JP2003229306A - Rare earth-iron hollow thick film magnet manufacturing method and magnet motor - Google Patents
Rare earth-iron hollow thick film magnet manufacturing method and magnet motorInfo
- Publication number
- JP2003229306A JP2003229306A JP2002027952A JP2002027952A JP2003229306A JP 2003229306 A JP2003229306 A JP 2003229306A JP 2002027952 A JP2002027952 A JP 2002027952A JP 2002027952 A JP2002027952 A JP 2002027952A JP 2003229306 A JP2003229306 A JP 2003229306A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- thick film
- rare earth
- iron
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
(57)【要約】
【課題】 本発明は、粉末冶金学的手法による焼結磁石
やボンド磁石による加工が困難な厚さ領域50〜160
0μmの希土類−鉄系中空厚膜磁石の製造方法、ならび
にこれを用いた磁石モータを提供する。
【解決手段】 R−TM−B−M系溶湯合金の急冷薄片
またはそのビュレットを、少なくとも一方の端面中央部
に凹部を有する一対の電極により、前記凹部に対応する
非圧縮部を有する厚さ50〜1600μmの圧縮部を形
成する圧縮成形工程において、記電極間への通電により
前記圧縮部を磁性相R2TM14Bの結晶化温度以上の温
度に加熱して合金磁石を形成した後、非圧縮部分を機械
的に除去する。
PROBLEM TO BE SOLVED: To provide a thickness region of 50 to 160 which is difficult to process by a sintered magnet or a bonded magnet by powder metallurgy.
Provided is a method for manufacturing a rare earth-iron-based hollow thick film magnet having a thickness of 0 μm, and a magnet motor using the same. SOLUTION: A quenched flake of an R-TM-BM-based molten alloy or a buret thereof is formed by a pair of electrodes having a concave portion at at least one end face center portion with a thickness of 50 having an uncompressed portion corresponding to the concave portion. In the compression molding step of forming a compressed portion of about 1600 μm, the compressed portion is heated to a temperature equal to or higher than the crystallization temperature of the magnetic phase R 2 TM 14 B by energization between the electrodes to form an alloy magnet, The compressed part is mechanically removed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、希土類−鉄系厚膜
磁石の製造方法、およびマイクロロボット、医療、宇宙
開発等において駆動源として利用される小型高性能の磁
石モータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth-iron thick film magnet, and a small and high performance magnet motor used as a driving source in microrobots, medical care, space development and the like.
【0002】[0002]
【従来の技術】希土類−鉄系磁石は、高性能の磁石とし
て知られており、これの薄膜磁石を形成する方法が特開
平5−21865号公報、特開平6−151226号公
報など各種提案されている。しかし、いずれもスパッタ
リング法で形成するのが一般的であった。希土類−鉄系
薄膜磁石をスパッタリング法で作製するには、基板を4
50℃以上に加熱する必要があり、製膜速度は0.1〜
4μm/hrと制限される。とくに、磁性相R2Fe14
Bを有する希土類−鉄系薄膜磁石では、酸化による保磁
力低下を抑制するため、膜厚は5μm未満に制限され
る。また、軟磁性層と硬磁性層の厚さをnm水準で厳密
に制御した厚さ0.01〜300μmの多層希土類−鉄
系薄膜磁石では、更に磁石作製が煩雑で経済性が乏しく
なる。そこで、特開平11−288812号公報では、
基板を加熱することなくスパッタリング法にて製膜し、
かつ製膜後に熱処理したR2Fe14B希土類−鉄系薄膜
磁石が開示されている。しかしながら、この方法におい
ても製膜速度が4μm/hr以下であり、膜厚も十数μ
m以下に制限されるという問題があった。2. Description of the Related Art Rare earth-iron-based magnets are known as high-performance magnets, and various methods for forming thin-film magnets thereof have been proposed, such as JP-A-5-21865 and JP-A-6-151226. ing. However, all of them were generally formed by a sputtering method. To prepare a rare earth-iron thin film magnet by the sputtering method, the substrate should be 4
It is necessary to heat to 50 ° C or higher, and the film forming rate is 0.1 to
It is limited to 4 μm / hr. In particular, the magnetic phase R 2 Fe 14
In the rare earth-iron thin film magnet having B, the film thickness is limited to less than 5 μm in order to suppress the decrease in coercive force due to oxidation. Further, in the case of a multilayer rare earth-iron based thin film magnet having a thickness of 0.01 to 300 μm in which the thicknesses of the soft magnetic layer and the hard magnetic layer are strictly controlled at the nm level, the magnet production is further complicated and the economical efficiency becomes poor. Therefore, in Japanese Patent Laid-Open No. 11-288812,
A film is formed by a sputtering method without heating the substrate,
Also disclosed is a R 2 Fe 14 B rare earth-iron based thin film magnet that is heat treated after film formation. However, even in this method, the film forming rate is 4 μm / hr or less, and the film thickness is more than 10 μm.
There was a problem of being limited to m or less.
【0003】一方、電磁モータ、電磁アクチュエータに
は小型化への強い要求がある。モータやアクチュエータ
での小型化の要点は、構成部品を少なくし、組立を単純
化することである。このことから小型のモータやアクチ
ュエータの可動子は、粉末冶金学的手法による希土類−
鉄系焼結磁石や急冷薄片などを樹脂で特定形状に固めた
希土類−鉄系ボンド磁石で構成することが一般的であ
る。この種の小型モータは、磁石と電機子巻線の位置関
係から、磁石と電機子巻線が軸方向に空隙をもつ軸方向
空隙型と、磁石と電機子巻線が半径方向に空隙をもつ径
方向空隙型とが提案されている。On the other hand, there is a strong demand for miniaturization of electromagnetic motors and electromagnetic actuators. The key to downsizing motors and actuators is to reduce the number of components and simplify assembly. For this reason, the movers of small motors and actuators are rare earth-based by powder metallurgy.
It is common to use a rare earth-iron bond magnet in which a ferrous sintered magnet, a quenched thin piece, and the like are hardened in a specific shape with a resin. Due to the positional relationship between the magnet and the armature winding, this type of small motor has an axial gap type in which the magnet and the armature winding have a gap in the axial direction, and the magnet and the armature winding have a gap in the radial direction. A radial void type has been proposed.
【0004】ところが、本発明の対象とする図1に示す
ような、例えば直径5mm、高さ1mmというミリメー
トルサイズのモータやアクチュエータ(この場合は軸方
向空隙型)では、可動子を構成する希土類−鉄系磁石も
厚さ500μmあるいはそれ以下に作製する必要があ
る。図1は軸方向空隙型モータを示す。基板1は中央に
軸受け2を有し、軸受け2を囲むように複数の電機子巻
線3を固定している。フレーム4は軸受け2に支持され
る回転軸5を有し、下面には中空の希土類−鉄系磁石6
を固定している。However, in the case of a motor or actuator (in this case, an axial gap type) having a diameter of 5 mm and a height of 1 mm as shown in FIG. The iron-based magnet also needs to be manufactured to a thickness of 500 μm or less. FIG. 1 shows an axial air gap type motor. The substrate 1 has a bearing 2 in the center, and a plurality of armature windings 3 are fixed so as to surround the bearing 2. The frame 4 has a rotary shaft 5 supported by a bearing 2, and has a hollow rare earth-iron magnet 6 on its lower surface.
Is fixed.
【0005】この種の小型モータの磁石として、希土類
−鉄系焼結磁石を研削加工したものを用いる方法が考え
られる。しかし、希土類−鉄系焼結磁石は、R2Fe14
Bの結晶粒径が一般に6〜9μmと大きく、その結晶粒
界にはRリッチ相が存在するため、研削加工時に、表面
から深さ数10μmに至る表層の磁気性能が劣化する。
また、材料が脆く加工性に乏しいため、歩留まりを考慮
した加工限界は厚み500μm程度と見積もられる。更
に、回転軸5を実装するには、希土類−鉄系磁石6は中
空形状である必要がある。しかし、希土類−鉄系薄膜磁
石に関する従来の文献には、それに関する記述は見当た
らない。したがって、希土類−鉄系薄膜磁石において
は、磁石厚さばかりか中空磁石形状を考慮すると、図1
に示すようなモータやアクチュエータ用途への形状対応
が困難と言える。As a magnet for this type of small motor, a method of using a rare earth-iron-based sintered magnet ground and processed can be considered. However, the rare earth-iron-based sintered magnet is R 2 Fe 14
The crystal grain size of B is generally as large as 6 to 9 μm, and the R-rich phase exists in the crystal grain boundary, so that the magnetic performance of the surface layer from the surface to a depth of several 10 μm deteriorates during grinding.
Further, since the material is brittle and poor in workability, the working limit considering the yield is estimated to be about 500 μm in thickness. Furthermore, in order to mount the rotating shaft 5, the rare earth-iron-based magnet 6 needs to have a hollow shape. However, there is no description about it in the conventional literature on rare earth-iron thin film magnets. Therefore, in the rare earth-iron based thin film magnet, considering not only the magnet thickness but also the hollow magnet shape,
It can be said that it is difficult to adapt the shape to motor and actuator applications as shown in.
【0006】R2Fe14B希土類−鉄系ボンド磁石で
は、R2Fe14Bの結晶粒子径が20〜100nmと比
較的小さいが、急冷薄片粒子径を50μm以下に調整し
たときには、保磁力の粒子径への依存性が強まる傾向が
ある。このため、磁石を薄くすると薄片の角型性(Hk
/Hci)の低下と磁石の密度の低下による残留磁化Jr
の低下が避けられない。特開平6−244045号公報
には、中空薄板磁石の製造方法において、加圧加熱成形
型に中空部分に対応する型部材を用いず、代わりに非加
圧部を設けた加圧加熱成形型で非加圧粗密部と加圧緻密
部とを有する成形体を製造し、しかるのち易加工性の非
加圧粗密部を機械的に除去して所望の中空形状とするこ
とが開示されている。しかし、磁石粉体は、非磁石粉体
として金属ソルダーなどを併用した所謂金属ボンド磁石
のため、残留磁化Jrが低下する欠点があった。In the R 2 Fe 14 B rare earth-iron based bonded magnet, the crystal grain size of R 2 Fe 14 B is relatively small at 20 to 100 nm, but the coercive force of the quenched thin flakes is adjusted when it is adjusted to 50 μm or less. Dependence on particle size tends to increase. Therefore, if the magnet is made thinner, the squareness (Hk
/ Hci) and the residual magnetism Jr due to the decrease in magnet density
Inevitably lowers. Japanese Unexamined Patent Publication No. 6-244045 discloses a method for manufacturing a hollow thin plate magnet, in which a pressurizing and heating molding die is not provided with a die member corresponding to the hollow portion, but a non-pressurizing portion is provided instead. It is disclosed that a molded product having a non-pressurized dense portion and a pressurized dense portion is manufactured, and then the easily processable non-pressurized dense portion is mechanically removed to obtain a desired hollow shape. However, since the magnet powder is a so-called metal bonded magnet in which a metal solder or the like is used as a non-magnet powder, there is a drawback that the residual magnetization Jr is lowered.
