[go: up one dir, main page]

JP2003277930A - Titanium complex-containing solution as raw material for organometallic chemical vapor deposition and titanium-containg thin film produced by using the same - Google Patents

Titanium complex-containing solution as raw material for organometallic chemical vapor deposition and titanium-containg thin film produced by using the same

Info

Publication number
JP2003277930A
JP2003277930A JP2002082781A JP2002082781A JP2003277930A JP 2003277930 A JP2003277930 A JP 2003277930A JP 2002082781 A JP2002082781 A JP 2002082781A JP 2002082781 A JP2002082781 A JP 2002082781A JP 2003277930 A JP2003277930 A JP 2003277930A
Authority
JP
Japan
Prior art keywords
raw material
solution raw
titanium
thin film
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002082781A
Other languages
Japanese (ja)
Other versions
JP3894016B2 (en
Inventor
Atsushi Sai
篤 齋
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002082781A priority Critical patent/JP3894016B2/en
Publication of JP2003277930A publication Critical patent/JP2003277930A/en
Application granted granted Critical
Publication of JP3894016B2 publication Critical patent/JP3894016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solution serving as a raw material for organometallic chemical vapor deposition with which uniform, stable vaporization can be performed and a desired titanium-containing thin film of high purity can be obtained at a high film deposition rate, and to provide a titanium-containing thin film which has excellent barrier properties as the base of a copper thin film. <P>SOLUTION: The solution as the raw material for an organometallic chemical vapor deposition method is obtained by dissolving a titanium complex expressed by the formula (1) into an organic solvent. In the formula (1), R is a 1 to 4C normal chain or branched alkyl group. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の配線
に用いられる銅(Cu)薄膜を形成加工する際の下地バ
リアとしてのチタン含有薄膜を形成するための溶液原料
に関する。更に詳しくは有機金属化学蒸着(Metal Orga
nic Chemical Vapor Deposition、以下、MOCVDと
いう。)法によりチタン含有薄膜を形成するためのチタ
ン錯体を含む溶液原料及びこれから作られたチタン含有
薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solution raw material for forming a titanium-containing thin film as a base barrier when forming and processing a copper (Cu) thin film used for wiring of a semiconductor device. For more details, see Metal Orga
nic Chemical Vapor Deposition, hereinafter referred to as MOCVD. The present invention relates to a solution raw material containing a titanium complex for forming a titanium-containing thin film by the method) and a titanium-containing thin film made from the same.

【0002】[0002]

【従来の技術】銅及び銅系合金は、高い導電性、エレク
トロマイグレーション耐性からLSIの配線材料として
応用されている。銅はシリコン酸化膜を通じて基板内に
簡単に拡散しトランジスタ素子等の電気特性に悪影響を
及ぼす問題があるため、銅により配線を行う際には、銅
薄膜とシリコン酸化膜の間に下地バリアメタル薄膜を形
成し、銅の拡散を防止している。
2. Description of the Related Art Copper and copper-based alloys are used as wiring materials for LSIs because of their high conductivity and resistance to electromigration. Since copper easily diffuses into the substrate through the silicon oxide film and adversely affects the electrical characteristics of transistor elements, etc., when wiring is performed with copper, a barrier metal thin film between the copper thin film and the silicon oxide film is used as a base. To prevent the diffusion of copper.

【0003】この種の下地バリアメタル薄膜として熱的
に安定な高融点金属の窒化物である窒化チタン膜が知ら
れている。これまでMOCVD法で窒化チタン膜を作製
する報告例は少なく、最近になってテトラキスジメチル
アミノチタン(以下、TDMATという。)錯体やテト
ラキスジエチルアミノチタン(以下、TDEATとい
う。)を用いて窒化チタン膜を作製する試みがなされて
いる。
A titanium nitride film, which is a thermally stable nitride of a refractory metal, is known as this type of underlying barrier metal thin film. Up to now, there have been few reports of producing a titanium nitride film by the MOCVD method, and recently, a titanium nitride film is formed using a tetrakisdimethylaminotitanium (hereinafter referred to as TDMAT) complex or tetrakisdiethylaminotitanium (hereinafter referred to as TDEAT). Attempts have been made to make it.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記溶液原料
で窒化チタン膜をMOCVD法で作製すると、原料に含
まれる化合物が熱的安定性に乏しく、成膜が進行するに
従って、気化器内部で分解が加速度的に起こり、膜を堆
積するはずの成膜室では分解した配位子に起因する有機
物のみが気化して他の有機物の気化を妨げ、不均一で安
定しない原料の供給が行われていた。このため従来の窒
化チタン膜形成用の溶液原料では、成膜速度が小さく、
また堆積状態(as deposited)で膜中に炭素や酸素がそ
れぞれ30atm%以上残留し、所望の窒化チタン膜を
高純度で作製することが困難であった。また、この形成
した窒化チタン膜の上に銅薄膜を施した場合、窒化チタ
ン膜と銅との密着性が悪く、極めて剥離し易い問題もあ
った。
However, when a titanium nitride film is formed by the MOCVD method using the above solution raw material, the compound contained in the raw material has poor thermal stability and decomposes inside the vaporizer as the film formation progresses. Occurs at an accelerating rate, and in the film deposition chamber where the film should be deposited, only the organic substances resulting from the decomposed ligands vaporize and prevent the vaporization of other organic substances, and non-uniform and unstable raw materials are supplied. It was Therefore, with the conventional solution raw material for forming the titanium nitride film, the film formation rate is low,
Further, carbon and oxygen remained in the film in an as-deposited state (30 atm% or more), which made it difficult to produce a desired titanium nitride film with high purity. Further, when a copper thin film is formed on the formed titanium nitride film, there is a problem that the titanium nitride film and the copper have poor adhesion and are very easily peeled off.

