JP2003294529A - Light intensity measuring device and method - Google Patents
Light intensity measuring device and methodInfo
- Publication number
- JP2003294529A JP2003294529A JP2002096761A JP2002096761A JP2003294529A JP 2003294529 A JP2003294529 A JP 2003294529A JP 2002096761 A JP2002096761 A JP 2002096761A JP 2002096761 A JP2002096761 A JP 2002096761A JP 2003294529 A JP2003294529 A JP 2003294529A
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- wavelength
- light
- optical
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 63
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims description 138
- 238000000926 separation method Methods 0.000 claims description 13
- 239000013307 optical fiber Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 101100408361 Arabidopsis thaliana PIP2-3 gene Proteins 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101001078143 Homo sapiens Integrin alpha-IIb Proteins 0.000 description 1
- 102100025306 Integrin alpha-IIb Human genes 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光強度測定装置及
び方法に関し、より詳しくは、光波長多重通信において
各波長の光信号強度を高精度に測定することが可能な光
強度測定装置及び方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light intensity measuring device and method, and more particularly, to a light intensity measuring device and method capable of highly accurately measuring the optical signal intensity of each wavelength in optical wavelength division multiplexing communication. Regarding
【0002】[0002]
【従来の技術】光ファイバを伝送路に用いる従来の光通
信においては、伝送する光信号の伝送損失が変調速度に
依存しないため送受信装置の性能限界までの大容量の情
報を伝送することが可能である。さらに光ファイバ中に
複数の波長の異なる光信号を多重して伝送する波長多重
光通信においては、従来の光通信の伝送容量よりも、多
重する波長数倍の容量の情報を伝送することが可能であ
る。2. Description of the Related Art In conventional optical communication using an optical fiber as a transmission path, a transmission loss of an optical signal to be transmitted does not depend on a modulation rate, so that a large amount of information up to the performance limit of a transmitter / receiver can be transmitted. Is. Furthermore, in wavelength division multiplexing optical communication, in which optical signals of different wavelengths are multiplexed and transmitted in an optical fiber, it is possible to transmit information with a capacity that is several times the wavelength to be multiplexed, compared to the transmission capacity of conventional optical communication. Is.
【0003】ところで一般に光通信においては、光ファ
イバの伝送損失を補償するため中継局において、伝送さ
れてきた光信号の強度を測定し、測定された強度に応じ
て所望の減衰を加えるなどの補償を行う。従来の波長多
重光通信においては中継局において伝送光の一部を分岐
し、分岐光を光強度測定系に導く様に構成されている
(例えば、特開2001−168841号公報)。Generally, in optical communication, in order to compensate for transmission loss of an optical fiber, a relay station measures the intensity of an optical signal transmitted, and compensates by adding desired attenuation according to the measured intensity. I do. In the conventional wavelength division multiplexing optical communication, a part of the transmitted light is branched at the relay station, and the branched light is guided to the optical intensity measurement system (for example, Japanese Patent Laid-Open No. 2001-168841).
【0004】図1に示すように、このような測定系は、
光波長分離装置を用いて光信号を分離した後、各波長ご
とに光信号の強度を測定するものである。ここで図中符
号101は分岐された波長多重光を導く入力光ファイ
バ、符号102は光波長分離装置、符号103−1〜n
は出力光ファイバ、符号104−1〜nは受光器、符号
107はデータ処理装置である。この光強度測定装置に
おいては、入力光ファイバ101を通って光波長分離装
置102に入力された波長多重光信号を、光波長分離装
置102で波長分離した後、出力光ファイバ103−1
〜nを経由させて受光器104−1〜nで光強度を測定
し、データ処理装置107で光強度を計算、蓄積する。
これらの測定結果は、減衰値の設定等、所望量の補償を
行う際に用いられる。As shown in FIG. 1, such a measuring system is
After separating an optical signal using an optical wavelength demultiplexer, the intensity of the optical signal is measured for each wavelength. In the figure, reference numeral 101 is an input optical fiber that guides the branched wavelength division multiplexed light, reference numeral 102 is an optical wavelength demultiplexer, and reference numerals 103-1 to 10-n.
Is an output optical fiber, reference numerals 104-1 to n are light receivers, and reference numeral 107 is a data processing device. In this optical intensity measuring device, the wavelength-multiplexed optical signal input to the optical wavelength demultiplexing device 102 through the input optical fiber 101 is wavelength-demultiplexed by the optical wavelength demultiplexing device 102, and then the output optical fiber 103-1.
The light intensity is measured by the light receivers 104-1 to 104-n via the data processing device 1 through n, and the data processing device 107 calculates and stores the light intensity.
These measurement results are used when performing a desired amount of compensation such as setting of the attenuation value.
【0005】一般的な光波長分離装置としてはアレイ導
波路格子が用いられている。アレイ導波路格子は、以下
のように波長多重信号を波長ごとに分離する。図2
(a)、(b)は、従来のアレイ導波路格子を用いた波
長透過特性を表す図である。図2(a)は、アレイ導波
路格子を用いた従来の光強度測定装置における波長透過
特性を表す図である。図2(b)は、アレイ導波路格子
を用いた従来の光強度測定装置において、最大透過波長
と光信号の波長との波長のずれを表す図である。An arrayed waveguide grating is used as a general optical wavelength demultiplexer. The arrayed-waveguide grating separates the wavelength-multiplexed signal for each wavelength as follows. Figure 2
(A), (b) is a figure showing the wavelength transmission characteristic using the conventional arrayed-waveguide grating. FIG. 2A is a diagram showing wavelength transmission characteristics in a conventional light intensity measuring device using an arrayed waveguide grating. FIG. 2B is a diagram showing a wavelength shift between the maximum transmission wavelength and the wavelength of the optical signal in the conventional light intensity measuring device using the arrayed waveguide grating.
