JP2003287514A - Microelectrode structure and measuring instrument using the same - Google Patents
Microelectrode structure and measuring instrument using the sameInfo
- Publication number
- JP2003287514A JP2003287514A JP2002091006A JP2002091006A JP2003287514A JP 2003287514 A JP2003287514 A JP 2003287514A JP 2002091006 A JP2002091006 A JP 2002091006A JP 2002091006 A JP2002091006 A JP 2002091006A JP 2003287514 A JP2003287514 A JP 2003287514A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrodes
- microelectrode structure
- microelectrode
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 238000002848 electrochemical method Methods 0.000 abstract description 15
- 238000003411 electrode reaction Methods 0.000 abstract description 10
- 239000007806 chemical reaction intermediate Substances 0.000 abstract description 8
- 239000007795 chemical reaction product Substances 0.000 abstract description 8
- 239000000047 product Substances 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 description 20
- 238000005259 measurement Methods 0.000 description 20
- 239000010408 film Substances 0.000 description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229920000557 Nafion® Polymers 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920003169 water-soluble polymer Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- 239000013076 target substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 2
- 229910000367 silver sulfate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は一対の作用電極と参
照電極それと必要に応じて対極を、イオン伝導性材料を
介して集積した新規なマイクロ電極構造体に関する。ま
た本発明は、該集積化マイクロ電極を使用して、主とし
て高抵抗媒体中の電気化学計測を行うことができる装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel microelectrode structure in which a working electrode, a reference electrode, and optionally a counter electrode are integrated via an ion conductive material. The present invention also relates to an apparatus capable of mainly performing electrochemical measurement in a high resistance medium using the integrated microelectrode.
【0002】[0002]
【従来の技術】微小電極(マイクロ電極)は、通常サイ
ズの電極では計測できない測定が可能となる計測手段で
ある。すなわち、局所領域の解析ができる、測定電流が
小さいため溶液抵抗が高くても測定に影響を受けないな
どの特徴を有することが知られている。これらの特徴あ
る測定を行うためには、該マイクロ電極と対極がイオン
伝導性媒体を通して電気的に導通性を有している必要が
ある。このような電解液として、通常は0.01Scm
−1以上の導電率を有する電解質が使用されるが、かか
る導電性の発現のために媒体中に支持電解質を溶解して
使用する。2. Description of the Related Art Microelectrodes (microelectrodes) are measuring means capable of performing measurements that cannot be measured with normal size electrodes. In other words, it is known that the local region can be analyzed and that the measurement current is small and therefore the measurement is not affected even if the solution resistance is high. In order to perform these characteristic measurements, the microelectrode and the counter electrode must be electrically conductive through the ion conductive medium. As such an electrolytic solution, usually 0.01 Scm
An electrolyte having a conductivity of -1 or more is used, and a supporting electrolyte is used by dissolving it in a medium for expressing such conductivity.
【0003】微少量の被検体に関する測定にあたって
は、例えば特開平5−223772号公報に、特開平1
1−187865号公報、特開2000−266717
号公報にアレー状、バンド状、ドット状の電極集合体が
開示されている。これらの電極は、微少量の反応物を効
率よく、あるいは増幅して検出することを目的とした構
成をとっており、本発明とは構造、作用、目的が異な
る。一方、ガスクロマトグラフィー用ガス検出器を目的
としたマイクロ電極が、ジャーナル・オブ・エレクトロ
アナリティカル・ケミストリー誌、244巻81頁、電
気化学および工業物理化学誌、61巻、825頁に記載
されている。これらは、二極構造のマイクロ電極でカラ
ム分離された後のガス検出をしているが、参照電極を持
たないため電気化学的な電極電位に対する電流の計測が
できず、また検出電流の絶対値が小さいという欠点を有
している。For the measurement of a minute amount of a subject, for example, Japanese Patent Laid-Open No. 223772/1993 discloses Japanese Patent Laid-Open No.
JP-A-1-187865, JP-A-2000-266717.
Japanese Patent Publication discloses an array-shaped, band-shaped, or dot-shaped electrode assembly. These electrodes have a structure for the purpose of efficiently detecting or amplifying a small amount of reaction product, and have a different structure, action, and purpose from the present invention. On the other hand, a microelectrode intended for a gas detector for gas chromatography is described in Journal of Electroanalytical Chemistry, Vol. 244, p. 81, Electrochemical and Industrial Physics, Vol. 61, p. 825. There is. They detect gas after column separation with a bipolar microelectrode, but since they do not have a reference electrode, they cannot measure the current with respect to the electrochemical electrode potential, and the absolute value of the detected current. Has the drawback of being small.
【0004】マイクロ電極の有する高抵抗媒体中の電極
反応測定を行うにあたっては、酸化還元種を含む媒体中
で各々独立した作用電極、参照電極と対極を接近させて
配置し、極間の電気抵抗を減少させて測定する方法が、
ジャーナル・オブ・エレクトロアナリティカル・ケミス
トリー誌、456巻239頁に記載されている。この方
法は、電気抵抗を最小限化するために各電極の位置を制
御する操作が必要である。In measuring the electrode reaction in a high resistance medium having a microelectrode, the working electrode, the reference electrode and the counter electrode, which are independent of each other, are arranged close to each other in the medium containing the redox species, and the electrical resistance between the electrodes is measured. Is measured by reducing
Journal of Electroanalytical Chemistry, Vol. 456, p. 239. This method requires the operation of controlling the position of each electrode in order to minimize electric resistance.
【0005】以上のように、マイクロ電極の持つ特徴を
活用した種々の電極構造体ならびに計測方法が提案され
ている。しかし、高抵抗媒体中の測定は観測される電流
値が小さく、例えば微小電極を用いてiR降下を押さえ
ようとすると、微小な電極サイズゆえに電流値が小さい
という欠点があった。As described above, various electrode structures and measuring methods utilizing the characteristics of the microelectrode have been proposed. However, in the measurement in a high resistance medium, the observed current value is small, and for example, when trying to suppress the iR drop by using a minute electrode, there is a drawback that the current value is small due to the minute electrode size.
【0006】[0006]
【発明が解決しようとする課題】通常の電気化学計測
は、電流−電位の関係を明らかにする測定を意味する。
ここで言う電位とは電極電位のことであり、電極電位を
規定できる参照電極の使用が欠かせないものである。局
所領域の解析や高抵抗媒体中の電気化学測定を可能とす
るためには、上述したようにマイクロ電極の特徴を引き
出すことができる電極構造体を構築する必要がある。The usual electrochemical measurement means a measurement that reveals the current-potential relationship.
The potential here means an electrode potential, and it is essential to use a reference electrode capable of defining the electrode potential. In order to enable the analysis of the local region and the electrochemical measurement in the high resistance medium, it is necessary to construct an electrode structure capable of extracting the characteristics of the microelectrode as described above.