【0005】本発明の目的は、均一で安定した気化が行
われ、高い成膜速度で高純度の所望のチタン含有薄膜が
得られる有機金属化学蒸着用の溶液原料を提供すること
にある。本発明の別の目的は、銅薄膜の下地としてその
バリア性に優れた高純度のチタン含有薄膜を提供するこ
とにある。
An object of the present invention is to provide a solution raw material for metal organic chemical vapor deposition, which is capable of uniformly and stably vaporizing and obtaining a desired titanium-containing thin film of high purity at a high film forming rate. Another object of the present invention is to provide a high-purity titanium-containing thin film having excellent barrier properties as a base of a copper thin film.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
次の式(1)で示されるチタン錯体を有機溶媒に溶解し
たことを特徴とする有機金属化学蒸着法用溶液原料であ
る。
The invention according to claim 1 is
A solution raw material for a metal organic chemical vapor deposition method, characterized in that a titanium complex represented by the following formula (1) is dissolved in an organic solvent.

【0007】[0007]

【化2】 但し、Rは炭素数1〜4の直鎖又は分岐状アルキル基で
ある。
[Chemical 2] However, R is a linear or branched alkyl group having 1 to 4 carbon atoms.

【0008】請求項2に係る発明は、請求項1記載の式
(1)で示されるチタン錯体のRがメチル基、エチル基
又はt-ブチル基である請求項1記載の溶液原料であ
る。請求項1又は2に係る溶液原料をMOCVD法によ
り気相成長させると、均一で安定した気化が行われ、高
い成膜速度で高純度の所望のチタン含有薄膜が得られ
る。
The invention according to claim 2 is the solution raw material according to claim 1, wherein R of the titanium complex represented by the formula (1) according to claim 1 is a methyl group, an ethyl group or a t-butyl group. When the solution raw material according to claim 1 or 2 is vapor-phase grown by the MOCVD method, uniform and stable vaporization is performed, and a desired high-purity titanium-containing thin film can be obtained at a high film formation rate.

【0009】請求項3に係る発明は、請求項1に係る発
明であって、有機溶媒が飽和炭化水素及びエステル化合
物からなる群より選ばれた1種又は2種以上の化合物で
ある溶液原料である。請求項4に係る発明は、請求項3
に係る発明であって、飽和炭化水素が、炭素数6〜10
の直鎖状又は分岐状炭化水素である溶液原料である。請
求項5に係る発明は、請求項3又は4に係る発明であっ
て、飽和炭化水素が、ヘキサン、シクロヘキサン、n-オ
クタン、イソオクタン、n-デカン及びn-ドデカンからな
る群より選ばれた1種又は2種以上の化合物である溶液
原料である。請求項6に係る発明は、請求項3に係る発
明であって、エステル化合物が、酢酸メチル、酢酸エチ
ル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル及び酢
酸イソペンチルからなる群より選ばれた1種又は2種以
上の化合物である溶液原料である。
The invention according to claim 3 is the invention according to claim 1, which is a solution raw material in which the organic solvent is one or more compounds selected from the group consisting of saturated hydrocarbons and ester compounds. is there. The invention according to claim 4 is claim 3
The invention according to claim 1, wherein the saturated hydrocarbon has 6 to 10 carbon atoms.
Is a solution raw material which is a linear or branched hydrocarbon. The invention according to claim 5 is the invention according to claim 3 or 4, wherein the saturated hydrocarbon is selected from the group consisting of hexane, cyclohexane, n-octane, isooctane, n-decane and n-dodecane. It is a solution raw material which is one kind or two or more kinds of compounds. The invention according to claim 6 is the invention according to claim 3, wherein the ester compound is one or two selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate and isopentyl acetate. It is a solution raw material that is a compound of one or more kinds.

【0010】請求項7に係る発明は、請求項1ないし6
いずれか記載の溶液原料を用いて有機金属化学蒸着法に
より作製されたチタン含有薄膜である。請求項1ないし
6いずれか記載の溶液原料を用いて作製されたチタン含
有薄膜は、銅薄膜の下地としてそのバリア性に優れ、高
純度である特長を有する。
The invention according to claim 7 relates to claims 1 to 6.
It is a titanium-containing thin film produced by a metal organic chemical vapor deposition method using any one of the solution raw materials. The titanium-containing thin film produced by using the solution raw material according to any one of claims 1 to 6 has an excellent barrier property as a base of a copper thin film and has a feature of high purity.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。本発明の溶液原料は、上記式(1)で示されるチタ
ン錯体を有機溶媒に溶解したことを特徴とする有機金属
化学蒸着法用溶液原料である。このチタン錯体と有機溶
媒の配合比は任意であり、その使用用途や、有機溶媒の
種類によって適宜調製することが好ましい。本発明の有
機溶媒は、飽和炭化水素及びエステル化合物からなる群
より選ばれた1種又は2種以上の化合物が使用される。
飽和炭化水素は、炭素数6〜10の直鎖状又は分岐状炭
化水素である。具体的には、ヘキサン、シクロヘキサ
ン、n-オクタン、イソオクタン、n-デカン及びn-ドデカ
ンからなる群より選ばれた1種又は2種以上の化合物が
挙げられる。また、エステル化合物は、酢酸メチル、酢
酸エチル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル
及び酢酸イソペンチルからなる群より選ばれた1種又は
2種以上の化合物が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. The solution raw material of the present invention is a solution raw material for a metal organic chemical vapor deposition method characterized by dissolving the titanium complex represented by the above formula (1) in an organic solvent. The compounding ratio of the titanium complex and the organic solvent is arbitrary, and it is preferable that the titanium complex and the organic solvent are appropriately adjusted depending on the intended use and the type of the organic solvent. As the organic solvent of the present invention, one or more compounds selected from the group consisting of saturated hydrocarbons and ester compounds are used.
The saturated hydrocarbon is a linear or branched hydrocarbon having 6 to 10 carbon atoms. Specific examples include one or more compounds selected from the group consisting of hexane, cyclohexane, n-octane, isooctane, n-decane and n-dodecane. Examples of the ester compound include one or more compounds selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate and isopentyl acetate.