【0006】すなわち、アレイ導波路格子の入力ポート
から入力され各出力ポートに出力される光信号に対し
て、アレイ導波路格子は図2(a)に示すような波長透
過特性を有する。ここで各出力ポートに対応する最大透
過波長(透過強度のピーク波長)が、多重された光信号
の各波長と一致している場合、各出力ポートにはその最
大透過波長と一致した波長の光信号のみが取り出される
ことになる。これにより各出力ポートには、波長ごとに
分離された光信号が一括して出力されることになり、効
率的な光強度測定が可能となる。That is, the arrayed waveguide grating has a wavelength transmission characteristic as shown in FIG. 2A for an optical signal input from the input port of the arrayed waveguide grating and output to each output port. Here, if the maximum transmission wavelength (peak wavelength of transmission intensity) corresponding to each output port matches each wavelength of the multiplexed optical signal, the light of the wavelength matching the maximum transmission wavelength is output to each output port. Only the signal will be retrieved. As a result, the optical signals separated for each wavelength are collectively output to each output port, which enables efficient optical intensity measurement.
【0007】[0007]
【発明が解決しようとする課題】しかしながらアレイ導
波路格子の出力ポートからの光信号の強度を測定する場
合には、通常、送信局から送信されてくる光信号の波長
がアレイ導波路格子の最大透過波長と完全には一致しな
い。例えば図2(b)に示したように両者の波長のずれ
がある場合には、波長のずれが出力ポートで観測される
光信号強度の誤差となる。例えば図2(b)に示したよ
うに両者の波長ずれが0.1nmあった場合には、この
ずれにより測定される光強度は、実際の光信号の強度よ
りも約0.8dB小さく表示されることになる。However, when measuring the intensity of the optical signal from the output port of the arrayed waveguide grating, the wavelength of the optical signal transmitted from the transmitting station is usually the maximum of the arrayed waveguide grating. It does not exactly match the transmission wavelength. For example, if there is a wavelength shift between the two as shown in FIG. 2B, the wavelength shift causes an error in the optical signal intensity observed at the output port. For example, when the wavelength shift between the two is 0.1 nm as shown in FIG. 2B, the light intensity measured by this shift is displayed about 0.8 dB smaller than the actual optical signal intensity. Will be.
【0008】すなわち、上記の光強度測定装置において
は、アレイ導波路格子を透過させて一括して出力出来る
ため効率的な光強度測定が可能ではあるが、精度の点
で、光信号の波長とアレイ導波路格子の最大透過波長と
のずれが、光信号強度測定において誤差を生じるという
解決すべき課題が従来技術にはあった。That is, in the above-mentioned light intensity measuring device, since it is possible to transmit the light through the arrayed-waveguide grating and to output it collectively, it is possible to measure the light intensity efficiently. The prior art has a problem to be solved that a deviation from the maximum transmission wavelength of the arrayed waveguide grating causes an error in the measurement of the optical signal intensity.
【0009】本発明は、このような課題に鑑みてなされ
たもので、その目的とするところは、高精度な光強度の
測定を可能とする光強度測定装置及び方法を提供するこ
とにある。The present invention has been made in view of the above problems, and an object of the present invention is to provide a light intensity measuring apparatus and method capable of highly accurately measuring the light intensity.
【0010】[0010]
【課題を解決するための手段】このような目的を達成す
るために、本発明の光強度測定装置は、入力光を1以上
の光信号に分離し、当該分離した光信号の出力光を出力
する光波長分離手段と、該光波長分離手段からの出力光
の強度を測定する測定手段とを含む光強度測定装置であ
って、前記光波長分離手段における前記光信号の波長と
前記強度との関係を変化させる制御手段と、前記測定手
段により測定された前記強度の測定データを蓄積し、当
該蓄積された測定データの所定の値に基づいて前記光信
号の強度を求めるデータ処理手段とを備えたことを特徴
とする。In order to achieve such an object, the optical intensity measuring apparatus of the present invention splits the input light into one or more optical signals and outputs the output light of the separated optical signals. An optical intensity measuring device including an optical wavelength demultiplexing means and a measuring means for measuring the intensity of output light from the optical wavelength demultiplexing means, wherein the wavelength and the intensity of the optical signal in the optical wavelength demultiplexing means And a data processing means for accumulating measurement data of the intensity measured by the measuring means and determining the intensity of the optical signal based on a predetermined value of the accumulated measurement data. It is characterized by that.
【0011】また、前記所定の値は最大値であることを
特徴とすることができる。The predetermined value may be a maximum value.
【0012】また、前記データ処理手段は、前記最大値
と予め測定された前記光波長分離手段の最小透過損失と
に基づいて、前記光信号の強度を求めることを特徴とす
ることができる。Further, the data processing means may be characterized in that the intensity of the optical signal is obtained based on the maximum value and a minimum transmission loss of the optical wavelength demultiplexing means measured in advance.
【0013】また、前記光波長分離手段はアレイ導波路
格子であり、前記制御手段は、前記アレイ導波路格子の
温度を変化させて前記波長と前記出力光の強度との関係
を変化させることを特徴とすることができる。Further, the optical wavelength separation means is an arrayed waveguide grating, and the control means changes the temperature of the arrayed waveguide grating to change the relationship between the wavelength and the intensity of the output light. It can be a feature.