【0007】一方マイクロアレー電極は、レドックスサ
イクリング反応に基づき反応物が低濃度であっても高感
度計測ができるが、これは片方の電極で生じた反応中間
体ないし反応生成物をもう片方の電極で検出することが
できることに基づく。このようなアレー電極は、通常電
解質を溶解してなる低抵抗溶液中の電気化学計測を対象
として使用されてきた。しかしながら、このような従来
のアレー電極では高抵抗媒体中の電気化学計測を行うこ
とは不可能である。なぜなら、アレー電極と参照電極、
必要に応じて使用される対極間の距離は通常は1mmか
ら数cmであるため、いわゆるiR降下が大きいことか
ら電極間の抵抗のみが反映され、電極と溶液界面で起こ
る反応を観測することができないためである。On the other hand, the microarray electrode can perform high-sensitivity measurement based on the redox cycling reaction even when the concentration of the reactant is low. This is because the reaction intermediate or the reaction product generated in one electrode is measured in the other electrode. Based on what can be detected in. Such an array electrode has been usually used for electrochemical measurement in a low resistance solution prepared by dissolving an electrolyte. However, it is impossible to perform electrochemical measurement in a high resistance medium with such a conventional array electrode. Because the array electrode and the reference electrode,
Since the distance between the counter electrodes, which is used as needed, is usually 1 mm to several cm, the so-called iR drop is large, so only the resistance between the electrodes is reflected, and the reaction that occurs at the electrode-solution interface can be observed. This is because it cannot be done.
【0008】高抵抗媒体中の高感度電気化学測定や電気
化学的な反応中間体、生成物の検出は、具体的には燃料
電池のガス電極反応測定、ポリマー電池の反応解析、電
気化学キャパシターの測定等に欠かすことができないと
予想される。しかしながら、かかる電気化学計測を行う
ことが可能な電極構造体はいまだ提案されておらず、そ
の開発が待ち望まれていた。High-sensitivity electrochemical measurement in a high resistance medium, detection of electrochemical reaction intermediates, and products are carried out by specifically measuring gas electrode reaction of fuel cell, reaction analysis of polymer battery, and electrochemical capacitor. It is expected to be indispensable for measurement. However, an electrode structure capable of performing such electrochemical measurement has not been proposed yet, and its development has been long awaited.
【0009】このような潜在要求に鑑み、本願発明にお
いては、高抵抗媒体中における電極電位を規定できる高
感度検出用電極構造体ならびに反応中間体、生成物を検
出できる電極構造体、およびそれを用いる電極反応計測
装置を提供することを目的とする。In view of such potential requirements, in the present invention, a highly sensitive detection electrode structure capable of defining an electrode potential in a high resistance medium, a reaction intermediate, and an electrode structure capable of detecting a product, and An object is to provide an electrode reaction measuring device to be used.
【0010】[0010]
【課題を解決するための手段】本発明者らは前記課題を
解決するために、鋭意検討を重ねた結果、(1)平面お
よび/または曲面上に少なくとも一対の作用電極と基準
電極がイオン伝導性材料を介して当接してなるマイクロ
電極構造体、(2)平面および/または曲面上に少なく
とも一対の作用電極、基準電極および対極がイオン伝導
性材料を介して当接してなる(1)に記載のマイクロ電
極構造体、(3)一対の作用電極が交互型アレー電極で
あることを特徴とする(1)乃至(2)に記載のマイク
ロ電極構造体、(4)平面および/または曲面上に少な
くとも一対の作用電極と基準電極がイオン伝導性材料を
介して当接してなるマイクロ電極構造体と、電極間に電
圧または電流を印加する手段と電流または電圧計則手段
を具備してなることを特徴とするマイクロ電極構造体を
用いた計測装置、(5)平面および/または曲面上に少
なくとも一対の作用電極、基準電極および対極がイオン
伝導性材料を介して当接してなるマイクロ電極構造体
と、電極間に電圧または電流を印加する手段と電流また
は電圧計則手段を具備してなることを特徴とする(4)
に記載のマイクロ電極構造体を用いた計測装置、(6)
一対の作用電極が交互型アレー電極であることを特徴と
する(1)乃至(2)に記載のマイクロ電極構造体と、
電極間に電圧または電流を印加する手段と電流または電
圧計則手段を具備してなることを特徴とする(4)乃至
(5)に記載のマイクロ電極構造体を用いた計測装置、
が、前記の課題を解決することを見いだし、本発明の完
成に至った。As a result of intensive studies to solve the above problems, the inventors of the present invention have found that (1) at least a pair of working electrode and reference electrode are ion-conductive on a plane and / or curved surface. Microelectrode structure contacted via a conductive material, (2) at least a pair of working electrode, reference electrode and counter electrode contacted on a plane and / or curved surface via an ion conductive material (1) (3) The microelectrode structure according to (1) or (2), characterized in that the pair of working electrodes is an alternating array electrode, (4) on a flat surface and / or a curved surface. A microelectrode structure in which at least a pair of working electrode and reference electrode are in contact with each other via an ion conductive material, means for applying voltage or current between the electrodes, and current or voltage measuring means. (5) A microelectrode structure in which at least a pair of working electrodes, a reference electrode and a counter electrode are in contact with each other via an ion conductive material on a flat surface and / or a curved surface. And means for applying a voltage or current between the electrodes and means for controlling the current or voltage (4)
Measuring device using the microelectrode structure described in (6)
The microelectrode structure according to (1) or (2), characterized in that the pair of working electrodes are alternating array electrodes.
A measuring device using the microelectrode structure according to any one of (4) to (5), characterized in that it comprises means for applying voltage or current between electrodes and current or voltage measuring means.
However, they have found that the above problems can be solved, and have completed the present invention.
【0011】すなわち、本願本発者らは電極集合体の形
状と電極間の導電性に着目し、高抵抗媒体中の電気化学
反応を高感度検出、ないし反応中間体および/または生
成物を検出できる集積化マイクロ電極構造体およびそれ
を用いた計測装置を完成するに至った。That is, the inventors of the present application focused on the shape of the electrode assembly and the conductivity between the electrodes, and highly sensitively detected the electrochemical reaction in the high resistance medium, or detected the reaction intermediate and / or the product. We have completed an integrated microelectrode structure that can be used and a measuring device using the same.