【0007】以上のように、ミリメートルサイズのモー
タやアクチュエータでは、従来の粉末冶金学的手法によ
る希土類−鉄系焼結磁石あるいは急冷薄片を樹脂または
金属ソルダーで固めた希土類−鉄系ボンド磁石を採用し
ても、希土類磁石の本来の磁気性能をモータやアクチュ
エータとして十分に利用することができなかった。ま
た、スパッタリング法で希土類−鉄系薄膜磁石を作製す
るには、一般に基板を450℃以上に加熱する必要があ
り、製膜速度が0.1〜4μm/hrと制限される。と
くに、R2Fe14Bを主相とする希土類−鉄系薄膜磁石
では、酸化による保磁力低下を抑制するため、膜厚が5
μm未満に制限される。また、軟磁性層と硬磁性層の厚
さをnm水準で厳密に制御した厚さ0.01〜300μ
mの多層希土類−鉄系薄膜磁石では、更に磁石作製が煩
雑で、経済性が乏しくなるなどの欠点があり、ミリメー
トルサイズのモータやアクチュエータの普及を妨げる原
因となっていた。電磁モータやアクチュエータを小型化
した場合、スケ−リング則によれば、電磁力は「L3」
(Lは体格)であるため、例えば可動子寸法(磁石)が
1/10になった場合、電磁力は1/1000に減少す
る。したがって膜厚が5μm未満の希土類−鉄系薄膜磁
石をそのまま可動子とすると、実使用の負荷に対応した
電磁力が得られないなどの問題もあった。As described above, in the millimeter-sized motor and actuator, the rare earth-iron based sintered magnet by the conventional powder metallurgical method or the rare earth-iron based bonded magnet obtained by hardening the quenched thin piece with the resin or the metal solder is adopted. However, the original magnetic performance of the rare earth magnet could not be fully utilized as a motor or an actuator. Further, in order to produce a rare earth-iron based thin film magnet by the sputtering method, it is generally necessary to heat the substrate to 450 ° C. or higher, and the film forming rate is limited to 0.1 to 4 μm / hr. Particularly, in the rare earth-iron thin film magnet having R 2 Fe 14 B as the main phase, the film thickness is 5 in order to suppress the decrease in coercive force due to oxidation.
Limited to less than μm. Further, the thickness of the soft magnetic layer and the hard magnetic layer is 0.01 to 300 μm, which is strictly controlled at the nm level.
The multi-layered rare earth-iron thin film magnet of m has drawbacks such that the magnet production is more complicated and the economical efficiency is poor, which has been a cause of hindering the spread of millimeter-sized motors and actuators. When the electromagnetic motor and actuator are miniaturized, according to the scaling rule, the electromagnetic force is "L 3 ".
Since (L is the physique), for example, when the mover size (magnet) becomes 1/10, the electromagnetic force decreases to 1/1000. Therefore, if the rare earth-iron thin film magnet having a film thickness of less than 5 μm is used as a movable element as it is, there is a problem that an electromagnetic force corresponding to a load in actual use cannot be obtained.
【0008】[0008]
【発明が解決しようとする課題】本発明は、以上に鑑
み、ミリメートルサイズのモータやアクチュエータに好
適な希土類−鉄系中空厚膜磁石を提供することを目的と
する。本発明は、また、希土類−鉄系磁石の性能を損な
うことなく、中空厚膜磁石を経済的に製造する方法を提
供することを目的とする。SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a rare earth-iron-based hollow thick film magnet suitable for millimeter size motors and actuators. Another object of the present invention is to provide a method for economically producing a hollow thick film magnet without impairing the performance of the rare earth-iron magnet.
【0009】[0009]
【課題を解決するための手段】本発明は、R−TM−B
−M系(ただし、RはNdおよびPrからなる群より選
ばれる少なくとも1種の元素で13〜20原子%、TM
は遷移金属元素FeまたはFeの一部をCoで置換した
もの、Bは5〜20原子%、MはGaおよびCuからな
る群より選ばれる少なくとも1種の元素で0.2〜3.
0原子%、残部TMであり、不可避的な不純物を含む)
溶湯合金の急冷薄片を、少なくとも一方の端面中央部に
凹部を有する一対の電極により、前記凹部に対応する非
圧縮部および前記非圧縮部を囲む厚さが50〜1600
μmの圧縮部を形成する圧縮成形工程であって、この工
程中に前記電極間に通電することにより前記圧縮部を磁
性相R2TM14Bの結晶化温度以上の温度に加熱して合
金磁石を形成する工程、および前記非圧縮部分を機械的
に除去する工程を有する希土類−鉄系中空厚膜磁石の製
造方法に関する。The present invention provides an R-TM-B
-M system (wherein R is at least one element selected from the group consisting of Nd and Pr, 13 to 20 atomic%, TM
Is a transition metal element Fe or a part of Fe substituted with Co, B is 5 to 20 atomic%, M is at least one element selected from the group consisting of Ga and Cu, and 0.2 to 3.
0 atomic%, balance TM, including unavoidable impurities)
A quenching thin piece of the molten alloy is formed by a pair of electrodes having a concave portion at the center of at least one end face, and a non-compressed portion corresponding to the concave portion and a thickness surrounding the non-compressed portion are 50 to 1600.
A compression molding step of forming a compressed portion of μm, in which the compressed portion is heated to a temperature equal to or higher than the crystallization temperature of the magnetic phase R 2 TM 14 B by passing an electric current between the electrodes during the step. And a method of manufacturing a rare earth-iron-based hollow thick film magnet, which includes a step of forming a magnetic field and a step of mechanically removing the non-compressed portion.
【0010】また、本発明は、R−TM−B−M系(た
だし、RはNdおよびPrからなる群より選ばれる少な
くとも1種の元素で13〜20原子%、TMは遷移金属
元素FeまたはFeの一部をCoで置換したもの、Bは
5〜20原子%、MはGaおよびCuからなる群より選
ばれる少なくとも1種の元素で0.2〜3.0原子%、
残部TMであり、不可避的な不純物を含む)溶湯合金の
急冷薄片と、R−TM−B系(ただし、RはNdおよび
Prからなる群より選ばれる少なくとも1種の元素で1
1.5原子%以下、TMは遷移金属元素FeまたはFe
の一部をCoで置換したもの、Bは5〜20原子%、残
部TMであり、不可避的な不純物を含む)溶湯合金の急
冷薄片との混合物を調製する工程、前記の混合物を、少
なくとも一方の端面中央部に凹部を有する一対の電極に
より、前記凹部に対応する非圧縮部および前記非圧縮部
を囲む厚さが50〜1600μmの圧縮部を形成する圧
縮成形工程であって、この工程中に前記電極間に通電す
ることにより前記圧縮部を磁性相R2TM14Bおよびα
Fe/R2TM14Bの結晶化温度以上に加熱して、前記
両磁性相の混合相を有する合金磁石を形成する工程、お
よび前記非圧縮部分を機械的に除去する工程を有する希
土類−鉄系中空厚膜磁石の製造方法を提供する。In the present invention, the R-TM-BM system (where R is 13 to 20 atomic% of at least one element selected from the group consisting of Nd and Pr, and TM is the transition metal element Fe or Part of Fe replaced by Co, B is 5 to 20 atom%, M is at least one element selected from the group consisting of Ga and Cu, and 0.2 to 3.0 atom%.
Quenched thin piece of molten alloy which is the balance TM and contains inevitable impurities, and R-TM-B system (where R is at least one element selected from the group consisting of Nd and Pr).
1.5 atomic% or less, TM is a transition metal element Fe or Fe
In which a part of Co is replaced by Co, B is 5 to 20 atomic% and the balance is TM, and contains unavoidable impurities.) A step of preparing a mixture with a quenched thin piece of a molten alloy, at least one of the above mixture. Of a pair of electrodes having a concave portion at the center of the end face thereof, forming a non-compressed portion corresponding to the concave portion and a compressed portion having a thickness of 50 to 1600 μm surrounding the non-compressed portion. To the magnetic phase R 2 TM 14 B and α by energizing between the electrodes.
Rare earth-iron, which has a step of heating above the crystallization temperature of Fe / R 2 TM 14 B to form an alloy magnet having a mixed phase of both magnetic phases, and a step of mechanically removing the incompressible portion Provided is a method for manufacturing a hollow-type thick film magnet.
【0011】さらに、本発明は、R−TM−B−M系
(ただし、RはNdおよびPrからなる群より選ばれる
少なくとも1種の元素で13〜20原子%、TMは遷移
金属元素FeまたはFeの一部をCoで置換したもの、
Bは5〜20原子%、MはGaおよびCuからなる群よ
り選ばれる少なくとも1種の元素で0.2〜3.0原子
%、残部TMであり、不可避的な不純物を含む)溶湯合
金の急冷薄片からなる相対密度85%以上のビレット
を、少なくとも一方の端面中央部に凹部を有する一対の
電極により、前記非圧縮部に対応する非圧縮部および前
記凹部を囲む厚さが50〜1600μmの圧縮部を形成
する圧縮成形工程であって、この工程中に前記電極間に
通電することにより前記圧縮部を磁性相R2TM14Bの
結晶化温度以上の温度に加熱して、厚さ方向に前記磁性
相のc軸を配向した異方性合金磁石を形成する工程、お
よび前記非圧縮部分を機械的に除去する工程を有する希
土類−鉄系中空厚膜磁石の製造方法を提供する。Furthermore, the present invention provides an R-TM-BM system (wherein R is 13 to 20 atomic% of at least one element selected from the group consisting of Nd and Pr, and TM is a transition metal element Fe or A part of Fe replaced by Co,
B is 5 to 20 atom%, M is at least one element selected from the group consisting of Ga and Cu, 0.2 to 3.0 atom%, and the balance is TM, and contains inevitable impurities.) A billet having a relative density of 85% or more made of a quenched thin piece is formed by a pair of electrodes having a recess at the center of at least one end face, and has a thickness of 50 to 1600 μm surrounding the incompressible part corresponding to the incompressible part and the recess. A compression molding step of forming a compression portion, wherein the compression portion is heated to a temperature equal to or higher than the crystallization temperature of the magnetic phase R 2 TM 14 B by passing an electric current between the electrodes during this step, and And a method of manufacturing a rare earth-iron-based hollow thick film magnet, which includes a step of forming an anisotropic alloy magnet in which the c-axis of the magnetic phase is oriented, and a step of mechanically removing the non-compressed portion.
【0012】本発明は、以上の方法によって得られる希
土類−鉄系中空厚膜磁石を提供する。さらに、本発明
は、その磁石および回転軸を有する可動子、並びに前記
可動子と空隙を介して対向する固定子を備えた軸方向空
隙型磁石モータに関する。また、前記の希土類−鉄系中
空厚膜磁石を有する平板状の可動子および平板状の固定
子を備えた磁石モータにも関する。The present invention provides a rare earth-iron based hollow thick film magnet obtained by the above method. Further, the present invention relates to an axial air gap type magnet motor including a mover having the magnet and a rotating shaft, and a stator facing the mover via a gap. The present invention also relates to a magnet motor including a plate-shaped mover and a plate-shaped stator having the rare earth-iron-based hollow thick film magnet.