【0012】チタン錯体は、前述した式(1)を一般式
とし、Rがメチル基、エチル基又はt-ブチル基が好ま
しい。具体的には、Rがメチル基の場合は、その構造式
は(H 3C)2Ti(C55)2(以下、DMTiCp2とい
う。)であり、Rがエチル基の場合は、その構造式は
(H52)2Ti(C55)2(以下、DETiCp2とい
う。)であり、Rがt-ブチル基の場合は、その構造式
は((H3C)3C)2Ti(C55) 2(以下、DBTiCp2
という。)である。
The titanium complex can be obtained by using the above formula (1) as a general formula.
And R is preferably a methyl group, an ethyl group or a t-butyl group.
Good Specifically, when R is a methyl group, its structural formula is
Is (H 3C)2Ti (CFiveHFive)2(Hereafter, DMTiCp2Toi
U ) And R is an ethyl group, the structural formula is
(HFiveC2)2Ti (CFiveHFive)2(Hereafter, DETiCp2Toi
U ) And R is a t-butyl group, its structural formula
Is ((H3C)3C)2Ti (CFiveHFive) 2(Hereafter, DBTiCp2
Say. ).

【0013】本実施の形態では、MOCVD法には、各
溶液を加熱された気化器に供給し、ここで各溶液原料を
瞬時に気化させ、成膜室に送る溶液気化CVD法を用い
る。図1に示すように、MOCVD装置は、成膜室10
と蒸気発生装置11を備える。成膜室10の内部にはヒ
ータ12が設けられ、ヒータ12上には基板13が保持
される。この成膜室10の内部は圧力センサー14、コ
ールドトラップ15及びニードルバルブ16を備える配
管17により真空引きされる。成膜室10にはニードル
バルブ36、ガス流量調節装置34を介してNH3ガス
導入管37が接続される。蒸気発生装置11は原料容器
18を備え、この原料容器18は溶液原料を貯蔵する。
原料容器18にはガス流量調節装置19を介してキャリ
アガス導入管21が接続され、また原料容器18には供
給管22が接続される。供給管22にはニードルバルブ
23及び溶液流量調節装置24が設けられ、供給管22
は気化器26に接続される。気化器26にはニードルバ
ルブ31、ガス流量調節装置28を介してキャリアガス
導入管29が接続される。気化器26は更に配管27に
より成膜室10に接続される。また気化器26には、ガ
スドレイン32及びドレイン33がそれぞれ接続され
る。この装置では、N2、He、Ar等の不活性ガスか
らなるキャリアガスがキャリアガス導入管21から原料
容器18内に導入され、原料容器18に貯蔵されている
溶液原料を供給管22により気化器26に搬送する。気
化器26で気化されて蒸気となったチタン錯体は、更に
キャリアガス導入管28から気化器26へ導入されたキ
ャリアガスにより配管27を経て成膜室10内に供給さ
れる。成膜室10内において、チタン錯体の蒸気を熱分
解させ、NH3ガス導入管37より成膜室10内に導入
されるNH3ガスと反応させることにより、生成した窒
化チタンを加熱された基板13上に堆積させて窒化チタ
ン薄膜を形成する。
In the present embodiment, the MOCVD method uses a solution vaporization CVD method in which each solution is supplied to a heated vaporizer, where each solution raw material is instantly vaporized and sent to a film forming chamber. As shown in FIG. 1, the MOCVD apparatus includes a film forming chamber 10
And a steam generator 11. A heater 12 is provided inside the film forming chamber 10, and a substrate 13 is held on the heater 12. The inside of the film forming chamber 10 is evacuated by a pipe 17 including a pressure sensor 14, a cold trap 15 and a needle valve 16. An NH 3 gas introducing pipe 37 is connected to the film forming chamber 10 via a needle valve 36 and a gas flow rate adjusting device 34. The steam generator 11 includes a raw material container 18, and the raw material container 18 stores a solution raw material.
A carrier gas introduction pipe 21 is connected to the raw material container 18 via a gas flow rate control device 19, and a supply pipe 22 is connected to the raw material container 18. The supply pipe 22 is provided with a needle valve 23 and a solution flow rate adjusting device 24.
Is connected to the vaporizer 26. A carrier gas introducing pipe 29 is connected to the vaporizer 26 via a needle valve 31 and a gas flow rate adjusting device 28. The vaporizer 26 is further connected to the film forming chamber 10 by a pipe 27. A gas drain 32 and a drain 33 are connected to the vaporizer 26, respectively. In this apparatus, a carrier gas composed of an inert gas such as N 2 , He, Ar is introduced into the raw material container 18 from the carrier gas introduction pipe 21, and the solution raw material stored in the raw material container 18 is vaporized by the supply pipe 22. It is conveyed to the container 26. The titanium complex vaporized in the vaporizer 26 to become vapor is further supplied into the film forming chamber 10 via the pipe 27 by the carrier gas introduced into the vaporizer 26 from the carrier gas introduction pipe 28. In the film forming chamber 10, the vapor of the titanium complex is thermally decomposed and reacted with the NH 3 gas introduced into the film forming chamber 10 through the NH 3 gas introducing pipe 37, so that the produced titanium nitride is heated. A titanium nitride thin film is formed by depositing on Titanium.