【0012】[0012]
【発明の実施の形態】図面を用いて本発明を説明する。
図1は、本発明のマイクロ電極構造体の一例を示す断面
図であり、絶縁性基体1上に電気的に隔離された一対の
作用電極2と3および参照電極4が配備され、かつこの
電極群はイオン伝導性膜5を介して当接している。図2
は、図1の平面図を表している。図3は、本発明の別の
マイクロ電極構造体を示す断面図であり、絶縁性基体1
上に電気的に隔離された一対の作用電極2と3、参照電
極4および対極6が配備され、かつこの電極群はイオン
伝導性膜5を介して当接している。図4は、図3の平面
図を表すものである。図5は、本発明のマイクロ電極構
造体の別の一例を示す断面図であり、絶縁性基体1上に
イオン伝導性膜5が設けられており、さらにそれに当接
する形で一対の作用電極2と3および参照電極4が形成
されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a microelectrode structure of the present invention, in which a pair of working electrodes 2 and 3 and a reference electrode 4 which are electrically isolated from each other are provided on an insulating substrate 1, and this electrode is provided. The groups are in contact with each other via the ion conductive membrane 5. Figure 2
Represents the plan view of FIG. FIG. 3 is a cross-sectional view showing another microelectrode structure of the present invention.
A pair of electrically isolated working electrodes 2 and 3, a reference electrode 4 and a counter electrode 6 are arranged on top of this, and this electrode group is in contact via an ion-conducting membrane 5. FIG. 4 shows a plan view of FIG. FIG. 5 is a cross-sectional view showing another example of the microelectrode structure of the present invention, in which an ion conductive film 5 is provided on an insulating substrate 1, and a pair of working electrodes 2 are formed in contact with the ion conductive film 5. And 3 and the reference electrode 4 are formed.
【0013】絶縁性基体1としては、103Ωcm−1
以上の抵抗率を有する公知の材料ならば何を使用しても
よい。このような材料としては、ポリテトラフルオロエ
チレン、ポリカーボネートをはじめとする公知のプラス
チック材料、石英硝子、硬質硝子、軟質硝子等の硝子材
料、Al2O3、MgOに代表される金属酸化物、Si
3O4、AlNに代表される金属窒化物、SiCに代表
される金属炭化物等をはじめとする公知の材料があげら
れ用いられる。基体の形状は、平面ないしは曲面でも構
わないし、凹状あるいは凸状であっても良いが、一対の
電極2および3が直接あるいはイオン伝導性材料5を介
して目的とする高抵抗媒体に接触できるような空間に配
置できることが望まれる。As the insulating substrate 1, 10ThreeΩ cm-1
Any known material with the above resistivity can be used
Good. Examples of such materials include polytetrafluoroe
Known pluses such as ethylene and polyethylene
Glass materials such as tic material, quartz glass, hard glass, soft glass
Fee, AlTwoOThree, Metal oxides represented by MgO, Si
ThreeOFour, Metal nitride represented by AlN, represented by SiC
Known materials such as metal carbides are used.
Used. The substrate may be flat or curved.
It may be concave or convex, but a pair of
The electrodes 2 and 3 are directly or through the ion conductive material 5.
And place it in a space where it can contact the desired high resistance medium.
It is desirable to be able to place it.
【0014】次に一対の作用電極の形状について述べ
る。第一に、電極2と3は近傍領域に配置せしめること
が必要である。電極2と3は、目的とする高抵抗媒体と
接する部位が適当な形状、例えばディスク状、多角形
状、中空円筒状等いかなる形状をとってもよい。極間距
離は、小さくすることでiR降下を極力低減できる。電
極サイズはどのような大きさであっても良いが、極力小
さい方がiR降下を低減できるだけでなく素子の大きさ
を小さくできる。また参照電極4は、作用極の近傍に設
置し、同様イオン伝導性材料を介して作用極に当接す
る。参照電極の形状は例えばディスク状、多角形状、中
空円筒状等いかなる形状をとってもよい。図1、2、5
には、このような電極の構成の例を示す。また、図3、
4には、必要に応じて使用される対極6が一対の作用極
の近傍にイオン伝導性材料を介して設置されている。対
極6の形状も例えばディスク状、多角形状、中空円筒状
等いかなる形状をとってもよい。Next, the shapes of the pair of working electrodes will be described. First, it is necessary that the electrodes 2 and 3 be arranged in the vicinity area. The electrodes 2 and 3 may have any suitable shape, such as a disk shape, a polygonal shape, or a hollow cylindrical shape, at a portion in contact with the intended high resistance medium. By reducing the distance between the poles, iR drop can be reduced as much as possible. The electrode size may be any size, but if it is as small as possible, not only the iR drop can be reduced but also the size of the device can be reduced. Further, the reference electrode 4 is installed in the vicinity of the working electrode, and similarly contacts the working electrode via the ion conductive material. The reference electrode may have any shape such as a disk shape, a polygonal shape, and a hollow cylindrical shape. 1, 2, 5
Shows an example of the configuration of such an electrode. Also, in FIG.
In FIG. 4, a counter electrode 6 used as necessary is installed near the pair of working electrodes via an ion conductive material. The shape of the counter electrode 6 may be any shape such as a disk shape, a polygonal shape, and a hollow cylindrical shape.
【0015】また、図6には一対の作用電極として交互
型アレー電極を用いた場合の本発明の一例を示す。この
一対の作用電極は、小型でありながら二極間の有効当接
面積を大きくできるため高感度電極としてさまざまに応
用が検討されているだけでなく、各々の電極電位を異な
る適切な電位に設定することで、一方の電極で生成した
反応物ないし反応中間体をもう一方の電極で検出するこ
とができ、電極反応の解析に有効な手段として知られて
いる。一対の作用電極の形状は、公知のものが全て使用
することができるが、とりわけ交互型アレー電極が好ま
しく使用される。FIG. 6 shows an example of the present invention when an alternating array electrode is used as a pair of working electrodes. Although this pair of working electrodes is small in size, the effective contact area between the two electrodes can be increased, so various applications as high-sensitivity electrodes are being studied, and each electrode potential is set to a different appropriate potential. By doing so, the reaction product or reaction intermediate produced at one electrode can be detected at the other electrode, which is known as an effective means for analyzing the electrode reaction. As the shape of the pair of working electrodes, all known shapes can be used, but an alternating array electrode is particularly preferably used.
【0016】本発明に使用される一対の作用電極用材料
には、単体金属あるいは合金からなるグループ、金属酸
化物からなるグループ、半導体からなるグループ、炭素
系材料からなるグループ、および金属硫化物からなるグ
ループに属する材料が使用されるが、一対の作用電極材
料は同じであっても異なっていてもよい。The pair of working electrode materials used in the present invention include a group consisting of a single metal or an alloy, a group consisting of a metal oxide, a group consisting of a semiconductor, a group consisting of a carbonaceous material, and a metal sulfide. Materials belonging to different groups are used, but the pair of working electrode materials may be the same or different.
