JP2003223933A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2003223933A JP2003223933A JP2002020585A JP2002020585A JP2003223933A JP 2003223933 A JP2003223933 A JP 2003223933A JP 2002020585 A JP2002020585 A JP 2002020585A JP 2002020585 A JP2002020585 A JP 2002020585A JP 2003223933 A JP2003223933 A JP 2003223933A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- electrode plate
- shrinkable tube
- battery
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】リチウムイオン電池などの非水電解質二
次電池は、一般にその発電要素が正極板と負極板とをセ
パレータを介して積層されており、その発電要素は粘着
テープなどで結束されて非水電解液とともに電池ケース
に封入されている。そして、過充電や短絡などの場合に
電池内部の温度が上昇して、内部の非水電解液が噴出す
るなどの危険な状態に陥ることを防止するために、その
セパレータにはシャットダウン機能が備えられている。
このシャットダウン機能を備えたセパレータは、熱可塑
性樹脂膜に微細孔を多数設けたものなどであり、所定の
温度でその微細孔が閉塞することによって、セパレータ
を通過するイオンを遮断し、もって非水電解質二次電池
の電流を遮断するようになっている。2. Description of the Related Art In a non-aqueous electrolyte secondary battery such as a lithium-ion battery, its power generating element is generally laminated with a positive electrode plate and a negative electrode plate via a separator, and the power generating element is bound by an adhesive tape or the like. It is enclosed in a battery case together with a non-aqueous electrolyte. In order to prevent the internal temperature of the battery from rising due to overcharging or short-circuiting, and the non-aqueous electrolyte in the battery may gush out, the separator is equipped with a shutdown function. Has been.
The separator having this shutdown function is, for example, one in which a thermoplastic resin film is provided with a large number of fine pores, and by closing the fine pores at a predetermined temperature, the ions passing through the separator are blocked, and thus non-aqueous. The current of the electrolyte secondary battery is cut off.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、発電要
素を結束する粘着テープなどは、電極板及びセパレータ
がバラバラになることを防止するためのものであり、隣
り合う電極板の間隔が広がらないように圧縮するもので
はない。従って過充電の際などには、充電の進行ととも
に発電要素内部でガスが発生すると、電極板の間隔が部
分的に広がって気泡がたまることがある。この場合、気
泡がたまっている部分には電流が流れないから、気泡の
たまっていない部分に充電電流が集中し、部分的な温度
上昇が大きくなる。このように、温度上昇が大きい場合
には、セパレータがシャットダウンした後も温度上昇を
続けて溶融し、正極板と負極板とが短絡して、さらなる
発熱が発生する熱逸走に至る場合があった。However, the adhesive tape or the like for binding the power generating elements is to prevent the electrode plate and the separator from coming apart, so that the space between the adjacent electrode plates does not become wide. It does not compress. Therefore, during overcharging or the like, when gas is generated inside the power generation element as the charging progresses, the gap between the electrode plates may partially widen and bubbles may accumulate. In this case, since the current does not flow in the portion where the bubbles are accumulated, the charging current is concentrated in the portion where the bubbles are not accumulated, and the partial temperature rise becomes large. As described above, when the temperature rise is large, there is a case where the temperature keeps rising even after the separator is shut down and the positive electrode plate and the negative electrode plate are short-circuited, and further heat generation occurs, which results in thermal escape. .
【0004】本発明は上記した事情に鑑みてなされたも
のであり、その目的は、熱逸走を防止して、安全性に優
れた非水電解質二次電池を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery which prevents heat escape and is excellent in safety.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、熱可塑性樹脂のセ
パレータを介して正極板と負極板とを積層して構成され
た発電要素と、非水電解質とを電池ケースに収容してな
る非水電解質二次電池において、前記発電要素の昇温時
に、熱を受けて変形する熱応動体によって前記発電要素
をその積層方向に沿って圧縮するようにしたところに特
徴を有する。As means for achieving the above object, the invention of claim 1 is a power generating element constructed by laminating a positive electrode plate and a negative electrode plate with a thermoplastic resin separator interposed therebetween. And a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte is housed in a battery case. It is characterized by being compressed.
【0006】請求項2の発明は、請求項1に記載のもの
において、前記熱応動体は熱によって収縮する熱収縮性
樹脂フィルムからなる熱収縮チューブであり、前記発電
要素は前記熱収縮チューブ内に収めた状態で前記電池ケ
ース内に収容されているところに特徴を有する。According to a second aspect of the present invention, in the first aspect, the heat-responsive body is a heat-shrinkable tube made of a heat-shrinkable resin film that shrinks by heat, and the power generating element is inside the heat-shrinkable tube. It is characterized in that it is housed in the battery case in a state of being housed in.
【0007】請求項3の発明は、請求項2に記載のもの
において、前記発電要素が前記セパレータを介して前記
正極板と前記負極板とを巻回して構成されるとともに、
前記発電要素の巻回面と平行な方向へ沿って前記発電要
素が前記熱収縮チューブに収容されている非水電解質二
次電池であって、前記熱収縮チューブには貫通孔が設け
られているところに特徴を有する。According to a third aspect of the present invention, in the second aspect, the power generating element is formed by winding the positive electrode plate and the negative electrode plate with the separator interposed therebetween, and
A non-aqueous electrolyte secondary battery in which the power-generating element is housed in the heat-shrinkable tube along a direction parallel to the winding surface of the power-generating element, wherein the heat-shrinkable tube has a through hole. However, it has a feature.
【0008】請求項4の発明は、請求項1に記載のもの
において、前記電池ケースは可撓性を有する樹脂フィル
ムから構成され、かつ、前記熱応動体は熱によって収縮
する熱収縮性樹脂フィルムからなる熱収縮チューブであ
り、前記電池ケースは内部に前記発電要素を収容した状
態で前記熱収縮チューブ内に収められているところに特
徴を有する。According to a fourth aspect of the present invention, in the first aspect, the battery case is made of a flexible resin film, and the heat-responsive body shrinks by heat. And is characterized in that the battery case is housed in the heat shrink tube with the power generating element housed therein.