【0014】また、上記目的を達成するために、本発明
の光強度測定方法は、入力光を1以上の光信号に分離
し、当該分離した光信号の出力光を出力する光波長分離
手段と、該光波長分離手段からの出力光の強度を測定す
る測定手段とを含む光強度測定装置の光強度測定方法で
あって、前記光波長分離手段における前記光信号の波長
と前記強度との関係を変化させる制御ステップと、該制
御ステップにより前記波長と前記強度との関係が変化す
る前記光波長分離手段によって、前記入力光を分離し前
記出力光を出力する分離ステップと、該分離ステップに
より出力された出力光の前記強度を前記測定手段により
測定する測定ステップと、該測定ステップにより測定さ
れた測定された前記強度の測定データを蓄積し、当該蓄
積された測定データの所定の値に基づいて前記光信号の
強度を求めるデータ処理ステップとを備えたことを特徴
とする。In order to achieve the above-mentioned object, the light intensity measuring method of the present invention comprises an optical wavelength separating means for separating the input light into one or more optical signals and outputting the output light of the separated optical signals. A light intensity measuring method of a light intensity measuring device including a measuring unit for measuring the intensity of output light from the light wavelength separating unit, wherein the relationship between the wavelength and the intensity of the optical signal in the light wavelength separating unit And a separation step of separating the input light and outputting the output light by the optical wavelength separation means in which the relationship between the wavelength and the intensity is changed by the control step, and output by the separation step. Measuring step of measuring the intensity of the output light thus obtained by the measuring means, accumulating measurement data of the measured intensity measured by the measuring step, and accumulating the accumulated measurement data. Characterized by comprising a data processing step of obtaining the intensity of the optical signal based on a predetermined value.
【0015】本発明の以上の構成では、光波長分離手段
の最大透過波長(透過強度のピーク波長)を一定時間の
間に変化させ、この一定時間の間に光の強度を高速で繰
り返し測定し、これら測定値のうちの最大値を光信号強
度とすることを最も主要な特徴とする。従来の技術と
は、光波長分離手段の最大透過波長を固定した状態で光
信号強度を測定しない、という点で異なる。In the above configuration of the present invention, the maximum transmission wavelength (peak wavelength of transmission intensity) of the light wavelength separation means is changed during a fixed time, and the light intensity is repeatedly measured at high speed during the fixed time. The most important feature is that the maximum value of these measured values is the optical signal intensity. This is different from the conventional technique in that the optical signal intensity is not measured with the maximum transmission wavelength of the optical wavelength separation means fixed.
【0016】本発明の以上の構成により、光波長分離手
段の最大透過波長を一定時間の間に変化させることで、
この一定時間内に光波長分離手段の最大透過波長と光信
号波長とが一致する状態を実現する。With the above configuration of the present invention, by changing the maximum transmission wavelength of the light wavelength separation means within a fixed time,
A state in which the maximum transmission wavelength of the optical wavelength separation means and the optical signal wavelength coincide with each other is realized within this fixed time.
【0017】光波長分離手段の最大透過波長と光信号波
長が一致した状態を実現できれば、この状態において光
波長分離手段の損失は最小透過損失として既知の値で特
定できる。即ち、本発明においては、光強度の最大点が
現れるように波長透過特性を変化させることが重要であ
る。仮に、光強度の最大点が現れない変化のさせ方をし
た場合には、もともと光信号の波長が未知であるから、
光信号が光波長分離手段の波長透過特性上のどの点の損
失を受けたものかが特定できず、求めるべき光強度は得
られない。If a state where the maximum transmission wavelength of the optical wavelength demultiplexing means and the optical signal wavelength match can be realized, the loss of the optical wavelength demultiplexing means in this state can be specified by a known value as the minimum transmission loss. That is, in the present invention, it is important to change the wavelength transmission characteristics so that the maximum point of light intensity appears. If you change the optical intensity so that the maximum point does not appear, the wavelength of the optical signal is unknown.
It is not possible to specify at which point on the wavelength transmission characteristics of the optical wavelength demultiplexing means the optical signal has been lost, and the desired light intensity cannot be obtained.
【0018】またこの一定時間の間に光の強度を高速で
繰り返し測定し、これら測定値のうちの最大値を光信号
強度とするので、光波長分離手段の最大透過波長と光信
号波長とが一致した状態での光信号強度を測定できるた
め、両者の波長ずれによる光信号強度測定値の誤差を排
除することができ、本発明の目的である高精度な光信号
強度測定を実現することができるようになる。Further, since the light intensity is repeatedly measured at a high speed during this fixed time and the maximum value of these measured values is taken as the optical signal intensity, the maximum transmission wavelength and the optical signal wavelength of the optical wavelength separating means are Since the optical signal intensity in the matched state can be measured, the error in the optical signal intensity measurement value due to the wavelength shift between the two can be eliminated, and the highly accurate optical signal intensity measurement which is the object of the present invention can be realized. become able to.
【0019】[0019]
【発明の実施の形態】以下、図面を参照して本発明の実
施形態を詳細に説明する。なお、各図面において同様の
機能を有する箇所には同一の符号を付し、説明の重複は
省略する。DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. In the drawings, parts having the same function are denoted by the same reference numerals, and duplicate description will be omitted.