【0013】[0013]
【発明の実施の形態】本発明は、少なくとも一方の端面
中央部に凹部を有する一対の電極を介したR−TM−B
−M系(R=Pr、Nd、TM=Fe、Co、M=G
a、Cu)溶湯合金の急冷薄片またはそのビレットへの
直接通電による加圧加熱によって厚さ50〜1600μ
mの希土類−鉄系中空厚膜磁石を作製するものである。
本発明に用いるR−TM−B−M系およびR−TM−B
系合金磁石は、既に知られており、またこの種の合金の
溶湯を急冷した薄片は、特開昭59−64739号公報
および特開昭59−211549号公報などに記載され
ている溶融スピニング法により得られるものとして良く
知られている。BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides an R-TM-B via a pair of electrodes having a recess at the center of at least one end face.
-M system (R = Pr, Nd, TM = Fe, Co, M = G
a, Cu) A quenching thin piece of molten alloy or its billet has a thickness of 50 to 1600 μm by pressure heating by direct energization.
m of rare earth-iron-based hollow thick film magnet.
R-TM-B-M system and R-TM-B used in the present invention
System alloy magnets are already known, and the thin pieces obtained by quenching a molten metal of this type of alloy are described in JP-A-59-64739 and JP-A-59-211549. Are well known as those obtained by
【0014】この種の急冷薄片としては、R−TM−B
−(M)系の溶湯合金の急冷条件(速度)によって結晶
が既に析出したもの、完全に非晶質(アモルファス)合
金のもの、あるいはその中間状態のもの(結晶化した部
分と非晶質部分とが混在したもので、X線回折により結
晶化度として定量化できる)などがある。R−TM−B
−(M)系の溶湯合金を急冷した非晶質を含む薄片は、
結晶化温度(約595℃)以上に加熱することによって
初めて粘度が1013ポイズ以下となり、塑性変形能が
発現する。すなわち、本発明は、結晶化並びに結晶粒成
長が同時進行する条件で、急冷薄片を塑性加工(塑性変
形拡散)するのである。これによって、高密度で、有効
な磁性相を有する厚膜磁石を得ることができる。本発明
によれば、樹脂または金属ソルダーを使用することな
く、真密度に近い希土類−鉄系中空厚膜磁石が得られ
る。A quenching thin piece of this type is R-TM-B.
-(M) type molten alloy in which crystals have already been precipitated by the quenching condition (speed), completely amorphous alloy, or intermediate thereof (crystallized portion and amorphous portion) And can be quantified as crystallinity by X-ray diffraction). R-TM-B
-A thin piece containing an amorphous material obtained by rapidly cooling a (M) -based molten alloy is
The viscosity becomes 1013 poise or less and the plastic deformability is exhibited only after heating to the crystallization temperature (about 595 ° C.) or higher. That is, in the present invention, the quenched thin piece is subjected to plastic working (plastic deformation diffusion) under the condition that crystallization and crystal grain growth proceed simultaneously. This makes it possible to obtain a thick film magnet having a high density and an effective magnetic phase. According to the present invention, a rare earth-iron-based hollow thick film magnet having a true density close to that of a true density can be obtained without using a resin or a metal solder.
【0015】本発明によって得られる磁石の結晶粒の大
きさは、磁石の保磁力、保磁力の温度係数など磁気特性
と密接な関係があり、粒成長は磁気特性を劣化させる。
従って、後述するように、非晶質を含む合金薄片を結晶
化温度以上の温度下で塑性加工する際、結晶粒成長を抑
える制約下で行うことが好ましい。一般には数十sec
以下で加工を終えることが好ましい。本発明における加
熱・加圧の手段として、薄片またはビュレットに直接通
電することによるジュール熱によって加熱する方法は、
そのような極めて短時間での加工に好適である。The size of the crystal grains of the magnet obtained by the present invention is closely related to the magnetic characteristics such as the coercive force of the magnet and the temperature coefficient of the coercive force, and grain growth deteriorates the magnetic characteristics.
Therefore, as will be described later, when plastic-working an alloy flakes containing an amorphous material at a temperature equal to or higher than the crystallization temperature, it is preferable to carry out under the constraint of suppressing crystal grain growth. Generally several tens of seconds
It is preferable to finish the processing as follows. As a heating / pressurizing means in the present invention, a method of heating by Joule heat by directly energizing a thin piece or a bullet is
It is suitable for such processing in an extremely short time.
【0016】本発明において、圧縮工程中の加熱は、直
流電圧の印加によるパルス電流と直接通電によるジュー
ル熱で行うのが好ましい。直流電圧を印加してパルス電
流を通じることにより、薄片の表面をエッチングして薄
片相互の接触部を均一にすることができる。薄片または
ビレットを圧縮する電極は、その電気抵抗と体積比熱の
比が10-2(Ωcm4・deg/cal)以下であるの
が好ましい。また、圧縮工程中の加圧力は、250kg
f/cm2以上であることが好ましい。さらに、前記の
圧縮工程は、1Torr以下の減圧下で行うのが好まし
い。In the present invention, it is preferable that the heating during the compression step is performed by pulse current by applying a DC voltage and Joule heat by direct energization. By applying a DC voltage and passing a pulse current, the surface of the flakes can be etched to make the contact portions of the flakes uniform. The electrode for compressing the thin piece or the billet preferably has an electric resistance-volume specific heat ratio of 10 -2 (Ωcm 4 · deg / cal) or less. The pressure applied during the compression process is 250 kg.
It is preferably f / cm 2 or more. Furthermore, it is preferable that the compression step is performed under a reduced pressure of 1 Torr or less.
【0017】以上の諸条件を満たすことによって、保磁
力Hci=1100kA/m以上で、不可逆減磁が少な
く、相対密度95%以上の高密度厚膜磁石を得ることが
できる。このような厚膜磁石は、残留磁化Jrが0.8
T以上となる。一方、異方性厚膜磁石では、圧縮部の残
留磁化Jrを1.1T以上とすることもできる。By satisfying the above conditions, a high density thick film magnet having a coercive force Hci of 1100 kA / m or more, less irreversible demagnetization and a relative density of 95% or more can be obtained. Such a thick film magnet has a residual magnetization Jr of 0.8.
It becomes T or more. On the other hand, in the anisotropic thick film magnet, the residual magnetization Jr of the compressed portion can be 1.1 T or more.
【0018】本発明による合金磁石の製膜は、急冷薄片
またはそのビレットの塑性変形によるもので、スパッタ
リングやレーザーアブレーションの製膜速度4〜50μ
m/hrに比べ、数十〜百数十secで所望の厚さに製
膜が可能である。R−TM−B−M系合金において、R
はとくにNdまたはPrが望ましく、NdまたはPrの
一部をDyで置換してもよい。Rは13.0原子%未満
では十分な塑性変形能と保磁力Hciが発現せず、20原
子%を越えるとFe成分の減少による飽和磁化Jsの低
下を引き起こし、その結果、残留磁化Jrが減少する。
したがって、とくに好ましくはRは13.0〜14.0
原子%である。Bは5原子%未満では保磁力Hciが低下
し、20原子%を越えると残留磁化Jrが低下する。M
はGaおよび/またはCuであり、0.2原子%未満で
は塑性変形能が改善せず、例えば厚さ100μm以下の
製膜が困難になる。一方、3.0原子%を超えると、飽
和磁化Jsの低下に伴って残留磁化Jrが減少する。The film formation of the alloy magnet according to the present invention is carried out by plastic deformation of the quenched thin piece or its billet, and the film formation rate of sputtering or laser ablation is 4 to 50 μm.
Compared with m / hr, it is possible to form a film with a desired thickness in several tens to one hundred and several tens of seconds. In the R-TM-BM system alloy, R
Is particularly preferably Nd or Pr, and part of Nd or Pr may be replaced with Dy. When R is less than 13.0 atomic%, sufficient plastic deformability and coercive force Hci are not developed, and when it exceeds 20 atomic%, the saturation magnetization Js is decreased due to the decrease of Fe component, and as a result, the residual magnetization Jr is decreased. To do.
Therefore, R is particularly preferably 13.0 to 14.0.
It is atomic%. If B is less than 5 atomic%, the coercive force Hci is lowered, and if it exceeds 20 atomic%, the residual magnetization Jr is lowered. M
Is Ga and / or Cu, and if it is less than 0.2 atomic%, the plastic deformability is not improved, and it becomes difficult to form a film having a thickness of 100 μm or less. On the other hand, if it exceeds 3.0 atom%, the residual magnetization Jr decreases with the decrease of the saturation magnetization Js.
【0019】本発明は、R−TM−B−M系(ただし、
RはNdおよびPrからなる群より選ばれる少なくとも
1種の元素で13〜20原子%、TMは遷移金属元素F
eまたはFeの一部をCoで置換したもの、Bは5〜2
0原子%、MはGaおよびCuからなる群より選ばれる
少なくとも1種の元素で0.2〜3.0原子%、残部T
Mであり、不可避的な不純物を含む)溶湯合金の急冷薄
片を、少なくとも一方の端面中央部に凹部を有する一対
の電極により、電極間に通電することによる加熱を伴う
圧縮成形により厚さ50〜1600μmのR2TM14B
合金磁石を形成し、電極の凹部に対応する非圧縮部分を
機械的に除去して希土類−鉄系中空厚膜磁石を製造す
る。本発明は、前記の圧縮成形する素材に、R−TM−
B系(ただし、RはNdおよびPrからなる群より選ば
れる少なくとも1種の元素で11.5原子%以下、TM
は遷移金属元素FeまたはFeの一部をCoで置換した
もの、Bは5〜20原子%、残部TMであり、不可避的
な不純物を含む)溶湯合金の急冷薄片を混合することに
より、R2TM14Bと、これより高い残留磁化Jrを示す
αFe/R2TM14Bとの混合相からなる厚膜磁石を得
る。The present invention is based on the R-TM-BM system (however,
R is at least one element selected from the group consisting of Nd and Pr and 13 to 20 atomic%, and TM is a transition metal element F.
One in which e or Fe is partially replaced by Co, B is 5 to 2
0 atomic%, M is at least one element selected from the group consisting of Ga and Cu, and is 0.2 to 3.0 atomic%, and the balance T
A melt-quenched thin piece of molten alloy (M, including unavoidable impurities) is compression-formed with heating by energizing between the electrodes with a pair of electrodes having a recess in the central portion of at least one end face to a thickness of 50- 1600 μm R 2 TM 14 B
An alloy magnet is formed, and a non-compressed portion corresponding to the recess of the electrode is mechanically removed to manufacture a rare earth-iron-based hollow thick film magnet. The present invention is based on the material for compression molding described above, in which R-TM-
B-based (where R is at least one element selected from the group consisting of Nd and Pr, 11.5 atomic% or less, TM
Those obtained by replacing part of the transition metal element Fe or Fe with Co, B is 5 to 20 atomic%, and the balance TM, by mixing the quenched foil of unavoidable containing impurities) molten alloy, R 2 obtaining a TM 14 B, a thick film magnet comprising a mixed phase of αFe / R 2 TM 14 B showing the higher than this residual magnetization Jr.