【0017】単体金属あるいは合金からなるグループに
は、Ti、V、Fe、Co、Ni、Cu、Zn、Ge、
Nb、Ru、Rh、Pd、Ag、Cd、Sn、Ta、
W、Os、Ir、Pt、Au、Hg、Pb等の単体金属
と、それらを組合わせた組成の合金が具体的に挙げられ
る。金属酸化物からなるグループには、TiO2 、Mn
O2 、PbO2 、WO3 、ペロブスカイト酸化物、ブロ
ンズ酸化物、スピネル酸化物、パイロクロール酸化物等
が具体的に挙げられる。半導体からなるグループには、
Si、Ge、ZnO、CdS、TiO2 、GaAs等が
具体的に挙げられる。炭素系材料からなるグループに
は、グラファイト、カーボンペースト、グラッシーカー
ボン、HOPG(高配向性熱分解グラファイト)等が具
体的に挙げられる。金属硫化物からなるグループには、
RuS2 、PdS、PdS2 、CdS、In2 S3 、O
sS2 、CoS2 、PbS、NiS2 、MoS2 等が挙
げられる。Ti, V, Fe, Co, Ni, Cu, Zn, Ge, and
Nb, Ru, Rh, Pd, Ag, Cd, Sn, Ta,
Specific examples include elemental metals such as W, Os, Ir, Pt, Au, Hg, and Pb, and alloys having a composition in which they are combined. The group consisting of metal oxides includes TiO 2 , Mn
Specific examples thereof include O 2 , PbO 2 , WO 3 , perovskite oxide, bronze oxide, spinel oxide, and pyrochlore oxide. In the group consisting of semiconductors,
Specific examples include Si, Ge, ZnO, CdS, TiO 2 , and GaAs. Specific examples of the group consisting of carbon-based materials include graphite, carbon paste, glassy carbon, HOPG (highly oriented pyrolytic graphite), and the like. For groups consisting of metal sulfides,
RuS 2 , PdS, PdS 2 , CdS, In 2 S 3 , O
Examples include sS 2 , CoS 2 , PbS, NiS 2 , MoS 2 and the like.
【0018】参照極に使用される材料は、電位を安定に
するものならば何を用いても良い。このような参照電極
の公知例としては、D. J. G. Ives and G. J. Janz編"R
eference Electrodes, Theory and Practice", (Academ
ic Press, 1961) に記載されているものが、代表例とし
てあげられ使用される。参照電極の具体例としては、可
逆水素電極、銀・塩化銀電極、飽和カロメル電極、ダイ
レクト水素電極等が用いられる。また、参照電極とする
電極上に銀ペーストを薄くコートして、銀を参照物質と
することも有効かつ効果的である。参照電極の構成要件
として、平衡電位を発生する部分と作用電極を隔離する
必要がある場合は、適当な液絡を介して両者を配置する
ことができる。具体的な液洛の例としては、前記文献に
掲載されているものが使用されるが、好ましくはイオン
伝導性材料にかかる役割を担わせることが望ましい。さ
らには、参照電極の電位決定反応に関与するイオンが、
イオン伝導材料と同一であると良好な結果が得られる。
このような参照電極としては、銀/硫酸銀/スルホ基を
有するプロトン伝導性膜が挙げられ、良好に用いること
ができる。もちろんこの他にも公知の液絡を用いること
により、適切な参照電極を配備することが可能であるこ
とは強調するまでもない。Any material may be used for the reference electrode as long as it stabilizes the potential. A known example of such a reference electrode is "R" by DJG Ives and GJ Janz.
eference Electrodes, Theory and Practice ", (Academ
The one described in ic Press, 1961) is used as a typical example. Specific examples of the reference electrode include a reversible hydrogen electrode, a silver / silver chloride electrode, a saturated calomel electrode, a direct hydrogen electrode and the like. It is also effective and effective to thinly coat the electrode serving as the reference electrode with silver paste to use silver as the reference substance. As a constituent element of the reference electrode, when it is necessary to separate the portion generating the equilibrium potential from the working electrode, they can be arranged via an appropriate liquid junction. As a specific example of the liquid material, those described in the above-mentioned documents are used, but it is desirable that the ion conductive material preferably plays a role. Furthermore, the ions involved in the potential-determining reaction of the reference electrode are
Good results are obtained when it is the same as the ion conductive material.
Examples of such a reference electrode include a proton conductive membrane having a silver / silver sulfate / sulfo group, which can be favorably used. It goes without saying that it is possible to provide a suitable reference electrode by using a known liquid junction in addition to the above.
【0019】また対極6としては、上述した作用電極用
材料が全て使用されるが、とりわけ白金、グラッシーカ
ーボン、ダイヤモンド等、高耐食性の材料が好適に用い
られる。対極はその作動特性に鑑みると、作用電極の面
積の2倍以上、好ましくは10倍以上、さらに好ましく
は50倍以上の面積を有することが望ましい。これを達
成する一方法として、公知の白金黒、パラジウム黒等が
あげられ使用される。これは、めっきにより見かけの面
積の100倍程度の有効面積を与えることができるもの
で、広く知られている方法である。対極は、必要に応じ
て設け、使用することができるものであり、参照電極の
場合と同様にイオン伝導性材料を介して一対の作用電極
および参照電極と当接するように配備されることが好ま
しい。As the counter electrode 6, all of the above-mentioned working electrode materials are used, but particularly, a material having a high corrosion resistance such as platinum, glassy carbon or diamond is preferably used. In view of its operating characteristics, it is desirable that the counter electrode has an area that is at least twice the area of the working electrode, preferably at least 10 times, and more preferably at least 50 times. As a method for achieving this, publicly known platinum black, palladium black, etc. can be mentioned and used. This is a widely known method because it can provide an effective area of about 100 times the apparent area by plating. The counter electrode can be provided and used as needed, and is preferably arranged so as to come into contact with the pair of working electrode and reference electrode via the ion conductive material as in the case of the reference electrode. .