【0009】[0009]
【発明の作用及び効果】<請求項1の発明>請求項1の
発明によれば、熱応動体が熱を受けて変形し、正極板と
負極板とを備えた発電要素をその積層方向に圧縮するよ
うになっている。従って、温度が上昇した場合には発電
要素をその積層方向に圧縮することによって、発電要素
を構成する正極板と負極板との間にガスが気泡となって
たまることを防止できる。これにより、正極板と負極板
との間の気泡による電流集中が防止され、部分的な温度
上昇を引き起こすことがないから、電池の安全性を向上
できる。<Invention of Claim 1><Invention of Claim 1> According to the invention of Claim 1, the heat responsive body is deformed by receiving heat, and the power generating element provided with the positive electrode plate and the negative electrode plate is arranged in the stacking direction. It is designed to be compressed. Therefore, when the temperature rises, by compressing the power generation element in the stacking direction, it is possible to prevent gas from forming bubbles as gas between the positive electrode plate and the negative electrode plate forming the power generation element. Thereby, current concentration due to bubbles between the positive electrode plate and the negative electrode plate is prevented and a partial temperature rise is not caused, so that the safety of the battery can be improved.
【0010】<請求項2の発明>さらに、請求項2の発
明では、熱応動体を熱収縮性樹脂フィルムからなる熱収
縮チューブで構成し、その内部に発電要素を収容するか
ら、安価な素材と、簡易な構成で本発明に係る非水電解
質二次電池を製造することができる。また、熱収縮チュ
ーブは筒状であるから、発電要素をその全周にわたって
圧縮することができ、発電要素の全周にわたって電極板
の間に気泡がたまることを防止できる。<Invention of Claim 2> Furthermore, in the invention of Claim 2, the heat-responsive body is composed of a heat-shrinkable tube made of a heat-shrinkable resin film, and the power-generating element is housed therein. Thus, the non-aqueous electrolyte secondary battery according to the present invention can be manufactured with a simple structure. Further, since the heat-shrinkable tube has a tubular shape, the power generating element can be compressed over the entire circumference thereof, and bubbles can be prevented from accumulating between the electrode plates over the entire circumference of the power generating element.
【0011】<請求項3の発明>特に、請求項3の発明
によれば、熱収縮チューブに貫通孔が設けられている。
これにより、発電要素が巻回されて構成され、その巻回
面と平行な方向に沿って熱収縮チューブに収められるこ
とによって、発電要素の巻回面が熱収縮チューブにより
覆われる非水電解質二次電池であっても、貫通孔を通し
て電解液を発電要素に容易に浸透させることができる。<Invention of Claim 3> In particular, according to the invention of Claim 3, the heat-shrinkable tube is provided with a through hole.
Thus, the power generating element is wound and configured, and is housed in the heat-shrinkable tube along a direction parallel to the winding surface, so that the winding surface of the power-generating element is covered with the heat-shrinkable tube. Even in the secondary battery, the electrolytic solution can easily penetrate into the power generating element through the through hole.
【0012】<請求項4の発明>また、請求項4の発明
によれば、熱収縮チューブに収められた発電要素が可撓
性を有する樹脂フィルムから構成された電池ケースに収
容されている。従って、従来の樹脂フィルムから構成さ
れた電池ケースの外側に熱収縮チューブを設ければよ
く、その設計及び製造が容易にできる。<Invention of Claim 4> According to the invention of Claim 4, the power-generating element housed in the heat-shrinkable tube is housed in the battery case made of a flexible resin film. Therefore, it suffices to provide the heat-shrinkable tube on the outside of the battery case made of the conventional resin film, which facilitates the design and manufacture.
【0013】[0013]
【発明の実施の形態】<第1実施形態>図1は、請求項
2の本発明を具体化した第1実施形態にかかるラミネー
ト型非水電解質二次電池1(以下、ラミネート型電池1
と略す)の分解斜視図である。このラミネート型電池1
は、長円渦状の発電要素2を非水電解質たる電解液(図
示しない)とともに電池ケースたる金属ラミネート樹脂
フィルムケース6に収納することにより構成されてい
る。BEST MODE FOR CARRYING OUT THE INVENTION <First Embodiment> FIG. 1 shows a laminated non-aqueous electrolyte secondary battery 1 according to a first embodiment of the present invention as claimed in claim 2 (hereinafter, referred to as a laminated battery 1).
Is omitted). This laminated battery 1
Is configured by accommodating the elliptical vortex-shaped power generating element 2 together with an electrolytic solution (not shown) as a non-aqueous electrolyte in a metal laminated resin film case 6 as a battery case.
【0014】発電要素2は図示しない正極板、セパレー
タ、負極板、セパレータがこの順に巻回され、テープ1
0で巻き止めされて構成されている。正極板、負極板と
もに金属製の集電体に合剤層が形成されてなり、正極板
の巻きはじめ端部の集電体が露出されて正極端子7が溶
接され、負極板の巻きはじめ端部の集電体が露出されて
負極端子8が溶接されている。テープ10はポリプロピ
レン等の樹脂フィルムの片面に接着剤を塗布したもので
あり、金属ラミネート樹脂フィルムケース6は、アルミ
ニウムなどの金属箔にポリプロピレン等の可撓性を有す
る樹脂フィルムをラミネートしたものをヒートシールし
て袋状に形成されている。The power generating element 2 includes a positive electrode plate, a separator, a negative electrode plate, and a separator (not shown) wound in this order, and the tape 1
It is configured to be wound at 0. Both the positive electrode plate and the negative electrode plate are made of a metal collector having a mixture layer formed thereon, the collector at the winding start end of the positive electrode plate is exposed and the positive electrode terminal 7 is welded, and the winding start end of the negative electrode plate is formed. The current collector of the part is exposed and the negative electrode terminal 8 is welded. The tape 10 is made by coating an adhesive on one side of a resin film such as polypropylene, and the metal-laminated resin film case 6 is made by laminating a flexible resin film such as polypropylene on a metal foil such as aluminum. It is sealed to form a bag.
【0015】さらに、発電要素2は熱応動体である熱収
縮チューブ11に収められて、その外周面を熱収縮チュ
ーブ11で覆われている。熱収縮チューブ11は熱を受
けて収縮し発電要素2をその外周面から巻回軸中心に向
かって、すなわち発電要素2の積層方向へ沿って圧縮す
るようになっている。Further, the power generating element 2 is housed in a heat shrinkable tube 11 which is a heat responding body, and the outer peripheral surface thereof is covered with the heat shrinkable tube 11. The heat-shrinkable tube 11 receives heat to shrink and compress the power generating element 2 from the outer peripheral surface thereof toward the center of the winding axis, that is, along the stacking direction of the power generating element 2.