【0020】[実施形態1]図3は、本実施形態1の光
強度測定装置の構成図で、図中符号301は入力光ファ
イバ、符号302はアレイ導波路格子、符号303−1
〜nは出力光ファイバ、符号304−1〜nは受光器、
符号305は温度モニタ、符号306は温度制御装置、
符号307はデータ処理装置である。[Embodiment 1] FIG. 3 is a block diagram of a light intensity measuring apparatus of the present embodiment 1, wherein reference numeral 301 is an input optical fiber, reference numeral 302 is an arrayed waveguide grating, reference numeral 303-1.
To n are output optical fibers, reference numerals 304-1 to n are photodetectors,
Reference numeral 305 is a temperature monitor, reference numeral 306 is a temperature control device,
Reference numeral 307 is a data processing device.
【0021】図4(a)、(b)は、本実施形態1の光
強度測定装置の波長透過特性の図である。図4(a)
は、光強度測定装置の温度変化による波長透過特性の変
化を表した図である。図4(b)は、光強度測定装置の
最大透過波長と光信号の波長が一致した状態を表す図で
ある。ここで図4(a)において、アレイ導波路格子3
02の40℃、60℃での各波長透過特性をそれぞれ破
線、一点鎖線で、また40℃と60℃の間の温度での各
波長の透過特性を実線で示している。FIGS. 4 (a) and 4 (b) are diagrams of wavelength transmission characteristics of the light intensity measuring apparatus of the first embodiment. Figure 4 (a)
FIG. 6 is a diagram showing a change in wavelength transmission characteristics due to a change in temperature of the light intensity measuring device. FIG. 4B is a diagram showing a state where the maximum transmission wavelength of the light intensity measuring device and the wavelength of the optical signal match. Here, in FIG. 4A, the arrayed waveguide grating 3
The wavelength transmission characteristics of No. 02 at 40 ° C. and 60 ° C. are indicated by a broken line and a chain line, respectively, and the transmission characteristics of each wavelength at a temperature between 40 ° C. and 60 ° C. are indicated by a solid line.
【0022】この光強度測定装置においては、入力光フ
ァイバ301を通ってアレイ導波路格子302に入力さ
れた波長多重光信号を、アレイ導波路格子302で波長
分離した後、出力光ファイバ303−1〜nを経由させ
て受光器304−1〜nで光強度を測定する。ここで温
度モニタ305でアレイ導波路格子302の温度をモニ
タしながら、温度制御装置306により約1秒周期でア
レイ導波路格子302の温度を40℃と60℃の間で昇
温、冷却を繰り返す。In this optical intensity measuring apparatus, the wavelength-multiplexed optical signal input to the arrayed-waveguide grating 302 through the input optical fiber 301 is wavelength-separated by the arrayed-waveguide grating 302, and then output optical fiber 303-1. The light intensity is measured by the light receivers 304-1 to 30-n via the optical path units 1 to n. Here, while monitoring the temperature of the arrayed waveguide grating 302 with the temperature monitor 305, the temperature controller 306 repeatedly raises and lowers the temperature of the arrayed waveguide grating 302 between 40 ° C. and 60 ° C. in a cycle of about 1 second. .
【0023】さて、波長多重信号が図4(b)の実線で
表されるような波長と強度を有している場合、例えば5
0℃に設定されたアレイ導波路格子302を透過する
と、光信号波長とアレイ導波路格子302の最大透過波
長とのずれにより、各波長の光信号には、アレイ導波路
格子302の最小透過損失に加えて波長のずれによる損
失が付加されて、受光器304−1〜nで測定される。Now, when the wavelength division multiplexed signal has a wavelength and intensity as shown by the solid line in FIG. 4B, for example, 5
When transmitted through the arrayed-waveguide grating 302 set at 0 ° C., the minimum transmission loss of the arrayed-waveguide grating 302 is caused in the optical signal of each wavelength due to the difference between the optical signal wavelength and the maximum transmission wavelength of the arrayed-waveguide grating 302. In addition to the above, a loss due to the wavelength shift is added, and the light is measured by the photo detectors 304-1 to 30-n.
【0024】ここでアレイ導波路格子302の温度を4
0℃と60℃の間で昇温、冷却を繰り返しながら受光器
304−1〜nで光強度を測定しデータ処理装置307
でデータを蓄積すると、アレイ導波路格子302の最大
透過波長と光信号の波長が一致した53℃のときに受光
器304−1〜nの測定値が最大、すなわち最小透過損
失となる。Here, the temperature of the arrayed waveguide grating 302 is set to 4
The data processing device 307 measures the light intensity with the light receivers 304-1 to 30-n while repeatedly raising and lowering the temperature between 0 ° C. and 60 ° C.
When the data is accumulated at, the measured value of the photodetectors 304-1 to 30-n becomes the maximum, that is, the minimum transmission loss, at 53 ° C. where the maximum transmission wavelength of the arrayed waveguide grating 302 and the wavelength of the optical signal match.
