlarged view of the positional relationship between the power feed terminal with resistance and the pellet of FIG. 1 (c) of the present invention.

【図3】本発明の図1(d)の電解重合膜の成形後のペレッ
トの部分拡大図である。
FIG. 3 is a partially enlarged view of pellets after molding of the electropolymerized film of FIG. 1 (d) of the present invention.

【図4】本発明の図1(a)の矩形状のホルダに抵抗入り給
電端子を接合した拡大図である。
FIG. 4 is an enlarged view of the rectangular holder of FIG. 1 (a) according to the present invention, in which a power supply terminal with a resistance is joined.

【図5】本発明の電解重合時間に対する電解重合膜の先
端電位と電解重合電流と電解重合電流積算値との相関模
式図である。
FIG. 5 is a schematic diagram showing the correlation between the tip potential of the electrolytic polymerization film, the electrolytic polymerization current, and the integrated value of the electrolytic polymerization current with respect to the electrolytic polymerization time of the present invention.

【図6】本発明の電解重合膜の形成後の状態図である。FIG. 6 is a state diagram after formation of the electropolymerized film of the present invention.

【図7】本発明の第3の実施の形態の固体電解コンデン
サの製造方法の第3の矩形状のホルダー単位毎に抵抗を
介して給電するブロック型抵抗入り給電端子図である。
FIG. 7 is a block-type resistor-containing feed terminal diagram for feeding power via a resistor for each third rectangular holder unit in the method for manufacturing a solid electrolytic capacitor according to the third embodiment of the present invention.

【図8】従来における固体電解コンデンサの製造方法の
電解重合膜の形成を説明する概略図である。
FIG. 8 is a schematic diagram illustrating formation of an electrolytically polymerized film in a conventional method for manufacturing a solid electrolytic capacitor.

【図9】従来における図8(c)の給電端子とペレットと
の位置関係の拡大図である。
FIG. 9 is an enlarged view of the positional relationship between the power supply terminal and the pellet of FIG. 8 (c) in the related art.

【図10】従来における電解重合時間に対する電解重合
膜の先端電位と電解重合電流と電解重合電流積算値との
相関模式図である。
FIG. 10 is a schematic diagram showing the correlation between the tip potential of the electrolytic polymerization film, the electrolytic polymerization current, and the integrated value of the electrolytic polymerization current with respect to the conventional electrolytic polymerization time.

【図11】従来における電解重合膜の形成後の状態図で
ある。
FIG. 11 is a state diagram after formation of a conventional electrolytically polymerized film.

【図12】従来における給電端子の特徴を説明する説明
図(特開平05−283289号公報)
FIG. 12 is an explanatory diagram for explaining characteristics of a conventional power supply terminal (Japanese Patent Laid-Open No. 05-283289).

【図13】従来における給電端子の特徴を説明する説明
図(特開2001−102257号公報)
FIG. 13 is an explanatory diagram for explaining the characteristics of a conventional power supply terminal (Japanese Patent Laid-Open No. 2001-102257).

【符号の説明】[Explanation of symbols]