【0020】一対の作用電極および参照電極、対極に当
接するイオン伝導性材料5としては、ナフィオンをはじ
めとするイオン交換樹脂、ZrO2などのセラミックス
をはじめとする固体電解質、あるいは適切な溶媒と親和
性を持つ高分子材料があげられる。溶媒と親和性を持つ
高分子としては、まず、水溶性高分子を不溶化したもの
として、セルロースアセテート、ポリビニルアルコー
ル、ポリNビニルピロリドン、ポリアクリルアミド、セ
ルロース、カルボキシメチルセルロース、ニトロセルロ
ース、シアノエチルセルロース、セルロースサルフェー
ト、ヘパリン、ペクチン、アルギン酸、ヒドロキシメチ
ルセルロース、イソプロピルセルロース、ポリアクリル
酸、ポリエチレンオキシド等の熱処理物や架橋物、上記
水溶性高分子のうち2種以上の高分子を架橋して得られ
た共重合体を挙げることができる。また、水によって殆
ど膨潤しない非水溶性高分子を上記水溶性高分子と適当
な分率で共重合し、水中での膨潤度を向上させた膜も挙
げられる。さらに、光架橋性のモノマーを水溶性高分子
溶液に溶解させておき、製膜後光照射して架橋構造を作
り、高吸水性高分子を得る方法を挙げることができる。
これらの高分子としては、光架橋性ポリビニルアルコー
ルや光架橋性ポリエチレンオキシド、光架橋性ポリエチ
レングリコールなどが挙げられる。また、イオン性高分
子としてポリビニルスルホン酸やポリスチレンスルホン
酸、ナフィオン等を挙げることができる。これらのアニ
オン性高分子はカチオン性の目的物質を取り込んで運動
を束縛するため、膜中で大きな拡散係数が得られないこ
とがある。このため、上記水溶性高分子をコートした後
これらのアニオン性高分子をコートして、選択性、感度
を向上させることができる。二層膜では目的物質を取り
込む機能を有する上層膜と電極応答に寄与する下層膜と
が分かれているため、膜全体として高吸水性であれば、
上層膜は目的物質に対し分配係数の大きな膜であれば良
い。また、下層膜としては、多孔質膜を用いることもで
きる。さらに、高分子以外でも二分子膜やLB膜に利用
する両性物質を多孔質膜中に分散させて薄膜として使用
することができる。As the pair of working electrode and reference electrode, and the ion conductive material 5 contacting the counter electrode, an ion exchange resin such as Nafion, a solid electrolyte such as ceramics such as ZrO 2 or a suitable solvent is used. Polymer materials having properties are listed. As a polymer having an affinity with a solvent, first, a water-soluble polymer is insolubilized, and cellulose acetate, polyvinyl alcohol, poly-N-vinylpyrrolidone, polyacrylamide, cellulose, carboxymethyl cellulose, nitrocellulose, cyanoethyl cellulose, cellulose sulfate , Heat-treated or crosslinked products of heparin, pectin, alginic acid, hydroxymethyl cellulose, isopropyl cellulose, polyacrylic acid, polyethylene oxide, etc., and copolymers obtained by cross-linking two or more of the above water-soluble polymers Can be mentioned. Further, a membrane in which a water-insoluble polymer that hardly swells with water is copolymerized with the above water-soluble polymer at an appropriate ratio to improve the degree of swelling in water is also included. Further, a method in which a photocrosslinkable monomer is dissolved in a water-soluble polymer solution, and after film formation is irradiated with light to form a crosslinked structure, a superabsorbent polymer can be obtained.
Examples of these polymers include photocrosslinkable polyvinyl alcohol, photocrosslinkable polyethylene oxide, and photocrosslinkable polyethylene glycol. Further, examples of the ionic polymer include polyvinyl sulfonic acid, polystyrene sulfonic acid, and Nafion. Since these anionic polymers take in a cationic target substance and restrain the movement, a large diffusion coefficient may not be obtained in the film. Therefore, it is possible to improve the selectivity and sensitivity by coating the water-soluble polymer and then coating these anionic polymers. In the two-layer film, the upper layer film having a function of taking in the target substance and the lower layer film contributing to the electrode response are separated.
The upper layer film may be a film having a large partition coefficient for the target substance. A porous film can also be used as the lower layer film. Furthermore, other than a polymer, an amphoteric substance used for a bilayer film or an LB film can be dispersed in a porous film and used as a thin film.
【0021】本発明において、一対の作用電極に当接す
るイオン伝導性膜の厚さは、200μm以下、好ましく
は100μm以下が好適である。In the present invention, the thickness of the ion conductive film which contacts the pair of working electrodes is preferably 200 μm or less, more preferably 100 μm or less.
【0022】以上のように作製されてなるマイクロ電極
構造体は、通常の導電性を有する被検体中の酸化還元反
応を測定することができる。さらに、該マイクロ電極構
造体は、有効電極面積を0.05cm2以下の微少サイ
ズに設計することができるため、微少領域あるいは微少
量の被検媒体に対して電気化学測定を行うことができ
る。また、本願発明のマイクロ電極構造体の最大の特徴
は、作用電極、参照電極、必要に応じて対極を近接して
配置しているため、高抵抗媒体中の電極活性種の電極反
応を測定するに際しても電極間隔をその都度調整する必
要がなく、かつ媒体に基づく電極間の抵抗を最小限に押
さえることができる点にある。The microelectrode structure produced as described above is capable of measuring the redox reaction in a subject having ordinary conductivity. Furthermore, since the microelectrode structure can be designed to have an effective electrode area of a minute size of 0.05 cm 2 or less, electrochemical measurement can be performed on a minute region or a small amount of the test medium. Further, the greatest feature of the microelectrode structure of the present invention is that the working electrode, the reference electrode, and, if necessary, the counter electrode are arranged close to each other, so that the electrode reaction of the electrode active species in the high resistance medium is measured. Also in this case, it is not necessary to adjust the electrode interval each time, and the resistance between the electrodes based on the medium can be suppressed to the minimum.
【0023】本発明のマイクロ電極構造体が測定の対象
とする媒体としては、水、ジエチルエーテル、ジメトキ
シエタン、テトラヒドロフラン、テトラヒドロピラン等
のエーテル類、アセトニトリル、ジメチルホルムアミ
ド、ジメチルスルホキシド、液体アンモニア、硫酸など
を用いることができるだけでなく、溶融塩、超臨界流体
なども測定対象とすることができる。これら溶媒には、
公知の支持電解質を溶解させて溶液抵抗を下げて測定す
る従来からの手法が適用される。また、高抵抗媒体の例
としては、支持電解質を含まない上記の各溶媒、固体高
分子、気体などがあげられる。固体高分子としては、例
えばポリエチレングリコールないしはそれに類似した重
合体があげられ、これにリチウムイオンを混入せしめる
ことで、高抵抗媒体中のリチウムイオンの電気化学挙動
を計測することができる。また、高抵抗媒体である気体
も本発明によりなるマイクロ電極構造体の測定対象とな
る。その例としては、水素、酸素、一酸化炭素、二酸化
炭素、二硫化炭素等の気体、または、メタノール、エタ
ノール、ジメチルエーテル、アセトンなどの物質を気化
して電極反応の測定対象とすることもできる。The medium to be measured by the microelectrode structure of the present invention includes water, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran, tetrahydropyran, acetonitrile, dimethylformamide, dimethylsulfoxide, liquid ammonia, sulfuric acid, etc. Not only can it be used, but molten salts, supercritical fluids, etc. can also be measured. These solvents include
A conventional method of dissolving a known supporting electrolyte to reduce the solution resistance and performing measurement is applied. In addition, examples of the high resistance medium include the above-mentioned solvents, solid polymers, and gases that do not contain a supporting electrolyte. As the solid polymer, for example, polyethylene glycol or a polymer similar thereto can be mentioned. By mixing lithium ion into the polymer, the electrochemical behavior of lithium ion in the high resistance medium can be measured. Further, a gas, which is a high resistance medium, is also a measurement target of the microelectrode structure according to the present invention. As an example, a gas such as hydrogen, oxygen, carbon monoxide, carbon dioxide, carbon disulfide, or a substance such as methanol, ethanol, dimethyl ether, or acetone can be vaporized and used as the measurement target of the electrode reaction.