【0025】最大透過波長における損失すなわち最小透
過損失をあらかじめ測定しておくことにより、データ処
理装置307での蓄積データの最大値から光信号の強度
を高い精度で求めることができる。実際にアレイ導波路
格子302の温度昇降の周期を1秒とし、受光器304
−1〜nでの測定頻度を毎秒1000回とすることによ
り、光信号の波長ずれに無関係に±0.1dB以内の高
い精度でデータ処理装置307の最大値として光信号強
度を測定することが可能になった。By preliminarily measuring the loss at the maximum transmission wavelength, that is, the minimum transmission loss, the intensity of the optical signal can be obtained with high accuracy from the maximum value of the accumulated data in the data processing device 307. The cycle of temperature rise and fall of the arrayed waveguide grating 302 is set to 1 second, and the light receiver 304
By setting the measurement frequency at -1 to n to 1000 times per second, the optical signal intensity can be measured as the maximum value of the data processing device 307 with high accuracy within ± 0.1 dB regardless of the wavelength shift of the optical signal. It became possible.
【0026】本実施形態1においては、光波長分離装置
としてアレイ導波路格子を用いた例を示したが、誘電体
多層膜フィルタ、プリズムなどを用いても同様の効果が
期待できる。In the first embodiment, an example in which an arrayed waveguide grating is used as the optical wavelength demultiplexing device is shown, but the same effect can be expected by using a dielectric multilayer film filter, a prism or the like.
【0027】[実施形態2]図5は、本実施形態2の光
強度測定装置の構成図で、図中符号401は入力光ファ
イバ、符号402は光分波器、符号403−1〜nは出
力光ファイバ、符号404−1〜nは受光器、符号40
5は電流モニタ、符号406は電流制御装置、符号40
7はデータ処理装置である。[Second Embodiment] FIG. 5 is a block diagram of a light intensity measuring apparatus according to the second embodiment. In the figure, reference numeral 401 is an input optical fiber, reference numeral 402 is an optical demultiplexer, and reference numerals 403-1 to 403-n are shown. Output optical fiber, reference numerals 404-1 to 40-n are light receivers, reference numeral 40
5 is a current monitor, reference numeral 406 is a current control device, reference numeral 40
7 is a data processing device.
【0028】図6(a)、(b)は、本実施形態2の光
強度測定装置の波長透過特性の図である。図6(a)
は、光強度測定装置の温度変化による波長透過特性の変
化を表した図である。図6(b)は、光強度測定装置の
最大透過波長と光信号の波長が一致した状態を示す図で
ある。ここで図6(a)において、光分波器402の1
00mA、300mAでの各波長透過特性をそれぞれ破
線、一点鎖線で、また100mAと300mAの間の温
度での各波長の透過特性を実線で示している。FIGS. 6A and 6B are diagrams showing the wavelength transmission characteristics of the light intensity measuring apparatus according to the second embodiment. Figure 6 (a)
FIG. 6 is a diagram showing a change in wavelength transmission characteristics due to a change in temperature of the light intensity measuring device. FIG. 6B is a diagram showing a state where the maximum transmission wavelength of the light intensity measuring device and the wavelength of the optical signal match. Here, in FIG. 6A, 1 of the optical demultiplexer 402 is used.
The wavelength transmission characteristics at 00 mA and 300 mA are shown by a broken line and a dashed line, respectively, and the transmission characteristics at each wavelength at a temperature between 100 mA and 300 mA are shown by a solid line.
【0029】この光強度測定装置においては、入力光フ
ァイバ401を通って光分波器402に入力された波長
多重光信号を、光分波器402で波長分離した後、出力
光ファイバ403−1〜nを経由させて受光器404−
1〜nで光強度を測定する。ここで電流モニタ405で
光分波器402の温度をモニタしながら、電流制御装置
406により約0.1秒周期で光分波器402の電流を
100mAと300mAの間で増大、減少を繰り返す。In this optical intensity measuring apparatus, the wavelength division multiplexed optical signal input to the optical demultiplexer 402 through the input optical fiber 401 is wavelength-demultiplexed by the optical demultiplexer 402, and then the output optical fiber 403-1. -N through the light receiver 404-
The light intensity is measured from 1 to n. Here, while the temperature of the optical demultiplexer 402 is monitored by the current monitor 405, the current control device 406 repeatedly increases and decreases the current of the optical demultiplexer 402 between 100 mA and 300 mA in a cycle of about 0.1 seconds.
【0030】さて、波長多重信号が図6(b)の実線で
表されるような波長と強度を有している場合、例えば2
00mAに設定された光分波器402を透過すると、光
信号波長と光分波器402の最大透過波長とのずれによ
り、各波長の光信号には、光分波器402の最小透過損
失に加えて波長のずれによる損失が付加されて受光器4
04−1〜nで測定される。ここで光分波器402の電
流を100mAと300mAの間で増大、減少を繰り返
しながら受光器404−1〜nで光強度を測定しデータ
処理装置407でデータを蓄積すると、光分波器402
の最大透過波長と光信号の波長が一致した240mAの
ときに受光器404−1〜nの測定値が最大、すなわち
最小透過損失となる。最大透過波長における損失すなわ
ち最小透過損失をあらかじめ測定しておくことにより、
データ処理装置407での蓄積データの最大値から光信
号の強度を高い精度で求めることができる。実際に光分
波器402の電流増減の周期を0.1秒とし、受光器4
04−1〜nでの測定頻度を毎秒1000回とすること
により、光信号の波長ずれに無関係に±0.1dB以内
の高い精度でデータ処理装置407の最大値として光信
号強度を測定することが可能になった。Now, when the wavelength division multiplexed signal has the wavelength and the intensity as shown by the solid line in FIG. 6B, for example, 2
When transmitted through the optical demultiplexer 402 set to 00 mA, due to the difference between the optical signal wavelength and the maximum transmission wavelength of the optical demultiplexer 402, the optical signal of each wavelength has a minimum transmission loss of the optical demultiplexer 402. In addition, the loss due to the wavelength shift is added, and
04-1 to n are measured. Here, the light intensity is measured by the light receivers 404-1 to 40-n while the current of the optical demultiplexer 402 is repeatedly increased and decreased between 100 mA and 300 mA, and the data is accumulated by the data processing device 407.