1 陽極リード 2 多孔質陽極体 3 ペレット 4 第1の矩形状のホルダー 5 誘電体層 6 無機半導体層(第1の固体電解質層) 7 化学重合膜(第1の固体電解質層) 8 第1の固体電解質層(無機半導体膜、化学重合
膜) 9 第2の固体電解質層(電解重合膜) 10 第2の矩形状のホルダー 11 抵抗入り給電端子 12 抵抗 13 対向電極 14 ブロック型抵抗入り給電端子 15 第3の矩形状のホルダー 16 電解重合溶液 17 定電流DC電源 20 給電端子 21 第4の矩形状のホルダー 22 接触面を有する給電端子 23 電解重合膜(従来) 24 軟質給電端子 25 DC電源
1 Anode Lead 2 Porous Anode Body 3 Pellet 4 First Rectangular Holder 5 Dielectric Layer 6 Inorganic Semiconductor Layer (First Solid Electrolyte Layer) 7 Chemical Polymerization Membrane (First Solid Electrolyte Layer) 8 First Solid electrolyte layer (inorganic semiconductor film, chemically polymerized film) 9 Second solid electrolyte layer (electropolymerized film) 10 Second rectangular holder 11 Resistive power feeding terminal 12 Resistor 13 Counter electrode 14 Block type resistive power feeding terminal 15 Third rectangular holder 16 Electrolytic polymerization solution 17 Constant current DC power supply 20 Power supply terminal 21 Fourth rectangular holder 22 Power supply terminal 23 having a contact surface Electrolytic polymerized film (conventional) 24 Soft power supply terminal 25 DC power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属粉末の焼結体を多孔質陽極体
とし、この表面に誘電体層、無機半導体膜または化学重
合膜の導電性高分子からなる第1の固体電解質層、電解
重合膜の導電性高分子膜からなる第2の固体電解質層、
陰極層を順次形成し、次いで前記多孔質陽極体および陰
極層に外部端子を接続した後、樹脂外装して製造する固
体電解コンデンサの製造方法において、 前記電解重合膜を形成する給電を、所定の抵抗を有する
給電端子を前記第1の固体電解質層に離間し配置して行
うことを特徴とする固体電解コンデンサの製造方法。
1. A sintered body of valve metal powder is used as a porous anode body, and a dielectric layer, a first solid electrolyte layer made of a conductive polymer such as an inorganic semiconductor film or a chemically polymerized film, and electrolytic polymerization are formed on the surface thereof. A second solid electrolyte layer comprising a conductive polymer membrane of the membrane,
In the method for producing a solid electrolytic capacitor, in which a cathode layer is sequentially formed, and then external terminals are connected to the porous anode body and the cathode layer, and a resin coating is applied, a power supply for forming the electrolytic polymerized film is set to a predetermined value. A method for producing a solid electrolytic capacitor, characterized in that a power supply terminal having a resistance is arranged separately from the first solid electrolyte layer.
【請求項2】 前記電解重合膜を形成する給電を、前記
給電端子以外の給電配線回路陽極側の一部に所定の抵抗
を用いて行うことを特徴とする請求項1に記載の固体電
解コンデンサの製造方法。
2. The solid electrolytic capacitor according to claim 1, wherein power supply for forming the electrolytically polymerized film is performed by using a predetermined resistor on a part of the anode side of the power supply wiring circuit other than the power supply terminal. Manufacturing method.
【請求項3】 前記給電端子及び給電端子以外の給電配
線回路陽極側の一部に用いた抵抗の値が、10Ω〜10
00Ωであることを特徴とする請求項1または請求項2
に記載の固体電解コンデンサの製造方法。
3. The resistance value used for the power supply terminal and a part of the power supply wiring circuit anode side other than the power supply terminal is 10Ω to 10Ω.
It is 00 Ω, Claim 1 or Claim 2 characterized by the above-mentioned.
A method for manufacturing a solid electrolytic capacitor as described in.
【請求項4】 複数の前記多孔質陽極体を第1のホルダ
ーに接続し、複数の前記所定の抵抗を有する給電端子を
導電性を有する第2のホルダーに接続し形成して、前記
接続した給電端子を前記接続した多孔質陽極体の第1の
固体電解質層にそれぞれ離間し配置して、前記第2のホ
ルダーの単位毎に前記電解重合膜を形成する給電を行う
ことを特徴とする請求項1または請求項3に記載の固体
電解コンデンサの製造方法。
4. A plurality of the porous anode bodies are connected to a first holder, and a plurality of power supply terminals having the predetermined resistance are connected to a second holder having conductivity to form the connection. A power supply terminal is separately arranged on the first solid electrolyte layer of the connected porous anode body, and power supply for forming the electropolymerized film is performed for each unit of the second holder. Item 4. A method for manufacturing a solid electrolytic capacitor according to Item 1 or 3.
【請求項5】 複数の前記多孔質陽極体を第1のホルダ
ーに接続し、数個の給電端子を導電性を有する第3のホ
ルダーに接続すると共に、前記第3のホルダー毎に1つ
の所定の抵抗を接続し形成して、前記接続した給電端子
を前記接続した多孔質陽極体の第1の固体電解質層にそ
れぞれ離間し配置して、前記第3のホルダー単位毎に前
記接続した抵抗を介して前記電解重合膜を形成する給電
を行うことを特徴とする請求項1または請求項3に記載
の固体電解コンデンサの製造方法。
5. A plurality of the porous anode bodies are connected to a first holder, several power supply terminals are connected to a third holder having conductivity, and one predetermined holder is provided for each third holder. And connecting the connected power supply terminals to the first solid electrolyte layer of the connected porous anode body so as to be spaced apart from each other, and connecting the connected resistance to each of the third holder units. The method for producing a solid electrolytic capacitor according to claim 1 or 3, characterized in that power is supplied to form the electrolytically polymerized film through it.
JP2002076317A 2002-03-19 2002-03-19 Method of manufacturing solid electrolytic capacitor Pending JP2003272954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076317A JP2003272954A (en) 2002-03-19 2002-03-19 Method of manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076317A JP2003272954A (en) 2002-03-19 2002-03-19 Method of manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2003272954A true JP2003272954A (en) 2003-09-26