【0014】本発明の溶液原料を用いて作製された窒化
チタン薄膜は、銅薄膜の下地としてそのバリア性に優
れ、高純度である特長を有する。この窒化チタン薄膜
は、例えばシリコン基板表面のSiO2膜上にMOCV
D法により形成され、この窒化チタン薄膜の上に銅薄膜
がMOCVD法により形成される。なお、本発明の基板
はその種類を特に限定されるものではない。
The titanium nitride thin film produced by using the solution raw material of the present invention is excellent in its barrier property as an underlayer of a copper thin film and has the features of high purity. This titanium nitride thin film is, for example, a MOCV film on a SiO 2 film on the surface of a silicon substrate.
It is formed by the D method, and a copper thin film is formed on this titanium nitride thin film by the MOCVD method. The type of the substrate of the present invention is not particularly limited.

【0015】[0015]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>チタン錯体としてDMTiCp2錯体を用
意し、このDMTiCp2の濃度がそれぞれ0.1モル
濃度となるように有機溶媒であるn-オクタンに溶解し
てMOCVD法用溶液原料を調製した。 <実施例2>有機溶媒をイソオクタンにした以外は実施
例1と同様にしてMOCVD用溶液原料を調製した。 <実施例3>有機溶媒をn-ヘキサンにした以外は実施
例1と同様にしてMOCVD用溶液原料を調製した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> A DMTiCp 2 complex was prepared as a titanium complex, and the DMTiCp 2 was dissolved in n-octane, which is an organic solvent, so that the concentration of each DMTiCp 2 was 0.1 mol% to prepare a MOCVD solution raw material. . Example 2 A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was isooctane. <Example 3> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that n-hexane was used as the organic solvent.

【0016】<実施例4>有機溶媒をn-デカンにした
以外は実施例1と同様にしてMOCVD用溶液原料を調
製した。 <実施例5>有機溶媒をドデカンにした以外は実施例1
と同様にしてMOCVD用溶液原料を調製した。 <実施例6>有機溶媒をシクロヘキサンにした以外は実
施例1と同様にしてMOCVD用溶液原料を調製した。
<Example 4> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that n-decane was used as the organic solvent. <Example 5> Example 1 except that the organic solvent was dodecane
A solution raw material for MOCVD was prepared in the same manner as. <Example 6> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that cyclohexane was used as the organic solvent.

【0017】<実施例7>チタン錯体をDETiCp2
錯体にし、有機溶媒をn-オクタンにした以外は実施例
1と同様にしてMOCVD用溶液原料を調製した。 <実施例8>有機溶媒をイソオクタンにした以外は実施
例7と同様にしてMOCVD用溶液原料を調製した。 <実施例9>有機溶媒をn-ヘキサンにした以外は実施
例7と同様にしてMOCVD用溶液原料を調製した。
<Example 7> DETiCp 2 was used as a titanium complex.
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the complex was used and the organic solvent was n-octane. <Example 8> A solution raw material for MOCVD was prepared in the same manner as in Example 7, except that the organic solvent was isooctane. <Example 9> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that n-hexane was used as the organic solvent.

【0018】<実施例10>有機溶媒をデカンにした以
外は実施例7と同様にしてMOCVD用溶液原料を調製
した。 <実施例11>有機溶媒をドデカンにした以外は実施例
7と同様にしてMOCVD用溶液原料を調製した。 <実施例12>有機溶媒をシクロヘキサンにした以外は
実施例7と同様にしてMOCVD用溶液原料を調製し
た。
<Example 10> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that the organic solvent was decane. <Example 11> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that the organic solvent was dodecane. <Example 12> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that cyclohexane was used as the organic solvent.

【0019】<実施例13>チタン錯体をDBTiCp
2錯体にし、有機溶媒をn-オクタンにした以外は実施例
1と同様にしてMOCVD用溶液原料を調製した。 <実施例14>有機溶媒をイソオクタンにした以外は実
施例13と同様にしてMOCVD用溶液原料を調製し
た。 <実施例15>有機溶媒をn-ヘキサンにした以外は実
施例13と同様にしてMOCVD用溶液原料を調製し
た。
<Example 13> A titanium complex was added to DBTiCp.
A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that two complexes were used and the organic solvent was n-octane. <Example 14> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was isooctane. <Example 15> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that n-hexane was used as the organic solvent.

【0020】<実施例16>有機溶媒をデカンにした以
外は実施例13と同様にしてMOCVD用溶液原料を調
製した。 <実施例17>有機溶媒をドデカンにした以外は実施例
13と同様にしてMOCVD用溶液原料を調製した。 <実施例18>有機溶媒をシクロヘキサンにした以外は
実施例13と同様にしてMOCVD用溶液原料を調製し
た。
<Example 16> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was decane. <Example 17> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was dodecane. <Example 18> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that cyclohexane was used as the organic solvent.