【0020】これらの方法によって得られる磁石は、等
方性磁石である。本発明は、R−TM−B−M系溶湯合
金の急冷薄片からなる相対密度85%以上のビレットを
塑性加工することによって、厚さ方向に磁性相R2TM
14Bのc軸を配向した異方性合金磁石を得る。この異方
性磁石を得られる原理は、詳しくは、本発明者による論
文“Synthesis of Anisotropic Nd-Fe-B Based Magnets
by Direct Joule Heating”IEEE.Trans.Magn.,Vol.36,
No.5,pp3365(2000)に記載されているので、ここに引用
する。The magnets obtained by these methods are isotropic magnets. According to the present invention, a billet having a relative density of 85% or more, which is made of a quenched thin piece of an R-TM-B-M type molten alloy, is subjected to plastic working to obtain a magnetic phase R 2 TM in the thickness direction.
An anisotropic alloy magnet with 14 B c-axis oriented is obtained. For details of the principle of obtaining this anisotropic magnet, see the paper “Synthesis of Anisotropic Nd-Fe-B Based Magnets” by the present inventor.
by Direct Joule Heating ”IEEE.Trans.Magn., Vol.36,
No. 5, pp3365 (2000), it is quoted here.
【0021】次に、上記 R−TM−B−M系(R=P
r、Nd、TM=Fe、Co、M=Ga、Cu)溶湯合
金の急冷薄片、またはそのビレットへの直接通電による
加圧加熱による塑性変形で、厚さ50〜1600μmの
希土類−鉄系厚膜磁石を製膜する手段としての直接通電
加圧加熱について説明する。Next, the R-TM-BM system (R = P
r, Nd, TM = Fe, Co, M = Ga, Cu) A quenched thin piece of a molten alloy, or a plastic deformation by pressure heating by direct current application to its billet, which is a rare earth-iron thick film with a thickness of 50 to 1600 μm. Direct current pressure heating as means for forming a magnet film will be described.
【0022】図2は直接通電加圧加熱装置10の要部の
構成を示す。30は水冷機構の付いた真空チャンバ−を
表す。この真空チャンバー30は、内径300mm、奥
行400mmであり、その内部には水冷機構の付いた一
対のステンレス鋼SUS−304製、外径80mmのプ
ランジャーロッド13と23が対向している。上部プラ
ンジャーロッド13は電気絶縁板12を介して静置板1
1に固定されている。一方、下部プランジャーロッド2
3は油圧シリンダー21の電気絶縁材からなる可動ロッ
ド22に接続されている。FIG. 2 shows the structure of the main part of the direct current pressure heating device 10. Reference numeral 30 represents a vacuum chamber equipped with a water cooling mechanism. This vacuum chamber 30 has an inner diameter of 300 mm and a depth of 400 mm, and a pair of plunger rods 13 and 23 made of stainless steel SUS-304 having a water cooling mechanism and having an outer diameter of 80 mm face each other inside. The upper plunger rod 13 is a stationary plate 1 via an electric insulating plate 12.
It is fixed at 1. Meanwhile, lower plunger rod 2
Reference numeral 3 is connected to a movable rod 22 made of an electrically insulating material of the hydraulic cylinder 21.
【0023】油圧シリンダー21は油送路27が加圧系
26(最大加圧力2トン)と繋がっており、可動ロッド
22の加圧ストロ−クは70mmである。上下のプラン
ジャーロッドは加熱用電源と接続されている。加熱用電
源は、直流パルス電源38(電圧0〜30V、パルス電
圧印加時間1〜500msec、動作設定時間〜90s
ec)と直流電源39(電圧0〜30V、電流〜500
0A、通電時間〜999sec)とから構成され、タイ
マーで動作する切替スイッチ40により直流パルス電源
から直流電源に接続を切替える機構になっている。真空
系31は油回転ポンプ(RP:排気速度310l/mi
n)とメカニカルブースターポンプ(MBP:排気速度
150l/min)の併用で到達真空度は10-4Tor
rである。In the hydraulic cylinder 21, the oil feed passage 27 is connected to the pressurizing system 26 (maximum pressing force of 2 tons), and the pressurizing stroke of the movable rod 22 is 70 mm. The upper and lower plunger rods are connected to a heating power supply. The heating power source is a DC pulse power source 38 (voltage 0 to 30 V, pulse voltage application time 1 to 500 msec, operation setting time to 90 s).
ec) and DC power supply 39 (voltage 0 to 30 V, current to 500
0 A, energization time to 999 sec), and a mechanism for switching the connection from the DC pulse power supply to the DC power supply by a changeover switch 40 operated by a timer. The vacuum system 31 is an oil rotary pump (RP: pumping speed 310 l / mi
n) and mechanical booster pump (MBP: pumping speed 150 l / min) are used together, the ultimate vacuum is 10 -4 Torr.
r.
【0024】プランジャーロッド13および23の先端
には、グラファイト片14および24を介してタングス
テンカーバイド製パンチ15および25が取りつけら
れ、セラミック製ダイ16内においてパンチ15と25
との間にセットされた試料が圧縮成形される。通電加圧
加熱装置10には、被圧縮部の温度を検知するサーモカ
ップル32、検知された温度を表示するサーモメータ3
3、真空計34などを備えている。Punches 15 and 25 made of tungsten carbide are attached to the tips of the plunger rods 13 and 23 via graphite pieces 14 and 24, and the punches 15 and 25 are made in a ceramic die 16.
The sample set between and is compression molded. The electric pressurizing and heating device 10 includes a thermocouple 32 for detecting the temperature of the compressed portion and a thermometer 3 for displaying the detected temperature.
3, a vacuum gauge 34 and the like are provided.
【0025】溶湯合金の急冷薄片またはそのビレットか
らの中空厚膜磁石の作製は以下のように行うことができ
る。まず、図3に示すように、セラミック製ダイ41内
において、端面の中央に凹部44を有する電極42と凹
部45を有する電極43との間に、合金の急冷薄片また
はそのビレットを挟み、図2の装置のパンチ15と25
との間にセットする。そして、以下に説明するようにし
て、両電極間に通電することによる加熱を含む圧縮成形
を行う。図3は圧縮成形後の状態を示している。合金の
急冷薄片またはビレットは、加熱を伴う圧縮成形によ
り、電極の凹部に対応する非圧縮部52およびこれを囲
む圧縮部51となる。これをダイから取り出し、非圧縮
部を機械的に除去すれば、図4に示すように、中空部5
3を有する厚膜磁石50が得られる。Production of a hollow thick film magnet from a quenched alloy thin piece or a billet thereof can be carried out as follows. First, as shown in FIG. 3, in a ceramic die 41, an alloy quenching thin piece or a billet thereof is sandwiched between an electrode 42 having a recess 44 and an electrode 43 having a recess 45 at the center of the end face, Punches 15 and 25
Set between and. Then, as described below, compression molding including heating by energizing between both electrodes is performed. FIG. 3 shows a state after compression molding. The quenched thin piece or billet of the alloy becomes the non-compressed portion 52 corresponding to the concave portion of the electrode and the compressed portion 51 surrounding it by the compression molding accompanied by heating. If this is taken out of the die and the non-compressed part is mechanically removed, as shown in FIG.
A thick film magnet 50 having 3 is obtained.
【0026】上記のように合金の急冷薄片またはそのビ
レットを挟んだ電極42、43およびダイ41を装置1
0へセットした後、真空チャンバー内を1Torr以下
の減圧下で前記電極間に250〜300kgf/cm2
の圧縮圧力を加える。次いで、両電極間に直流パルス電
圧を印加した後、直接通電(300A/cm2)を行
う。電極は系外への熱放散を無視し、1(W)=0.2
389(cal/sec)を考慮すれば、通電による昇
温速度dT/dt(℃/sec)は0.2389ΔI2
(ρ/SC)となる。ここで、ΔIは電流密度(A/c
m2)、ρは電気比抵抗(Ωcm)、Cは比熱(cal/
℃・g)、Sは比重(C×Sは体積比熱)である。すな
わち、昇温速度dT/dt(℃/sec)は電流密度の
2乗と電気比抵抗ρに比例し、体積比熱に反比例し、電
極間距離とは無関係となる。例えば、TiN/Si3N4
電極の室温におけるρ/SCは約10-4(Ωcm4・de
g/cal)であるから、電流密度ΔIを300および
400A/cm2とすれば、それぞれ9および16℃/
secの高速昇温加熱が可能となる。The electrode 42, 43 and the die 41 sandwiching the alloy quenching flakes or billets thereof as described above are used in the device 1
After being set to 0, the pressure in the vacuum chamber is reduced to 1 Torr or less and 250 to 300 kgf / cm 2 between the electrodes.
Apply the compression pressure of. Next, a direct current pulse voltage (300 A / cm 2 ) is applied after applying a DC pulse voltage between both electrodes. The electrode ignores heat dissipation to the outside of the system, 1 (W) = 0.2
Considering 389 (cal / sec), the temperature rising rate dT / dt (° C./sec) due to energization is 0.2389 ΔI 2
(Ρ / SC). Where ΔI is the current density (A / c
m 2 ), ρ is electrical resistivity (Ωcm), C is specific heat (cal /
° C · g), S is specific gravity (C × S is volume specific heat). That is, the rate of temperature rise dT / dt (° C./sec) is proportional to the square of the current density and the electrical specific resistance ρ, inversely proportional to the volume specific heat, and independent of the interelectrode distance. For example, TiN / Si 3 N 4
Ρ / SC of the electrode at room temperature is about 10 -4 (Ωcm 4 · de
g / cal), if the current density ΔI is 300 and 400 A / cm 2 , then 9 and 16 ° C. /
High-speed heating with a heating time of sec is possible.
【0027】そこで、チャンバーを1Torr以下に減
圧し、TiN/Si3N4(ρ/SC=10-4Ωcm4・
deg/cal)の電極間に挟み込んだR−TM−B−
M系合金の急冷薄片またはそのビレットを250〜30
0kgf/cm2で圧縮しながら、電流密度ΔI=20
0A/cm2、0.5secオン−0.5secオフの
パルス通電を30sec行う。その後、電流密度ΔI=
300または400A/cm2の直接通電を70または
40sec行う。その後、室温に冷却する。上記のよう
にして得られた厚膜磁石の4MA/mパルス着磁後の保
磁力Hciは、ほぼ1100kA/m以上を示した。この
ように、加熱速度を高速化することが結晶粒径の粗大化
を抑制し、高保磁力化に有効であった。また、得られた
厚膜磁石の密度は約7.65g/cm3と真密度に近い
値が得られる。Therefore, the chamber pressure was reduced to 1 Torr or less, and TiN / Si 3 N 4 (ρ / SC = 10 −4 Ωcm 4 ·
deg / cal) R-TM-B- sandwiched between electrodes
250 to 30 pieces of M-type alloy quenched flakes or their billets
Current density ΔI = 20 while compressing at 0 kgf / cm 2.
Pulse energization of 0 A / cm 2 , 0.5 sec on-0.5 sec off is performed for 30 sec. After that, the current density ΔI =
Direct energization of 300 or 400 A / cm 2 is performed for 70 or 40 seconds. Then, it cools to room temperature. The coercive force Hci of the thick film magnet obtained as described above after the 4MA / m pulse magnetization was approximately 1100 kA / m or more. As described above, increasing the heating rate suppressed the coarsening of the crystal grain size and was effective in increasing the coercive force. Further, the density of the obtained thick film magnet is about 7.65 g / cm 3, which is close to the true density.