When the maximum transmission wavelength of 1 is 240 mA and the wavelength of the optical signal is 240 mA, the measured values of the light receivers 404-1 to 40-n are maximum, that is, the minimum transmission loss. By measuring the loss at the maximum transmission wavelength, that is, the minimum transmission loss in advance,
The intensity of the optical signal can be obtained with high accuracy from the maximum value of the accumulated data in the data processing device 407. Actually, the cycle of increasing / decreasing the current of the optical demultiplexer 402 is set to 0.1 seconds, and the optical receiver 4
The optical signal intensity is measured as the maximum value of the data processing device 407 with high accuracy within ± 0.1 dB regardless of the wavelength shift of the optical signal by setting the measurement frequency at 04-1 to n to 1000 times per second. Became possible.
【0031】本実施形態2においては、光波長分離装置
の最大透過波長を変化するために電流を変化させた例を
示したが、印加電圧値などを変化させて最大透過波長を
変化することも可能である。これら電流値、電圧値によ
り最大透過波長を変化させる場合には、実施形態1で示
した温度による最大透過波長の変化よりも高速で変化さ
せることが可能であるため、本実施形態2に示したよう
に0.1秒以下の周期でデータを測定することが可能と
なる。In the second embodiment, an example in which the current is changed in order to change the maximum transmission wavelength of the optical wavelength demultiplexer is shown, but the maximum transmission wavelength may be changed by changing the applied voltage value or the like. It is possible. When the maximum transmission wavelength is changed by these current value and voltage value, the maximum transmission wavelength can be changed faster than the change in temperature by the temperature shown in the first embodiment. Thus, it becomes possible to measure data in a cycle of 0.1 second or less.
【0032】また本実施形態2においては、光波長分離
装置として、誘電体多層膜フィルタ、プリズムなどを用
いることができる。In the second embodiment, a dielectric multilayer filter, a prism or the like can be used as the optical wavelength demultiplexing device.
【0033】上述の実施形態は本発明の例示のために説
明したが、上述の実施形態の他にも変形が可能である。
その変形が特許請求の範囲で述べられている本発明の技
術思想に基づく限り、その変形は本発明の技術的範囲内
となる。Although the above embodiment has been described for the purpose of exemplifying the present invention, modifications other than the above embodiment are possible.
As long as the modification is based on the technical idea of the present invention described in claims, the modification is within the technical scope of the present invention.
【0034】以上、説明したように、本実施形態によれ
ば、光波長分離装置の最大透過波長と光信号波長とが一
致した状態での光信号強度を測定できるため、両者の波
長ずれによる光信号強度測定値の誤差を排除することが
でき、きわめて高精度な光信号強度測定を実現すること
ができるという利点がある。As described above, according to the present embodiment, the optical signal intensity can be measured in the state where the maximum transmission wavelength of the optical wavelength demultiplexing device and the optical signal wavelength match each other. There is an advantage that the error of the signal strength measurement value can be eliminated and an extremely highly accurate optical signal strength measurement can be realized.
【0035】[0035]
【発明の効果】以上、説明したように、本発明によれ
ば、入力光を1以上の光信号に分離しそれらの出力光を
出力する光波長分離手段と、出力光の強度を測定する測
定手段とを含む光強度測定装置は、光波長分離手段にお
ける光信号の波長と上記強度との関係を変化させ、その
波長と上記強度との関係が変化する光波長分離手段によ
って上記出力光を出力し、出力された出力光の強度を測
定手段により測定し、その測定データを蓄積し、蓄積さ
れた測定データの所定の値に基づいて上記光信号の強度
を求めるので、光波長分離手段の出力光強度の所定の値
を特定することで上記光信号の強度が特定される。As described above, according to the present invention, the optical wavelength demultiplexing means for demultiplexing the input light into one or more optical signals and outputting their output light, and the measurement for measuring the intensity of the output light. An optical intensity measuring device including means changes the relationship between the wavelength of the optical signal in the optical wavelength separating means and the intensity, and outputs the output light by the optical wavelength separating means in which the relationship between the wavelength and the intensity changes. Then, the intensity of the output light output is measured by the measuring means, the measurement data is accumulated, and the intensity of the optical signal is obtained based on the predetermined value of the accumulated measurement data. The intensity of the optical signal is identified by identifying a predetermined value of the light intensity.
【0036】このため、光波長分離手段の出力光強度の
所定の値の特定で光信号強度測定値の誤差を排除するこ
とができ、高精度な光信号強度測定を実現することがで
きるという効果を奏する。Therefore, the error of the optical signal intensity measurement value can be eliminated by specifying the predetermined value of the output light intensity of the optical wavelength demultiplexing means, and the highly accurate optical signal intensity measurement can be realized. Play.
【図1】従来の光強度測定装置の構成図である。FIG. 1 is a configuration diagram of a conventional light intensity measuring device.