【0024】測定は、上述の電極構造体に上述の被検媒
体を接触させて測定する。被検媒体が気体の場合は、目
的とする気相に該マイクロ電極構造体の有効部分(各電
極がイオン伝導体と接する部分)が接するようにして測
定を行うことができる。また被検媒体が液体の場合は、
該マイクロ電極構造体の有効部分に目的とする液体を接
するようにすればよい。いずれの場合も、電極に対し流
体が流れていてもよいし静止していてもよい。なお液体
の場合は、被検液体が極微量(一滴)でも電気化学測定
を行うことが可能である。The measurement is carried out by bringing the above-mentioned test medium into contact with the above-mentioned electrode structure. When the test medium is a gas, the measurement can be performed so that the target gas phase is brought into contact with the effective portion of the microelectrode structure (the portion where each electrode contacts the ion conductor). If the test medium is a liquid,
The target liquid may be brought into contact with the effective portion of the microelectrode structure. In either case, the fluid may be flowing or may be stationary with respect to the electrode. In the case of a liquid, the electrochemical measurement can be performed even if the test liquid is a very small amount (one drop).
【0025】図7に本発明の電気化学測定装置図の一例
を示す。本発明のマイクロ電極構造体10が電気化学計
測装置11に接続されている。12は計測装置11のコ
ントロール/データ集積装置である。電気化学計測装置
11としては、直流定電圧源、直流定電流源あるいは交
流電源を使用することができる。このときの応答を直流
電流計、電圧計ないし交流計測器で測定することができ
る。具体的には、ポテンショスタット、ガルバノスタッ
ト、ブリッジ等公知の測定装置を使用することができ
る。これらに適切な測定装置、例えば電位スキャナー、
ロックインアンプ、周波数応答分析装置等を連結して測
定に供することも可能である。FIG. 7 shows an example of the electrochemical measuring device of the present invention. The microelectrode structure 10 of the present invention is connected to an electrochemical measuring device 11. Reference numeral 12 is a control / data accumulation device of the measuring device 11. As the electrochemical measuring device 11, a DC constant voltage source, a DC constant current source, or an AC power source can be used. The response at this time can be measured with a DC ammeter, a voltmeter or an AC measuring instrument. Specifically, a known measuring device such as a potentiostat, a galvanostat or a bridge can be used. Measuring devices suitable for these, such as potential scanners,
It is also possible to connect a lock-in amplifier, a frequency response analyzer, etc. for measurement.
【0026】[0026]
【実施例】次に実施例により本発明を詳細に説明する
が、実施例は本発明を詳しく説明するためのものであ
り、本発明がこれらの実施例によってなんらの制約も受
けないことは断るまでもない。EXAMPLES Next, the present invention will be described in detail with reference to examples, but the examples are for the purpose of explaining the present invention in detail, and it is refused that the present invention is not limited by these examples. There is no end.
【0027】(実施例1)石英ガラス基盤状にフォトリ
ソグラフ技術を用いて、図6に示すような交互型マイク
ロアレー電極、参照電極および対極を有する本発明のマ
イクロ電極構造体を作製した。まず、スパッタリングで
蒸着した厚さ0.1 mmの白金薄膜をフォトリソグラフで加
工し、電極幅および電極間ギャップが10 mm、長さが2.4
mmのバンド電極が交互に20本並んだ交互型マイクロアレ
ー電極とした。なお対極は、スパッタリングで設けた有
効面積0.5 cm2の白金である。参照電極は同様にスパッ
タした白金上に銀メッキを施したのち、その表面に硫酸
銀被膜を電気化学的に形成した。この電極構造体上に、
ナフィオン溶液(アルドリッチ社製)を用いてスピンコ
ート法により乾燥膜厚3 mmのナフィオン膜を設け、本発
明のマイクロ電極構造体を作製した。Example 1 A microelectrode structure of the present invention having alternating microarray electrodes, reference electrodes and counter electrodes as shown in FIG. 6 was prepared by using a photolithography technique on a quartz glass substrate. First, a 0.1 mm thick platinum thin film deposited by sputtering was processed by photolithography, and the electrode width and interelectrode gap were 10 mm and the length was 2.4 mm.
An alternating type micro array electrode in which 20 mm band electrodes were alternately arranged was used. The counter electrode is platinum with an effective area of 0.5 cm 2 provided by sputtering. Similarly, the reference electrode was formed by plating silver on the sputtered platinum, and then electrochemically forming a silver sulfate film on the surface thereof. On this electrode structure,
A Nafion film having a dry film thickness of 3 mm was provided by a spin coating method using a Nafion solution (manufactured by Aldrich Co.) to prepare the microelectrode structure of the present invention.
【0028】作製したマイクロ電極構造体を、飽和加湿
した窒素ガスに30分以上さらした後、一対の作用電極
を短絡させて電位走査速度毎秒10 mVで、サイクリック
ボルタモグラム測定を行った。測定結果を図8の実線で
示す。酸性水溶液中の白金電極の挙動によく類似したサ
イクリックボルタモグラムが得られ、本マイクロ電極構
造体が、高抵抗媒体中でも作動することが確認された。
なお、当該条件下のナフィオン膜のイオン伝導率が0.12
×10-2 S/cmであることが、インピーダンス測定結果か
ら明らかになった。すなわち、通常の水溶液電解質より
導電率が2桁小さな高抵抗媒体中で電気化学測定が可能
であることが分かる。The prepared microelectrode structure was exposed to saturated and humidified nitrogen gas for 30 minutes or more, and then a pair of working electrodes were short-circuited to perform cyclic voltammogram measurement at a potential scanning rate of 10 mV / sec. The measurement result is shown by the solid line in FIG. Cyclic voltammograms similar to the behavior of the platinum electrode in acidic aqueous solution were obtained, and it was confirmed that the present microelectrode structure operates even in a high resistance medium.
The ionic conductivity of the Nafion membrane under the conditions is 0.12.
It was revealed from the impedance measurement results that it was × 10 -2 S / cm. That is, it can be seen that the electrochemical measurement can be performed in a high resistance medium whose conductivity is two orders of magnitude lower than that of a normal aqueous electrolyte.