【0016】そして、発電要素2は熱収縮チューブ11
に収容された状態で金属ラミネート樹脂フィルムケース
6にその開口面と発電要素2の巻回軸中心が概ね垂直に
なるようにして収容され、金属ラミネート樹脂フィルム
ケース6の開口部が溶着されて正極及び負極端子7、8
が固定され、ラミネート型電池1が密封されている。The power generating element 2 is a heat shrinkable tube 11
The metal laminated resin film case 6 is accommodated in the metal laminated resin film case 6 so that its opening surface and the winding axis center of the power generating element 2 are substantially vertical, and the opening of the metal laminated resin film case 6 is welded to the positive electrode. And the negative electrode terminals 7 and 8
Is fixed and the laminated battery 1 is sealed.
【0017】ここで、セパレータは、熱可塑性樹脂の微
多孔膜であり、シャットダウン温度で微多孔が閉塞する
ようになっている。セパレータとして用いられる熱可塑
性樹脂はポリエチレン、ポリプロピレンなどが使用で
き、そのシャットダウン温度及び電解液に対する安定性
から、ポリエチレンが好適に用いられる。Here, the separator is a microporous film of a thermoplastic resin, and the micropores are closed at the shutdown temperature. The thermoplastic resin used as the separator may be polyethylene, polypropylene, or the like, and polyethylene is preferably used because of its shutdown temperature and stability with respect to the electrolytic solution.
【0018】熱収縮チューブ11は熱収縮性樹脂フィル
ムからなり、熱収縮性樹脂フィルムは熱可塑性樹脂、例
えばエチレンやプロピレンなどを重合したポリオレフィ
ン系樹脂、エチレンとアクリル酸又はメタクリル酸等を
共重合し金属イオンなどで架橋したアイオノマー樹脂、
ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテ
レフタレート、ポリスチレン、また、テトラフルオロエ
チレンやフッ化ビニリデンなどのフッ素樹脂などを、単
独で、また混合して用いて形成することができる。The heat-shrinkable tube 11 is made of a heat-shrinkable resin film. The heat-shrinkable resin film is made of a thermoplastic resin such as a polyolefin resin obtained by polymerizing ethylene or propylene, or a copolymer of ethylene and acrylic acid or methacrylic acid. Ionomer resin crosslinked with metal ions,
Polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, polystyrene, and fluororesins such as tetrafluoroethylene and vinylidene fluoride can be used alone or in admixture.
【0019】熱収縮チューブ11は、上記の熱可塑性樹
脂をチューブ状に形成した後、電子線などで架橋させ、
チューブ径などを押し広げることにより形成することが
できる。ガスが発生する温度は、セパレータの種類や充
電電流などの条件によってある程度の幅を有するが、少
なくともセパレータのシャットダウン温度より低い温度
であると考えられるから、熱収縮チューブ11が熱によ
って収縮を開始する温度は、熱逸走を防止するために
は、電解液が分解しガスが発生する温度以下もしくは近
傍が望ましく、少なくともセパレータのシャットダウン
温度以下であることが必要であると考えられる。これに
より、セパレータのシャットダウンがはじまる以前に確
実に熱収縮チューブ11が収縮して発電要素2を圧縮で
き、発電要素2内に気泡がたまることを防止して、か
つ、発熱体である極板とセパレータを密着させることに
よりセパレータの均一なシャットダウンを促進すること
により熱逸走に至ることを防止できる。熱収縮チューブ
11はその熱収縮を開始する温度と、電解液に対する安
定性との点から、ポリオレフィン系樹脂であるエチレン
プロピレンゴムが好適に使用される。The heat-shrinkable tube 11 is formed by forming the above-mentioned thermoplastic resin into a tube shape and then cross-linking it with an electron beam or the like.
It can be formed by expanding the tube diameter. The temperature at which the gas is generated has a certain range depending on conditions such as the type of the separator and the charging current, but it is considered that the temperature is at least lower than the shutdown temperature of the separator. Therefore, the heat shrinkable tube 11 starts shrinking due to heat. In order to prevent heat escape, the temperature is preferably at or below the temperature at which the electrolytic solution decomposes to generate gas, and at least below the shutdown temperature of the separator. As a result, before the shutdown of the separator begins, the heat-shrinkable tube 11 can surely shrink to compress the power-generating element 2, prevent air bubbles from accumulating in the power-generating element 2, and serve as a heat-generating electrode plate. Adhering the separators to each other promotes uniform shutdown of the separators, thereby preventing heat escape. Ethylene propylene rubber, which is a polyolefin-based resin, is preferably used for the heat-shrinkable tube 11 in terms of the temperature at which the heat-shrinkage starts and the stability with respect to the electrolytic solution.
【0020】また、熱収縮チューブ11の周方向におけ
る熱収縮率は、40%以上のものが望ましい。熱収縮率
が40%未満では、発電要素2を圧縮するための張力が
不十分であり、気泡が発電要素2内にたまることを防止
できないからである。なお、熱収縮率は加熱前のフィル
ムの長さをL0、加熱後のフィルムの長さをL1とした
とき、次式のKで表される。
K[%]=(L0−L1)/L0×100The heat shrinkage rate of the heat shrinkable tube 11 in the circumferential direction is preferably 40% or more. This is because if the heat shrinkage rate is less than 40%, the tension for compressing the power generation element 2 is insufficient and it is impossible to prevent bubbles from accumulating inside the power generation element 2. The heat shrinkage is represented by K in the following equation, where L 0 is the length of the film before heating and L 1 is the length of the film after heating. K [%] = (L 0 −L 1 ) / L 0 × 100
【0021】また、熱収縮チューブ11の厚さは、10
0μm以上500μm以下が望ましい。その厚さが10
0μm以下の場合には、熱収縮率が低いときと同様に発
電要素2を圧縮する力が小さくなるためである。また、
厚さが500μm以上の場合は、製造時における熱収縮
チューブ11の取り扱いが難しく、また電池の体積エネ
ルギー密度が低下するため好ましくない。The thickness of the heat shrinkable tube 11 is 10
It is desirable that the thickness is 0 μm or more and 500 μm or less. Its thickness is 10
This is because when it is 0 μm or less, the force for compressing the power generation element 2 becomes small as in the case where the heat shrinkage rate is low. Also,
If the thickness is 500 μm or more, it is not preferable because the heat shrinkable tube 11 is difficult to handle during manufacturing and the volume energy density of the battery is lowered.