【0028】[0028]
【実施例】以下、具体的な実施例を説明する。
1.Nd−Fe−Co−B系合金の最適化
組成がNd:x原子%、B:6原子%、(Fe0.8Co
0.2):残部(ただし、x=12〜15)の合金、およ
びNd:13.5原子%、B:6原子%、(Fe 1-yC
oy):残部(ただし、y=0.1〜0.3)の合金の
それぞれの溶湯を急冷した薄片を各30mg用いて図2
の直接通電加圧加熱装置で直径3.4mm(0.090
8cm2)のビレットを作製した。ただし、図3におい
て、凹部44、45を有する電極42、43の代わりに
凹部を有せず、得ようとするビレットの径に合うように
設計されたダイと圧縮用パンチを用いた。また、圧力2
50〜300kg/cm2、電流密度300A/cm2、
電極の最高到達温度700〜730℃とした。次に、作
製したビレットを圧力600kgf/cm2、電流密度
300〜400A/cm2、電極の最高到達温度700
〜780℃で直径5mmの円柱磁石とした。得られた磁
石はx=13.0以上では厚さ200μm、密度7.6
0〜7.65g/cm3で均質厚膜状となっていた。た
だし、用いた電極の電気比抵抗と体積比熱の比は10-2
(Ωcm4・deg/cal)である。EXAMPLES Specific examples will be described below.
1. Optimization of Nd-Fe-Co-B alloy
The composition is Nd: x atomic%, B: 6 atomic%, (Fe0.8Co
0.2): The balance (however, x = 12 to 15) alloy, and
And Nd: 13.5 at%, B: 6 at%, (Fe 1-yC
oy): The balance (however, y = 0.1 to 0.3) of the alloy
Fig. 2 shows 30 mg of each thin slice obtained by quenching each molten metal.
Direct current pressure heating device of 3.4mm (0.090mm)
8 cm2) Was prepared. However, in Figure 3
Instead of the electrodes 42 and 43 having the recesses 44 and 45,
Do not have a recess, so that it matches the diameter of the billet to be obtained
The designed die and compression punch were used. Also, pressure 2
50-300kg / cm2, Current density 300A / cm2,
The maximum ultimate temperature of the electrode was 700 to 730 ° C. Next,
Pressure of the manufactured billet is 600kgf / cm2,Current density
300-400A / cm2Maximum electrode temperature reached 700
A cylindrical magnet having a diameter of 5 mm was prepared at ˜780 ° C. Obtained porcelain
The stone has a thickness of 200 μm and a density of 7.6 when x = 13.0 or more.
0 to 7.65 g / cm3It was a uniform thick film. Was
However, the ratio of the electrical specific resistance and the volume specific heat of the electrodes used is 10-2
(ΩcmFour-Deg / cal).
【0029】図5および図6は上記の円柱状磁石を厚さ
方向に4MA/mパルス着磁した後の磁気特性をxまた
はyの関数として示した特性図である。xすなわちNd
量は厚膜の形成能と同様に磁気特性にも強く影響する。
R2Fe14Bの化学量論組成に近いx=12のものは、
塑性変形抵抗が大きく、脆いために、厚膜磁石を作製す
ることはできなかった。一方、x=15では電極との離
型が困難となり、最大エネルギー積(BH)maxや残留
磁化Jrも低下した。x=13.0〜14.0で(B
H)maxは200〜220kJ/m3となった。しかしな
がら、Hciは906〜1030kA/mとビレットの7
4〜75%に低下した。一方、yすなわちCo量の影響
は少ない。したがって、直接通電加圧加熱での塑性変形
による厚膜磁石の最適Nd量は13.0〜14.0原子
%であった。FIGS. 5 and 6 are characteristic diagrams showing the magnetic characteristics as a function of x or y after the above cylindrical magnet is magnetized by 4 MA / m pulse in the thickness direction. x or Nd
The amount strongly affects the magnetic properties as well as the thick film forming ability.
When x = 12, which is close to the stoichiometric composition of R 2 Fe 14 B,
It was not possible to fabricate a thick film magnet due to its large plastic deformation resistance and brittleness. On the other hand, when x = 15, it became difficult to release from the electrode, and the maximum energy product (BH) max and the residual magnetization Jr also decreased. x = 13.0 to 14.0 ((B
H) max was 200 to 220 kJ / m 3 . However, Hci is 906 to 1030 kA / m and billet has 7
It fell to 4-75%. On the other hand, y, that is, the amount of Co has little effect. Therefore, the optimum Nd amount of the thick film magnet due to the plastic deformation in the direct current pressure heating was 13.0 to 14.0 atomic%.
【0030】組成がPr:9原子%、Fe:73原子
%、Co:9原子%、B:7原子%、V:1原子%、N
b:1原子%のように、R2Fe14B(R=Nd、P
r)の化学量論組成よりもRが少なく、かつ結晶粒子径
が例えば40nmと小さな場合には、αFe相とR2F
e14B相とのナノコンポジット磁石としてレマネンスエ
ンハンスメント効果により、例えばNd:13.5原子
%、Fe:79原子%、Co:15原子%、B:6原子
%からなるR2Fe14B単相の磁石よりも高い残留磁化
Jrが得られる。実際に組成がPr:9原子%、Fe:
73原子%、Co:9原子%、B:7原子%、V:1原
子%、Nb:1原子%の合金磁石薄片の残留磁化Jrは
950mTであり、組成がNd:13.5原子%、F
e:79原子%、Co:15原子%、B:6原子%の合
金磁石薄片の800mTより18%程高い。The composition is Pr: 9 atom%, Fe: 73 atom%, Co: 9 atom%, B: 7 atom%, V: 1 atom%, N.
b: 1 atomic%, R 2 Fe 14 B (R = Nd, P
When R is smaller than the stoichiometric composition of r) and the crystal grain size is small, for example, 40 nm, αFe phase and R 2 F 2
As a nanocomposite magnet with e 14 B phase, due to the remanence enhancement effect, for example, R 2 Fe 14 B composed of Nd: 13.5 at%, Fe: 79 at%, Co: 15 at%, B: 6 at%. A remanent magnetization Jr higher than that of a single-phase magnet is obtained. Actual composition is Pr: 9 atomic%, Fe:
The residual magnetization Jr of the alloy magnet flakes of 73 at%, Co: 9 at%, B: 7 at%, V: 1 at%, and Nb: 1 at% was 950 mT, and the composition was Nd: 13.5 at%. F
e: 79 at%, Co: 15 at%, B: 6 at%, which is about 18% higher than 800 mT of the alloy magnet flakes.
【0031】本発明にかかる厚膜磁石では、残留磁化J
rを改善するためにαFe相とR2Fe14B相とを有する
ナノコンポジット磁石急冷薄片を保磁力Hciを大きく損
なわない範囲で混合しても差し支えない。例えば、組成
がNd:13.5原子%、Fe:79原子%、Co:1
5原子%、B:6原子%の合金の20%を組成がPr:
9原子%、Fe:73原子%、Co:9原子%、B:7
原子%、V:1原子%、Nb:1原子%の合金の急冷薄
片としたとき、得られる厚膜磁石の残留磁化Jrは83
0mTから860mTまで数%の改善ができる。In the thick film magnet according to the present invention, the residual magnetization J
In order to improve r, nanocomposite magnet quenched flakes having an αFe phase and an R 2 Fe 14 B phase may be mixed in a range that does not significantly impair the coercive force Hci. For example, the composition is Nd: 13.5 at%, Fe: 79 at%, Co: 1
The composition of 20% of the alloy of 5 at% and B: 6 at% is Pr:
9 atom%, Fe: 73 atom%, Co: 9 atom%, B: 7
When a quenched thin piece of an alloy of atomic%, V: 1 atomic% and Nb: 1 atomic% is obtained, the remanent magnetization Jr of the obtained thick film magnet is 83.
It can be improved by several% from 0 mT to 860 mT.
【0032】2.電極材質の最適化
図7は組成がNd:13.6原子%、Pr:0.15原
子%、Fe:77.5原子%、Co:3原子%、B:
5.8原子%の溶湯合金の急冷薄片30mgを直径3.
4mmの円柱状ビレットとし、これを圧力300〜40
0kgf/cm2、電流密度300〜400A/cm
2で、直径5mm、厚み200μmの厚膜磁石としたと
きの電極材質と通電時間および磁気特性の関係を示す特
性図である。ただし、電極間に加える電圧は最大30V
とし、電極材質は電気比抵抗と体積比熱の比ρ/SCで
表し、通電時間はプロセスに要した時間を表している。2. Optimization of Electrode Material In FIG. 7, the composition is Nd: 13.6 at%, Pr: 0.15 at%, Fe: 77.5 at%, Co: 3 at%, B:
30 mg of quenching flakes of 5.8 atomic% molten alloy had a diameter of 3.
Use a cylindrical billet of 4 mm with a pressure of 300-40
0 kgf / cm 2 , current density 300 to 400 A / cm
2 is a characteristic diagram showing the relationship between electrode material, energization time, and magnetic characteristics when a thick film magnet having a diameter of 5 mm and a thickness of 200 μm is used in FIG. However, the maximum voltage applied between the electrodes is 30V.
The electrode material is represented by the ratio ρ / SC of the electrical specific resistance and the volume specific heat, and the energization time represents the time required for the process.
【0033】電極のρ/SCが10-5(Ωcm4・deg
/cal)水準であると、通電時間はやや長くなり、残
留磁化Jrも1020mTとやや低い。一方、電極のρ
/SCが10-2(Ωcm4・deg/cal)を越えると
最大電圧30Vの条件では電流制御が困難で、電流が所
定の電流密度に達するまでに数百secも要する。しか
も、所定の電流密度に達した後の温度上昇速度が速いた
めに、ビレットの過熱によりHciが低下する。したがっ
て、電極のρ/SCを10-2(Ωcm4・deg/ca
l)以下とするとHciは1260〜1360kA/m、
Jrは1150〜1200mTとなり、比較的高い保磁
力Hciと短時間での厚膜磁石の作製が可能となる。Ρ / SC of the electrode is 10 -5 (Ωcm 4 · deg)
/ Cal) level, the energization time becomes a little longer and the residual magnetization Jr is a little lower at 1020 mT. On the other hand, ρ of the electrode
When / SC exceeds 10 -2 (Ωcm 4 · deg / cal), it is difficult to control the current under the condition of the maximum voltage of 30 V, and it takes several hundred seconds until the current reaches a predetermined current density. Moreover, since the temperature rising speed after reaching the predetermined current density is high, Hci is lowered due to overheating of the billet. Therefore, ρ / SC of the electrode is 10 -2 (Ωcm 4 · deg / ca
lci or less, Hci is 1260 to 1360 kA / m,
Jr is 1150 to 1200 mT, which makes it possible to manufacture a thick film magnet in a short time with a relatively high coercive force Hci.