【0021】<実施例19>有機溶媒を酢酸ブチルにし
た以外は実施例1と同様にしてMOCVD用溶液原料を
調製した。 <実施例20>有機溶媒を酢酸イソブチルにした以外は
実施例1と同様にしてMOCVD用溶液原料を調製し
た。 <実施例21>有機溶媒を酢酸メチルにした以外は実施
例1と同様にしてMOCVD用溶液原料を調製した。
<Example 19> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that butyl acetate was used as the organic solvent. <Example 20> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was isobutyl acetate. <Example 21> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was methyl acetate.

【0022】<実施例22>有機溶媒を酢酸エチルにし
た以外は実施例1と同様にしてMOCVD用溶液原料を
調製した。 <実施例23>有機溶媒を酢酸ペンチルにした以外は実
施例1と同様にしてMOCVD用溶液原料を調製した。 <実施例24>有機溶媒を酢酸イソペンチルにした以外
は実施例1と同様にしてMOCVD用溶液原料を調製し
た。
Example 22 A MOCVD solution raw material was prepared in the same manner as in Example 1 except that the organic solvent was ethyl acetate. Example 23 A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the organic solvent was pentyl acetate. <Example 24> A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that isopentyl acetate was used as the organic solvent.

【0023】<実施例25>有機溶媒を酢酸ブチルにし
た以外は実施例7と同様にしてMOCVD用溶液原料を
調製した。 <実施例26>有機溶媒を酢酸イソブチルにした以外は
実施例7と同様にしてMOCVD用溶液原料を調製し
た。 <実施例27>有機溶媒を酢酸メチルにした以外は実施
例7と同様にしてMOCVD用溶液原料を調製した。
<Example 25> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that butyl acetate was used as the organic solvent. <Example 26> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that the organic solvent was isobutyl acetate. <Example 27> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that methyl acetate was used as the organic solvent.

【0024】<実施例28>有機溶媒を酢酸エチルにし
た以外は実施例7と同様にしてMOCVD用溶液原料を
調製した。 <実施例29>有機溶媒を酢酸ペンチルにした以外は実
施例7と同様にしてMOCVD用溶液原料を調製した。 <実施例30>有機溶媒を酢酸イソペンチルにした以外
は実施例7と同様にしてMOCVD用溶液原料を調製し
た。
Example 28 A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that the organic solvent was ethyl acetate. <Example 29> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that pentyl acetate was used as the organic solvent. <Example 30> A solution raw material for MOCVD was prepared in the same manner as in Example 7 except that isopentyl acetate was used as the organic solvent.

【0025】<実施例31>有機溶媒を酢酸ブチルにし
た以外は実施例13と同様にしてMOCVD用溶液原料
を調製した。 <実施例32>有機溶媒を酢酸イソブチルにした以外は
実施例13と同様にしてMOCVD用溶液原料を調製し
た。 <実施例33>有機溶媒を酢酸メチルにした以外は実施
例13と同様にしてMOCVD用溶液原料を調製した。
<Example 31> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that butyl acetate was used as the organic solvent. <Example 32> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was isobutyl acetate. <Example 33> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was methyl acetate.

【0026】<実施例34>有機溶媒を酢酸エチルにし
た以外は実施例13と同様にしてMOCVD用溶液原料
を調製した。 <実施例35>有機溶媒を酢酸ペンチルにした以外は実
施例13と同様にしてMOCVD用溶液原料を調製し
た。 <実施例36>有機溶媒を酢酸イソペンチルにした以外
は実施例13と同様にしてMOCVD用溶液原料を調製
した。
<Example 34> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was ethyl acetate. <Example 35> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that pentyl acetate was used as the organic solvent. <Example 36> A solution raw material for MOCVD was prepared in the same manner as in Example 13 except that the organic solvent was isopentyl acetate.

【0027】<比較例1>チタン錯体をTDMAT錯体
にし、有機溶媒をヘキサンにした以外は実施例1と同様
にしてMOCVD用溶液原料を調製した。 <比較例2>チタン錯体をTDEAT錯体にした以外は
比較例1と同様にしてMOCVD用溶液原料を調製し
た。
Comparative Example 1 A solution raw material for MOCVD was prepared in the same manner as in Example 1 except that the titanium complex was changed to the TDMAT complex and the organic solvent was changed to hexane. <Comparative Example 2> A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that the titanium complex was changed to the TDEAT complex.

【0028】<比較例3>有機溶媒を酢酸ブチルにした
以外は比較例1と同様にしてMOCVD用溶液原料を調
製した。 <比較例4>有機溶媒を酢酸エチルにした以外は比較例
2と同様にしてMOCVD用溶液原料を調製した。
<Comparative Example 3> A solution raw material for MOCVD was prepared in the same manner as in Comparative Example 1 except that butyl acetate was used as the organic solvent. <Comparative Example 4> A solution raw material for MOCVD was prepared in the same manner as Comparative Example 2 except that the organic solvent was ethyl acetate.