【0022】また、熱収縮チューブ11のヤング率は、
加熱状態(セパレータのシャットダウン温度)において
5MPa以上、40MPa以下が望ましい。加熱状態の
ヤング率が5MPa以下である場合は、熱収縮率が大き
い場合でも、熱収縮チューブ11の張力が小さくなるか
らである。一方、ヤング率が40MPa以上である場合
は、熱収縮チューブ11が硬いため発電要素2の圧縮が
均一でなくなり、圧力が小さい部分へ気泡がたまるおそ
れがあるため望ましくない。The Young's modulus of the heat-shrinkable tube 11 is
In the heating state (shutdown temperature of the separator), 5 MPa or more and 40 MPa or less is desirable. This is because when the Young's modulus in the heated state is 5 MPa or less, the tension of the heat-shrinkable tube 11 becomes small even if the heat-shrinkage rate is large. On the other hand, when the Young's modulus is 40 MPa or more, the heat-shrinkable tube 11 is hard, so the compression of the power generation element 2 is not uniform, and bubbles may accumulate in a portion where the pressure is low, which is not desirable.
【0023】<第2実施形態>図2は、請求項3の本発
明を具体化した第2実施形態にかかる角型非水電解質二
次電池21(以下、角型電池21と略す)の分解斜視図
である。この角型電池21は、第1実施形態にかかるラ
ミネート型電池1と電池ケース26において異なってい
る。前記実施形態と同一構成については、構造、作用及
び効果についての重複説明を省略する。<Second Embodiment> FIG. 2 is an exploded view of a prismatic nonaqueous electrolyte secondary battery 21 (hereinafter abbreviated as prismatic battery 21) according to a second embodiment of the present invention as claimed in claim 3. It is a perspective view. This prismatic battery 21 is different from the laminated battery 1 according to the first embodiment in a battery case 26. With respect to the same configuration as that of the above-described embodiment, duplicated description of the structure, operation and effect will be omitted.
【0024】角型電池21は、長円渦状の発電要素22
が電解液とともにアルミニウムなどから形成された直方
体容器状の電池ケース26に収容され、同じくアルミニ
ウムなどから形成されたケース蓋29によって電池ケー
ス26をかしめ付けなどによって封口して構成されてい
る。The prismatic battery 21 is an elliptical spiral power generating element 22.
Is housed in a rectangular parallelepiped battery case 26 made of aluminum or the like together with the electrolytic solution, and the battery case 26 is also sealed by caulking or the like with a case lid 29 also made of aluminum or the like.
【0025】発電要素22はその巻回面の長手方向に沿
って、熱応動体たる熱収縮チューブ31に収納されてお
り、熱収縮チューブ31には、貫通孔34が多数設けら
れている。この貫通孔34を通過して、電解液が発電要
素22に浸透するようになっている。The power generating element 22 is housed in a heat shrink tube 31 which is a heat responsive body along the longitudinal direction of the winding surface thereof, and the heat shrink tube 31 is provided with a number of through holes 34. The electrolytic solution penetrates the power generation element 22 through the through holes 34.
【0026】正極板23の巻き終り端部は、正極リード
27が溶接されており、その正極リード27の一端は、
ケース蓋29に設けられた正極端子32に溶接されてい
る。これにより、正極板23が正極端子32に電気的に
接続されている。同様にして、負極リード28の一端
は、ケース蓋29に溶接されて負極板24がケース蓋2
9に電気的に接続されている。なお、正極端子32は図
示しないガスケットによりケース蓋29から絶縁されて
いる。A positive electrode lead 27 is welded to the end of winding of the positive electrode plate 23, and one end of the positive electrode lead 27 is
It is welded to a positive electrode terminal 32 provided on the case lid 29. Thereby, the positive electrode plate 23 is electrically connected to the positive electrode terminal 32. Similarly, one end of the negative electrode lead 28 is welded to the case lid 29 so that the negative electrode plate 24 is attached to the case lid 2.
9 is electrically connected. The positive electrode terminal 32 is insulated from the case lid 29 by a gasket (not shown).
【0027】また、ケース蓋29には安全弁30が設け
られており、電池温度が上昇して内圧が上昇した場合、
内部の電解液とその分解によって生じたガスを外部に排
出するようになっている。また、電池ケース26には注
液口33がその側面に設けられており、発電要素2を電
池ケース26に収納してケース蓋29を取り付けた後に
電解液を電池ケース26内に注液し、その後密封できる
ようになっている。Further, a safety valve 30 is provided on the case lid 29, and when the battery temperature rises and the internal pressure rises,
The electrolytic solution inside and the gas generated by its decomposition are discharged to the outside. Further, the battery case 26 is provided with a liquid injection port 33 on its side surface, and the power generation element 2 is housed in the battery case 26 and a case lid 29 is attached, and then an electrolytic solution is injected into the battery case 26. It can then be sealed.
【0028】[0028]
【実施例】1.試料電池の作製
<実施例1>
上記第1実施形態にかかるラミネート型電池1を作製し
た。正極板は、アルミニウム箔からなる集電体の両面に
コバルト酸リチウムを正極活物質として周知の方法で正
極合剤層を形成し作製した。また、正極板はその一端の
正極集電体を露出させ、その正極集電体にアルミニウム
片からなる正極端子7を正極板に溶接した。負極板は、
銅箔からなる集電体の両面にグラファイトを負極活物質
として周知の方法で負極合剤層を形成し作製した。負極
板の一端にも正極板と同様にして銅片からなる負極端子
8を溶接した。セパレータとして、ポリエチレンを微多
孔化処理した微多孔膜を用いた。セパレータのシャット
ダウン温度は120℃のものを用いた。非水電解質とし
ては、LiPF6を1mol/l含む、エチレンカーボ
ネートとジエチルカーボネート=1:1の混合溶液を用
いた。[Example] 1. Preparation of Sample Battery <Example 1> The laminated battery 1 according to the first embodiment was prepared. The positive electrode plate was produced by forming a positive electrode material mixture layer on both surfaces of a current collector made of aluminum foil by a known method using lithium cobalt oxide as a positive electrode active material. Further, the positive electrode plate had a positive electrode current collector at one end exposed, and the positive electrode terminal 7 made of aluminum pieces was welded to the positive electrode current collector. The negative electrode plate is
A negative electrode mixture layer was formed on both surfaces of a collector made of copper foil by a known method using graphite as a negative electrode active material. A negative electrode terminal 8 made of a copper piece was welded to one end of the negative electrode plate in the same manner as the positive electrode plate. As the separator, a microporous membrane obtained by subjecting polyethylene to microporation was used. The shutdown temperature of the separator used was 120 ° C. As the non-aqueous electrolyte, a mixed solution containing 1 mol / l of LiPF 6 and ethylene carbonate and diethyl carbonate = 1: 1 was used.