【0034】3.保磁力と不可逆減磁
図8は組成がNd:14原子%、Fe:73原子%、C
o:7原子%、B:6原子%の溶湯合金の急冷薄片、ま
たはそのビレットから作製した保磁力Hciの異なる厚膜
磁石の4MA/mパルス着磁後の保磁力Hciに対する初
期不可逆減磁率を示す特性図である。ただし、図中aお
よびbはそれぞれ薄片およびビレットから作製した厚膜
磁石の特性を表す。初期不可逆減磁率は120℃の空気
中に1時間暴露し、前後の室温の磁束変化率から求めた
値である。3. Coercive force and irreversible demagnetization Fig. 8 shows the composition of Nd: 14 atomic%, Fe: 73 atomic%, C
The initial irreversible demagnetization factor for the coercive force Hci after 4 MA / m pulse magnetization of thick film magnets with different coercive force Hci made from a quenched thin piece of molten alloy of o: 7 atomic%, B: 6 atomic% or its billet It is a characteristic view to show. However, in the figure, a and b represent the characteristics of a thick film magnet manufactured from a thin piece and a billet, respectively. The initial irreversible demagnetization rate is a value obtained from the rate of change in magnetic flux at room temperature before and after exposure to 120 ° C. air for 1 hour.
【0035】図8から、保磁力Hciが小さくなると初期
不可逆減磁率が大きくなる。しかし、Hciが1100k
A/m以上になると初期不可逆減磁率が小さくなった。
すなわち、本発明にかかる厚膜磁石においてもNd
2(Fe、Co)14Bの結晶粒径が大きくなると、減磁
曲線のリコイル曲線の形がPinning型から次第に
Nucleation型に移行する。厚膜磁石の不可逆
減磁に代表される熱安定性に重要なHciと、その温度係
数βの両者が、共にNd2(Fe、Co)14Bの結晶粒
径に強く関係するため、パ−ミアンス係数が小さな厚膜
磁石ではHciを1100kA/m以上とすることが望ま
しい。From FIG. 8, the initial irreversible demagnetization rate increases as the coercive force Hci decreases. However, Hci is 1100k
The initial irreversible demagnetization rate became smaller when it was more than A / m.
That is, even in the thick film magnet according to the present invention, Nd
When the crystal grain size of 2 (Fe, Co) 14 B increases, the shape of the recoil curve of the demagnetization curve gradually shifts from the Pinning type to the Nucleation type. Since both Hci, which is important for thermal stability represented by irreversible demagnetization of thick film magnets, and its temperature coefficient β are both strongly related to the crystal grain size of Nd 2 (Fe, Co) 14 B, For a thick film magnet having a small miance coefficient, Hci is preferably set to 1100 kA / m or more.
【0036】4.Nd−Fe−Co−B−M(M=G
a、Cu、Mo、Sn)系合金と保磁力
R(Nd、Pr)を13.0〜14.0原子%としたR
−Fe−Co−B系溶湯合金の急冷薄片またはそのビレ
ットから直接通電加圧加熱によって厚膜磁石を作製する
ことができ、その最大エネルギー積(BH)maxは21
8〜220kJ/m3に達する。しかし、R−Fe−C
o−B系合金は保磁力Hciが低下しやすい。従って、不
可逆減磁に代表される熱安定性の低下や厚さ200μm
以下の磁石の薄肉化への形状対応力が危惧される。そこ
で、塑性変形抵抗(厚膜化への加工温度)を低下させる
目的で、Nd−Fe−Co−B−M(M=Ga、Sn、
Mo、Cu)系溶湯合金の急冷薄片と、そのビレットを
検討した。4. Nd-Fe-Co-BM (M = G
a, Cu, Mo, Sn) -based alloy and coercive force R (Nd, Pr) set to 13.0 to 14.0 atomic% R
A thick film magnet can be produced from a quenched thin piece of a —Fe—Co—B based molten alloy or a billet thereof by direct current pressure heating, and its maximum energy product (BH) max is 21.
It reaches 8 to 220 kJ / m 3 . However, R-Fe-C
The coercive force Hci of the o-B type alloy tends to decrease. Therefore, the decrease in thermal stability represented by irreversible demagnetization and the thickness of 200 μm
There is a concern that the following magnets will be compatible with the shape of thinner magnets. Therefore, for the purpose of reducing the plastic deformation resistance (processing temperature for thickening the film), Nd-Fe-Co-BM (M = Ga, Sn,
Mo, Cu) -based molten alloy quenching flakes and their billets were investigated.
【0037】直径3.4mm、相対密度85〜90%の
ビレットを圧力300〜600kgf/cm2、電流密
度300〜400kA/m2の条件で、直径5mm、厚
さ200μmのNd−Fe−Co−B−M(M=Ga、
Sn、Mo、Cu)厚膜磁石とし、それらの4MA/m
パルス着磁後の磁気特性を測定した。その結果を表1に
示す。M=Snでは目的とした加工性が逆に低下し、最
終形状磁石に仕上げる際に850℃以上の高温まで昇温
する必要があった。その結果、M=Snで得られた磁石
は、脆く、保磁力Hciも低くなった。直接通電加圧加熱
による厚膜化が容易になったのはMがGaまたはCuの
ときであり、例えばM=Ga系の保磁力Hciは1644
〜1679kA/mで、急冷薄片の結晶化度の差による
保磁力Hciの差も高々20kA/m以下と僅かであっ
た。一方、Ndを16.1原子%とした系では、非晶質
状態の薄片でもHciは高々1358kA/mであった。
従って、M=Ga、CuとしたNd−Fe−Co−B−
M系合金が本発明にかかる厚膜磁石の作製の要点となる
直接通電加圧加熱での保磁力水準の制御に有効であるこ
とが明らかとなった。A billet having a diameter of 3.4 mm and a relative density of 85 to 90% was used under the conditions of a pressure of 300 to 600 kgf / cm 2 and a current density of 300 to 400 kA / m 2 and a diameter of 5 mm and a thickness of 200 μm of Nd-Fe-Co-. B-M (M = Ga,
Sn, Mo, Cu) thick film magnet and their 4 MA / m
The magnetic characteristics after pulse magnetization were measured. The results are shown in Table 1. On the other hand, when M = Sn, the desired workability was lowered, and it was necessary to raise the temperature to a high temperature of 850 ° C. or higher when finishing the magnet into the final shape. As a result, the magnet obtained with M = Sn was brittle and had a low coercive force Hci. It is when M is Ga or Cu that the film thickness can be easily increased by the direct current pressure heating. For example, the coercive force Hci of M = Ga system is 1644.
At ˜1679 kA / m, the difference in coercive force Hci due to the difference in crystallinity of the quenched thin pieces was 20 kA / m or less at most. On the other hand, in the system in which Nd was 16.1 atomic%, Hci was 1358 kA / m at most even for an amorphous thin piece.
Therefore, Nd-Fe-Co-B- with M = Ga and Cu
It has been clarified that the M-based alloy is effective for controlling the coercive force level in the direct current pressure heating, which is a key point in manufacturing the thick film magnet according to the present invention.
【0038】表1の結晶化度の測定はX線回折を用い
た。X線源はCu−Kα、40kV−30mA、走査速
度0.5deg/minで得た回折線から求めた1/
[1+K(Ia/Ic)]を結晶化度とした。ただし、I
aは非晶質のピ−ク面積強度、Ibは結晶質のピ−ク面積
強度、Kは物質固有の定数で1とした。The crystallinity in Table 1 was measured by X-ray diffraction. The X-ray source was Cu-Kα, 40 kV-30 mA, and 1 / obtained from the diffraction line obtained at a scanning speed of 0.5 deg / min.
The crystallinity was defined as [1 + K (I a / I c )]. However, I
a is an amorphous peak area intensity, Ib is a crystalline peak area intensity, and K is 1 which is a constant peculiar to the substance.
【0039】[0039]
【表1】 [Table 1]
【0040】5.形状対応力と熱安定性
ビレットならびに厚膜磁石の直径Dを3.4mmまたは
5.0mmに固定し、磁石厚さtのみを変化させたとき
の塑性変形磁石の形状対応力を調べた。外観は亀裂など
の欠陥と周縁部も均質に最終形状に加工されているかを
目視して調べた。また、磁気特性は作製した磁石を4M
A/mパルス着磁してB−Hトレーサーで測定した。た
だし、試料は、組成がNd:13.5原子%、Pr:
0.20原子%、Fe:77.2−Z原子%、Co:
3.18原子%、B:5.92原子%、Ga:z原子%
(z=0〜3.0)の溶湯合金の急冷薄片から作製した
ビレットとした。5. Shape response force and heat stability The shape response force of the plastically deformable magnet when the diameter D of the billet and the thick film magnet was fixed to 3.4 mm or 5.0 mm and only the magnet thickness t was changed was examined. The appearance was visually inspected to see if defects such as cracks and the peripheral portion were uniformly processed into the final shape. In addition, the magnetic property is 4M
A / m pulse was magnetized and measured with a BH tracer. However, the composition of the sample is Nd: 13.5 atomic%, Pr:
0.20 atomic%, Fe: 77.2-Z atomic%, Co:
3.18 atomic%, B: 5.92 atomic%, Ga: z atomic%
A billet was prepared from a quenched thin piece of a molten alloy of (z = 0 to 3.0).
【0041】最大エネルギー積(BH)maxは220〜
250kJ/m3の範囲であった。しかし、z=0.5
〜0ではt/D=0.02、t=100μmとなると厚
膜磁石周縁部の形状は不完全となり、保磁力Hciも低下
した。また、t/D=0.5では磁石の中央部分に亀裂
が生じた。しかしながら、z=3.0の薄片の粒子径を
32μmに調整することにより、t/D=0.02、t
=50μm、(BH)maxが110〜120kJ/m3の
厚膜磁石まで作製することができる。したがって、厚膜
磁石の作製には厚さや形状の制約があり、直径5mmの
本実験での形状限界をt/Dと膜厚で表すと、z=0.
5〜3.0のとき、0.01〜0.32(50〜160
0μmt)の範囲であることが明らかになった。The maximum energy product (BH) max is 220-
It was in the range of 250 kJ / m 3 . However, z = 0.5
At ~ 0, when t / D = 0.02 and t = 100 μm, the shape of the peripheral portion of the thick film magnet became incomplete, and the coercive force Hci also decreased. Further, at t / D = 0.5, a crack was generated in the central portion of the magnet. However, by adjusting the particle size of the flakes with z = 3.0 to 32 μm, t / D = 0.02, t
= 50 μm, (BH) max of 110 to 120 kJ / m 3 thick film magnet can be manufactured. Therefore, there are restrictions on the thickness and the shape of the thick film magnet, and when the shape limit of this experiment with a diameter of 5 mm is represented by t / D and the film thickness, z = 0.
5 to 3.0, 0.01 to 0.32 (50 to 160
It became clear that it was in the range of 0 μmt).