【図2】従来のアレイ導波路格子を用いた波長透過特性
を表す図で、(a)はアレイ導波路格子を用いた光強度
測定装置における波長透過特性を表す図、(b)はアレ
イ導波路格子を用いた光強度測定装置において最大透過
波長と光信号の波長との波長のずれを表す図である。2A and 2B are diagrams showing a wavelength transmission characteristic using a conventional arrayed waveguide grating, FIG. 2A is a diagram showing a wavelength transmission characteristic in an optical intensity measuring device using the arrayed waveguide grating, and FIG. It is a figure showing the wavelength gap of the maximum transmission wavelength and the wavelength of an optical signal in a light intensity measuring device using a waveguide grating.
【図3】本発明の実施形態1の、光強度測定装置の構成
図である。FIG. 3 is a configuration diagram of a light intensity measuring device according to the first embodiment of the present invention.
【図4】本実施形態1の光強度測定装置の波長透過特性
の図で、(a)は光強度測定装置の温度変化による波長
透過特性の変化を表した図、(b)は光強度測定装置の
最大透過波長と光信号の波長が一致した状態を表す図で
ある。4A and 4B are diagrams of wavelength transmission characteristics of the light intensity measuring apparatus according to the first embodiment, in which FIG. 4A shows a change in wavelength transmission characteristics due to temperature change of the light intensity measuring apparatus, and FIG. 4B shows light intensity measurement. It is a figure showing the state where the maximum transmission wavelength of an apparatus and the wavelength of an optical signal corresponded.
【図5】本発明の実施例2の、光強度測定装置の構成図
である。FIG. 5 is a configuration diagram of a light intensity measuring device according to a second embodiment of the present invention.
【図6】本実施形態2の光強度測定装置の波長透過特性
の図で、(a)は光強度測定装置の温度変化による波長
透過特性の変化を表した図、(b)は光強度測定装置の
最大透過波長と光信号の波長が一致した状態を示す図で
ある。6A and 6B are diagrams of wavelength transmission characteristics of the light intensity measuring apparatus according to the second embodiment, in which FIG. 6A shows a change in wavelength transmission characteristics due to a temperature change of the light intensity measuring apparatus, and FIG. 6B shows light intensity measurement. It is a figure which shows the state where the maximum transmission wavelength of an apparatus and the wavelength of an optical signal corresponded.
101 入力光ファイバ 102 光波長分離装置 103−1〜n 出力光ファイバ 104−1〜n 受光器 107 データ処理装置 301 入力光ファイバ 302 アレイ導波路格子 303−1〜n 出力光ファイバ 304−1〜n 受光器 305 温度モニタ 306 温度制御装置 307 データ処理装置 401 入力光ファイバ 402 光波長分離装置 403−1〜n 出力光ファイバ 404−1〜n 受光器 405 電流モニタ 406 電流制御装置 407 データ処理装置 101 Input optical fiber 102 Optical wavelength demultiplexer 103-1 to n-output optical fiber 104-1 to n receiver 107 data processing device 301 Input optical fiber 302 arrayed waveguide grating 303-1 to n-output optical fiber 304-1 to n receiver 305 Temperature monitor 306 Temperature controller 307 Data processing device 401 Input optical fiber 402 Optical wavelength demultiplexer 403-1 to n output optical fiber 404-1 to n receiver 405 Current monitor 406 Current control device 407 Data processing device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04B 10/14 H04B 9/00 S 10/16 10/17 H04J 14/00 14/02 (72)発明者 小野 茂 東京都渋谷区道玄坂1丁目12番1号 エヌ ティティエレクトロニクス株式会社内 Fターム(参考) 2G020 BA20 CC12 CC13 CC26 CD06 CD13 CD22 CD41 2G065 AA04 AB23 BA01 BB02 BB27 BB28 BB29 BC08 BC33 BC35 CA21 DA05 DA13 5K102 AA53 AD01 LA07 LA52 MA03 MB10 MC04 MC17 MD01 MD06 MH04 MH12 MH22 MH28 PC02 PH45 PH47 RB03 RD28 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04B 10/14 H04B 9/00 S 10/16 10/17 H04J 14/00 14/02 (72) Inventor Shigeru Ono 1-12-1, Dogenzaka, Shibuya-ku, Tokyo F-Term (reference) in NTT Electronics Corporation 2G020 BA20 CC12 CC13 CC26 CD06 CD13 CD22 CD41 2G065 AA04 AB23 BA01 BB02 BB27 BB28 BB29 BC08 BC33 BC35 CA21 DA05 DA13 5K102 AA53 AD01 LA07 LA52 MA03 MB10 MC04 MC17 MD01 MD06 MH04 MH12 MH22 MH28 PC02 PH45 PH47 RB03 RD28
Claims (5)
分離した光信号の出力光を出力する光波長分離手段と、
該光波長分離手段からの出力光の強度を測定する測定手
段とを含む光強度測定装置において、 前記光波長分離手段における前記光信号の波長と前記強
度との関係を変化させる制御手段と、 前記測定手段により測定された前記強度の測定データを
蓄積し、当該蓄積された測定データの所定の値に基づい
て前記光信号の強度を求めるデータ処理手段とを備えた
ことを特徴とする光強度測定装置。1. An optical wavelength separation means for separating input light into one or more optical signals and outputting output light of the separated optical signals,
In a light intensity measuring device including a measuring unit that measures the intensity of the output light from the optical wavelength separating unit, a control unit that changes the relationship between the wavelength and the intensity of the optical signal in the optical wavelength separating unit, Light intensity measurement, comprising: data processing means for accumulating measurement data of the intensity measured by a measuring means, and obtaining intensity of the optical signal based on a predetermined value of the accumulated measurement data. apparatus.