【0029】熱収縮チューブ11は、エチレンプロピレ
ンゴムにより形成し、熱収縮開始温度がセパレータのシ
ャットダウン温度より低い50℃であり、その温度にお
けるヤング率が10MPaのものを用いた。熱収縮チュ
ーブ11の熱収縮率は周方向において50%、厚さは5
00μmのものを用いた。The heat-shrinkable tube 11 was made of ethylene propylene rubber, had a heat-shrinkage start temperature of 50 ° C. lower than the shutdown temperature of the separator, and had a Young's modulus of 10 MPa at that temperature. The heat shrinkage rate of the heat shrinkable tube 11 is 50% in the circumferential direction, and the thickness is 5
The one having a diameter of 00 μm was used.
【0030】ラミネート型電池1の組立は次のようにし
た。発電要素2を熱収縮チューブ11に収めたのち、発
電要素2を金属ラミネート樹脂フィルムケース6に収め
た。その後、発電要素を十分に湿潤させ、余剰にならな
い量の電解質を注液した。電解液を注入したラミネート
型電池1を400mA定電流で30分間予備充電を行っ
た後、密封溶着を行って公称容量1000mAhのラミ
ネート型電池1を作製した。The laminated battery 1 was assembled as follows. After the power generating element 2 was housed in the heat shrinkable tube 11, the power generating element 2 was housed in the metal laminated resin film case 6. After that, the power generation element was sufficiently wetted, and an amount of electrolyte that was not excessive was poured. The laminated battery 1 into which the electrolytic solution was injected was precharged at a constant current of 400 mA for 30 minutes, and then sealed and welded to produce a laminated battery 1 having a nominal capacity of 1000 mAh.
【0031】<比較例1>発電要素2を覆う熱収縮チュ
ーブ11を設けない他は、上記実施例1と同様にしてラ
ミネート型電池1を作製した。Comparative Example 1 A laminate type battery 1 was produced in the same manner as in Example 1 except that the heat shrinkable tube 11 covering the power generating element 2 was not provided.
【0032】<実施例2>実施例2では、図2に示す第
2実施形態における角型電池21を作製した。正極板2
3、負極板24及びセパレータ25は実施例1と同様に
作製した。Example 2 In Example 2, the prismatic battery 21 according to the second embodiment shown in FIG. 2 was manufactured. Positive plate 2
3, the negative electrode plate 24 and the separator 25 were manufactured in the same manner as in Example 1.
【0033】熱収縮チューブ31は、実施例1と同じエ
チレンプロピレンゴム製のものを用いた。また、熱収縮
チューブ31には直径3mmの円形の貫通孔34を設け
た。この貫通孔34すべての面積の和が熱収縮チューブ
31全体の面積に対する割合を30%とした。As the heat-shrinkable tube 31, the same one made of ethylene propylene rubber as in Example 1 was used. Further, the heat-shrinkable tube 31 was provided with a circular through hole 34 having a diameter of 3 mm. The ratio of the total area of all the through holes 34 to the total area of the heat shrinkable tube 31 was 30%.
【0034】そして、発電要素22を熱収縮チューブ3
1に収めた後、電池ケース26に収容し、実施例1と同
様にして周知の方法で、角型電池21を組み立てた。The power generating element 22 is attached to the heat shrinkable tube 3
Then, it was housed in the battery case 26, and the rectangular battery 21 was assembled by a known method in the same manner as in Example 1.
【0035】<比較例2>発電要素22を覆う熱収縮チ
ューブ31を設けない他は、上記実施例2同様にして角
型電池21を作製した。<Comparative Example 2> A prismatic battery 21 was produced in the same manner as in Example 2 except that the heat shrinkable tube 31 covering the power generating element 22 was not provided.
【0036】2.試験方法
実施例1及び比較例1のラミネート型電池1を各3個づ
つ、及び、実施例2及び比較例2の角型電池21を各3
個づつ作製し、各電池について25℃の恒温槽中で過充
電試験を行った。過充電試験は、1Aの定電流で10V
まで充電を行い、発電要素2内部の温度を測定し、熱逸
走の有無を観測した。2. Test method Three laminated batteries 1 each of Example 1 and Comparative Example 1, and three prismatic batteries 21 of Example 2 and Comparative Example 2
Each battery was manufactured individually and subjected to an overcharge test in a constant temperature bath at 25 ° C. Overcharge test is 10V at a constant current of 1A
Was charged, the temperature inside the power generation element 2 was measured, and the presence or absence of heat escape was observed.
【0037】3.結果及び考察
<ラミネート型電池>実施例1及び比較例1のラミネー
ト型電池1について過充電試験を行った結果を以下に示
す。図3、図4のグラフは、ラミネート型電池1の充電
電流量に対する内部温度変化を表したグラフである。図
3が熱収縮チューブを設けた実施例1におけるラミネー
ト型電池1の内部温度変化を示し、図4が熱収縮チュー
ブを設けない比較例1におけるラミネート型電池1の内
部温度変化を示している。図3、図4共に、一個の電池
の測定値を示したものである。また、実施例1及び比較
例1のラミネート型電池1のうち熱逸走に至らなかった
電池の個数と熱逸走に至った電池の個数を表1に示す。3. Results and Discussion <Laminated battery> The results of performing the overcharge test on the laminated battery 1 of Example 1 and Comparative Example 1 are shown below. The graphs of FIG. 3 and FIG. 4 are graphs showing changes in internal temperature with respect to the charging current amount of the laminated battery 1. FIG. 3 shows changes in the internal temperature of the laminated battery 1 in Example 1 provided with the heat-shrinkable tube, and FIG. 4 shows changes in the internal temperature of the laminated battery 1 in Comparative Example 1 not provided with the heat-shrinkable tube. Both FIG. 3 and FIG. 4 show the measured values of one battery. Table 1 shows the number of batteries that did not cause heat escape and the number of batteries that did not cause heat escape among the laminated batteries 1 of Example 1 and Comparative Example 1.
【0038】[0038]
【表1】 [Table 1]
【0039】実施例1、比較例1ともに約4000mA
hの充電を行った時点で、端子間電圧が10Vに到達
し、発熱した。その際、図1に示すように実施例1の電
池内温度の上昇は100℃程度である一方、図2に示す
ように比較例1の電池内温度は400℃程度まで上昇
し、熱逸走に至った。また、実施例1の電池は3つ全て
が熱逸走に至らなかったのに対して、比較例1の電池は
3つ全てが熱逸走に至った。Approximately 4000 mA in both Example 1 and Comparative Example 1.
At the time of charging for h, the voltage between terminals reached 10 V and heat was generated. At that time, as shown in FIG. 1, the temperature inside the battery of Example 1 rises to about 100 ° C., while the temperature inside the battery of Comparative Example 1 rises to about 400 ° C. as shown in FIG. I arrived. In addition, all three of the batteries of Example 1 did not reach heat escape, whereas all three of the batteries of Comparative Example 1 reached heat escape.