【0042】6.中空厚膜磁石モータの作製
組成がNd:13.5原子%、Pr:0.20原子%、
Fe:74.2原子%、Co:3.18原子%、B:
5.92原子%、Ga:3.0原子%の溶湯合金の急冷
薄片30mgを前記1と同様に図2の直接通電加圧加熱
装置で直径3.4mm(0.0908cm2)、相対密度
85%(真密度に対する割合)のビレットを作製した。た
だし、圧力250〜300kg/cm2、電流密度30
0A/cm2、電極の最高到達温度700〜730℃と
した。6. The manufacturing composition of the hollow thick film magnet motor is Nd: 13.5 at%, Pr: 0.20 at%,
Fe: 74.2 atomic%, Co: 3.18 atomic%, B:
30 mg of a quenched thin piece of a molten alloy of 5.92 atomic% and Ga: 3.0 atomic% was used in the same manner as in 1 above with a direct current pressure heating device of FIG. 2 to obtain a diameter of 3.4 mm (0.0908 cm 2 ) and a relative density of 85. % (Ratio to true density) billet was produced. However, pressure 250 to 300 kg / cm 2 , current density 30
The maximum temperature reached by the electrode was 0 A / cm 2 and 700 to 730 ° C.
【0043】次に、作製したビレットを電気比抵抗と体
積比熱の比10-2(Ωcm4・deg/cal)、軸中
心に直径1.5mmの中空孔を設けた図3に示す一対の
中空電極を用いて圧縮部圧力300〜600kgf/c
m2、非圧縮部分0kgf/cm2、圧縮部の電流密度3
00〜400A/cm2、電極の最高到達温度700〜
750℃で加圧加熱し、直径5mmの磁石とした。ただ
し、真空チャンバーは1Torrの減圧下としたが、電
流遮断とともに、チャンバー内に大気を導入した。得ら
れた磁石の圧縮部51は厚さ200μm、密度7.65
g/cm3で、4MA/mパルス着磁後の圧縮部分の最
大エネルギー積(BH)maxは240kJ/m3であっ
た。しかし、非圧縮部(粗密部)のビレットは一対の中
空電極の双方の孔内に図3に52で示すように隆起し、
酸化していた。非圧縮部分(粗密部)52は機械的に脆
く除去が容易で、図4に示すように中空孔を有する希土
類−鉄系中空厚膜磁石とすることができた。Next, the prepared billet was provided with a pair of hollows shown in FIG. 3 having a ratio of electrical specific resistance to volume specific heat of 10 −2 (Ωcm 4 · deg / cal) and a hollow hole having a diameter of 1.5 mm at the center of the shaft. Compressing part pressure 300-600kgf / c using electrode
m 2 , uncompressed part 0 kgf / cm 2 , current density 3 in compressed part
00-400 A / cm 2 , maximum temperature reached by electrode 700-
It was pressurized and heated at 750 ° C. to obtain a magnet having a diameter of 5 mm. However, the vacuum chamber was under a reduced pressure of 1 Torr, but the atmosphere was introduced together with the current interruption. The compression portion 51 of the obtained magnet has a thickness of 200 μm and a density of 7.65.
The maximum energy product (BH) max of the compressed portion after the 4 MA / m pulse magnetization was 240 kJ / m 3 at g / cm 3 . However, the billet of the non-compressed portion (roughly dense portion) is raised in both holes of the pair of hollow electrodes as shown by 52 in FIG.
It was oxidized. The non-compressed portion (rough and dense portion) 52 was mechanically brittle and easy to remove, and it was possible to obtain a rare earth-iron-based hollow thick film magnet having hollow holes as shown in FIG.
【0044】次に、上記厚さ200μm、外径5.0m
m、内径1.5mmの希土類−鉄系中空厚膜磁石に2M
A/mのパルス磁界で2極着磁を施し、回転軸を固定し
て図1のミリサイズモータに組込まれる直径5mm、厚
さ1mmの可動子を作製した。同時にNd−Fe−B系
焼結磁石を研削加工して同一構造の可動子を作製した。
このモータは3相電機子巻線に順次通電することにより
回転力を得るもので、発振回路で3相信号を作って電機
子巻線に通電し、その周波数変化に同期させて可変速す
る同期モータを駆動(60〜10000rpm)したと
きのモータの最大出力は、本発明による磁石を使用した
モータは18mW、焼結磁石を使用したモータは8mW
であった。このように、本発明の厚膜多層磁石を可動子
とするとミリセンチメートルサイズの電磁モータやアク
チュエータの高出力化が可能となる。Next, the thickness is 200 μm and the outer diameter is 5.0 m.
2M for rare earth-iron-based hollow thick film magnets with m, inner diameter 1.5 mm
Two poles were magnetized with a pulsed magnetic field of A / m, the rotating shaft was fixed, and a mover having a diameter of 5 mm and a thickness of 1 mm to be incorporated into the millimeter size motor of FIG. 1 was produced. At the same time, the Nd-Fe-B system sintered magnet was ground to produce a mover having the same structure.
This motor obtains a rotational force by sequentially energizing the three-phase armature windings. A three-phase signal is generated by an oscillation circuit to energize the armature windings, and the speed is changed in synchronization with the frequency change. When the motor is driven (60 to 10,000 rpm), the maximum output of the motor is 18 mW for the motor using the magnet according to the present invention and 8 mW for the motor using the sintered magnet.
Met. As described above, when the thick film multilayer magnet of the present invention is used as a mover, it is possible to increase the output of a millicentimeter size electromagnetic motor or actuator.
【0045】[0045]
【発明の効果】以上述べたように、本発明によれば、従
来のスパッタリングやレーザーアブレーションのような
物理的堆積法による製膜ではなく、塑性変形で製膜する
厚膜磁石であるから高速度で厚膜化することができ、更
に高速熱処理による異方化で1100kA/m以上の高
Hci、120〜250kJ/m3級の高(BH)maxの厚
膜磁石とすることができる。この高保磁力型の希土類厚
膜磁石は非圧縮により形成される粗密部分を除去するこ
とにより、容易に中空厚膜磁石とすることができ、焼結
磁石の研削加工やボンド磁石での成形加工が困難な、例
えば、厚さ50〜1600μmの範囲で高性能磁石が求
められる小型モータやアクチュエータの高性能化、部品
点数の削減、組立作業工数の低減が容易となる効果があ
る。As described above, according to the present invention, it is a thick film magnet that is formed by plastic deformation instead of the conventional film formation by a physical deposition method such as sputtering or laser ablation. It is possible to obtain a thick film magnet having a high Hci of 1100 kA / m or more and a high (BH) max of 120 to 250 kJ / m 3 grade by anisotropicizing by high speed heat treatment. This high coercive force rare earth thick film magnet can be easily made into a hollow thick film magnet by removing the dense and dense parts formed by non-compression, and it is possible to perform grinding processing of sintered magnets and forming processing with bonded magnets. For example, it is difficult to improve the performance of small motors and actuators that require high-performance magnets in a thickness range of 50 to 1600 μm, reduce the number of parts, and reduce the number of assembly work steps.
【図1】小型モータの構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing the configuration of a small motor.
【図2】本発明の実施例に用いた直接通電加圧加熱装置
の要部の構成を示す図である。FIG. 2 is a diagram showing a configuration of a main part of a direct current pressurizing and heating device used in an example of the present invention.
【図3】中空厚膜磁石の成形に用いた電極およびダイを
示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing an electrode and a die used for molding a hollow thick film magnet.
【図4】非圧縮部を除いた中空厚膜磁石の縦断面図であ
る。FIG. 4 is a vertical cross-sectional view of a hollow thick film magnet excluding a non-compressed portion.
【図5】Nd−Fe−Co−B系合金磁石のNdの原子
%と磁気特性との関係を示す図である。FIG. 5 is a diagram showing a relationship between atomic characteristics of Nd and magnetic characteristics of an Nd—Fe—Co—B system alloy magnet.
【図6】Nd−Fe−Co−B系合金磁石のCoの原子
%と磁気特性との関係を示す図である。FIG. 6 is a diagram showing a relationship between Co atom% and magnetic characteristics of an Nd—Fe—Co—B alloy magnet.
【図7】電極材質(電気比抵抗と体積比熱の比ρ/S
C)と厚膜磁石の特性との関係を示す図である。FIG. 7: Electrode material (ratio ρ / S of electrical specific resistance and volume specific heat)
It is a figure which shows the relationship between C) and the characteristic of a thick film magnet.
【図8】厚膜磁石の保磁力と不可逆減磁率との関係を示
す図である。FIG. 8 is a diagram showing a relationship between a coercive force of a thick film magnet and an irreversible demagnetization rate.
41 ダイ 42、43 電極 44、45 凹部 50 厚膜磁石 51 圧縮部 52 非圧縮部 41 die 42, 43 electrodes 44, 45 recess 50 thick film magnet 51 Compressor 52 Uncompressed part
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 H01F 1/04 H Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 41/02 H01F 1/04 H
Claims (15)
およびPrからなる群より選ばれる少なくとも1種の元
素で13〜20原子%、TMは遷移金属元素Feまたは
Feの一部をCoで置換したもの、Bは5〜20原子
%、MはGaおよびCuからなる群より選ばれる少なく
とも1種の元素で0.2〜3.0原子%、残部TMであ
り、不可避的な不純物を含む)溶湯合金の急冷薄片を、
少なくとも一方の端面中央部に凹部を有する一対の電極
により、前記凹部に対応する非圧縮部および前記非圧縮
部を囲む厚さが50〜1600μmの圧縮部を形成する
圧縮成形工程であって、この工程中に前記電極間に通電
することにより前記圧縮部を磁性相R2TM14Bの結晶
化温度以上の温度に加熱して合金磁石を形成する工程、
および前記非圧縮部分を機械的に除去する工程を有する
希土類−鉄系中空厚膜磁石の製造方法。1. R-TM-BM system (where R is Nd
And at least one element selected from the group consisting of Pr and 13 to 20 atomic%, TM is a transition metal element Fe or a part of Fe replaced by Co, B is 5 to 20 atomic%, M is Ga and A quenching thin piece of a molten alloy containing 0.2 to 3.0 atomic% of at least one element selected from the group consisting of Cu and the balance TM and containing inevitable impurities).
A compression molding step of forming a non-compressed portion corresponding to the concave portion and a compressed portion having a thickness of 50 to 1600 μm surrounding the non-compressed portion by a pair of electrodes having a concave portion at the center of at least one end face. A step of heating the compressed portion to a temperature equal to or higher than the crystallization temperature of the magnetic phase R 2 TM 14 B by applying an electric current between the electrodes during the step to form an alloy magnet,
And a method for manufacturing a rare earth-iron-based hollow thick film magnet, which comprises a step of mechanically removing the non-compressed portion.