【0029】(比較例1)実施例1において、電極上に
ナフィオン層を設けない以外は実施例1と同様にして比
較例1の電極を作製した。実施例1と同様な測定を行っ
たところ図8に示す点線の測定結果が得られた。比較例
1の電極では、イオン伝導膜を有しないため、超高抵抗
媒体(加湿窒素)中の電気化学測定ができないことが明
らかである。Comparative Example 1 An electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that the Nafion layer was not provided on the electrode. When the same measurement as in Example 1 was performed, the measurement result indicated by the dotted line in FIG. 8 was obtained. Since the electrode of Comparative Example 1 does not have an ion conductive film, it is clear that electrochemical measurement in an ultrahigh resistance medium (humidified nitrogen) cannot be performed.
【0030】(実施例2)実施例1において、加湿した
窒素ガスの代わりに加湿した水素ガスを用いて、次のよ
うな測定を行った。作用電極の一方を、参照電極に対し
て-0.85 Vに固定し、補足極とした。もう一方の作用電
極は、通常のサイクリックボルタムメトリーと同様にし
て走査速度毎秒2 mVで電位走査を行った。結果を図9に
示す。生成極では、図8の結果と比較して分かるよう
に、明らかに水素酸化を生じていることが分かる。一
方、捕捉極では、水素酸化電流の増加につれて還元電流
が観測される。これは、水素酸化反応生成物を捕捉極が
とらえていることを示す結果であり、本発明のマイクロ
電極構造体を使用することで、高抵抗媒体中においては
じめて、電極反応生成物を電気化学的に捕らえることが
できた。Example 2 In Example 1, the following measurement was performed by using a humidified hydrogen gas instead of the humidified nitrogen gas. One of the working electrodes was fixed at -0.85 V with respect to the reference electrode to serve as a supplementary electrode. The other working electrode was subjected to potential scanning at a scanning rate of 2 mV per second in the same manner as in ordinary cyclic voltammetry. The results are shown in Fig. 9. As can be seen from the comparison with the results in FIG. 8, it is clear that hydrogen oxidation occurs at the generation electrode. On the other hand, at the trapping electrode, a reduction current is observed as the hydrogen oxidation current increases. This is a result showing that the hydrogen oxidation reaction product is captured by the trapping electrode, and by using the microelectrode structure of the present invention, the electrode reaction product can be electrochemically treated only in a high resistance medium. I was able to catch.
【0031】(比較例2)比較例1の電極を用いて、実
施例2の条件下でまったく同様な電気化学測定を行った
結果、比較例1と同様に電流応答が観測されなかった。Comparative Example 2 Using the electrode of Comparative Example 1, the same electrochemical measurement was carried out under the conditions of Example 2, and as a result, the same current response as in Comparative Example 1 was not observed.
【0032】[0032]
【発明の効果】本発明のマイクロ電極構造体は、平面お
よび/または曲面上に少なくとも一対の作用電極と参照
電極、それに必要に応じて設けられる対極がイオン伝導
性材料を介して当接してなるため、それに電圧または電
流を印加する手段と電流または電圧計則手段により高感
度電気化学計測が可能となる。これは、一対の作用電極
におけるレドックスサイクリング反応に基づく一種の増
幅効果によるものである。第二に、本発明のマイクロ電
極構造体は、一方の作用電極で生じた反応中間体および
/または生成物を、もう一方の作用電極の電極電位を前
記作用電極の電位と異なる適切な値に設定することで検
知することができ、高抵抗媒体中においても電極反応機
構を詳細に調べることが可能となる。The microelectrode structure of the present invention comprises at least a pair of working electrode and reference electrode on a flat surface and / or a curved surface, and a counter electrode which is optionally provided on the flat surface and / or a curved surface, which are in contact with each other through an ion conductive material. Therefore, high-sensitivity electrochemical measurement can be performed by means for applying voltage or current thereto and current or voltmeter means. This is due to a kind of amplification effect based on the redox cycling reaction at the pair of working electrodes. Secondly, in the microelectrode structure of the present invention, the reaction intermediate and / or the product produced at one working electrode is adjusted to an appropriate value in which the electrode potential of the other working electrode is different from the potential of the working electrode. It can be detected by setting, and the electrode reaction mechanism can be investigated in detail even in a high resistance medium.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の電極構造体の一例を示す断面図であ
る。FIG. 1 is a cross-sectional view showing an example of an electrode structure of the present invention.
【図2】図1の電極構造体の平面図を示す。FIG. 2 shows a plan view of the electrode structure of FIG.
【図3】本発明の電極構造体の別の例を示す断面図であ
る。FIG. 3 is a cross-sectional view showing another example of the electrode structure of the present invention.
【図4】図2の電極構造体の平面図を示す。FIG. 4 shows a plan view of the electrode structure of FIG.
【図5】本発明の電極構造体の別の構成例を示す断面図
である。FIG. 5 is a cross-sectional view showing another configuration example of the electrode structure of the present invention.
【図6】本発明の電極構造体に交互型アレー電極を有す
る例を示す平面図である。FIG. 6 is a plan view showing an example in which the electrode structure of the present invention has an alternating array electrode.
【図7】本発明の電気化学測定装置図を示すブロック図
である。FIG. 7 is a block diagram showing an electrochemical measurement device diagram of the present invention.
【図8】本発明の実施例と比較例の電流−電位曲線を示
す。FIG. 8 shows current-potential curves of an example of the present invention and a comparative example.
【図9】本発明の実施例の電流−電位曲線を示す。FIG. 9 shows a current-potential curve of an example of the present invention.
1.電気絶縁性基体 2.一対の作用電極の片方 3.一対の作用電極の片方 4.参照電極 5.イオン伝導性膜 6.対極 10.マイクロ電極構造体 11.電気化学計測装置 12.コントロール/データ集積装置 1. Electrically insulating substrate 2. One of a pair of working electrodes 3. One of a pair of working electrodes 4. Reference electrode 5. Ion conductive membrane 6. Opposite pole 10. Micro electrode structure 11. Electrochemical measuring device 12. Control / data collection device
Claims (6)
一対の作用電極と基準電極がイオン伝導性材料を介して
当接してなるマイクロ電極構造体。1. A microelectrode structure in which at least a pair of working electrodes and reference electrodes are in contact with each other on a flat surface and / or a curved surface via an ion conductive material.
一対の作用電極、基準電極および対極がイオン伝導性材
料を介して当接してなる請求項1に記載のマイクロ電極
構造体。2. The microelectrode structure according to claim 1, wherein at least a pair of a working electrode, a reference electrode and a counter electrode are in contact with each other on a flat surface and / or a curved surface via an ion conductive material.
ることを特徴とする請求項1乃至2に記載のマイクロ電
極構造体。3. The microelectrode structure according to claim 1, wherein the pair of working electrodes are alternating array electrodes.