【0040】上記のように、発電要素2を熱収縮チュー
ブ11で収めることにより、熱逸走へ至ることを防止で
き、過充電時の電池の安全性を向上できた。これは、過
充電の際にガスが発電要素2内で発生しても、そのガス
が発電要素2内にたまって気泡となることを防止し、電
流集中を防止するとともに発熱体である極板とセパレー
タを密着させ、セパレータのシャットダウンを迅速かつ
均一に起こさたためであると考えられる。As described above, by accommodating the power generating element 2 in the heat shrinkable tube 11, it is possible to prevent heat escape and improve the safety of the battery at the time of overcharging. This is to prevent the gas from accumulating in the power generating element 2 and forming bubbles even if the gas is generated in the power generating element 2 during overcharging, preventing current concentration and also being a heat generating electrode plate. It is thought that this is because the separators were brought into close contact with each other and the separators were shut down quickly and uniformly.
【0041】また、過充電以外の原因により電池の温度
が上昇した場合にも、熱収縮チューブ11は発電要素2
を圧縮して、発電要素2の変形を防止できると考えられ
る。これにより、温度上昇などのために電解液が分解す
るなどしてガスが発生するような場合でも、変形により
正極と負極とが短絡することを防止して、熱逸走に至る
ことを防止できると考えられる。Also, when the temperature of the battery rises due to a cause other than overcharging, the heat-shrinkable tube 11 keeps the power generating element 2
It is considered that the deformation of the power generation element 2 can be prevented by compressing As a result, even when gas is generated due to decomposition of the electrolytic solution due to temperature rise, etc., it is possible to prevent short circuit between the positive electrode and the negative electrode due to deformation, and prevent thermal escape. Conceivable.
【0042】<角型電池>実施例2及び比較例2の角型
電池21について過充電試験を行った結果を以下に示
す。熱収縮チューブ31を設けた実施例2及び熱収縮チ
ューブ31を設けなかった比較例2の角型電池21のう
ち熱逸走に至らなかった電池の個数と熱逸走に至った電
池の個数とを表2に示す。<Square Batteries> The results of the overcharge test of the prismatic batteries 21 of Example 2 and Comparative Example 2 are shown below. The number of batteries that did not lead to heat escape and the number of batteries that led to heat escape among the rectangular batteries 21 of Example 2 provided with the heat shrink tube 31 and Comparative example 2 not provided with the heat shrink tube 31 are shown. 2 shows.
【0043】[0043]
【表2】 [Table 2]
【0044】実施例2における熱収縮チューブ31を設
けた角型電池21は全て熱逸走に至らなかったのに対し
て、比較例2における熱収縮チューブ31を設けない角
型電池21は3つの電池のうち、2つの電池が熱逸走に
至った。The prismatic batteries 21 provided with the heat-shrinkable tube 31 in Example 2 did not all escape heat, whereas the prismatic batteries 21 not provided with the heat-shrinkable tube 31 in Comparative Example 2 were three batteries. Of these, two batteries had heat escape.
【0045】従って、第1実施形態と同様に発電要素2
を熱収縮チューブ31に収めることにより、熱逸走へ至
ることを防止でき、電池の安全性を向上できた。Therefore, the power generation element 2 is the same as in the first embodiment.
Since the heat-shrinkable tube 31 was housed in the heat-shrinkable tube 31, it was possible to prevent heat escape and improve the safety of the battery.
【0046】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。<Other Embodiments> The present invention is not limited to the embodiments described above and the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.
【0047】(1)上記第1実施形態では、発電要素2
を熱収縮チューブ11に収めて、金属ラミネート樹脂フ
ィルムケース6に収容しているが、熱収縮チューブ11
の位置はこれに限られない。発電要素2を収めた金属ラ
ミネート樹脂フィルムケース6を熱収縮チューブ11に
収めてラミネート型非水電解質二次電池を構成すること
ができる。この実施形態は、請求項4の発明に対応す
る。また、フィルムケース自体を熱収縮フィルムなどの
熱応動体で構成することも可能である。(1) In the first embodiment, the power generating element 2 is used.
Is housed in the heat-shrinkable tube 11 and then housed in the metal laminated resin film case 6.
The position of is not limited to this. The metal-laminated resin film case 6 accommodating the power generation element 2 can be accommodated in the heat-shrinkable tube 11 to form a laminated non-aqueous electrolyte secondary battery. This embodiment corresponds to the invention of claim 4. Further, the film case itself can be configured by a heat responsive body such as a heat shrink film.
【0048】(2)上記第2実施形態では、負極板24
に接続された負極リード28をケース蓋29に溶接し
て、負極板24を外部へ電気的に接続するようになって
いるが、負極板24接続方法はこれに限られない。例え
ば、熱収縮チューブ31に設けられた貫通孔34を通じ
て、負極板24と電池ケース26とを接触させて、負極
板24を電気的に外部へ接続することができる。(2) In the second embodiment, the negative electrode plate 24
Although the negative electrode lead 28 connected to the case is welded to the case lid 29 to electrically connect the negative electrode plate 24 to the outside, the method of connecting the negative electrode plate 24 is not limited to this. For example, the negative electrode plate 24 and the battery case 26 can be brought into contact with each other through the through hole 34 provided in the heat shrinkable tube 31, and the negative electrode plate 24 can be electrically connected to the outside.
【0049】この場合、電池温度が上昇すると熱収縮チ
ューブ31が収縮し、発電要素22が圧縮されて小さく
なる。そのため、発電要素22が電池ケース26から離
れて、外部回路と発電要素22との接続が遮断される。
これにより、非水電解質二次電池の充放電が停止し、電
池の安全性の向上を図ることができる。なお、正極板2
3を外部へ接触により接続することもできる。In this case, when the battery temperature rises, the heat shrinkable tube 31 shrinks, and the power generating element 22 is compressed and becomes smaller. Therefore, the power generation element 22 separates from the battery case 26, and the connection between the external circuit and the power generation element 22 is cut off.
As a result, charging / discharging of the non-aqueous electrolyte secondary battery is stopped, and the safety of the battery can be improved. The positive electrode plate 2
It is also possible to connect 3 to the outside by contact.