Family

ID=29205126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076317A Pending JP2003272954A (en) 2002-03-19 2002-03-19 Method of manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2003272954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006360A3 (en) * 2003-07-10 2005-03-31 Showa Denko Kk Jig for producing capacitor, production method for capacitor and capacitor
JP2006228679A (en) * 2005-02-21 2006-08-31 Nec Tokin Corp Conductive polymer composition and solid electrolytic capacitor using the same
EP2618351A4 (en) * 2010-09-17 2017-01-18 Showa Denko K.K. Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
EP1865519A4 (en) * 2005-03-24 2018-03-14 Showa Denko K.K. Solid-electrolyte capacitor manufacturing device and manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006360A3 (en) * 2003-07-10 2005-03-31 Showa Denko Kk Jig for producing capacitor, production method for capacitor and capacitor
US7819928B2 (en) 2003-07-10 2010-10-26 Showa Denko K.K. Jig for producing capacitor, production method for capacitor and capacitor
JP2006228679A (en) * 2005-02-21 2006-08-31 Nec Tokin Corp Conductive polymer composition and solid electrolytic capacitor using the same
EP1865519A4 (en) * 2005-03-24 2018-03-14 Showa Denko K.K. Solid-electrolyte capacitor manufacturing device and manufacturing method
EP2618351A4 (en) * 2010-09-17 2017-01-18 Showa Denko K.K. Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element

Similar Documents

Publication Publication Date Title
CN100557743C (en) Solid electrolytic capacitor and manufacturing method thereof
US20090027834A1 (en) Solid electrolyte capacitor
WO2010107011A1 (en) Solid electrolytic capacitor element, method for manufacturing same, and jig for manufacturing same
TWI326097B (en)
KR101098797B1 (en) Jig for producing capacitor production method for capacitor and capacitor
EP0408913A1 (en) Method for forming a conductive film on a surface of a conductive body caoted with an insulating film
CN103109334B (en) Solid electrolytic capacitor element, its manufacturing method and its manufacturing tool
JP2003272954A (en) Method of manufacturing solid electrolytic capacitor
WO2007061034A1 (en) Capacitor element manufacturing jig and capacitor element manufacturing method
JP2003217980A (en) Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR
US7855869B2 (en) Solid electrolytic capacitor
US7808773B2 (en) Electronic part and process for producing the same
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
TWI417917B (en) Manufacturing method for manufacturing capacitor element, manufacturing method of capacitor element, capacitor element, and capacitor
TWI399772B (en) Capacitor manufacturing methods, capacitors, electronic circuits and electronic machines
US20060084768A1 (en) Method and apparatus for producing conductive polymer
JP2001102257A (en) Method for manufacturing solid electrolytic capacitor
CN115132498B (en) Electrolytic capacitor and method for manufacturing the same
TWI399773B (en) Chip solid electrolytic capacitor and its manufacturing method
JP3748091B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000353641A (en) Manufacture of solid electronic element
US3291709A (en) Dry method of forming a silver chloride electrode having silver filaments from surface to surface
TWI826576B (en) Solid electrolytic capacitor, module comprising the same and method for forming the same
JP2004228439A (en) Method for manufacturing solid electrolytic capacitor
JPH02283010A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040618

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A02