【0029】<比較試験>実施例1〜36及び比較例1
〜4で得られた溶液原料をそれぞれ5種類用意した。基
板として、基板表面にSiO2膜(厚さ5000Å)が
熱酸化により形成されたシリコン基板を用意した。用意
した基板を図1に示すMOCVD装置の成膜室に設置
し、基板温度を300℃とした。気化温度を70℃、圧
力を2Torr即ち約266Paにそれぞれ設定した。
キャリアガスとしてArガスを用い、その流量を100
ccmとした。また反応ガスとしてNH3ガスを用い、
その流量を500ccmとした。溶液原料を0.01c
c/分の割合で供給し、1、5、10、20及び30分
となったときにそれぞれ1種類ごとに成膜室より取り出
し、基板上に成膜されたチタン含有薄膜である窒化チタ
ン薄膜について以下に示す試験を行った。
<Comparative Test> Examples 1-36 and Comparative Example 1
5 kinds of solution raw materials obtained in each of 4 were prepared. As the substrate, a silicon substrate having a SiO 2 film (thickness 5000 Å) formed on the surface of the substrate by thermal oxidation was prepared. The prepared substrate was placed in the film forming chamber of the MOCVD apparatus shown in FIG. 1 and the substrate temperature was 300 ° C. The vaporization temperature was 70 ° C. and the pressure was 2 Torr, that is, about 266 Pa.
Ar gas was used as the carrier gas and its flow rate was 100
It was set to ccm. Further, NH 3 gas is used as a reaction gas,
The flow rate was 500 ccm. 0.01c of solution raw material
A titanium nitride thin film which is a titanium-containing thin film formed on a substrate by supplying at a rate of c / min and taking out from the film forming chamber for each one at 1, 5, 10, 20 and 30 minutes. The following test was performed on the.

【0030】 膜厚測定 成膜を終えた基板上の銅薄膜を断面SEM(走査型電子
顕微鏡)像から膜厚を測定した。 剥離試験 各成膜時間で取り出した窒化チタン薄膜の上に厚さ50
nmの銅薄膜をスパッタリング法により成膜し、この銅
薄膜を形成した基板に対して剥離試験(JISK 56
00−5−6)を行った。具体的には、先ず、基板上の
銅薄膜にこの膜を貫通するように縦横それぞれ6本づつ
等間隔に切込みを入れて格子パターンを基板に形成し
た。次に、形成した格子パターンの双方の対角線に沿っ
て柔らかいはけを用いて前後にブラッシングした。 熱安定性評価試験 図2に示す試験装置を用いて以下の試験を行った。この
図2に示す装置は、図1に示すMOCVD装置の成膜室
を取り除いた構成を有する。先ず、室温で70℃に加熱
した気化器26まで溶液原料を搬送し、10Torr即
ち約1.33kPaの減圧下で70℃に加熱して溶液原
料を気化させ、その後に気化器26下段のポンプ側に設
けられたコールドトラップ15にて気化後の化合物を捕
獲した。装置内に投入した原料に対する捕獲量からトラ
ップ回収率を算出した。また、圧力センサーにより気化
器内部における圧力上昇を測定した。例えば、表中の数
値が60%閉塞ならば、10Torrの1.60倍の圧
力が気化器内で生じていることを表す。実施例1〜8を
表1に、実施例9〜16を表2に、実施例17〜24を
表3に、実施例25〜32を表4に、実施例33〜36
及び比較例1〜4を表5にそれぞれ得られた試験結果を
示す。
Film Thickness Measurement The film thickness of the copper thin film on the substrate after film formation was measured from a cross-sectional SEM (scanning electron microscope) image. Peeling test A thickness of 50 on the titanium nitride thin film taken out at each film formation time
nm copper thin film is formed by a sputtering method, and a peeling test (JISK 56
00-5-6) was performed. Specifically, first, a lattice pattern was formed on the substrate by making 6 incisions in the copper thin film on the substrate so as to penetrate the film at equal intervals in the vertical and horizontal directions. Then brushed back and forth with a soft brush along both diagonals of the formed grid pattern. Thermal stability evaluation test The following test was performed using the test apparatus shown in FIG. The apparatus shown in FIG. 2 has a structure in which the film forming chamber of the MOCVD apparatus shown in FIG. 1 is removed. First, the solution raw material is conveyed to the vaporizer 26 heated to 70 ° C. at room temperature, heated to 70 ° C. under reduced pressure of 10 Torr, that is, about 1.33 kPa to vaporize the solution raw material, and then the pump side of the lower stage of the vaporizer 26. The compound after vaporization was captured by the cold trap 15 provided in. The trap recovery rate was calculated from the trapped amount of the raw material charged into the apparatus. Further, the pressure sensor measured the pressure rise inside the vaporizer. For example, if the numerical value in the table is 60% occlusion, it means that a pressure of 1.60 times 10 Torr occurs in the vaporizer. Examples 1 to 8 are shown in Table 1, Examples 9 to 16 are shown in Table 2, Examples 17 to 24 are shown in Table 3, Examples 25 to 32 are shown in Table 4, and Examples 33 to 36 are shown.
Table 5 shows the test results obtained for Comparative Examples 1 to 4 and Comparative Examples 1 to 4, respectively.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】表1〜表3より明らかなように、比較例1
〜4の溶液原料を用いて成膜されたチタン含有薄膜は成
膜時間当たりの膜厚にばらつきがあり、成膜再現性が悪
いことが判る。また成膜速度も非常に遅い。また密着性
評価試験では、殆どのサンプルにおいて基板表面から銅
薄膜が剥離してしまっていた。熱安定性評価試験では、
トラップ回収率が低く、大部分が装置内部に付着してし
まったと考えられる。また気化器内部の圧力上昇値も成
膜時間が長くなるにつれて上昇しており、分解物が気化
器内部や配管内部に付着して圧力上昇したと考えられ
る。これに対して実施例1〜36の溶液原料を用いて作
製されたチタン含有薄膜は、成膜時間が進むに従って膜
厚も厚くなっており、成膜安定性が高いことが判る。密
着性評価試験では、銅薄膜が剥離する割合が低く、非常
に密着性が高いことが判る。熱安定性評価試験では、高
いトラップ回収率を示し、気化器内部の圧力上昇値も1
%程度と殆ど閉塞するおそれがない。
As is clear from Tables 1 to 3, Comparative Example 1
It can be seen that the titanium-containing thin films formed by using the solution raw materials of Nos. 4 to 4 have different film thicknesses per film forming time, and the film forming reproducibility is poor. In addition, the film formation rate is also very slow. Moreover, in the adhesion evaluation test, the copper thin film was peeled from the substrate surface in most of the samples. In the thermal stability evaluation test,
It is considered that the trap recovery rate was low and most of the traps adhered to the inside of the device. Further, the pressure rise value inside the vaporizer also rises as the film forming time becomes longer, and it is considered that the decomposition product adhered to the inside of the vaporizer and the inside of the pipe to raise the pressure. On the other hand, the titanium-containing thin films produced using the solution raw materials of Examples 1 to 36 have a larger film thickness as the film forming time progresses, and it can be seen that the film forming stability is high. In the adhesion evaluation test, it is found that the rate of peeling of the copper thin film is low and the adhesion is very high. In the thermal stability evaluation test, the trap recovery rate was high, and the pressure rise value inside the carburetor was also 1.
There is almost no risk of blockage at about%.