【0050】(3)上記実施形態では、熱応動体の形状
として、チューブ状のものを示したが、熱応動体の形状
はこれに限定されない。例えば、発電要素2、22を袋
状の熱収縮性樹脂フィルムに収める方法や、発電要素
2、22と同じ幅の短冊状の熱収縮性樹脂フィルムを用
いて巻く方法、また細いテープ状の熱収縮性樹脂フィル
ムを螺旋状に発電要素2、22に巻き付けても良い。他
に、網状、ひも状のものを用いることもできる。(3) In the above embodiment, the shape of the heat responsive body is a tube, but the shape of the heat responsive body is not limited to this. For example, a method of accommodating the power generation elements 2 and 22 in a bag-shaped heat-shrinkable resin film, a method of winding using a strip-shaped heat-shrinkable resin film having the same width as that of the power generation elements 2 and 22, and a thin tape-shaped heat The shrinkable resin film may be spirally wound around the power generating elements 2 and 22. Alternatively, a mesh-shaped or string-shaped material can be used.
【0051】(4)上記実施形態では、熱応動体として
熱収縮性樹脂フィルムからなる熱収縮チューブ11、3
1を用いた例を示したが、熱応動体の材料はこれに限定
されない。例えば、螺旋状の形状記憶合金、バイメタル
等を用い、温度の上昇によりその径が小さくなるように
して、発電要素2、22を圧縮することができる。な
お、この場合の熱収縮開始温度は、形状記憶合金やバイ
メタルなどにより作製された螺旋状の熱応動体が発電要
素を締め付けはじめる温度となる。(4) In the above embodiment, the heat-shrinkable tubes 11 and 3 made of a heat-shrinkable resin film are used as the heat responders.
However, the material of the heat responsive body is not limited to this. For example, it is possible to compress the power generating elements 2 and 22 by using a spiral shape memory alloy, a bimetal, or the like, the diameter of which becomes smaller as the temperature rises. The heat shrinkage start temperature in this case is the temperature at which the spiral thermal responsive body made of a shape memory alloy, a bimetal, or the like begins to tighten the power generating element.
【0052】(5)上記実施形態には、非水電解質とし
て非水溶媒に電解質塩を溶解した非水電解液を用いた例
を示したが、非水電解質の形態はこれに限られない。例
えば、固体電解質と電解液とを併用し、電極板の間に固
体電解質を用い、活物質層に電解液を含浸して用いられ
る非水電解質二次電池にも本発明を適用できる。その場
合、固体電解質をセパレータ25と併用して用いること
ができる。固体電解質としては、公知の固体電解質を用
いることができ、無機固体電解質、高分子固体電解質を
用いることができる。特に、有孔性高分子固体電解質を
好適に適用できる。(5) In the above embodiment, an example in which a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent is used as the non-aqueous electrolyte is shown, but the form of the non-aqueous electrolyte is not limited to this. For example, the present invention can be applied to a non-aqueous electrolyte secondary battery in which a solid electrolyte and an electrolytic solution are used together, a solid electrolyte is used between electrode plates, and an active material layer is impregnated with the electrolytic solution. In that case, the solid electrolyte can be used in combination with the separator 25. A known solid electrolyte can be used as the solid electrolyte, and an inorganic solid electrolyte or a polymer solid electrolyte can be used. In particular, a porous polymer solid electrolyte can be preferably applied.
【図1】本発明の第1実施形態にかかるラミネート型非
水電解質二次電池の分解斜視図FIG. 1 is an exploded perspective view of a laminated non-aqueous electrolyte secondary battery according to a first embodiment of the present invention.
【図2】本発明の第2実施形態にかかる角型非水電解質
二次電池の分解斜視図FIG. 2 is an exploded perspective view of a prismatic non-aqueous electrolyte secondary battery according to a second embodiment of the present invention.
【図3】過充電試験における実施例1のラミネート型電
池の充電電流量に対する電池温度の変化を表す図FIG. 3 is a diagram showing a change in battery temperature with respect to a charging current amount of the laminated battery of Example 1 in an overcharge test.
【図4】過充電試験における比較例1のラミネート型電
池の充電電流量に対する電池温度の変化を表す図FIG. 4 is a diagram showing a change in battery temperature with respect to a charging current amount of a laminated battery of Comparative Example 1 in an overcharge test.
2…発電要素 6…金属ラミネート樹脂フィルムケース 11…熱収縮チューブ 2 ... Power generation element 6 ... Metal laminated resin film case 11 ... Heat shrink tube
Claims (4)
板と負極板とを積層して構成された発電要素と、非水電
解質とを電池ケースに収容してなる非水電解質二次電池
において、 前記発電要素の昇温時に、熱を受けて変形する熱応動体
によって前記発電要素をその積層方向に沿って圧縮する
ようにしたことを特徴とする非水電解質二次電池。1. A non-aqueous electrolyte secondary battery in which a power generating element formed by laminating a positive electrode plate and a negative electrode plate via a thermoplastic resin separator and a non-aqueous electrolyte are housed in a battery case. A non-aqueous electrolyte secondary battery, wherein the power generating element is compressed along the stacking direction thereof by a heat responsive body that receives heat and deforms when the temperature of the power generating element is increased.
縮性樹脂フィルムからなる熱収縮チューブであり、前記
発電要素は前記熱収縮チューブ内に収めた状態で前記電
池ケース内に収容されていることを特徴とする請求項1
記載の非水電解質二次電池。2. The heat-responsive body is a heat-shrinkable tube made of a heat-shrinkable resin film that shrinks due to heat, and the power generation element is housed in the battery case while being housed in the heat-shrinkable tube. Claim 1 characterized by the above.
The non-aqueous electrolyte secondary battery described.
前記正極板と前記負極板とを巻回して構成されるととも
に、前記発電要素の巻回面と平行な方向へ沿って前記発
電要素が前記熱収縮チューブに収容されている非水電解
質二次電池において、 前記熱収縮チューブには貫通孔が設けられていることを
特徴とする請求項2記載の非水電解質二次電池。3. The power generating element is configured by winding the positive electrode plate and the negative electrode plate with the separator interposed therebetween, and the power generating element is arranged in a direction parallel to a winding surface of the power generating element. The non-aqueous electrolyte secondary battery housed in a heat-shrinkable tube, wherein the heat-shrinkable tube is provided with a through hole.