一対の作用電極と基準電極がイオン伝導性材料を介して
当接してなるマイクロ電極構造体と、電極間に電圧また
は電流を印加する手段と電流または電圧計則手段を具備
してなることを特徴とするマイクロ電極構造体を用いた
計測装置。4. A microelectrode structure in which at least a pair of working electrodes and a reference electrode are in contact with each other on a flat surface and / or a curved surface via an ion conductive material, and means and current for applying a voltage or current between the electrodes. Alternatively, a measuring device using a microelectrode structure, characterized by comprising a voltage regulation means.
一対の作用電極、基準電極および対極がイオン伝導性材
料を介して当接してなるマイクロ電極構造体と、電極間
に電圧または電流を印加する手段と電流または電圧計則
手段を具備してなることを特徴とする請求項4に記載の
マイクロ電極構造体を用いた計測装置。5. A microelectrode structure in which at least a pair of a working electrode, a reference electrode and a counter electrode are in contact with each other on a flat surface and / or a curved surface via an ion conductive material, and a means for applying a voltage or current between the electrodes. 5. The measuring device using the microelectrode structure according to claim 4, characterized by comprising:
ることを特徴とする請求項1乃至2に記載のマイクロ電
極構造体と、電極間に電圧または電流を印加する手段と
電流または電圧計則手段を具備してなることを特徴とす
る請求項4乃至5に記載のマイクロ電極構造体を用いた
計測装置。6. The microelectrode structure according to claim 1, wherein the pair of working electrodes are alternating array electrodes, a means for applying voltage or current between the electrodes, and a current or voltmeter. The measuring device using the microelectrode structure according to claim 4, further comprising a regulation means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002091006A JP2003287514A (en) | 2002-03-28 | 2002-03-28 | Microelectrode structure and measuring instrument using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002091006A JP2003287514A (en) | 2002-03-28 | 2002-03-28 | Microelectrode structure and measuring instrument using the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003287514A true JP2003287514A (en) | 2003-10-10 |
Family
ID=29236197
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002091006A Pending JP2003287514A (en) | 2002-03-28 | 2002-03-28 | Microelectrode structure and measuring instrument using the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003287514A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006339084A (en) * | 2005-06-06 | 2006-12-14 | National Institute Of Advanced Industrial & Technology | Integrated dynamic hydrogen electrode system |
| WO2007052744A1 (en) * | 2005-11-04 | 2007-05-10 | Sony Corporation | Electrochemical energy generation device and its operation method, and electrochemical device |
| CN100403021C (en) * | 2005-12-29 | 2008-07-16 | 上海交通大学 | Microarray Structure of Ionized Gas Sensor Based on Microelectronic Processing Technology |
| JP2012117895A (en) * | 2010-11-30 | 2012-06-21 | Hitachi Chem Co Ltd | Metal detection sensor, method for adsorbing metal and method for determining metal concentration |
| CN114778649A (en) * | 2022-05-09 | 2022-07-22 | 西安交通大学 | An electrochemical test device suitable for sub/supercritical water systems |
-
2002
- 2002-03-28 JP JP2002091006A patent/JP2003287514A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006339084A (en) * | 2005-06-06 | 2006-12-14 | National Institute Of Advanced Industrial & Technology | Integrated dynamic hydrogen electrode system |
| WO2007052744A1 (en) * | 2005-11-04 | 2007-05-10 | Sony Corporation | Electrochemical energy generation device and its operation method, and electrochemical device |
| JP2007128745A (en) * | 2005-11-04 | 2007-05-24 | Sony Corp | Electrochemical energy generation device and its operation method, as well as electrochemical device |
| US8318367B2 (en) * | 2005-11-04 | 2012-11-27 | Sony Corporation | Electrochemical energy generating apparatus and operating method thereof, and electrochemical device |
| CN100403021C (en) * | 2005-12-29 | 2008-07-16 | 上海交通大学 | Microarray Structure of Ionized Gas Sensor Based on Microelectronic Processing Technology |
| JP2012117895A (en) * | 2010-11-30 | 2012-06-21 | Hitachi Chem Co Ltd | Metal detection sensor, method for adsorbing metal and method for determining metal concentration |
| CN114778649A (en) * | 2022-05-09 | 2022-07-22 | 西安交通大学 | An electrochemical test device suitable for sub/supercritical water systems |
| CN114778649B (en) * | 2022-05-09 | 2024-01-09 | 西安交通大学 | Electrochemical testing device suitable for subcritical/supercritical water system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Niwa et al. | Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes | |
| Mirkin | Peer reviewed: Recent advances in scanning electrochemical microscopy | |
| Bard | Introduction and principles | |
| JP2001215214A (en) | Hydrogen gas sensor | |
| WO1997013143A1 (en) | Electrochemical sensors for gas detection | |
| CN101595381A (en) | Electrode plate for electrochemical measurement, electrochemical measurement device having the electrode plate, and method for quantifying a target substance using the electrode plate | |
| Tabei et al. | Fabrication and electrochemical features of new carbon based interdigitated array microelectrodes | |
| JPH0627081A (en) | Electrochemical detection method and detection device | |
| Robinson et al. | Electrical and electrochemical characterization of proton transfer at the interface between chitosan and PdH x | |
| Milczarek et al. | 2, 2‐bis (3‐amino‐4‐hydroxyphenyl) hexafluoropropane modified glassy carbon electrodes as selective and sensitive voltammetric sensors. Selective detection of dopamine and uric acid | |
| Han et al. | Coulometric Response of H+‐Selective Solid‐Contact Ion‐Selective Electrodes and Its Application in Flexible Sensors | |
| JP2003287514A (en) | Microelectrode structure and measuring instrument using the same | |
| JPH0370782B2 (en) | ||
| JPH0640092B2 (en) | Humidity measurement method | |
| JPH0389156A (en) | Gas sensor element | |
| JP2002340850A (en) | Gas detector | |
| Karan | Determination of CL ionomer conductivity | |
| JP2003287515A (en) | Microelectrode | |
| JP2003149203A (en) | Method and apparatus for evaluating electrode catalyst using microelectrode for measuring powder | |
| Presa et al. | Charge transfer in poly (o-toluidine) gold modified electrodes. An EIS study of the reduced state | |
| US10261046B2 (en) | Electrochemical sensor | |
| Wang et al. | Anodic stripping with collection at interdigitated carbon film microelectrode arrays | |
| RU2677093C1 (en) | Method of manufacturing a chemoresistor based on cobalt oxide nanostructures by electrochemical method | |
| CN108982615B (en) | An integrated electrochemical electrode system based on nanochannel array surface sputtering of gold/platinum | |
| JP2002296216A (en) | Integrated micro-electrode and measuring method for electrode reaction in high-resistance medium using same |