およびPrからなる群より選ばれる少なくとも1種の元
素で13〜20原子%、TMは遷移金属元素Feまたは
Feの一部をCoで置換したもの、Bは5〜20原子
%、MはGaおよびCuからなる群より選ばれる少なく
とも1種の元素で0.2〜3.0原子%、残部TMであ
り、不可避的な不純物を含む)溶湯合金の急冷薄片と、
R−TM−B系(ただし、RはNdおよびPrからなる
群より選ばれる少なくとも1種の元素で11.5原子%
以下、TMは遷移金属元素FeまたはFeの一部をCo
で置換したもの、Bは5〜20原子%、残部TMであ
り、不可避的な不純物を含む)溶湯合金の急冷薄片との
混合物を調製する工程、前記の混合物を、少なくとも一
方の端面中央部に凹部を有する一対の電極により、前記
凹部に対応する非圧縮部および前記非圧縮部を囲む厚さ
が50〜1600μmの圧縮部を形成する圧縮成形工程
であって、この工程中に前記電極間に通電することによ
り前記圧縮部を磁性相R2TM14BおよびαFe/R2T
M14Bの結晶化温度以上に加熱して、前記両磁性相の混
合相を有する合金磁石を形成する工程、および前記非圧
縮部分を機械的に除去する工程を有する希土類−鉄系中
空厚膜磁石の製造方法。2. R-TM-BM system (where R is Nd
And at least one element selected from the group consisting of Pr and 13 to 20 atomic%, TM is a transition metal element Fe or a part of Fe replaced by Co, B is 5 to 20 atomic%, M is Ga and A quenched thin piece of a molten alloy containing 0.2 to 3.0 atomic% of at least one element selected from the group consisting of Cu and the balance TM and containing unavoidable impurities;
R-TM-B system (wherein R is at least one element selected from the group consisting of Nd and Pr and 11.5 atomic%
Hereinafter, TM is a transition metal element Fe or a part of Fe is Co.
, B is 5 to 20 atomic% and the balance is TM, and contains unavoidable impurities.) A step of preparing a mixture with a quenched thin piece of a molten alloy, the mixture being provided on at least one end face central portion. A compression molding step of forming a non-compressed portion corresponding to the concave portion and a compressed portion having a thickness of 50 to 1600 μm surrounding the non-compressed portion by a pair of electrodes having a concave portion, and between the electrodes during the step. By energizing the compressed portion, the compressed portion is magnetic phase R 2 TM 14 B and αFe / R 2 T.
A rare earth-iron-based hollow thick film including a step of forming an alloy magnet having a mixed phase of both magnetic phases by heating to a crystallization temperature of M 14 B or higher, and a step of mechanically removing the non-compressed portion. Magnet manufacturing method.
およびPrからなる群より選ばれる少なくとも1種の元
素で13〜20原子%、TMは遷移金属元素Feまたは
Feの一部をCoで置換したもの、Bは5〜20原子
%、MはGaおよびCuからなる群より選ばれる少なく
とも1種の元素で0.2〜3.0原子%、残部TMであ
り、不可避的な不純物を含む)溶湯合金の急冷薄片から
なる相対密度85%以上のビレットを、少なくとも一方
の端面中央部に凹部を有する一対の電極により、前記非
圧縮部に対応する非圧縮部および前記圧縮部を囲む厚さ
が50〜1600μmの圧縮部を形成する圧縮成形工程
であって、この工程中に前記電極間に通電することによ
り前記圧縮部を磁性相R2TM14Bの結晶化温度以上の
温度に加熱して、厚さ方向に前記磁性相のc軸を配向し
た異方性合金磁石を形成する工程、および前記非圧縮部
分を機械的に除去する工程を有する希土類−鉄系中空厚
膜磁石の製造方法。3. R-TM-BM system (where R is Nd
And at least one element selected from the group consisting of Pr and 13 to 20 atomic%, TM is a transition metal element Fe or a part of Fe replaced by Co, B is 5 to 20 atomic%, M is Ga and A billet having a relative density of 85% or more, which is formed from a quenched thin piece of a molten alloy, which is 0.2 to 3.0 atom% with at least one element selected from the group consisting of Cu and the balance is TM and contains unavoidable impurities. A compression molding step of forming a non-compressed portion corresponding to the non-compressed portion and a compressed portion having a thickness of 50 to 1600 μm surrounding the non-compressed portion by a pair of electrodes having a recessed portion in the central portion of at least one end face. During this step, the compressed portion is heated to a temperature equal to or higher than the crystallization temperature of the magnetic phase R 2 TM 14 B by applying an electric current between the electrodes, and the c-axis of the magnetic phase is oriented in the thickness direction. Isotropic alloy magnet Step of forming, and the rare earth has the step of mechanically removing the non-compressed portion - method of manufacturing the iron-based hollow thick magnet.
加によるパルス電流と直接通電によるジュール熱で行わ
れる請求項1、2または3記載の希土類−鉄系中空厚膜
磁石の製造方法。4. The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3, wherein the heating in the compression step is performed by a pulse current by applying a DC voltage and Joule heat by direct energization.
0-2(Ωcm4・deg/cal)以下である請求項
1、2または3記載の希土類−鉄系中空厚膜磁石の製造
方法。5. The ratio of the electric resistance of the electrode to the volume specific heat is 1
The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3, which is 0 -2 (Ωcm 4 · deg / cal) or less.
cm2以上である請求項1、2または3記載の希土類−
鉄系中空厚膜磁石の製造方法。6. The pressure applied during the compression step is 250 kgf /
cm 2 or more, the rare earth element according to claim 1, 2 or 3.
Iron-based hollow thick film magnet manufacturing method.
下で行われる請求項1、2または3記載の希土類−鉄系
中空厚膜磁石の製造方法。7. The method of manufacturing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3, wherein the compressing step is performed under a reduced pressure of 1 Torr or less.
相対密度が95%以上である請求項1、2または3記載
の希土類−鉄系中空厚膜磁石の製造方法。8. The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3, wherein a relative density of a compression portion formed by the compression step is 95% or more.
/m以上である請求項1、2または3記載の希土類−鉄
系中空厚膜磁石の製造方法。9. The coercive force Hci of the compression section is 1100 kA.
/ M or more, The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3.
以上、最大エネルギー積(BH)maxが112kJ/m3
以上である請求項1または3記載の希土類−鉄系中空厚
膜磁石の製造方法。10. The residual magnetization Jr of the compression part is 0.8 T.
As described above, the maximum energy product (BH) max is 112 kJ / m 3
The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1 or 3 as described above.
以上、最大エネルギー積(BH)maxが240kJ/m3
以上である請求項2記載の希土類−鉄系中空厚膜磁石の
製造方法。11. The residual magnetization Jr of the compressed portion is 1.1 T.
Above, the maximum energy product (BH) max is 240 kJ / m 3
The above is the method for producing a rare earth-iron-based hollow thick film magnet according to claim 2.
である請求項1、2または3記載の希土類−鉄系中空厚
膜磁石の製造方法。12. The method for producing a rare earth-iron-based hollow thick film magnet according to claim 1, 2 or 3, wherein the particle diameter of the quenched flakes is 32 μm or less.
り得られた希土類−鉄系厚膜磁石。13. A rare earth-iron thick film magnet obtained by the manufacturing method according to claim 1.
膜磁石および回転軸を有する可動子、並びに前記可動子
と空隙を介して対向する固定子を備えた軸方向空隙型磁
石モータ。14. An axial air gap magnet motor comprising the rare earth-iron hollow thick film magnet according to claim 13, a mover having a rotating shaft, and a stator facing the mover via a gap.
膜磁石を有する平板状の可動子および平板状の固定子を
備えた磁石モータ。15. A magnet motor comprising a flat plate-shaped mover and a flat plate-shaped stator having the rare earth-iron-based hollow thick film magnet according to claim 13.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002027952A JP2003229306A (en) | 2002-02-05 | 2002-02-05 | Rare earth-iron hollow thick film magnet manufacturing method and magnet motor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002027952A JP2003229306A (en) | 2002-02-05 | 2002-02-05 | Rare earth-iron hollow thick film magnet manufacturing method and magnet motor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003229306A true JP2003229306A (en) | 2003-08-15 |
Family
ID=27749319
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002027952A Pending JP2003229306A (en) | 2002-02-05 | 2002-02-05 | Rare earth-iron hollow thick film magnet manufacturing method and magnet motor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003229306A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104067357A (en) * | 2011-12-06 | 2014-09-24 | 日产自动车株式会社 | Thick rare earth magnet film, and low-temperature solidification molding method |
| US9859055B2 (en) | 2012-10-18 | 2018-01-02 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method for rare-earth magnet |
| US10199145B2 (en) | 2011-11-14 | 2019-02-05 | Toyota Jidosha Kabushiki Kaisha | Rare-earth magnet and method for producing the same |
| US10468165B2 (en) | 2013-06-05 | 2019-11-05 | Toyota Jidosha Kabushiki Kaisha | Rare-earth magnet and method for manufacturing same |
-
2002
- 2002-02-05 JP JP2002027952A patent/JP2003229306A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10199145B2 (en) | 2011-11-14 | 2019-02-05 | Toyota Jidosha Kabushiki Kaisha | Rare-earth magnet and method for producing the same |
| CN104067357A (en) * | 2011-12-06 | 2014-09-24 | 日产自动车株式会社 | Thick rare earth magnet film, and low-temperature solidification molding method |
| EP2790193A4 (en) * | 2011-12-06 | 2015-12-02 | Nissan Motor | Thick rare earth magnet film, and low-temperature solidification molding method |
| US9859055B2 (en) | 2012-10-18 | 2018-01-02 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method for rare-earth magnet |
| US10468165B2 (en) | 2013-06-05 | 2019-11-05 | Toyota Jidosha Kabushiki Kaisha | Rare-earth magnet and method for manufacturing same |
| US10748684B2 (en) | 2013-06-05 | 2020-08-18 | Toyota Jidosha Kabushiki Kaisha | Rare-earth magnet and method for manufacturing same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5196080B2 (en) | Rare earth magnet manufacturing method | |
| JP6204434B2 (en) | Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same | |
| JP4872887B2 (en) | Porous material for R-Fe-B permanent magnet and method for producing the same | |
| JP2009302262A (en) | Permanent magnet and production process of the same | |
| JP2010045068A (en) | Permanent magnet and method of manufacturing the same | |
| JP6471669B2 (en) | Manufacturing method of RTB-based magnet | |
| JP2727505B2 (en) | Permanent magnet and manufacturing method thereof | |
| JP3092672B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
| JP6691666B2 (en) | Method for manufacturing RTB magnet | |
| EP0378698B1 (en) | Method of producing permanent magnet | |
| KR20000049280A (en) | Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder | |
| US7166171B2 (en) | Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets | |
| JP2003229306A (en) | Rare earth-iron hollow thick film magnet manufacturing method and magnet motor | |
| JP2012195392A (en) | Method of manufacturing r-t-b permanent magnet | |
| JP2019186331A (en) | Method for manufacturing neodymium-iron-boron based magnet | |
| JPH07120576B2 (en) | Cast rare earth-method for manufacturing iron-based permanent magnets | |
| JPH06302417A (en) | Permanent magnet and manufacturing method thereof | |
| JP6691667B2 (en) | Method for manufacturing RTB magnet | |
| JP2002270418A (en) | Method of manufacturing rare earth thick film magnet and magnet motor using rare earth thick film magnet produced by the manufacturing method | |
| JP3196224B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
| JP2579787B2 (en) | Manufacturing method of permanent magnet | |
| JP4150983B2 (en) | Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof | |
| JP3178848B2 (en) | Manufacturing method of permanent magnet | |
| WO2024004332A1 (en) | Rare earth magnet | |
| JPS61139638A (en) | Manufacture of sintered permanent magnet material |