ィルムから構成され、かつ、前記熱応動体は熱によって
収縮する熱収縮性樹脂フィルムからなる熱収縮チューブ
であり、前記電池ケースは内部に前記発電要素を収容し
た状態で前記熱収縮チューブ内に収められていることを
特徴とする請求項1記載の非水電解質二次電池。4. The battery case is made of a flexible resin film, and the heat-responsive body is a heat-shrinkable tube made of a heat-shrinkable resin film that shrinks by heat. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is housed in the heat-shrinkable tube in a state of housing the power generation element.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002020585A JP4674031B2 (en) | 2002-01-29 | 2002-01-29 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002020585A JP4674031B2 (en) | 2002-01-29 | 2002-01-29 | Nonaqueous electrolyte secondary battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003223933A true JP2003223933A (en) | 2003-08-08 |
| JP4674031B2 JP4674031B2 (en) | 2011-04-20 |
Family
ID=27744044
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002020585A Expired - Fee Related JP4674031B2 (en) | 2002-01-29 | 2002-01-29 | Nonaqueous electrolyte secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4674031B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009146749A (en) * | 2007-12-14 | 2009-07-02 | Nec Tokin Corp | Nonaqueous secondary battery |
| WO2010047079A1 (en) * | 2008-10-20 | 2010-04-29 | Necトーキン株式会社 | Multilayer lithium-ion secondary battery |
| US20110086265A1 (en) * | 2008-06-13 | 2011-04-14 | Satoshi Suzuki | Battery |
| JP2011129497A (en) * | 2009-12-15 | 2011-06-30 | Samsung Sdi Co Ltd | Secondary battery |
| JP2014532961A (en) * | 2011-10-31 | 2014-12-08 | エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. | Battery cell jelly roll for secondary battery |
| JP2018073502A (en) * | 2016-10-25 | 2018-05-10 | トヨタ自動車株式会社 | Manufacturing method of laminated electrode body |
| JP2019160744A (en) * | 2018-03-16 | 2019-09-19 | トヨタ自動車株式会社 | Secondary battery |
| JP2019204660A (en) * | 2018-05-23 | 2019-11-28 | トヨタ自動車株式会社 | All-solid-state battery |
| CN114865231A (en) * | 2022-05-30 | 2022-08-05 | 珠海冠宇电池股份有限公司 | Battery with a battery cell |
| JP2022122116A (en) * | 2021-02-09 | 2022-08-22 | 株式会社Gsユアサ | Electrode body and storage element |
-
2002
- 2002-01-29 JP JP2002020585A patent/JP4674031B2/en not_active Expired - Fee Related
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009146749A (en) * | 2007-12-14 | 2009-07-02 | Nec Tokin Corp | Nonaqueous secondary battery |
| US8945775B2 (en) * | 2008-06-13 | 2015-02-03 | Toyota Jidosha Kabushiki Kaisha | Battery having a porous insulating member |
| US20110086265A1 (en) * | 2008-06-13 | 2011-04-14 | Satoshi Suzuki | Battery |
| WO2010047079A1 (en) * | 2008-10-20 | 2010-04-29 | Necトーキン株式会社 | Multilayer lithium-ion secondary battery |
| JP2010097891A (en) * | 2008-10-20 | 2010-04-30 | Nec Tokin Corp | Stacked lithium-ion secondary battery |
| CN102246345A (en) * | 2008-10-20 | 2011-11-16 | Nec能源元器件株式会社 | Multilayer lithium-ion secondary battery |
| US8999559B2 (en) | 2009-12-15 | 2015-04-07 | Samsung Sdi Co., Ltd. | Secondary battery |
| JP2011129497A (en) * | 2009-12-15 | 2011-06-30 | Samsung Sdi Co Ltd | Secondary battery |
| JP2014532961A (en) * | 2011-10-31 | 2014-12-08 | エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. | Battery cell jelly roll for secondary battery |
| JP2018073502A (en) * | 2016-10-25 | 2018-05-10 | トヨタ自動車株式会社 | Manufacturing method of laminated electrode body |
| US11335942B2 (en) | 2016-10-25 | 2022-05-17 | Toyota Jidosha Kabushiki Kaisha | Method for producing laminated electrode assembly |
| JP2019160744A (en) * | 2018-03-16 | 2019-09-19 | トヨタ自動車株式会社 | Secondary battery |
| JP7011780B2 (en) | 2018-03-16 | 2022-02-10 | トヨタ自動車株式会社 | Secondary battery |
| JP2019204660A (en) * | 2018-05-23 | 2019-11-28 | トヨタ自動車株式会社 | All-solid-state battery |
| JP7068630B2 (en) | 2018-05-23 | 2022-05-17 | トヨタ自動車株式会社 | All solid state battery |
| JP2022122116A (en) * | 2021-02-09 | 2022-08-22 | 株式会社Gsユアサ | Electrode body and storage element |
| JP7695638B2 (en) | 2021-02-09 | 2025-06-19 | 株式会社Gsユアサ | Electrode body and storage element |
| CN114865231A (en) * | 2022-05-30 | 2022-08-05 | 珠海冠宇电池股份有限公司 | Battery with a battery cell |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4674031B2 (en) | 2011-04-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7378185B2 (en) | Prismatic lithium secondary battery having a porous heat resistant layer | |
| JP4236308B2 (en) | Lithium ion battery | |
| JP6210336B2 (en) | Secondary battery | |
| US10290848B2 (en) | Lithium secondary battery | |
| WO2008050604A1 (en) | Sealed secondary battery | |
| JP4382557B2 (en) | Non-aqueous secondary battery | |
| JP3717632B2 (en) | Battery manufacturing method | |
| JPH08329972A (en) | Battery | |
| KR100735486B1 (en) | Electrochemical device using two kinds of separator | |
| JP4218792B2 (en) | Non-aqueous secondary battery | |
| EP0910131A1 (en) | Lithium secondary battery | |
| JP4674031B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP2004303597A (en) | Lithium secondary battery and manufacturing method of the same | |
| JP4590723B2 (en) | Winding electrode battery and method for manufacturing the same | |
| JP2001084984A (en) | Battery | |
| JP3583592B2 (en) | Thin rechargeable battery | |
| JP3579227B2 (en) | Thin rechargeable battery | |
| JP2008027867A (en) | Winding battery | |
| KR100591435B1 (en) | Can-type Lithium-ion Secondary Battery | |
| JP2002305032A (en) | Battery | |
| JP5673307B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP3806540B2 (en) | Method for manufacturing thin battery using laminate outer package | |
| JPH07272762A (en) | Nonaqueous electrolytic secondary battery | |
| CN110603684A (en) | Lithium ion secondary battery element and lithium ion secondary battery | |
| JPH07142089A (en) | Lithium ion battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060112 |
|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070110 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080214 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080812 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081118 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090202 |
|
| A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090327 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090714 |
|
| RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090714 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100608 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100927 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101220 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110124 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4674031 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
| LAPS | Cancellation because of no payment of annual fees |