【0037】[0037]

【発明の効果】以上述べたように、上記式(1)に示す
チタン錯体を有機溶媒、飽和炭化水素及びエステル化合
物からなる群より選ばれた1種又は2種以上の化合物に
溶解した本発明のMOCVD用溶液原料は、銅薄膜の下
地としてそのバリア性に優れ、高純度である特長を有す
る。本発明の溶液原料を用いてSiO2膜上にチタン含
有薄膜を気相成長させる際、高い成膜速度で安定な成膜
が可能となる。得られたチタン含有薄膜上へ銅薄膜を作
製する際に、成膜法を問わず、密着性に優れた銅薄膜が
作製可能となる。
As described above, the present invention in which the titanium complex represented by the above formula (1) is dissolved in one or more compounds selected from the group consisting of organic solvents, saturated hydrocarbons and ester compounds. The MOCVD solution raw material is excellent in its barrier property as an underlayer of a copper thin film and has a feature of high purity. When vapor-depositing a titanium-containing thin film on a SiO 2 film using the solution raw material of the present invention, stable film formation can be achieved at a high film formation rate. When a copper thin film is formed on the obtained titanium-containing thin film, a copper thin film having excellent adhesion can be prepared regardless of the film forming method.

【図面の簡単な説明】[Brief description of drawings]

【図1】MOCVD装置の概略図。FIG. 1 is a schematic diagram of a MOCVD apparatus.

【図2】本発明の実施例に使用される装置を示す概略
図。
FIG. 2 is a schematic diagram showing an apparatus used in an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小木 勝実 茨城県那珂郡那珂町向山1002番地14 三菱 マテリアル株式会社総合研究所那珂研究セ ンター内 Fターム(参考) 4H049 VN05 VP01 VQ05 VR24 VU24 VW02 4K030 AA11 BA18 BA38 FA10 4M104 BB30 DD45 FF18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsumi Ogi             1002 Mukayama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 14 Mitsubishi             Materials Research Laboratories Naka Research Center             In the center F term (reference) 4H049 VN05 VP01 VQ05 VR24 VU24                       VW02                 4K030 AA11 BA18 BA38 FA10                 4M104 BB30 DD45 FF18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 次の式(1)で示されるチタン錯体を有
機溶媒に溶解したことを特徴とする有機金属化学蒸着法
用溶液原料。 【化1】 但し、Rは炭素数1〜4の直鎖又は分岐状アルキル基で
ある。
1. A solution raw material for a metal organic chemical vapor deposition method, characterized in that a titanium complex represented by the following formula (1) is dissolved in an organic solvent. [Chemical 1] However, R is a linear or branched alkyl group having 1 to 4 carbon atoms.
【請求項2】 請求項1記載の式(1)で示されるチタ
ン錯体のRがメチル基、エチル基又はt-ブチル基であ
る請求項1記載の溶液原料。
2. The solution raw material according to claim 1, wherein R of the titanium complex represented by the formula (1) according to claim 1 is a methyl group, an ethyl group or a t-butyl group.
【請求項3】 有機溶媒が飽和炭化水素及びエステル化
合物からなる群より選ばれた1種又は2種以上の化合物
である請求項1記載の溶液原料。
3. The solution raw material according to claim 1, wherein the organic solvent is one or more compounds selected from the group consisting of saturated hydrocarbons and ester compounds.
【請求項4】 飽和炭化水素が、炭素数6〜10の直鎖
状又は分岐状炭化水素である請求項3記載の溶液原料。
4. The solution raw material according to claim 3, wherein the saturated hydrocarbon is a linear or branched hydrocarbon having 6 to 10 carbon atoms.
【請求項5】 飽和炭化水素が、ヘキサン、シクロヘキ
サン、n-オクタン、イソオクタン、n-デカン及びn-ドデ
カンからなる群より選ばれた1種又は2種以上の化合物
である請求項3又は4記載の溶液原料。
5. The saturated hydrocarbon is one or two or more compounds selected from the group consisting of hexane, cyclohexane, n-octane, isooctane, n-decane and n-dodecane. Solution raw material.
【請求項6】 エステル化合物が、酢酸メチル、酢酸エ
チル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル及び
酢酸イソペンチルからなる群より選ばれた1種又は2種
以上の化合物である請求項3記載の溶液原料。
6. The solution raw material according to claim 3, wherein the ester compound is one or more compounds selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate and isopentyl acetate. .
【請求項7】 請求項1ないし6いずれか記載の溶液原
料を用いて有機金属化学蒸着法により作製されたチタン
含有薄膜。
7. A titanium-containing thin film produced by a metal organic chemical vapor deposition method using the solution raw material according to claim 1.
JP2002082781A 2002-03-25 2002-03-25 Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material Expired - Fee Related JP3894016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082781A JP3894016B2 (en) 2002-03-25 2002-03-25 Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082781A JP3894016B2 (en) 2002-03-25 2002-03-25 Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material