て、前記所定の値は最大値であることを特徴とする光強
度測定装置。2. The light intensity measuring device according to claim 1, wherein the predetermined value is a maximum value.
て、前記データ処理手段は、前記最大値と予め測定され
た前記光波長分離手段の最小透過損失とに基づいて、前
記光信号の強度を求めることを特徴とする光強度測定装
置。3. The optical intensity measuring device according to claim 2, wherein the data processing unit is configured to intensity the optical signal based on the maximum value and a minimum transmission loss of the optical wavelength demultiplexing unit measured in advance. A light intensity measuring device characterized in that
度測定装置において、前記光波長分離手段はアレイ導波
路格子であり、前記制御手段は、前記アレイ導波路格子
の温度を変化させて前記波長と前記出力光の強度との関
係を変化させることを特徴とする光強度測定装置。4. The light intensity measuring device according to claim 1, wherein the optical wavelength separation means is an arrayed waveguide grating, and the control means changes the temperature of the arrayed waveguide grating. The light intensity measuring device is characterized by changing the relationship between the wavelength and the intensity of the output light.
分離した光信号の出力光を出力する光波長分離手段と、
該光波長分離手段からの出力光の強度を測定する測定手
段とを含む光強度測定装置の光強度測定方法において、 前記光波長分離手段における前記光信号の波長と前記強
度との関係を変化させる制御ステップと、 該制御ステップにより前記波長と前記強度との関係が変
化する前記光波長分離手段によって、前記入力光を分離
し前記出力光を出力する分離ステップと、 該分離ステップにより出力された出力光の前記強度を前
記測定手段により測定する測定ステップと、 該測定ステップにより測定された測定された前記強度の
測定データを蓄積し、当該蓄積された測定データの所定
の値に基づいて前記光信号の強度を求めるデータ処理ス
テップとを備えたことを特徴とする光強度測定方法。5. An optical wavelength demultiplexing means for demultiplexing the input light into one or more optical signals and outputting the output light of the demultiplexed optical signals,
In a light intensity measuring method of a light intensity measuring device including a measuring means for measuring the intensity of output light from the light wavelength separating means, the relationship between the wavelength and the intensity of the optical signal in the light wavelength separating means is changed. A control step, a separation step of separating the input light and outputting the output light by the optical wavelength separation means in which the relationship between the wavelength and the intensity changes by the control step, and an output output by the separation step A measuring step of measuring the intensity of light by the measuring means; accumulating measurement data of the intensity measured in the measuring step, and the optical signal based on a predetermined value of the accumulated measurement data. And a data processing step of obtaining the intensity of the light intensity.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002096761A JP2003294529A (en) | 2002-03-29 | 2002-03-29 | Light intensity measuring device and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002096761A JP2003294529A (en) | 2002-03-29 | 2002-03-29 | Light intensity measuring device and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003294529A true JP2003294529A (en) | 2003-10-15 |
Family
ID=29239649
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002096761A Pending JP2003294529A (en) | 2002-03-29 | 2002-03-29 | Light intensity measuring device and method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003294529A (en) |
-
2002
- 2002-03-29 JP JP2002096761A patent/JP2003294529A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7693365B2 (en) | Dispersion mapping of transmitted channels in a WDM system | |
| WO2009100148A1 (en) | Dispersion mapping of transmitted channels in a wdm system | |
| JP2003051786A (en) | WDM optical transmission equipment | |
| US7400835B2 (en) | WDM system having chromatic dispersion precompensation | |
| US10432314B2 (en) | Method and apparatus for starting an optical module | |
| JP2904114B2 (en) | Optical amplifying device and wavelength division multiplexing optical transmission device using the same | |
| US20040197100A1 (en) | Optical transmission system and optical coupler/branching filter | |
| JP6497439B2 (en) | COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM | |
| JP2002280966A (en) | OADM system insertion signal level setting system and its setting method | |
| JP5274797B2 (en) | Wavelength division multiplexing signal monitoring apparatus and wavelength division multiplexing transmission apparatus having the same | |
| JP4246644B2 (en) | Optical receiver and optical transmission device | |
| JP2008521304A (en) | Optical signal monitoring apparatus and method | |
| KR100303324B1 (en) | Reference wavelength supply apparatus for performance monitor of wavelength division multiplex optical transmission system | |
| JP2003294529A (en) | Light intensity measuring device and method | |
| US6522455B1 (en) | WDM optical communication system having a dispersion slope compensating element | |
| KR100319737B1 (en) | Signal power monitoring apparatus and method for wavelength division multipleed signals using the reverse path of arrayed waveguide grating | |
| JP2000183816A (en) | Optical insertion separating device and optical transmitting device provided with the same | |
| JPH1194701A (en) | Optical transmission line monitoring device | |
| KR100682983B1 (en) | Optical channel multiplexing / demultiplexing device and optical channel wavelength stabilization device using the same in multichannel optical transmission system | |
| US7127169B1 (en) | Fiber optic tunable add-drop multiplexer/demultiplexer | |
| JP4169869B2 (en) | WDM optical interface device | |
| US20120063775A1 (en) | Setting Optical Power for an Optical Communications Network Channel | |
| JPH11225115A (en) | WDM optical transmission system | |
| KR100439226B1 (en) | Apparatus and method for state monitoring of optical multiplexor/demultiplexor in wavelength division Multiplexing system | |
| WO2021177414A1 (en) | Spectrum monitoring device, submarine apparatus, and optical communication system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040610 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050215 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050304 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050819 |