Publications (2)

Publication Number Publication Date
JP2003277930A true JP2003277930A (en) 2003-10-02
JP3894016B2 JP3894016B2 (en) 2007-03-14

Family

ID=29230834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082781A Expired - Fee Related JP3894016B2 (en) 2002-03-25 2002-03-25 Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material

Country Status (1)

Country Link
JP (1) JP3894016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011974A1 (en) * 2011-07-21 2013-01-24 Jsr株式会社 Method for producing substrate with metal body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145987A (en) * 1992-09-18 1994-05-27 Sharp Corp Method for forming titanium-based film
JPH06158321A (en) * 1992-11-24 1994-06-07 Anelva Corp Titanium thin film forming method
JPH11255784A (en) * 1998-01-09 1999-09-21 Tokyo Ohka Kogyo Co Ltd Titanium complex and its synthesis
JP2002525426A (en) * 1998-09-11 2002-08-13 エイエスエム マイクロケミストリ オーワイ Method for growing oxide thin film containing barium and strontium
JP2003268546A (en) * 2002-03-18 2003-09-25 Mitsubishi Materials Corp Titanium complex-containing solution raw material for organometallic chemical vapor deposition method and titanium-containing thin film produced by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145987A (en) * 1992-09-18 1994-05-27 Sharp Corp Method for forming titanium-based film
JPH06158321A (en) * 1992-11-24 1994-06-07 Anelva Corp Titanium thin film forming method
JPH11255784A (en) * 1998-01-09 1999-09-21 Tokyo Ohka Kogyo Co Ltd Titanium complex and its synthesis
JP2002525426A (en) * 1998-09-11 2002-08-13 エイエスエム マイクロケミストリ オーワイ Method for growing oxide thin film containing barium and strontium
JP2003268546A (en) * 2002-03-18 2003-09-25 Mitsubishi Materials Corp Titanium complex-containing solution raw material for organometallic chemical vapor deposition method and titanium-containing thin film produced by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011974A1 (en) * 2011-07-21 2013-01-24 Jsr株式会社 Method for producing substrate with metal body
US9150962B2 (en) 2011-07-21 2015-10-06 Jsr Corporation Method for producing substrate with metal body

Also Published As

Publication number Publication date
JP3894016B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
TWI240970B (en) Process for atomic layer deposition of metal films
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
CN103755747A (en) Organometallic compounds, and methods of use thereof
JP3844292B2 (en) Method for depositing high adhesion copper thin film on metal nitride substrate and copper metal precursor mixture
JP2003342732A (en) Solution raw material for organometallic chemical vapor deposition method containing tantalum complex and tantalum-containing thin film produced by using the same
JP2005171291A (en) Titanium-containing thin film and method for producing the same
JP3384228B2 (en) Metal complex and metal thin film forming method
TW200925314A (en) Neutral ligand containing precursors and methods for deposition of a metal containing film
US6576293B2 (en) Method to improve copper thin film adhesion to metal nitride substrates by the addition of water
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
JP2003335740A (en) Tantalum complex and solution raw material containing the complex and used for organic metal chemical vapor deposition method and tantalum-containing thin film formed from the same
JP3894016B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
JP3894010B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
Machida et al. MOCVD precursors for Ta-and Hf-compound films
KR100900272B1 (en) Organic metal precursor compound for metal thin film or ceramic thin film deposition and thin film manufacturing method using the same
JP4218247B2 (en) Solution raw material for metalorganic chemical vapor deposition containing β-diketonate complex of copper (II)
JP4363383B2 (en) Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid
JP3931965B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
TW201026876A (en) Nickel-containing film-formation material, and nickel-containing film-fabrication method
WO2018129295A1 (en) Water assisted highly pure ruthenium thin film deposition
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP3931963B2 (en) Solution raw material for metal organic chemical vapor deposition containing β-diketonate complex of copper (II) and method for producing copper thin film using the same
JP2003206288A (en) COPPER COMPLEX, SOLUTION RAW MATERIAL FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION COMPRISING beta-DIKETONATE COMPLEX OF COPPER (II) AND COPPER THIN FILM PREPARED BY USING THE SAME
JP2003252823A (en) Organocopper compound for metal organic chemical vapor deposition and copper thin film prepared by using the same
JPH1018036A (en) Forming method for high purity platinum thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees