JP2003232584A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP2003232584A JP2003232584A JP2003017008A JP2003017008A JP2003232584A JP 2003232584 A JP2003232584 A JP 2003232584A JP 2003017008 A JP2003017008 A JP 2003017008A JP 2003017008 A JP2003017008 A JP 2003017008A JP 2003232584 A JP2003232584 A JP 2003232584A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- control device
- flow
- heat exchanger
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/12—Sound
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
(57)【要約】
【課題】 気液二相冷媒を連続的に絞り部に効果的に供
給することができず、冷媒流動音が大きくなる。
【解決手段】 圧縮機、室外熱交換器、第1流量制御装
置、第1熱交換器、第2流量制御装置、第2室内熱交換
器を接続した冷凍サイクルを備えた空気調和装置におい
て、第2流量制御装置は、入口消音空間19、冷媒流れ
方向に連通する入口側発泡金属20、オリフィス23、
出口側発泡金属25および出口消音空間27より成る絞
り部を有し、設定温度と現在温度との温度偏差または設
定湿度と現在湿度との湿度偏差が所定値以内となるよう
に制御する。
(57) [Summary] [Problem] A gas-liquid two-phase refrigerant cannot be continuously and effectively supplied to a throttle portion, and the refrigerant flow noise increases. SOLUTION: In an air conditioner provided with a refrigeration cycle to which a compressor, an outdoor heat exchanger, a first flow control device, a first heat exchanger, a second flow control device, and a second indoor heat exchanger are connected, The two flow control devices include an inlet silencing space 19, an inlet-side foam metal 20 communicating with the refrigerant in the flow direction, an orifice 23
It has a constricted portion composed of the outlet-side foamed metal 25 and the outlet silencing space 27, and controls the temperature deviation between the set temperature and the current temperature or the humidity deviation between the set humidity and the current humidity to be within a predetermined value.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒の流動制御に
好適な絞り装置を備え、二相冷媒の流動制御に好適な冷
凍サイクル装置、さらには冷房あるいは暖房運転時の温
度および湿度の制御性を向上させるとともに、冷媒流動
音を低減し、室内温湿度および騒音に対する快適性を向
上させた空気調和装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a throttle device suitable for controlling the flow of a refrigerant, a refrigerating cycle device suitable for controlling the flow of a two-phase refrigerant, and controllability of temperature and humidity during cooling or heating operation. The present invention relates to an air conditioner in which the refrigerant flow noise is reduced and the comfort against indoor temperature and humidity and noise is improved.
【0002】[0002]
【従来の技術】従来の空気調和装置では、空調負荷の変
動に対応するためにインバーターなどの容量可変型圧縮
機が用いられ、空調負荷の大小に応じて圧縮機の回転周
波数が制御されている。ところが冷房運転時に圧縮機回
転が小さくなると蒸発温度も上昇し、蒸発器での除湿能
力が低下したり、あるいは蒸発温度が室内の露点温度以
上に上昇し、除湿できなくなったりする問題点があっ
た。2. Description of the Related Art In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with a change in air conditioning load, and the rotation frequency of the compressor is controlled according to the size of the air conditioning load. . However, when the rotation of the compressor is reduced during cooling operation, the evaporation temperature also rises and the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the dew point temperature in the room, making it impossible to dehumidify. .
【0003】この冷房低容量運転時の除湿能力を向上さ
せる手段としては次のような空気調和装置が考案されて
いる。図13は例えば特開平11-51514号公報に
示された従来の空気調和装置の冷媒回路図を、図14は
図13に備えられた一般的な絞り弁の断面図を示す。図
において1は圧縮機、2は四方弁、3は室外熱交換器、
4は第1流量制御装置、5は第1室内熱交換器、6は第
2流量制御装置、7は第2室内熱交換器であり、これら
は配管で順次接続され冷凍サイクルを構成している。次
に従来の空気調和装置の動作について説明する。冷房運
転では、圧縮機1を出た冷媒は四方弁2を通過して、室
外熱交換器3で凝縮液化し、第1流量制御装置4の二方
弁12は閉じられているため、絞り装置11で減圧され
室内熱交換器5において蒸発気化し再び四方弁2を介し
て圧縮機1に戻る。また、暖房運転では圧縮機1を出た
冷媒は冷房運転とは逆に四方弁2を通過して、室内熱交
換器5で凝縮液化し、第1流量制御装置4の二方弁12
は閉じられているため主絞り装置11で減圧され室外熱
交換器3において蒸発気化し再び四方弁2を介して圧縮
機1に戻る。The following air conditioner has been devised as a means for improving the dehumidifying ability during the cooling low capacity operation. FIG. 13 is a refrigerant circuit diagram of a conventional air conditioner disclosed in, for example, Japanese Patent Laid-Open No. 11-51514, and FIG. 14 is a sectional view of a general throttle valve provided in FIG. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger,
Reference numeral 4 is a first flow rate control device, 5 is a first indoor heat exchanger, 6 is a second flow rate control device, and 7 is a second indoor heat exchanger, and these are sequentially connected by piping to form a refrigeration cycle. . Next, the operation of the conventional air conditioner will be described. In the cooling operation, the refrigerant exiting the compressor 1 passes through the four-way valve 2, is condensed and liquefied in the outdoor heat exchanger 3, and the two-way valve 12 of the first flow rate control device 4 is closed. The pressure is reduced at 11 and the gas is evaporated and vaporized in the indoor heat exchanger 5 and returns to the compressor 1 again via the four-way valve 2. In the heating operation, the refrigerant discharged from the compressor 1 passes through the four-way valve 2 contrary to the cooling operation, is condensed and liquefied in the indoor heat exchanger 5, and the two-way valve 12 of the first flow control device 4 is used.
Is closed, it is decompressed by the main expansion device 11 and evaporated to vaporize in the outdoor heat exchanger 3, and then returns to the compressor 1 via the four-way valve 2 again.
【0004】一方、除湿運転時には、第1流量制御装置
4の主絞り装置11は閉じられ、二方弁12を開け第2
流量制御弁6で冷媒流量を制御することにより、第1室
内熱交換器5が凝縮器すなわち再熱器、第2室内熱交換
器7が蒸発器として動作し、室内空気は第1室内熱交換
器5で加熱されるため、室温の低下が小さい除湿運転が
可能となる。On the other hand, during the dehumidifying operation, the main expansion device 11 of the first flow rate control device 4 is closed and the two-way valve 12 is opened.
By controlling the flow rate of the refrigerant with the flow rate control valve 6, the first indoor heat exchanger 5 operates as a condenser, that is, a reheater, and the second indoor heat exchanger 7 operates as an evaporator, and the indoor air is the first indoor heat exchange. Since it is heated in the vessel 5, dehumidification operation with a small decrease in room temperature becomes possible.
【0005】[0005]
【発明が解決しようとする課題】上記のような従来の空
気調和装置では、室内ユニット内に設置する第2流量制
御弁として、通常、オリフィスを有する流量制御弁を用
いているため、このオリフィスを冷媒が通過する時に発
生する冷媒流動音が大きく、室内環境を悪化させる要因
となっていた。特に除湿運転時には第2流量制御弁の入
口が気液二相冷媒となり、冷媒流動音が大きくなるとい
う問題があった。In the conventional air conditioner as described above, since a flow rate control valve having an orifice is usually used as the second flow rate control valve installed in the indoor unit, this orifice is used. The refrigerant flow noise generated when the refrigerant passed through was a factor that deteriorated the indoor environment. In particular, during the dehumidifying operation, the inlet of the second flow rate control valve becomes a gas-liquid two-phase refrigerant, which causes a problem that the refrigerant flow noise becomes loud.
【0006】この除湿運転時の第2流量制御弁の冷媒流
動音低減策としては、特開平11−51514号公報に
示された流量制御弁内に複数の切り込み溝と弁体からな
るオリフィス状の絞り流路を設けたものがある。ところ
がこの冷媒流動音低減策では絞り部が複数のオリフィス
形状の流路で気液二相冷媒を連続的に流すように工夫し
たものであるが、加工上配置し得る流路数が有限である
ため効果的ではなく冷媒流動音が大きくなるといった問
題があった。その結果、第2流量制御装置の周囲に遮音
材や制振材を設けるなどの追加の対策を必要とし、コス
ト増加や設置性の悪化およびリサイクル性の悪化などの
問題もあった。As a measure for reducing the refrigerant flow noise of the second flow rate control valve during the dehumidifying operation, an orifice-like structure having a plurality of cut grooves and a valve body is provided in the flow rate control valve disclosed in Japanese Patent Laid-Open No. 11-51514. Some have a throttle channel. However, in this refrigerant flow noise reduction measure, the throttle portion is devised so as to continuously flow the gas-liquid two-phase refrigerant through a plurality of orifice-shaped flow passages, but the number of flow passages that can be arranged is limited. Therefore, there is a problem that it is not effective and the flow noise of the refrigerant becomes loud. As a result, additional measures such as providing a sound insulating material and a vibration damping material around the second flow rate control device are required, and there are problems such as an increase in cost, deterioration of installation property, and deterioration of recyclability.
【0007】これに対し、特開平7−146032号公
報に示された空気調和装置で用いられている流量制御装
置では、図15の断面図に示すように冷媒流動音を低減
するために絞りの上流および下流側にフィルタとして多
孔体32を設けてある。しかしながら、多孔体32と絞
り部の距離が離れているため、気液二相冷媒を連続的に
絞り部に効果的に供給することはできず、冷媒流動音が
大きくなるといった問題があった。On the other hand, in the flow rate control device used in the air conditioner disclosed in Japanese Unexamined Patent Publication No. 7-146032, as shown in the sectional view of FIG. Porous bodies 32 are provided as filters on the upstream and downstream sides. However, since the distance between the porous body 32 and the throttle portion is large, the gas-liquid two-phase refrigerant cannot be effectively supplied to the throttle portion effectively, and there is a problem that the refrigerant flow noise becomes loud.
【0008】また、特開平10−131681号公報に
示された空気調和機で用いられている流量制御装置の構
成断面図を図16に示す。冷媒流動音を低減するために
絞りの上流および下流側に両端間を連通する穴を複数個
有する消音手段のハニカムパイプ37を設けてある。前
記ハニカムパイプの断面図を図17に示す。配管内に設
置された複数個の穴では冷媒の通過面積が小さく、冷凍
サイクル内を流れる異物により閉塞されやすく、冷媒流
量の低下により性能が低下するといった問題点や絞り部
にバイパス流路が無いため、圧力損失なしに冷媒を流す
ことができないといった問題点があった。FIG. 16 is a sectional view showing the construction of a flow rate control device used in the air conditioner disclosed in Japanese Patent Laid-Open No. 10-131681. A honeycomb pipe 37 as a sound deadening means having a plurality of holes communicating between both ends is provided on the upstream side and the downstream side of the throttle in order to reduce the refrigerant flow noise. A cross-sectional view of the honeycomb pipe is shown in FIG. The multiple holes installed in the pipe have a small refrigerant passage area, are easily blocked by foreign substances flowing in the refrigeration cycle, and there is no problem that performance decreases due to a decrease in the refrigerant flow rate and there is no bypass flow path in the throttle part. Therefore, there is a problem that the refrigerant cannot flow without pressure loss.
【0009】本発明は上記のような課題を解決するため
になされたもので、冷媒流動音を大幅に低減でき、サイ
クル内の異物により閉塞することが無い絞り装置を用い
た冷凍サイクル装置および空気調和装置を得ることを目
的とする。The present invention has been made in order to solve the above-mentioned problems, and it is possible to significantly reduce refrigerant flow noise, and a refrigeration cycle apparatus and air using a throttle device that is not blocked by foreign matter in the cycle. The purpose is to obtain a harmony device.
【0010】[0010]
【課題を解決するための手段】本発明の請求項1に関わ
る空気調和装置は、圧縮機、室外熱交換器、第1流量制
御装置、第1室内熱交換器、第2流量制御装置、第2室
内熱交換器を接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御装置は冷媒の流れ方向に
連通する多孔質透過材を絞り部の上流および下流に有
し、前記絞り部と多孔質透過材の間に空間を設け、設定
温度と現在の室内空気温度との温度偏差または設定湿度
と現在の室内空気湿度との湿度偏差が所定値以内となる
ように制御するものである。An air conditioner according to claim 1 of the present invention is a compressor, an outdoor heat exchanger, a first flow rate control device, a first indoor heat exchanger, a second flow rate control device, and a second flow rate control device. In the air conditioner including a refrigeration cycle in which two indoor heat exchangers are connected, the second flow rate control device has porous permeable materials that communicate in the flow direction of the refrigerant, upstream and downstream of the throttle portion, and the throttle portion. And a porous permeable material, a space is provided between the set temperature and the current indoor air temperature, or the temperature deviation between the set humidity and the current indoor air humidity is controlled to be within a predetermined value. .
【0011】本発明の請求項2に関わる空気調和装置
は、圧縮機の回転周波数、室外熱交換器に付設された室
外ファンの回転数、室内熱交換器に付設された室内ファ
ンの回転数、第1流量制御装置の絞り弁開度、および第
2流量制御装置の弁開閉のうち少なくとも1つを制御す
るようにしたものである。In the air conditioner according to claim 2 of the present invention, the rotation frequency of the compressor, the rotation speed of the outdoor fan attached to the outdoor heat exchanger, the rotation speed of the indoor fan attached to the indoor heat exchanger, At least one of the throttle valve opening of the first flow control device and the valve opening / closing of the second flow control device is controlled.
【0012】本発明の請求項3に関わる空気調和装置
は、温度偏差および湿度偏差を所定値以内に制御する
際、温度偏差を前記湿度偏差よりも優先して行うもので
ある。In the air conditioner according to claim 3 of the present invention, when controlling the temperature deviation and the humidity deviation within a predetermined value, the temperature deviation is given priority over the humidity deviation.
【0013】本発明の請求項4に関わる空気調和装置
は、空気調和装置起動時に、温度偏差および湿度偏差が
ともに所定値よりも大きい場合、第2流量制御装置の絞
り部へ冷媒を流通させないように制御するものである。In the air conditioner according to claim 4 of the present invention, when the temperature deviation and the humidity deviation are both larger than a predetermined value at the time of starting the air conditioning apparatus, the refrigerant is prevented from flowing to the throttle portion of the second flow rate control device. To control.
【0014】本発明の請求項5に関わる空気調和装置
は、温度偏差および湿度偏差が所定値以内となっている
場合に現在の運転を継続するように制御したものであ
る。The air conditioner according to claim 5 of the present invention is controlled so that the current operation is continued when the temperature deviation and the humidity deviation are within predetermined values.
【0015】本発明の請求項6に関わる空気調和装置
は、温度偏差が所定値以内の時、湿度偏差が所定値より
大きくなっている場合に、第2流量制御装置の絞り部へ
冷媒を流通させるように制御したものである。In the air conditioner according to claim 6 of the present invention, when the temperature deviation is within a predetermined value and the humidity deviation is larger than the predetermined value, the refrigerant is circulated to the throttle portion of the second flow rate control device. It was controlled so that
【0016】本発明の請求項7に関わる空気調和装置
は、室外ファンの回転数または第1流量制御装置の弁開
度を調整して第1室内熱交換器の加熱量を制御するとと
もに、圧縮機の回転周波数と室内ファンの回転数を調整
して第2室内熱交換器の冷却除湿量を制御するものであ
る。In the air conditioner according to claim 7 of the present invention, the rotation amount of the outdoor fan or the valve opening degree of the first flow rate control device is adjusted to control the heating amount of the first indoor heat exchanger, and the compression is performed. The cooling frequency of the second indoor heat exchanger is controlled by adjusting the rotation frequency of the machine and the rotation speed of the indoor fan.
【0017】本発明の請求項8に関わる空気調和装置
は、暖房運転起動時、第2流量制御装置の絞り部へ冷媒
を流通させるように制御したものである。The air conditioner according to claim 8 of the present invention is such that the refrigerant is controlled to flow to the throttle portion of the second flow rate control device when the heating operation is started.
【0018】本発明の請求項9に関わる空気調和装置
は、第1室内熱交換器の冷却除湿能力がゼロとなるよう
に、室外ファンの回転数および第1流量制御装置の弁開
度を調整して、第1室内熱交換器の蒸発温度が室内空気
温度と等しくなるように制御したものである。In the air conditioner according to claim 9 of the present invention, the rotation speed of the outdoor fan and the valve opening degree of the first flow rate control device are adjusted so that the cooling and dehumidifying capacity of the first indoor heat exchanger becomes zero. Then, the evaporation temperature of the first indoor heat exchanger is controlled to be equal to the indoor air temperature.
【0019】本発明の請求項10に関わる空気調和装置
は、圧縮機起動から所定時間が経過すると、第2流量制
御装置の絞り部へ冷媒を流通させないように制御するも
のである。An air conditioner according to a tenth aspect of the present invention controls so that the refrigerant does not flow to the throttle portion of the second flow rate control device when a predetermined time has elapsed since the compressor was started.
【0020】本発明の請求項11に関わる空気調和装置
は、温度偏差が所定値以内となるように、圧縮機の回転
数、室内ファンの回転数および室外ファンの回転数を調
整するものである。An air conditioner according to claim 11 of the present invention adjusts the rotation speed of the compressor, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan so that the temperature deviation is within a predetermined value. .
【0021】本発明の請求項12に関わる空気調和装置
は、湿度偏差が所定値以上の場合、第2流量制御装置の
絞り部へ冷媒を流通させるように制御するものである。An air conditioner according to a twelfth aspect of the present invention controls the refrigerant to flow through the throttle portion of the second flow rate control device when the humidity deviation is a predetermined value or more.
【0022】[0022]
【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態の一例を示す空気調和装置の冷媒回路図で、
従来装置と同様の部分は同一符号で表している。図にお
いて、1は圧縮機、2は冷房運転および暖房運転の冷媒
の流れを切換える流路切換え手段で例えば四方弁、3は
室外熱交換器、4は第1流量制御装置、5は第1室内熱
交換器、6は第2流量制御装置、7は第2室内熱交換器
であり、これらは配管によって順次接続され冷凍サイク
ルを構成している。また、室外ユニット33には室外熱
交換器3に付設された室外ファン40が、室内ユニット
34には2つの室内熱交換器に付設された室内ファン4
1がそれぞれ内蔵されている。この冷凍サイクルの冷媒
には、R32とR125の混合冷媒であるR410Aが
用いられ、冷凍機油としてはアルキルベンゼン系油が用
いられている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an example of an embodiment of the present invention.
The same parts as those of the conventional device are represented by the same reference numerals. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow rate control device, and 5 is a first indoor chamber. A heat exchanger, 6 is a second flow rate control device, and 7 is a second indoor heat exchanger, which are sequentially connected by piping to form a refrigeration cycle. The outdoor unit 33 has an outdoor fan 40 attached to the outdoor heat exchanger 3, and the indoor unit 34 has an indoor fan 4 attached to two indoor heat exchangers.
1 is built in each. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of this refrigeration cycle, and alkylbenzene-based oil is used as the refrigerating machine oil.
【0023】図2は図1に示した空気調和装置の第2流
量制御装置の構成を示す図であり、図において、8は第
1室内熱交換器5と第2流量制御装置6を接続する配
管、11は絞り部、12は二方弁、15は第2流量制御
装置6と第2室内熱交換器を接続する配管、9は配管8
と絞り部11を接続する配管、10は配管8と二方弁1
2を接続する配管、13は絞り部11と配管15を接続
する配管、14は二方弁12と配管15を接続する配管
である。第2流量制御装置6は二方弁12と絞り部11
を配管で並列に接続し、構成したものである。また、図
3は図2に示した第2流量制御装置6の動作を表す構成
断面図であり、(a)は冷房運転もしくは暖房運転時の
第2流量制御装置6の動作状態を、(b)は再熱除湿運
転時の第2流量制御装置6の動作状態をそれぞれ示す。
図において、16は電磁コイル、17は弁体、18は弁
座である。FIG. 2 is a diagram showing the configuration of the second flow rate control device of the air conditioner shown in FIG. 1, in which reference numeral 8 connects the first indoor heat exchanger 5 and the second flow rate control device 6. Piping, 11 is a throttle part, 12 is a two-way valve, 15 is a pipe connecting the second flow rate control device 6 and the second indoor heat exchanger, 9 is a pipe 8
A pipe connecting the throttle part 11 and the throttle part 10 is a pipe 8 and a two-way valve 1
Reference numeral 13 is a pipe connecting 2; 13 is a pipe connecting the throttle portion 11 and the pipe 15; 14 is a pipe connecting the two-way valve 12 and the pipe 15. The second flow rate control device 6 includes a two-way valve 12 and a throttle unit 11.
Are connected in parallel by piping. 3 is a configuration cross-sectional view showing the operation of the second flow rate control device 6 shown in FIG. 2, (a) shows the operating state of the second flow rate control device 6 during the cooling operation or the heating operation, (b) ) Indicates the operating state of the second flow rate control device 6 during the reheat dehumidifying operation.
In the figure, 16 is an electromagnetic coil, 17 is a valve element, and 18 is a valve seat.
【0024】図4は第2流量制御装置6の絞り部11の
拡大断面図であり、19は入口消音空間、20は入口側
に設置された発泡金属、21は入口側発泡金属に設けら
れたバイパス流路(貫通穴)、23は絞りであるオリフ
ィス、22は入口側発泡金属20とオリフィス23の間
の空間、25は出口側発泡金属、24はオリフィス23
と出口側発泡金属25との間の空間、26は出口側発泡
金属25に設けられたバイパス流路(貫通穴)、27は出
口側消音空間である。オリフィス23の出入口に設置さ
れた発泡金属20および発泡金属25の形状は同様であ
り、それらの流れ方向断面図を図5に示す。発泡金属は
全体が多孔質透過材であり、通気孔(流体が透過できる
多孔質体表面及び内部の気孔)の気孔径が100マイク
ロメートル以上あれば流動音の低減効果が得られ、本実
施例では目詰りの影響を考慮してその気孔径が500マ
イクロメートルで、空隙率が92±6%としてある。発
泡金属20(25)に設けられたバイパス流路21(2
6)はオリフィス23と重ならない場所に1ヶ所、そし
て直径は気孔径の最小の100μm以上の貫通穴であれ
ばバイパスとしての作用が得られ、発泡金属の目詰まり
発生を防止して信頼性の向上が図れる。本実施例では直
径2ミリメートルの貫通穴が設けられている。発泡金属
は、ウレタンフォームに金属粉末あるいは合金粉末を塗
布後、熱処理してウレタンフォームを焼失させ金属を3
次元の格子状に成形したものであり、材料はNi(ニッ
ケル)である。強度を上げるために、Cr(クロム)を
メッキ処理したものでも構わない。FIG. 4 is an enlarged cross-sectional view of the throttle portion 11 of the second flow rate control device 6, where 19 is an inlet silencing space, 20 is a foam metal installed on the inlet side, and 21 is a foam metal installed on the inlet side. Bypass channel (through hole), 23 is an orifice that is a throttle, 22 is a space between the foam metal 20 on the inlet side and the orifice 23, 25 is a foam metal on the outlet side, and 24 is an orifice 23
Is a space between the outlet side foam metal 25, 26 is a bypass flow passage (through hole) provided in the outlet side foam metal 25, and 27 is an outlet side silencing space. The foam metal 20 and the foam metal 25 installed at the entrance and exit of the orifice 23 have the same shape, and a cross-sectional view in the flow direction thereof is shown in FIG. The foam metal is a porous permeable material as a whole, and the effect of reducing the flow noise can be obtained if the pores (pores in the porous body surface and the interior where the fluid can permeate) have a pore diameter of 100 μm or more. In consideration of the effect of clogging, the pore diameter is 500 μm and the porosity is 92 ± 6%. Bypass channel 21 (2 provided in foam metal 20 (25)
6) has a location where it does not overlap with the orifice 23, and if the diameter is a through hole having a minimum pore diameter of 100 μm or more, a bypass function can be obtained, which prevents clogging of the foam metal and prevents reliability. Can be improved. In this embodiment, a through hole having a diameter of 2 mm is provided. For foam metal, apply metal powder or alloy powder to urethane foam and heat it to burn out urethane foam
It is formed into a one-dimensional lattice and the material is Ni (nickel). It may be plated with Cr (chrome) in order to increase the strength.
【0025】図7にはこの空気調和機に組み込まれた制
御装置全体のブロック構成図を示している。この制御装
置42はマイクロプロセッサ等で構成されており、例え
ば居住者の手元のリモートコントローラ43から空調機
の運転状態を設定する運転モード信号、目標温度信号、
目標湿度信号、風量切換信号、運転開始/停止信号等が
与えられると、室内温度検知手段50や室内湿度検知手
段51の出力を監視しながら、圧縮機1、四方弁2、室
外ファン40、室内ファン41、第1流量制御装置4、
第2流量制御装置6を制御する。FIG. 7 shows a block diagram of the entire control device incorporated in this air conditioner. The control device 42 is composed of a microprocessor or the like. For example, an operation mode signal for setting the operation state of the air conditioner, a target temperature signal, and
When the target humidity signal, the air volume switching signal, the operation start / stop signal, etc. are given, the compressor 1, the four-way valve 2, the outdoor fan 40, and the room are monitored while monitoring the outputs of the room temperature detecting means 50 and the room humidity detecting means 51. The fan 41, the first flow control device 4,
The second flow control device 6 is controlled.
【0026】次に本実施の形態による空気調和装置の冷
凍サイクルの動作について説明する。図1では冷房時の
冷媒の流れを実線矢印で示している。冷房運転は、起動
時や夏季時など部屋の空調顕熱負荷と潜熱負荷がともに
大きい場合に対応する通常冷房運転と中間期や梅雨時期
のように空調顕熱負荷は小さいが、潜熱負荷が大きな場
合に対応する除湿運転に分けられる。通常冷房運転は、
第2流量制御装置6の二方弁は制御装置42より指令を
受け、開状態になっており、第1室内熱交換器と第2室
内熱交換器を冷媒がほとんど圧力損失なしに接続する。Next, the operation of the refrigeration cycle of the air conditioner according to the present embodiment will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by a solid arrow. The cooling operation corresponds to the case where both the sensible heat load and the latent heat load of the room are large at startup and during the summer, and the sensible heat load of the air conditioner is small, but the latent heat load is large, such as in the middle period and the rainy season. It is divided into dehumidification operation corresponding to the case. Normal cooling operation is
The two-way valve of the second flow rate control device 6 receives the command from the control device 42 and is in an open state, so that the refrigerant connects the first indoor heat exchanger and the second indoor heat exchanger with almost no pressure loss.
【0027】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2
を通過して、室外熱交換器3で凝縮液化し、第1流量制
御装置4で減圧され低圧二相冷媒となって第1室内熱交
換器5に流入し蒸発気化し、第2流量制御装置6を大き
な圧力損失なしに通過し再び第2室内熱交換器7で蒸発
気化し、低圧蒸気冷媒となって再び四方弁2を介して圧
縮機1に戻る。At this time, the high-temperature and high-pressure vapor refrigerant leaving the compressor 1 operating at the number of revolutions according to the air conditioning load is the four-way valve 2.
Through the outdoor heat exchanger 3, condensed and liquefied in the outdoor heat exchanger 3, reduced in pressure by the first flow rate control device 4 to become a low-pressure two-phase refrigerant, flown into the first indoor heat exchanger 5 and evaporated and vaporized, and then the second flow rate control device After passing through 6 without significant pressure loss, it is evaporated and vaporized again in the second indoor heat exchanger 7, becomes low-pressure vapor refrigerant, and returns to the compressor 1 again via the four-way valve 2.
【0028】第1流量制御装置4は、例えば圧縮機1の
吸入部分で冷媒の過熱度が10℃となるように制御され
ている。このような冷凍サイクルでは室内熱交換器5で
冷媒が蒸発することにより室内から熱を奪い、室外熱交
換器3で冷媒が凝縮することによって室内で奪った熱を
室外で放出することによって室内を冷房する。The first flow rate control device 4 is controlled so that the superheat degree of the refrigerant in the suction portion of the compressor 1 becomes 10 ° C., for example. In such a refrigeration cycle, the indoor heat exchanger 5 evaporates the refrigerant to take heat from the room, and the outdoor heat exchanger 3 condenses the refrigerant to release the heat taken indoors to the outside of the room. To cool.
【0029】次に除湿運転時の動作について、図6に示
す圧力-エンタルピー線図を用いて説明する。なお、図
6に示した英文字は、図1に示した英文字と対応してい
る。この除湿運転時は、制御装置42の指令により第2
流量制御装置6の二方弁12は閉状態となる。Next, the operation during the dehumidifying operation will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 6 correspond to the English characters shown in FIG. During this dehumidifying operation, the second
The two-way valve 12 of the flow control device 6 is closed.
【0030】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒(A点)は
四方弁2を通過して、室外熱交換器3で外気と熱交換し
て凝縮し気液二相冷媒となる(B点)。この高圧二相冷
媒は第1流量制御装置4で若干減圧され、中間圧の気液
二相冷媒となって第1室内熱交換器5に流入する(C
点)。第1室内熱交換器5に流入した中間圧の気液二相
冷媒は、室内空気と熱交換を行いさらに凝縮する(D
点)。第1室内熱交換器を流出した気液二相冷媒は第2
流量制御装置6に流入する。At this time, the high-temperature and high-pressure vapor refrigerant (point A) exiting the compressor 1 operating at the number of revolutions corresponding to the air conditioning load passes through the four-way valve 2 and is transferred to the outside air by the outdoor heat exchanger 3. It heat-exchanges and condenses to become a gas-liquid two-phase refrigerant (point B). This high-pressure two-phase refrigerant is slightly decompressed by the first flow rate control device 4, becomes an intermediate-pressure gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 5 (C
point). The intermediate-pressure gas-liquid two-phase refrigerant flowing into the first indoor heat exchanger 5 exchanges heat with the indoor air and is further condensed (D
point). The gas-liquid two-phase refrigerant flowing out of the first indoor heat exchanger is the second
It flows into the flow control device 6.
【0031】第2流量制御装置6では二方弁12が閉状
態であるため、冷媒は第2流量制御装置の入口配管8か
ら接続配管9を介し絞り部11に流れ込む。絞り部11
では接続配管9から入口側消音空間19、入口側発泡金
属20、入口側発泡金属20とオリフィス23の間の空
間22を介し、オリフィス23で減圧され低圧気液二相
冷媒となって、オリフィス23と出口側発泡金属25と
の間の空間24、出口側発泡金属25、出口側消音空間
27、接続配管13を順に通過して第2室内熱交換器7
に流入する(E点)。このオリフィスの出入口に設置さ
れた発泡金属の冷媒流れ方向の厚さは、流動音の低減効
果とその加工容易性から1ミリメートル以上あれば良
く、本実施例では3ミリメートル程度としてある。ま
た、オリフィスの内径は1ミリメートルで、厚さは3ミ
リメートル程度である。第2室内熱交換器7に流入した
冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。
第2室内熱交換器を出た低圧蒸気冷媒は再び四方弁2を
介して圧縮機1に戻る。室内空気は、第1室内熱交換器
5で加熱され、第2室内熱交換器7で冷却除湿されるた
め、部屋の室温低下を防ぎながら除湿を行うことができ
る。Since the two-way valve 12 is closed in the second flow control device 6, the refrigerant flows from the inlet pipe 8 of the second flow control device to the throttle portion 11 through the connecting pipe 9. Throttle 11
Then, from the connection pipe 9 through the inlet side silencing space 19, the inlet side foam metal 20, the space 22 between the inlet side foam metal 20 and the orifice 23, the pressure is reduced by the orifice 23 to become the low pressure gas-liquid two-phase refrigerant, and the orifice 23 And the outlet-side foamed metal 25, the outlet-side foamed metal 25, the outlet-side muffling space 27, and the connection pipe 13 in order to pass through the second indoor heat exchanger 7
Flows in (point E). The thickness of the foam metal installed at the entrance and exit of the orifice in the refrigerant flow direction may be 1 mm or more in view of the effect of reducing the flow noise and the ease of processing, and is about 3 mm in this embodiment. The inner diameter of the orifice is 1 millimeter and the thickness is about 3 millimeters. The refrigerant flowing into the second indoor heat exchanger 7 deprives the sensible heat and latent heat of the indoor air and evaporates.
The low-pressure vapor refrigerant that has left the second indoor heat exchanger returns to the compressor 1 via the four-way valve 2 again. Since the indoor air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, it is possible to perform dehumidification while preventing the room temperature from decreasing in the room.
【0032】なお、この除湿運転では、圧縮機1の回転
周波数や室外熱交換器3の室外ファン40の回転数を調
整して、室外熱交換器3の熱交換量を制御し、第1室内
熱交換器5による室内空気の加熱量を制御して吹出し温
度を広範囲に制御できる。また、第1流量制御装置4の
開度や室内ファン41の回転数を制御して第1室内熱交
換器の凝縮温度を制御し、第1室内熱交換器5による室
内空気の加熱量を制御することもできる。また、第2流
量制御装置6は例えば圧縮機吸入冷媒の過熱度が10℃
となるように制御される。In the dehumidifying operation, the rotation frequency of the compressor 1 and the rotation speed of the outdoor fan 40 of the outdoor heat exchanger 3 are adjusted to control the amount of heat exchange of the outdoor heat exchanger 3 to control the first indoor chamber. The blowout temperature can be controlled in a wide range by controlling the heating amount of the indoor air by the heat exchanger 5. Further, the opening temperature of the first flow rate control device 4 and the rotation speed of the indoor fan 41 are controlled to control the condensation temperature of the first indoor heat exchanger, and the heating amount of the indoor air by the first indoor heat exchanger 5 is controlled. You can also do it. Further, the second flow rate control device 6 has, for example, a superheat degree of the compressor suction refrigerant of 10 ° C.
Is controlled so that
【0033】この実施の形態1では絞り部11におい
て、絞り過程をオリフィス23としている。オリフィス
23の入口側と出口側に多孔質透過材である発泡金属を
設置し、入口側発泡金属20の上流および出口側発泡金
属25の下流にそれぞれ消音効果が得られる空間19お
よび27を設置したため気液二相冷媒が通過する際に発
生する冷媒流動音を大幅に低減できる。In the first embodiment, in the throttle portion 11, the throttle process is the orifice 23. Foamed metal, which is a porous permeable material, is installed on the inlet side and the outlet side of the orifice 23, and the spaces 19 and 27 for providing a silencing effect are installed upstream of the inlet side foamed metal 20 and downstream of the outlet side foamed metal 25, respectively. The refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be significantly reduced.
【0034】通常のオリフィスタイプの流量制御装置に
気液二相冷媒が通過する際には、大きな冷媒流動音が絞
り部前後で発生する。特に気液二相冷媒の流動様式がス
ラグ流となる場合に大きな冷媒流動音が絞り部上流で発
生する。この原因は気液二相冷媒の流動様式がスラグ流
の場合は、図6に示すように流れ方向に対して蒸気冷媒
が断続的に流れ、絞り部流路より大きな蒸気スラグもし
くは蒸気気泡が絞り部流路を通過する際に絞り部流路上
流の蒸気スラグもしくは蒸気気泡が崩壊することによ
り、それらが振動することや、絞り部を蒸気冷媒と液冷
媒が交互に通過するため、冷媒の速度は蒸気冷媒が通過
する際は速く、液冷媒が通過する際は遅くなるため、そ
れに伴って絞り部上流の圧力も変動するからである。ま
た、従来の第2流量制御装置6出口においては出口流路
が1ヶ所〜4ヵ所であるため冷媒流速が速く、出口部分
では高速気液二相流となり、壁面に冷媒が衝突するた
め、絞り部本体や出口流路が常に振動し騒音が発生す
る。また、出口部分の高速気液二相噴流による乱れや渦
の発生により、噴流騒音も大きくなっている。When the gas-liquid two-phase refrigerant passes through the ordinary orifice type flow rate control device, a large refrigerant flow noise is generated before and after the throttle portion. In particular, when the gas-liquid two-phase refrigerant flow mode is a slag flow, a large refrigerant flow noise is generated upstream of the throttle portion. This is because when the flow mode of the gas-liquid two-phase refrigerant is a slag flow, as shown in FIG. 6, the steam refrigerant flows intermittently in the flow direction, and steam slag or steam bubbles larger than the throttle passage are throttled. When the steam slag or vapor bubbles in the upstream of the throttle passage collapses when passing through the partial passage, they vibrate and the vapor refrigerant and the liquid refrigerant alternately pass through the throttle portion. The reason is that when the vapor refrigerant passes, it becomes fast and when the liquid refrigerant passes, it becomes slow, so that the pressure upstream of the throttle portion also changes accordingly. Further, at the outlet of the conventional second flow rate control device 6, the outlet flow path is at one to four places, so that the refrigerant flow velocity is high, and at the outlet portion, a high-speed gas-liquid two-phase flow occurs, and the refrigerant collides with the wall surface. The main body of the part and the outlet flow path constantly vibrate and generate noise. In addition, jet noise is increased due to turbulence and eddies generated by the high-speed gas-liquid two-phase jet at the outlet.
【0035】図4に示した第2流量制御装置6の絞り部
11に流れ込む気液二相冷媒や液冷媒は入口側発泡金属
20の微細で無数の通気孔を通過し流れが整流される。
そのため、気液が断続して流れるスラグ流等の蒸気スラ
グ(大気泡)は小さな気泡になり冷媒の流動状態が均質
気液二相流(蒸気冷媒と液冷媒がよく混合された状態)
となるため、蒸気冷媒と液冷媒が同時にオリフィス23
を通過するため冷媒の速度変動が生じず、圧力も変動し
ない。また、入口側発泡金属20のような多孔質透過材
は内部の流路が複雑に構成され、この内部では圧力変動
が繰り返され一部熱エネルギに変換しながら圧力変動を
一定にする効果があるため、オリフィス23で圧力変動
が発生してもこれを吸収する効果があり、それより上流
にその影響を伝えにくい。また、オリフィス23の下流
の高速気液二相噴流は出口側発泡金属25により、その
内部で冷媒の流速が十分に減速され、速度分布も一様化
されるため、高速気液二相噴流が壁面に衝突することも
なく、流れに大きな渦が発生することもないので噴流騒
音も小さくなる。The gas-liquid two-phase refrigerant and the liquid refrigerant flowing into the throttle portion 11 of the second flow control device 6 shown in FIG. 4 pass through the minute and innumerable vent holes of the foam metal 20 on the inlet side and the flow is rectified.
Therefore, steam slag (large bubbles) such as slag flow in which gas and liquid flow intermittently becomes small bubbles, and the flow state of the refrigerant is a homogeneous gas-liquid two-phase flow (a state in which the vapor refrigerant and the liquid refrigerant are well mixed).
Therefore, the vapor refrigerant and the liquid refrigerant are simultaneously supplied to the orifice 23.
Since the refrigerant passes through, the speed of the refrigerant does not fluctuate and the pressure does not fluctuate. In addition, a porous permeable material such as the inlet-side foamed metal 20 has a complicated internal flow path, and pressure fluctuations are repeated in this interior, and there is an effect of making the pressure fluctuations constant while partially converting it into heat energy. Therefore, even if a pressure fluctuation occurs in the orifice 23, it has an effect of absorbing the pressure fluctuation, and it is difficult to convey the influence upstream thereof. Further, the high-speed gas-liquid two-phase jet flow downstream of the orifice 23 is sufficiently decelerated by the outlet-side foamed metal 25 in the flow velocity of the refrigerant and the velocity distribution is uniformized. Since it does not collide with the wall surface and a large vortex is not generated in the flow, jet noise is reduced.
【0036】さらに、絞り部11の入口側には入口消音
空間19が設けてあるので、入口側発泡金属20で抑え
ることができない低い周波数の圧力変動を低減すること
が可能である。同様に絞り部11の出口側にも出口消音
空間27が設けてあるので、出口側発泡金属20で抑え
ることができない低い周波数の圧力変動を低減すること
が可能である。Further, since the inlet silencing space 19 is provided on the inlet side of the throttle portion 11, it is possible to reduce pressure fluctuations at a low frequency which cannot be suppressed by the foam metal 20 on the inlet side. Similarly, since the outlet silencing space 27 is also provided on the outlet side of the throttle portion 11, it is possible to reduce pressure fluctuations at low frequencies that cannot be suppressed by the outlet side foam metal 20.
【0037】このため、従来装置で必要であった、遮音
材や制振材を絞り装置6の周囲に巻きつけるなどの対策
も不要でコスト低減となり、さらに空気調和装置のリサ
イクル性も向上する。なお、上述した気液二相冷媒に起
因する冷媒流動音の課題に関しては空気調和器に限定さ
れることなく、冷蔵庫などの冷凍サイクル一般について
の課題であり、本実施の形態の絞り装置はこのような冷
凍サイクル一般に広く適用することで、同様の効果が得
られる。Therefore, it is not necessary to take a measure such as winding a sound insulating material or a vibration damping material around the diaphragm device 6, which is required in the conventional device, and the cost is reduced, and the recyclability of the air conditioner is improved. Note that the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to the air conditioner, but is a problem regarding the refrigeration cycle in general such as a refrigerator, and the expansion device of the present embodiment is The same effect can be obtained by widely applying it to such refrigeration cycle in general.
【0038】冷房除湿運転時の第2流量制御装置6の流
量特性(冷媒流量と圧力損失の関係)はオリフィス23
の径や冷媒が通過する流路長さおよびオリフィスの数を
調整することによって調整することができる。即ち、あ
る冷媒流量を小さな圧力損失で流す場合はオリフィスの
直径を大きくしたり、流路長さを短くしたり、オリフィ
スを複数個用いれば良い。また、逆にある冷媒流量を大
きな圧力損失で流す場合はオリフィス23の直径を小さ
くしたり、流路長さを長くしたり、オリフィスを1個用
いれば良い。このような絞り部に用いられるオリフィス
の直径や流路長さなどの形状は、機器設計時に最適に設
計される。The flow rate characteristics of the second flow rate control device 6 (relationship between refrigerant flow rate and pressure loss) during the cooling and dehumidifying operation are the orifice 23.
It can be adjusted by adjusting the diameter, the length of the passage through which the refrigerant passes, and the number of orifices. That is, when a certain flow rate of the refrigerant is caused to flow with a small pressure loss, the diameter of the orifice may be increased, the flow path length may be shortened, or a plurality of orifices may be used. On the contrary, when a certain flow rate of the refrigerant is caused to flow with a large pressure loss, the diameter of the orifice 23 may be reduced, the flow path length may be increased, or one orifice may be used. The shape of the orifice used for such a narrowed portion, such as the diameter and the flow path length, is optimally designed when the device is designed.
【0039】なお、絞り部入口側および出口側に用いる
多孔質透過材の素子は、本実施例では発泡金属の場合に
ついて説明したが、セラミック、焼結金属、発泡樹脂お
よび金網などを用いても同様の効果が得られる。The element of the porous permeable material used for the inlet side and the outlet side of the narrowed portion has been described in the present embodiment as being the case of foam metal, but ceramic, sintered metal, foam resin, wire mesh or the like may be used. The same effect can be obtained.
【0040】また、入口側発泡金属20および出口側発
泡金属25にそれぞれバイパス流路(貫通穴)21、2
6をオリフィス23とは重ならない位置に設けているた
め、入口側発泡金属20および出口側発泡金属25が冷
凍サイクル内の異物により目詰まりを起こしたとして
も、目詰まりによる性能低下を防止することが出来る。
さらに、入口側発泡金属20とオリフィス23の間の空
間22およびオリフィス23と出口側発泡金属25との
間の空間24を設けているため発泡金属の大部分が冷媒
流路になるため、絞り装置としての機能を保つことがで
き、絞り装置としての信頼性を十分に持っているため、
空気調和装置としても十分な信頼性を持ったものを提供
することが出来る。本実施例ではバイパス流路形状を円
筒状のもの1箇所で説明したが、これに限るものではな
く図12や図13に示す、切り欠き形状や複数個の円筒
状バイパス流路であっても同様の効果を得ることができ
る。Further, bypass flow paths (through holes) 21 and 2 are provided in the inlet side foam metal 20 and the outlet side foam metal 25, respectively.
Since 6 is provided at a position that does not overlap the orifice 23, even if the foam metal 20 on the inlet side and the foam metal 25 on the outlet side are clogged by foreign matter in the refrigeration cycle, the performance deterioration due to the clogging can be prevented. Can be done.
Further, since the space 22 between the inlet-side foamed metal 20 and the orifice 23 and the space 24 between the orifice 23 and the outlet-side foamed metal 25 are provided, most of the foamed metal serves as a refrigerant flow path, and thus the expansion device. Since it can maintain its function as and has sufficient reliability as a diaphragm device,
It is possible to provide an air conditioner with sufficient reliability. In the present embodiment, the bypass passage shape is described as a single cylindrical shape, but the present invention is not limited to this, and the cutout shape or a plurality of cylindrical bypass passages shown in FIGS. The same effect can be obtained.
【0041】図9に従来の絞り装置により発生している
騒音の周波数特性と本実施例の絞り装置の騒音の周波数
特性を測定した結果を示す。図において横軸は周波数[H
z]、縦軸は音圧(SPL)[dBA]である。また、点線は
本実施例の第2流量制御装置、2点鎖線は従来の第2流
量制御装置を示す。本実施例は従来に比べ、全周波数範
囲において、音圧レベルが低減されていることがわか
る。特に、人間の耳に良く聞こえる2000Hzから70
00Hzの範囲では大幅な低減効果が得られていることが
わかる。FIG. 9 shows the results of measurement of the frequency characteristics of noise generated by the conventional diaphragm device and the frequency characteristics of the noise of the diaphragm device of this embodiment. In the figure, the horizontal axis is frequency [H
z], and the vertical axis is the sound pressure (SPL) [dBA]. Further, the dotted line shows the second flow rate control device of this embodiment, and the two-dot chain line shows the conventional second flow rate control device. It can be seen that the sound pressure level is reduced in the entire frequency range in the present embodiment as compared with the related art. Especially from 2000Hz to 70, which is good for human ears
It can be seen that a significant reduction effect is obtained in the range of 00 Hz.
【0042】次に、この実施の形態の空気調和装置の運
転制御法について説明する。空気調和装置には、部屋内
に居る居住者の好みの温湿度環境を設定するために、例
えば設定温度と設定湿度が空調装置運転時に設定され
る。なおこの設定温度と設定湿度は、居住者がそれぞれ
の設定値を室内ユニットのリモートコントローラ43か
ら直接入力してもよく、また暑がりの人用、寒がりの人
用や子供用、老人用など室内ユニットのリモコンに対象
とする居住者別に定めた温度および湿度の最適値テーブ
ルを記憶させ、対象居住者のみを直接入力するようにし
てもよい。また室内ユニット33には、室内の温度およ
び湿度を検知するために、室内ユニットの吸い込み空気
の温度および湿度を検出するセンサーがそれぞれ設けら
れている。Next, the operation control method of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set when the air conditioner is operating in order to set a temperature / humidity environment preferred by a resident in the room. The set temperature and set humidity may be entered directly by the resident from the remote controller 43 of the indoor unit, and may be used for people who are hot, people who are cold, children and the elderly. It is also possible to store an optimum value table of temperature and humidity determined for each target resident in the remote controller of the unit and directly input only the target resident. Further, the indoor unit 33 is provided with sensors for detecting the temperature and humidity of the indoor unit in order to detect the temperature and humidity of the room.
【0043】空気調和装置が起動されると、設定温度と
現在の室内吸込み空気温度との差を温度偏差、設定湿度
と現在の室内吸込み空気湿度との差を湿度偏差として演
算し、最終的にこれらの偏差がゼロあるいは所定の値以
内となるように空気調和装置の圧縮機1の回転周波数、
室外ファンの回転数、室内ファンの回転数、第1流量制
御弁4の絞り開度、および第2流量制御弁6の開閉を制
御する。この時、温度および湿度偏差をゼロあるいは所
定の値以内に制御する際には、温度偏差を湿度偏差より
も優先して空気調和装置の制御を行なう。When the air conditioner is activated, the difference between the set temperature and the current indoor intake air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor intake air humidity is calculated as a humidity deviation, and finally the difference is calculated. The rotation frequency of the compressor 1 of the air conditioner so that these deviations are zero or within a predetermined value,
The number of rotations of the outdoor fan, the number of rotations of the indoor fan, the throttle opening of the first flow rate control valve 4, and the opening / closing of the second flow rate control valve 6 are controlled. At this time, when controlling the temperature and humidity deviations to be zero or within a predetermined value, the temperature deviation is prioritized over the humidity deviations to control the air conditioner.
【0044】すなわち、空気調和装置起動時に、温度偏
差および湿度偏差がともに大きい場合は、第2流量制1
御弁6を図3(a)に示すように二方弁12の弁体17
が開の位置となるよう制御部が指示する。この第2流量
制御装置を通過する冷媒はほとんど圧力損失がないため
冷房能力や効率低下などは起こらない。このように第2
流量制御弁6を開状態とし、まず通常冷房運転で、室内
の温度偏差を優先的にゼロまたは所定の値以内となるよ
うに運転する。空気調和装置の冷房能力が部屋の熱負荷
と一致し、温度偏差がゼロまたは所定の値以内となった
場合に、湿度偏差を検出し、この時、湿度偏差がゼロま
たは所定の値以内となっている場合は、現在の運転を続
行する。That is, when both the temperature deviation and the humidity deviation are large when the air conditioner is started, the second flow rate control 1
As shown in FIG. 3A, the control valve 6 is provided with a valve body 17 of a two-way valve 12.
The control unit directs the to be in the open position. Since the refrigerant passing through the second flow rate control device has almost no pressure loss, cooling capacity and efficiency are not deteriorated. Second like this
The flow control valve 6 is opened, and first, in normal cooling operation, the temperature deviation in the room is preferentially operated to be zero or within a predetermined value. Humidity deviation is detected when the cooling capacity of the air conditioner matches the heat load of the room and the temperature deviation is within zero or within a specified value.At this time, the humidity deviation is within zero or within a specified value. If so, continue the current operation.
【0045】温度偏差がゼロまたは所定の値以内とな
り、この時の湿度偏差がまだ大きな値となっている場合
は、第2流量制御弁6を図3(b)に示すように弁体1
7を弁座18と密着する位置にする。このように第2流
量制御弁6を絞り、冷房除湿運転に切換える。この冷房
除湿運転では、室内の温度偏差がゼロまたは所定の値以
内を維持できるように、第1室内熱交換器5の加熱量を
制御するとともに、湿度偏差がゼロまたは所定の値以内
に入るように、第2室内熱交換器7の冷却除湿量を制御
する。第1室内熱交換器5の加熱量の制御には、室外熱
交換器3の室外ファンの回転数や第1流量制御弁4の開
度などによって調整する。また第2室内熱交換器7の冷
却除湿量の制御には、圧縮機1の回転周波数や室内ユニ
ット34の室内ファンの回転数などによって制御する。When the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the second flow rate control valve 6 is moved to the valve body 1 as shown in FIG. 3 (b).
7 is brought into a position in which it closely contacts with the valve seat 18. Thus, the second flow control valve 6 is throttled to switch to the cooling / dehumidifying operation. In this cooling / dehumidifying operation, the heating amount of the first indoor heat exchanger 5 is controlled so that the temperature deviation in the room can be maintained within zero or within a predetermined value, and the humidity deviation is controlled within zero or within a predetermined value. In addition, the cooling / dehumidifying amount of the second indoor heat exchanger 7 is controlled. The heating amount of the first indoor heat exchanger 5 is controlled by adjusting the rotation speed of the outdoor fan of the outdoor heat exchanger 3, the opening degree of the first flow control valve 4, and the like. Further, the cooling / dehumidifying amount of the second indoor heat exchanger 7 is controlled by the rotation frequency of the compressor 1 and the rotation speed of the indoor fan of the indoor unit 34.
【0046】このようにこの実施の形態では、冷房運転
時の部屋の負荷に応じて、冷媒回路を通常冷房運転と冷
房除湿運転に切換えることにより、部屋内の温湿度環境
を、居住者の好みに応じて最適な状態に制御することが
できる。また、冷房、除湿、暖房などのモードの変化や
空調負荷の変化により絞り装置を通過する冷媒の相状態
や気液の混在比が変化しても絞り部11のを冷媒が低騒
音で安定的に流れることができる。As described above, according to this embodiment, the refrigerant circuit is switched between the normal cooling operation and the cooling / dehumidifying operation in accordance with the load on the room during the cooling operation, so that the temperature and humidity environment in the room can be adjusted by the occupants. It can be controlled to an optimum state according to. In addition, even if the phase state of the refrigerant passing through the expansion device or the gas-liquid mixture ratio changes due to changes in modes such as cooling, dehumidification, and heating, or changes in the air conditioning load, the refrigerant in the expansion part 11 is stable with low noise. Can flow to.
【0047】本実施例では冷凍機油は冷媒に溶け難い、
アルキルベンゼン系油を用いているが、冷凍サイクル内
には冷媒に溶けない異物と冷凍機油に溶ける異物が存在
しており、前記異物が多孔質透過材である発泡金属に付
着した場合、冷媒に溶け難い冷凍機油が発泡金属を通過
する際に、前記異物を洗浄する効果があるため、絞り部
の詰まりに対する信頼性が向上する。In this embodiment, the refrigerating machine oil is difficult to dissolve in the refrigerant,
Alkylbenzene oil is used, but there are foreign substances that are not soluble in the refrigerant and foreign substances that are soluble in the refrigeration oil in the refrigeration cycle.If the foreign substances adhere to the foam metal that is the porous permeable material, they will dissolve in the refrigerant. When the refrigerating machine oil, which is difficult to pass through, passes through the foam metal, it has an effect of cleaning the foreign matter, so that the reliability against clogging of the throttle portion is improved.
【0048】また、冷媒に溶け易い冷凍機油を用いる
と、発泡金属に冷凍機油が付着したまま、圧縮機が停止
ていたとしても次回圧縮機が起動した際に、冷媒により
付着した冷凍機油を洗浄することが可能であるため、信
頼性を向上させることができる。If the refrigerating machine oil that is easily dissolved in the refrigerant is used, the refrigerating machine oil adhered by the refrigerant is washed when the compressor is started next time even if the compressor is stopped with the refrigerating machine oil attached to the foam metal. Therefore, reliability can be improved.
【0049】実施の形態2.以下、本発明の実施の形態
2による空気調和装置について説明する。本実施の形態
は、暖房運転に関するもので、空気調和機を構成する冷
媒回路は、例えば実施の形態1での図1と同様であり、
第2流量制御弁6の構成は図3と同様であり、絞り部1
1の詳細な構造は図4と同様である。本実施の形態によ
る空気調和装置の暖房時の動作について説明する。図1
では暖房時の冷媒の流れを破線矢印で示している。通常
の暖房運転は、第2流量制御弁6を図3(a)に示すよ
うに二方弁12の弁体17が開の位置となるよう制御部
が指示する。Embodiment 2. Hereinafter, an air conditioner according to Embodiment 2 of the present invention will be described. The present embodiment relates to heating operation, and the refrigerant circuit forming the air conditioner is the same as, for example, FIG. 1 in the first embodiment,
The structure of the second flow control valve 6 is the same as that of FIG.
The detailed structure of 1 is the same as that of FIG. The operation of the air-conditioning apparatus according to this embodiment during heating will be described. Figure 1
In, the flow of the refrigerant during heating is indicated by the broken line arrow. In the normal heating operation, the control unit instructs the second flow control valve 6 to bring the valve body 17 of the two-way valve 12 to the open position as shown in FIG.
【0050】このとき圧縮機1を出た高温高圧の冷媒蒸
気は、四方弁2を通って第2室内熱交換器7および第1
室内熱交換器5に流入し、室内空気と熱交換して凝縮、
液化する。なお第2流量制御弁6は、図3(a)に示す
ように配管8と配管15とが大きな開口面積で接続され
ているので、この弁を通過する際の冷媒圧力損失はほと
んどなく、圧力損失による暖房能力や効率面での低下も
ない。第1室内熱交換器5を出た高圧の液冷媒は、第1
流量制御弁4で低圧に減圧され、気液二相冷媒となって
室外熱交換器3で室外空気と熱交換して蒸発する。室外
熱交換器3を出た低圧の蒸気冷媒は、四方弁2を通って
再び圧縮機1に戻る。この通常暖房運転時の第1流量制
御弁4の開度は、例えば室外熱交換器3の出口冷媒の過
熱度が5℃となるように制御されている。At this time, the high-temperature high-pressure refrigerant vapor leaving the compressor 1 passes through the four-way valve 2 and the second indoor heat exchanger 7 and the first indoor heat exchanger 7.
It flows into the indoor heat exchanger 5, exchanges heat with the indoor air and condenses,
Liquefy. In the second flow rate control valve 6, since the pipe 8 and the pipe 15 are connected with a large opening area as shown in FIG. 3 (a), there is almost no refrigerant pressure loss when passing through this valve, and the pressure is reduced. There is no loss in heating capacity or efficiency due to loss. The high-pressure liquid refrigerant exiting the first indoor heat exchanger 5 is
It is decompressed to a low pressure by the flow rate control valve 4, becomes a gas-liquid two-phase refrigerant, and exchanges heat with outdoor air in the outdoor heat exchanger 3 to evaporate. The low-pressure vapor refrigerant that has exited the outdoor heat exchanger 3 passes through the four-way valve 2 and returns to the compressor 1 again. The opening degree of the first flow rate control valve 4 during the normal heating operation is controlled so that the superheat degree of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C., for example.
【0051】次に暖房除湿運転時の動作について、図1
に示した英文字と対応させて説明する。この暖房除湿運
転時は、第2流量制御弁6を図3(b)に示すように二
方弁12の弁体17が弁座18に密着する位置となるよ
う制御部が指示する。この時、圧縮機1を出た高温高圧
の冷媒蒸気(A点)は、四方弁2を通って第2室内熱交
換器7流入し、室内空気と熱交換して凝縮する(E
点)。この高圧の液冷媒あるいは気液二相冷媒は、第2
流量制御弁6に流入する。Next, the operation during the heating dehumidifying operation will be described with reference to FIG.
The explanation will be made in correspondence with the English characters shown in. During this heating / dehumidifying operation, the control unit instructs the second flow rate control valve 6 to be in a position where the valve body 17 of the two-way valve 12 is in close contact with the valve seat 18 as shown in FIG. 3B. At this time, the high-temperature and high-pressure refrigerant vapor (point A) exiting the compressor 1 passes through the four-way valve 2 and flows into the second indoor heat exchanger 7, where it is heat-exchanged with indoor air and condensed (E
point). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is
It flows into the flow control valve 6.
【0052】第2流量制御弁6では図3(b)に示すよ
うに二方弁12の弁体17が弁座18に密着しているた
め、配管13を介して絞り部11に流入しオリフィスに
て減圧膨張し、低圧気液二相冷媒となって配管9、配管
8を通って第1室内熱交換器5に流入する(D点)。こ
の第1室内熱交換器5に流入した冷媒の飽和温度は室内
空気の露点温度以下であり、室内空気の顕熱および潜熱
を奪って蒸発する(C点)。第1室内熱交換器5を出た
低圧の気液二相冷媒は、第1流量制御弁4に流入し、さ
らに減圧され室外熱交換器3に流入し、室外空気と熱交
換して蒸発する。室内外熱交換器4を出た低圧の蒸気冷
媒は、四方弁2を通って再び圧縮機1に戻る。In the second flow control valve 6, the valve body 17 of the two-way valve 12 is in close contact with the valve seat 18 as shown in FIG. Then, it is decompressed and expanded to become a low-pressure gas-liquid two-phase refrigerant and flows into the first indoor heat exchanger 5 through the pipes 9 and 8 (point D). The saturation temperature of the refrigerant flowing into the first indoor heat exchanger 5 is equal to or lower than the dew point temperature of the indoor air, and the sensible heat and latent heat of the indoor air are taken to evaporate (point C). The low-pressure gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger 5 flows into the first flow rate control valve 4, is further depressurized, flows into the outdoor heat exchanger 3, and exchanges heat with outdoor air to evaporate. . The low-pressure vapor refrigerant that has exited the indoor / outdoor heat exchanger 4 returns to the compressor 1 through the four-way valve 2.
【0053】この暖房除湿運転では、室内空気は、第2
室内熱交換器7で加熱されるとともに、第1室内熱交換
器5で冷却除湿されるため、部屋を暖房しながら除湿を
行うことができる。また暖房除湿運転では、圧縮機1の
回転周波数や室外熱交換器3のファン回転数を調整し
て、室外熱交換器3の熱交換量を制御し、第1室内熱交
換器5による室内空気の加熱量を制御して吹出し温度を
広範囲に制御できる。また第1流量制御弁4の開度や室
内ファン回転数を調整して、第1室内熱交換器5の蒸発
温度を制御し、第1室内熱交換器5による室内空気の除
湿量を制御することもできる。また第2流量制御弁6の
開度は、例えば第2室内熱交換器7の出口冷媒の過冷却
度が10℃となるように制御されている。In this heating / dehumidifying operation, the room air is
Since the indoor heat exchanger 7 is heated and the first indoor heat exchanger 5 is cooled and dehumidified, it is possible to perform dehumidification while heating the room. In the heating dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3, and the indoor air by the first indoor heat exchanger 5 is controlled. The blowout temperature can be controlled in a wide range by controlling the heating amount. Also, the opening temperature of the first flow control valve 4 and the indoor fan rotation speed are adjusted to control the evaporation temperature of the first indoor heat exchanger 5, and to control the dehumidification amount of the indoor air by the first indoor heat exchanger 5. You can also The opening degree of the second flow rate control valve 6 is controlled so that the degree of supercooling of the outlet refrigerant of the second indoor heat exchanger 7 is 10 ° C, for example.
【0054】このように本実施の形態では、絞り部11
をオリフィス23を発泡金属ではさみこんだ構造とした
第2流量制御弁を用いているため、暖房時の除湿運転が
可能となるとともに、この暖房除湿運転時の冷媒流動音
の発生を防止でき、温湿度環境および騒音面でも快適な
空間が実現できる。Thus, in this embodiment, the diaphragm 11
Since the second flow rate control valve having the structure in which the orifice 23 is sandwiched by the foam metal is used, the dehumidifying operation during heating can be performed, and the generation of the refrigerant flow noise during the heating dehumidifying operation can be prevented, A comfortable space can be realized in terms of temperature and humidity environment and noise.
【0055】次に、この実施の形態の空気調和装置の具
体的な暖房運転制御法の一例について説明する。この空
気調和装置には、実施の形態1で説明したように、設定
温度と設定湿度および吸込み空気温度と湿度が入力され
ている。この空気調和装置は、暖房起動時に高温吹出し
運転運転を所定の時間、たとえば5分間行ない、その後
通常暖房運転に移行する。この後、部屋の温度偏差およ
び湿度偏差に応じて、通常暖房運転と暖房除湿運転を切
換制御される。Next, an example of a specific heating operation control method of the air conditioner of this embodiment will be described. As described in the first embodiment, the set temperature and the set humidity and the intake air temperature and the humidity are input to the air conditioner. This air conditioner performs a high-temperature blowout operation operation for a predetermined time, for example, 5 minutes when the heating is started, and then shifts to the normal heating operation. After that, the normal heating operation and the heating dehumidifying operation are switched and controlled according to the temperature deviation and the humidity deviation of the room.
【0056】暖房運転起動時は、第2流量制御弁6を図
3(b)に示すように二方弁12の弁体17が弁座18
に密着させた絞り状態とし、圧縮機1を起動する。この
時、第1室内熱交換器5での冷却除湿能力がゼロとなる
ように、室外熱交換器3のファン回転数や第1流量制御
弁4の弁開度などを調整して、第1室内熱交換器5の蒸
発温度が、吸込み空気温度と等しくなるように制御す
る。圧縮機起動から所定の時間である5分間が経過する
と、第2流量制御弁6を図3(a)に示すような開状態
とし、通常暖房運転に移行する。When the heating operation is started, the valve body 17 of the two-way valve 12 is moved to the valve seat 18 of the second flow control valve 6 as shown in FIG. 3 (b).
Then, the compressor 1 is started up in a squeezed state in which the compressor 1 is brought into close contact with. At this time, the fan rotation speed of the outdoor heat exchanger 3 and the valve opening degree of the first flow control valve 4 are adjusted so that the cooling / dehumidifying capacity of the first indoor heat exchanger 5 becomes zero, and The evaporation temperature of the indoor heat exchanger 5 is controlled to be equal to the intake air temperature. After a lapse of a predetermined time of 5 minutes from the start of the compressor, the second flow rate control valve 6 is brought into the open state as shown in FIG. 3 (a), and the normal heating operation is started.
【0057】この時、温度偏差がゼロまたは所定の値以
内となるように、圧縮機1の回転周波数や、室内ファン
の回転数、室外ファンの回転数を調整する。この暖房通
常運転により温度偏差がゼロまたは所定の値以内となっ
た場合は、湿度偏差を検出し、この湿度偏差がゼロまた
は所定の値以内の場合、および湿度偏差が所定の値以上
であっても、加湿を必要とする場合には、通常暖房運転
を継続する。一方、湿度偏差がゼロまたは所定の値以上
であり、除湿を必要とする場合には、第2流量制御弁6
を図3(b)に示すような絞り状態とし、暖房除湿運転
を行なう。At this time, the rotation frequency of the compressor 1, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation is zero or within a predetermined value. If the temperature deviation is zero or within a predetermined value due to this heating normal operation, the humidity deviation is detected.If the humidity deviation is zero or within a predetermined value, and if the humidity deviation is equal to or more than a predetermined value. Also, when humidification is required, the normal heating operation is continued. On the other hand, when the humidity deviation is zero or more than a predetermined value and dehumidification is required, the second flow control valve 6
Is set to the throttle state as shown in FIG. 3B, and the heating dehumidifying operation is performed.
【0058】この暖房除湿運転では、室内の温度偏差が
ゼロまたは所定の値以内を維持できるように、第2室内
熱交換器7の加熱量を制御するとともに、湿度偏差がゼ
ロまたは所定の値以内に入るように、第1室内熱交換器
5の冷却除湿量を制御する。第2室内熱交換器7の加熱
量の制御には、圧縮機1の回転周波数や室内ユニット2
2のファン回転数などによって制御する。また第1室内
熱交換器5の冷却除湿量の制御には、室外熱交換器3の
ファン回転数や第1流量制御弁4の開度などによって調
整する。In this heating / dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained within zero or within a predetermined value, and the humidity deviation is within zero or within a predetermined value. The cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled so as to enter. To control the heating amount of the second indoor heat exchanger 7, the rotation frequency of the compressor 1 and the indoor unit 2 are controlled.
It is controlled by the fan rotation speed of 2. Further, the cooling and dehumidifying amount of the first indoor heat exchanger 5 is controlled by adjusting the fan speed of the outdoor heat exchanger 3, the opening degree of the first flow control valve 4, and the like.
【0059】このようにこの実施の形態では、暖房運転
時の運転時間や部屋の負荷に応じて、冷媒回路を暖房高
温吹出し運転や通常暖房運転、暖房除湿運転に切換える
ことにより、部屋内の温湿度環境を、居住者の好みに応
じて最適な状態に制御することができる。As described above, in this embodiment, the temperature in the room is changed by switching the refrigerant circuit to the heating high temperature blowing operation, the normal heating operation, or the heating dehumidifying operation according to the operating time during the heating operation and the load on the room. The humidity environment can be controlled to an optimum condition according to the occupants' preference.
【0060】実施の形態3.図10はこの発明の実施の
形態の他の例を示す空気調和装置の第2流量制御装置6
の絞り部11の断面詳細図であり、図4に示したものと
同一または同様の構成部品には同一符号を付して、その
重複する説明を省略する。この実施の形態では、入口消
音空間19内部の周囲に凸状ブロック28を設けてい
る。Embodiment 3. FIG. 10 shows a second flow rate control device 6 of an air conditioner showing another example of the embodiment of the present invention.
5 is a detailed cross-sectional view of the throttle unit 11, in which the same or similar components as those shown in FIG. 4 are designated by the same reference numerals, and the duplicate description thereof will be omitted. In this embodiment, a convex block 28 is provided around the inside of the entrance silencing space 19.
【0061】図4に示した実施の形態のように入口消音
空間19のように成形するよりも、本実施の形態で示し
たように凸状ブロック28を入口消音空間に形成する方
が冷媒の流れによどみ部分が凸状ブロック28の前後に
形成され、冷凍サイクル内を流動している異物が前記よ
どみ部分に停留させることができ、入口側発泡金属20
に付着することを防止することが可能となり、空気調和
装置の信頼性をより向上させることができる。本実施の
形態ではよどみ部を形成するために凸状ブロックの場合
について説明したがこれに限ることなく、例えば凹状の
溝などであっても良く、流れによどみを形成させるもの
であれば良い。As shown in the present embodiment, the convex block 28 is formed in the inlet silencing space rather than the inlet silencing space 19 as in the embodiment shown in FIG. A stagnation portion is formed before and after the convex block 28 due to the flow, and foreign matter flowing in the refrigeration cycle can be retained at the stagnation portion, and the inlet side foam metal 20
Can be prevented from adhering to the air conditioner, and the reliability of the air conditioner can be further improved. In the present embodiment, the case of the convex block for forming the stagnation portion has been described, but the present invention is not limited to this, and may be, for example, a concave groove or the like as long as the stagnation is formed by the flow.
【0062】実施の形態4.図11はこの発明の実施の
形態の他の例を示す空気調和装置の第2流量制御装置6
の絞り部11の断面詳細図であり、図4に示したものと
同一または同様の構成部品には同一符号を付して、その
重複する説明を省略する。この実施の形態では、入口消
音空間19と出口消音空間27内部の金網で形成される
ストレーナー29を設置している。ストレーナの平均気
孔径は入口側発泡金属20と出口側発泡金属25の平均
気孔径500マイクロメートルよりも小さいものを設置
している。Fourth Embodiment FIG. 11 shows a second flow rate control device 6 of an air conditioner showing another example of the embodiment of the present invention.
5 is a detailed cross-sectional view of the throttle unit 11, in which the same or similar components as those shown in FIG. 4 are designated by the same reference numerals, and the duplicate description thereof will be omitted. In this embodiment, a strainer 29 formed of a wire net inside the entrance silencing space 19 and the exit silencing space 27 is installed. The strainer has an average pore diameter smaller than the average pore diameter of the inlet foam metal 20 and the outlet foam metal 25 of 500 micrometers.
【0063】図10に示した実施の形態3のように入口
消音空間に凸状ブロック28を設けるよりも、本実施の
形態で示したように入口消音空間に金網のストレーナ2
9を設置する方がより確実に冷媒サイクル内異物の入口
側発泡金属20への付着を防止することができるため、
信頼性がさらに向上した第2流量制御装置を得ることが
でき、信頼性が高い空気調和装置が実現される。Rather than providing the convex block 28 in the entrance silencing space as in the third embodiment shown in FIG. 10, the wire mesh strainer 2 in the entrance silencing space as shown in this embodiment.
It is possible to more reliably prevent foreign matter in the refrigerant cycle from adhering to the inlet-side foam metal 20 by installing 9.
It is possible to obtain the second flow rate control device with further improved reliability, and an air conditioner with high reliability is realized.
【0064】また、実施の形態1から形態4では、空気
調和装置の冷媒としてR410Aを用いた場合について
説明した。R410AはHFC系冷媒であり、オゾン層
を破壊しない地球環境保全に適した冷媒であるととも
に、従来冷媒として用いられてきたR22に比べて、冷
媒蒸気密度が大きく冷媒の流速が遅くなるため圧力損失
が小さく、第2流量制御装置6の絞り部に用いる多孔体
の通気孔の径を小さくでき、より一層冷媒流動音低減効
果を得ることができる冷媒である。Further, in Embodiments 1 to 4, the case where R410A is used as the refrigerant of the air conditioner has been described. R410A is an HFC-based refrigerant that is suitable for global environmental protection that does not destroy the ozone layer, and has a higher refrigerant vapor density and a lower refrigerant flow rate than R22 that has been used as a conventional refrigerant, resulting in a pressure loss. Is small, the diameter of the vent hole of the porous body used for the throttle portion of the second flow rate control device 6 can be made small, and the refrigerant flow noise reducing effect can be further obtained.
【0065】さらに、この空気調和装置の冷媒として
は、R410Aに限ることはなく、HFC系冷媒である
R407CやR404A、R507Aであっても良い。
また、地球温暖化防止の観点から、地球温暖化系数の小
さなHFC系冷媒であるR32単独、R152a単独あ
るいはR32/R134aなどの混合冷媒であっても良
い。また、プロパンやブタン、イソブタンなどのHC系
冷媒やアンモニア、二酸化炭素、エーテルなどの自然系
冷媒およびそれらの混合冷媒であっても良い。特に、プ
ロパンやブタン、イソブタンおよびそれらの混合冷媒は
R410Aに比べ動作圧力が小さく、凝縮圧力と蒸発圧
力の圧力差が小さいため、オリフィスの内径を大きくす
ることが可能であり、詰まりに対する信頼性がさらに向
上させることができる。Furthermore, the refrigerant of this air conditioner is not limited to R410A, but may be R407C, R404A, R507A which are HFC refrigerants.
Further, from the viewpoint of preventing global warming, R32 alone, R152a alone or a mixed refrigerant such as R32 / R134a, which are HFC refrigerants having a small global warming coefficient, may be used. Further, HC-based refrigerants such as propane, butane, and isobutane, natural refrigerants such as ammonia, carbon dioxide, ether, and mixed refrigerants thereof may be used. In particular, propane, butane, isobutane, and their mixed refrigerants have a lower operating pressure than R410A and a small pressure difference between the condensing pressure and the evaporating pressure. Therefore, it is possible to increase the inner diameter of the orifice and improve the reliability against clogging. It can be further improved.
【0066】なお、上記は第2流量制御装置を構成する
絞り部と二方弁の組合せで説明をしてきたが、二方弁に
限定することはなく、多方弁の例えば三方弁を使用した
第2流量制御装置でも良く、同様の効果を得ることがで
きる。この場合の三方弁の使用方法として、前記絞り部
と並列に接続する流路以外に分流した流路が第2室内熱
交換器の出口側配管へ接続された冷媒回路を持ち、空調
負荷条件により除湿能力を低減する手段として冷媒をバ
イパスさせることも可能となる。In the above description, the combination of the throttle portion and the two-way valve which constitutes the second flow rate control device has been described, but the invention is not limited to the two-way valve, and a multi-way valve such as a three-way valve is used. A two-flow rate control device may be used, and the same effect can be obtained. As a method of using the three-way valve in this case, in addition to the flow passage connected in parallel with the throttle portion, the divided flow passage has a refrigerant circuit connected to the outlet side pipe of the second indoor heat exchanger, and depending on the air conditioning load condition. It is also possible to bypass the refrigerant as a means of reducing the dehumidifying capacity.
【0067】[0067]
【発明の効果】本発明の空気調和装置は、圧縮機、室外
熱交換器、第1流量制御装置、第1室内熱交換器、第2
流量制御装置、第2室内熱交換器を接続した冷凍サイク
ルを備えた空気調和装置において、前記第2流量制御装
置は冷媒の流れ方向に連通する多孔質透過材を絞り部の
上流および下流に有し、前記絞り部と多孔質透過材の間
に空間を設け、設定温度と現在の室内空気温度との温度
偏差または設定湿度と現在の室内空気湿度との湿度偏差
が所定値以内となるように制御するので、冷媒流動音を
効果的に低減しながら快適な室内空間の温湿度調整がで
きる効果が得られる。The air conditioner of the present invention comprises a compressor, an outdoor heat exchanger, a first flow rate control device, a first indoor heat exchanger, and a second indoor heat exchanger.
In an air conditioner equipped with a flow control device and a refrigeration cycle in which a second indoor heat exchanger is connected, the second flow control device has a porous permeable material communicating in the flow direction of the refrigerant upstream and downstream of the throttle portion. However, a space is provided between the throttle portion and the porous permeable material so that the temperature deviation between the set temperature and the current room air temperature or the humidity deviation between the set humidity and the current room air humidity is within a predetermined value. Since the control is performed, the temperature and humidity of the comfortable indoor space can be adjusted while effectively reducing the refrigerant flow noise.
【0068】また、圧縮機の回転周波数、室外熱交換器
に付設された室外ファンの回転数、室内熱交換器に付設
された室内ファンの回転数、第1流量制御装置の絞り弁
開度、および第2流量制御装置の弁開閉のうち少なくと
も1つを制御するようにしたので、設定の温湿度に短時
間で調整することができる効果が得られる。The rotation frequency of the compressor, the rotation speed of the outdoor fan attached to the outdoor heat exchanger, the rotation speed of the indoor fan attached to the indoor heat exchanger, the throttle valve opening of the first flow control device, Since at least one of the valve opening and closing of the second flow rate control device is controlled, it is possible to obtain the effect of being able to adjust the set temperature and humidity in a short time.
【0069】また、温度偏差および湿度偏差を所定値以
内に制御する際、温度偏差を前記湿度偏差よりも優先し
て行うので、室内空間の温度制御性が向上し快適性が向
上する効果がある。Further, when controlling the temperature deviation and the humidity deviation within the predetermined values, the temperature deviation is prioritized over the humidity deviation, so that the temperature controllability of the indoor space is improved and the comfort is improved. .
【0070】また、空気調和装置起動時に、温度偏差お
よび湿度偏差がともに所定値よりも大きい場合、第2流
量制御装置の絞り部へ冷媒を流通させないように制御す
るので、室内空間の速冷性を高めた快適な冷房ができる
効果がある。Further, when both the temperature deviation and the humidity deviation are larger than the predetermined values when the air conditioner is started, the refrigerant is controlled so as not to flow to the throttle portion of the second flow rate control device, so that the rapid cooling property of the indoor space is achieved. There is an effect that can improve the comfortable cooling.
【0071】また、温度偏差および湿度偏差が所定値以
内となっている場合に現在の運転を継続するように制御
したので、快適な室内空間を維持することができる効果
がある。Further, since the current operation is controlled to continue when the temperature deviation and the humidity deviation are within the predetermined values, there is an effect that a comfortable indoor space can be maintained.
【0072】また、温度偏差が所定値以内の時、湿度偏
差が所定値より大きくなっている場合に、第2流量制御
装置の絞り部へ冷媒を流通させるように制御したので、
室内空間の温度を維持し、湿度のみ調整することができ
る効果がある。Further, when the temperature deviation is within the predetermined value and the humidity deviation is larger than the predetermined value, the refrigerant is controlled to flow to the throttle portion of the second flow rate control device.
There is an effect that the temperature of the indoor space can be maintained and only the humidity can be adjusted.
【0073】また、室外ファンの回転数または第1流量
制御装置の弁開度を調整して第1室内熱交換器の加熱量
を制御するとともに、圧縮機の回転周波数と室内ファン
の回転数を調整して第2室内熱交換器の冷却除湿量を制
御するので、冷房運転時に温湿度好適に制御することが
できる効果がある。Further, the rotation amount of the outdoor fan or the valve opening degree of the first flow rate control device is adjusted to control the heating amount of the first indoor heat exchanger, and the rotation frequency of the compressor and the rotation number of the indoor fan are adjusted. Since the cooling and dehumidifying amount of the second indoor heat exchanger is adjusted to control, the temperature and humidity can be controlled appropriately during the cooling operation.
【0074】また、暖房運転起動時、第2流量制御装置
の絞り部へ冷媒を流通させるように制御したので、低騒
音で暖房しながら除湿ができる効果が得られる。Further, when the heating operation is started, the refrigerant is controlled so as to flow to the throttle portion of the second flow rate control device, so that the effect of dehumidifying while heating can be obtained with low noise.
【0075】また、第1室内熱交換器の冷却除湿能力が
ゼロとなるように、室外ファンの回転数および第1流量
制御装置の弁開度を調整して、第1室内熱交換器の蒸発
温度が室内空気温度と等しくなるように制御したので、
吹出温度を高温にして速暖感を高めた快適な暖房ができ
る効果が得られる。Further, the rotation speed of the outdoor fan and the valve opening degree of the first flow rate control device are adjusted so that the cooling / dehumidifying capacity of the first indoor heat exchanger is zero, and the evaporation of the first indoor heat exchanger is performed. Since the temperature was controlled to be equal to the indoor air temperature,
The effect is obtained that the air temperature is raised to a high level and the heating feeling is enhanced to provide comfortable heating.
【0076】また、圧縮機起動から所定時間が経過する
と、第2流量制御装置の絞り部へ冷媒を流通させないよ
うに制御するので、空気調和装置が安定して暖房能力を
発揮できるため、快適な暖房ができる効果がある。Further, after a lapse of a predetermined time from the start-up of the compressor, the refrigerant is controlled so as not to flow to the throttle portion of the second flow rate control device, so that the air conditioner can stably exhibit the heating capacity, which is comfortable. It has the effect of heating.
【0077】また、温度偏差が所定値以内となるよう
に、圧縮機の回転数、室内ファンの回転数および室外フ
ァンの回転数を調整するので、短時間で快適な暖房空間
を得ることができる効果がある。Further, since the rotation speed of the compressor, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation is within a predetermined value, a comfortable heating space can be obtained in a short time. effective.
【0078】また、湿度偏差が所定値以上の場合、第2
流量制御装置の絞り部へ冷媒を流通させるように制御す
るので、暖房運転中に除湿運転ができる効果が得られ
る。If the humidity deviation exceeds a predetermined value, the second
Since the refrigerant is controlled to flow through the throttle portion of the flow rate control device, the dehumidifying operation can be performed during the heating operation.
【図1】 本発明の実施の形態1による空気調和装置の
冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment of the present invention.
【図2】 本発明の実施の形態1に係わる絞り装置の構
成図である。FIG. 2 is a configuration diagram of a diaphragm device according to the first embodiment of the present invention.
【図3】 本発明の実施の形態1に係わる絞り装置の動
作を表す構成断面図である。FIG. 3 is a configuration cross-sectional view showing an operation of the diaphragm device according to the first embodiment of the present invention.
【図4】 本発明の実施の形態1に係わる絞り部の拡大
詳細図である。FIG. 4 is an enlarged detailed view of a diaphragm unit according to the first embodiment of the present invention.
【図5】 本発明の実施の形態1に係わる多孔質透過材
の拡大図である。FIG. 5 is an enlarged view of the porous permeable material according to the first embodiment of the present invention.
【図6】 本発明の実施の形態1に係わり冷房除湿運転
時の動作状態を表す圧力―エンタルピー線図である。FIG. 6 is a pressure-enthalpy diagram showing an operating state during the cooling / dehumidifying operation according to the first embodiment of the present invention.
【図7】 本発明の実施の形態1に係わり空気調和機に
組み込まれた制御装置全体のブロック構成図である。FIG. 7 is a block configuration diagram of an entire control device incorporated in the air conditioner according to the first embodiment of the present invention.
【図8】 本発明の実施の形態1に係わり絞り部入口の
冷媒の流動様式図である。FIG. 8 is a flow pattern diagram of the refrigerant at the inlet of the throttle unit according to the first embodiment of the present invention.
【図9】 本発明の実施の形態1に係わる絞り装置の騒
音特性を示す図である。FIG. 9 is a diagram showing noise characteristics of the diaphragm device according to the first embodiment of the present invention.
【図10】 本発明の実施の形態3に係わり絞り装置の
その他の形態を表す拡大詳細図である。FIG. 10 is an enlarged detailed view showing another form of the diaphragm device according to the third embodiment of the present invention.
【図11】 本発明の実施の形態4に係わり絞り装置の
その他の形態を表す拡大詳細図である。FIG. 11 is an enlarged detailed view showing another mode of the diaphragm device according to the fourth embodiment of the present invention.
【図12】 本発明の実施の形態1に係わり絞り装置の
その他の形態を表す多孔質透過材の拡大図である。FIG. 12 is an enlarged view of a porous permeable material showing another form of the diaphragm device according to the first embodiment of the present invention.
【図13】 本発明の実施の形態1に係わり絞り装置の
その他の形態を表す多孔質透過材の拡大図である。FIG. 13 is an enlarged view of a porous permeable material showing another form of the diaphragm device according to the first embodiment of the present invention.
【図14】 従来の空気調和装置を示す冷媒回路図であ
る。FIG. 14 is a refrigerant circuit diagram showing a conventional air conditioner.
【図15】 従来の絞り装置の構成断面図である。FIG. 15 is a cross-sectional view of a configuration of a conventional diaphragm device.
【図16】 従来の絞り装置のその他の例を示す構成断
面図である。FIG. 16 is a sectional view showing the configuration of another example of a conventional diaphragm device.
【図17】 従来の絞り装置のその他の例を示す構成断
面図である。FIG. 17 is a configuration cross-sectional view showing another example of the conventional diaphragm device.
【図18】 図17の絞り装置の消音部断面図である。18 is a cross-sectional view of a sound deadening part of the diaphragm device in FIG.
1 圧縮機、2 四方弁、3 室外熱交換器、4 第1
流量制御装置、5 第1室内熱交換器、6 第2流量制
御装置、7 第2室内熱交換器、8,9,10配管、1
1 絞り部、12 二方弁、13,14,15 配管、
16 電磁コイル、17 弁体、18 弁座、19 入
口消音空間、20 入口側発泡金属、21 入口側発泡
金属に設けられたバイパス流路 22 入口側発泡金属
とオリフィスの間の空間、23 オリフィス、24 出
口側発泡金属とオリフィスの間の空間、25 出口側発
泡金属、26 出口側発泡金属に設けられたバイパス流
路、27 出口消音空間、28 凸状ブロック、29
金網、30 ステッピングモータ 31 溝状の切り込
み、32 多孔体、33 室外ユニット、34室内ユニ
ット、36 消音器、37 ハニカムパイプ、38a,
38b 円筒管、39 細径管、40 室外ファン、4
1 室内ファン、42 制御装置、43コントローラ。1 compressor, 2 4-way valve, 3 outdoor heat exchanger, 4 1st
Flow control device, 5 1st indoor heat exchanger, 6 2nd flow control device, 7 2nd indoor heat exchanger, 8, 9, 10 piping, 1
1 throttle, 12 two-way valve, 13, 14, 15 piping,
16 electromagnetic coil, 17 valve body, 18 valve seat, 19 inlet silencing space, 20 inlet side foam metal, 21 bypass flow passage provided in inlet side foam metal 22 space between inlet side foam metal and orifice, 23 orifice, 24 space between outlet side foam metal and orifice, 25 outlet side foam metal, 26 bypass flow path provided in outlet side foam metal, 27 outlet silencing space, 28 convex block, 29
Wire mesh, 30 stepping motor 31, groove notch, 32 porous body, 33 outdoor unit, 34 indoor unit, 36 silencer, 37 honeycomb pipe, 38a,
38b cylindrical tube, 39 small diameter tube, 40 outdoor fan, 4
1 indoor fan, 42 control device, 43 controller.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 浩招 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 望月 厚志 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 Fターム(参考) 3L060 AA05 CC02 CC07 DD02 EE04 EE05 EE06 EE09 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroyuki Makino 2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Ryo Electric Co., Ltd. (72) Inventor Atsushi Mochizuki 2-6-2 Otemachi 2-chome, Chiyoda-ku, Tokyo Ryoden Engineering Co., Ltd. F-term (reference) 3L060 AA05 CC02 CC07 DD02 EE04 EE05 EE06 EE09
Claims (12)
置、第1室内熱交換器、第2流量制御装置、第2室内熱
交換器を接続した冷凍サイクルを備えた空気調和装置に
おいて、前記第2流量制御装置は冷媒の流れ方向に連通
する多孔質透過材を絞り部の上流および下流に有し、前
記絞り部と多孔質透過材の間に空間を設け、設定温度と
現在の室内空気温度との温度偏差または設定湿度と現在
の室内空気湿度との湿度偏差が所定値以内となるように
制御することを特徴とする空気調和装置。1. An air conditioner comprising a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow rate control device, a first indoor heat exchanger, a second flow rate control device, and a second indoor heat exchanger are connected. The second flow rate control device has a porous permeable material that communicates with the flow direction of the refrigerant at upstream and downstream of the throttle portion, and provides a space between the throttle portion and the porous permeable material to set a preset temperature and a current value. An air conditioner, which is controlled so that a temperature deviation from an indoor air temperature or a humidity deviation between a set humidity and a current indoor air humidity is within a predetermined value.
換器に付設された室外ファンの回転数、前記室内熱交換
器に付設された室内ファンの回転数、前記第1流量制御
装置の絞り弁開度、および前記第2流量制御装置の弁開
閉のうち少なくとも1つを制御するようにしたことを特
徴とする請求項1記載の空気調和装置。2. The rotation frequency of the compressor, the rotation speed of an outdoor fan attached to the outdoor heat exchanger, the rotation speed of an indoor fan attached to the indoor heat exchanger, and a throttle of the first flow control device. The air conditioner according to claim 1, wherein at least one of a valve opening degree and a valve opening / closing of the second flow rate control device is controlled.
内に制御する際、前記温度偏差を前記湿度偏差よりも優
先して行うことを特徴とする請求項1記載の空気調和装
置。3. The air conditioner according to claim 1, wherein when the temperature deviation and the humidity deviation are controlled within a predetermined value, the temperature deviation is given priority over the humidity deviation.
よび湿度偏差がともに所定値よりも大きい場合、第2流
量制御装置の絞り部へ冷媒を流通させないように制御し
たことを特徴とする請求項1乃至請求項3のいずれかに
記載の空気調和装置。4. When the air conditioner is started up, when both the temperature deviation and the humidity deviation are larger than a predetermined value, the refrigerant is controlled so as not to flow to the throttle portion of the second flow control device. The air conditioner according to any one of claims 1 to 3.
内となっている場合に現在の運転を継続するように制御
したことを特徴とする請求項1乃至請求項3のいずれか
に記載の空気調和装置。5. The air according to claim 1, wherein the current operation is controlled to continue when the temperature deviation and the humidity deviation are within predetermined values. Harmony device.
度偏差が所定値より大きくなっている場合に、前記第2
流量制御装置の絞り部へ冷媒を流通させるように制御し
たことを特徴とする請求項1乃至請求項3のいずれかに
記載の空気調和装置。6. When the temperature deviation is within a predetermined value and the humidity deviation is larger than a predetermined value, the second
The air conditioner according to any one of claims 1 to 3, wherein the refrigerant is controlled so as to flow through the throttle portion of the flow rate control device.
流量制御装置の弁開度を調整して前記第1室内熱交換器
の加熱量を制御するとともに、前記圧縮機の回転周波数
と前記室内ファンの回転数を調整して前記第2室内熱交
換器の冷却除湿量を制御することを特徴とする請求項1
乃至請求項3のいずれかに記載の空気調和装置。7. The rotation speed of the outdoor fan or the first
The second indoor heat exchanger is adjusted by adjusting the valve opening of the flow control device to control the heating amount of the first indoor heat exchanger, and adjusting the rotation frequency of the compressor and the rotation speed of the indoor fan. 2. The cooling and dehumidifying amount of the water is controlled.
The air conditioner according to claim 3.
の絞り部へ冷媒を流通させるように制御したことを特徴
とする請求項1乃至請求項3のいずれかに記載の空位調
和装置。8. The air conditioner according to claim 1, wherein when the heating operation is started, the refrigerant is controlled so as to flow through the throttle portion of the second flow rate control device.
ゼロとなるように、前記室外ファンの回転数および前記
第1流量制御装置の弁開度を調整して、前記第1室内熱
交換器の蒸発温度が室内空気温度と等しくなるように制
御したことを特徴とする請求項8記載の空気調和装置。9. The first indoor heat is adjusted by adjusting the rotation speed of the outdoor fan and the valve opening degree of the first flow rate control device so that the cooling / dehumidifying capacity of the first indoor heat exchanger becomes zero. The air conditioner according to claim 8, wherein the evaporation temperature of the exchanger is controlled to be equal to the room air temperature.
と、前記第2流量制御装置の絞り部へ冷媒を流通させな
いように制御することを特徴とする請求項1乃至請求項
3のいずれかに記載の空気調和装置。10. The control according to claim 1, wherein when a predetermined time has elapsed from the start of the compressor, the refrigerant is controlled so as not to flow to the throttle portion of the second flow rate control device. Air conditioner.
に、前記圧縮機の回転数、前記室内ファンの回転数およ
び前記室外ファンの回転数を調整したことを特徴とする
請求項9または請求項10記載の空気調和装置。11. The rotation speed of the compressor, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation is within a predetermined value. Item 10. The air conditioner according to Item 10.
記第2流量制御装置の絞り部へ冷媒を流通させるように
制御したことを特徴とする請求項10記載の空気調和装
置。12. The air conditioner according to claim 10, wherein when the humidity deviation is equal to or larger than a predetermined value, the refrigerant is controlled to flow through the throttle portion of the second flow rate control device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003017008A JP3901103B2 (en) | 2003-01-27 | 2003-01-27 | Air conditioner |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003017008A JP3901103B2 (en) | 2003-01-27 | 2003-01-27 | Air conditioner |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000127928A Division JP3412602B2 (en) | 2000-04-27 | 2000-04-27 | Refrigeration cycle device and air conditioner |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003232584A true JP2003232584A (en) | 2003-08-22 |
| JP3901103B2 JP3901103B2 (en) | 2007-04-04 |
Family
ID=27785739
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003017008A Expired - Lifetime JP3901103B2 (en) | 2003-01-27 | 2003-01-27 | Air conditioner |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3901103B2 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006275452A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | Expansion valve |
| US7278475B2 (en) * | 2003-11-28 | 2007-10-09 | Rolls-Royce Plc | Control arrangement for cooling power electronic components |
| JP2010230184A (en) * | 2009-03-26 | 2010-10-14 | Orion Mach Co Ltd | Temperature and humidity control device |
| CN101443608B (en) * | 2005-07-28 | 2011-04-13 | 开利公司 | Closed Loop Dehumidification Circuits for Refrigerant Systems |
| JP2015014388A (en) * | 2013-07-03 | 2015-01-22 | 株式会社テージーケー | Filter |
| JP2017172830A (en) * | 2016-03-22 | 2017-09-28 | 三菱電機株式会社 | Air conditioner |
| WO2019024301A1 (en) * | 2017-08-03 | 2019-02-07 | 海尔集团公司 | Control method and device for self-cleaning of air conditioner |
| JP2020026944A (en) * | 2019-06-17 | 2020-02-20 | 三菱電機株式会社 | Air conditioning device |
| CN112146216A (en) * | 2020-11-02 | 2020-12-29 | 山西臣功新能源科技有限公司 | Air conditioning system with independent temperature and humidity and control method thereof |
| CN114857666A (en) * | 2022-05-31 | 2022-08-05 | 青岛海信日立空调系统有限公司 | Multi-connected air conditioner |
| JP2022122743A (en) * | 2021-02-10 | 2022-08-23 | 株式会社日立製作所 | Railroad car air conditioner |
| CN114992899A (en) * | 2022-06-10 | 2022-09-02 | 海信空调有限公司 | Air conditioner and oil blockage prevention control method thereof |
| JP2022156313A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | air conditioner |
| CN115479354A (en) * | 2022-10-18 | 2022-12-16 | 珠海格力电器股份有限公司 | Air conditioner control method and device, air conditioner and storage medium |
| CN116557952A (en) * | 2022-01-28 | 2023-08-08 | 青岛海尔空调器有限总公司 | Air conditioner and manufacturing method thereof |
| JP2024039243A (en) * | 2022-09-09 | 2024-03-22 | 株式会社鷺宮製作所 | electric valve |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57116042U (en) * | 1981-01-13 | 1982-07-19 | ||
| JPH06241534A (en) * | 1993-02-12 | 1994-08-30 | Mitsubishi Heavy Ind Ltd | Air conditioner |
| JPH07146032A (en) * | 1993-11-26 | 1995-06-06 | Matsushita Seiko Co Ltd | Expansion valve |
| JPH0914729A (en) * | 1995-06-28 | 1997-01-17 | Toshiba Corp | Air conditioner |
| JPH09145196A (en) * | 1995-11-22 | 1997-06-06 | Hitachi Ltd | Air conditioner operation control method |
| JPH11304285A (en) * | 1998-04-17 | 1999-11-05 | Hitachi Ltd | Air conditioner |
-
2003
- 2003-01-27 JP JP2003017008A patent/JP3901103B2/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57116042U (en) * | 1981-01-13 | 1982-07-19 | ||
| JPH06241534A (en) * | 1993-02-12 | 1994-08-30 | Mitsubishi Heavy Ind Ltd | Air conditioner |
| JPH07146032A (en) * | 1993-11-26 | 1995-06-06 | Matsushita Seiko Co Ltd | Expansion valve |
| JPH0914729A (en) * | 1995-06-28 | 1997-01-17 | Toshiba Corp | Air conditioner |
| JPH09145196A (en) * | 1995-11-22 | 1997-06-06 | Hitachi Ltd | Air conditioner operation control method |
| JPH11304285A (en) * | 1998-04-17 | 1999-11-05 | Hitachi Ltd | Air conditioner |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7278475B2 (en) * | 2003-11-28 | 2007-10-09 | Rolls-Royce Plc | Control arrangement for cooling power electronic components |
| JP2006275452A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | Expansion valve |
| CN101443608B (en) * | 2005-07-28 | 2011-04-13 | 开利公司 | Closed Loop Dehumidification Circuits for Refrigerant Systems |
| JP2010230184A (en) * | 2009-03-26 | 2010-10-14 | Orion Mach Co Ltd | Temperature and humidity control device |
| JP2015014388A (en) * | 2013-07-03 | 2015-01-22 | 株式会社テージーケー | Filter |
| WO2017163445A1 (en) * | 2016-03-22 | 2017-09-28 | 三菱電機株式会社 | Air-conditioning device |
| JP2017172830A (en) * | 2016-03-22 | 2017-09-28 | 三菱電機株式会社 | Air conditioner |
| WO2019024301A1 (en) * | 2017-08-03 | 2019-02-07 | 海尔集团公司 | Control method and device for self-cleaning of air conditioner |
| JP2020026944A (en) * | 2019-06-17 | 2020-02-20 | 三菱電機株式会社 | Air conditioning device |
| CN112146216A (en) * | 2020-11-02 | 2020-12-29 | 山西臣功新能源科技有限公司 | Air conditioning system with independent temperature and humidity and control method thereof |
| JP2022122743A (en) * | 2021-02-10 | 2022-08-23 | 株式会社日立製作所 | Railroad car air conditioner |
| JP7516285B2 (en) | 2021-02-10 | 2024-07-16 | 株式会社日立製作所 | Air conditioning equipment for railway vehicles |
| JP7712528B2 (en) | 2021-03-31 | 2025-07-24 | ダイキン工業株式会社 | Air conditioners |
| JP2022156313A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | air conditioner |
| CN116557952A (en) * | 2022-01-28 | 2023-08-08 | 青岛海尔空调器有限总公司 | Air conditioner and manufacturing method thereof |
| CN114857666A (en) * | 2022-05-31 | 2022-08-05 | 青岛海信日立空调系统有限公司 | Multi-connected air conditioner |
| CN114857666B (en) * | 2022-05-31 | 2023-08-01 | 青岛海信日立空调系统有限公司 | Multi-connected air conditioner |
| CN114992899B (en) * | 2022-06-10 | 2023-06-16 | 海信空调有限公司 | Air conditioner and oil blocking prevention control method thereof |
| CN114992899A (en) * | 2022-06-10 | 2022-09-02 | 海信空调有限公司 | Air conditioner and oil blockage prevention control method thereof |
| JP2024039243A (en) * | 2022-09-09 | 2024-03-22 | 株式会社鷺宮製作所 | electric valve |
| CN115479354B (en) * | 2022-10-18 | 2024-05-28 | 珠海格力电器股份有限公司 | Air conditioner control method and device, air conditioner and storage medium |
| CN115479354A (en) * | 2022-10-18 | 2022-12-16 | 珠海格力电器股份有限公司 | Air conditioner control method and device, air conditioner and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3901103B2 (en) | 2007-04-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7225630B2 (en) | Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller | |
| JP5665981B2 (en) | Air conditioner | |
| JP3901103B2 (en) | Air conditioner | |
| JP3428516B2 (en) | Aperture device | |
| JP2002089988A (en) | Air conditioner, operation method of air conditioner | |
| JP4103363B2 (en) | Flow control device, refrigeration cycle device, and air conditioner | |
| JP3870768B2 (en) | Air conditioner and method of operating air conditioner | |
| JP3817981B2 (en) | Refrigeration cycle apparatus and air conditioner | |
| JP2000346493A5 (en) | ||
| JP2000346493A (en) | Throttling device, refrigeration cycle device and air conditioner | |
| JP4221922B2 (en) | Flow control device, throttle device, and air conditioner | |
| JP3412602B2 (en) | Refrigeration cycle device and air conditioner | |
| JP2008261626A (en) | Flow control device, throttle device, and air conditioner | |
| JP3417351B2 (en) | Aperture device | |
| WO2013061365A1 (en) | Air conditioning device | |
| JP4151236B2 (en) | Flow control device and air conditioner | |
| JP2003294339A (en) | Aperture device | |
| CN100436972C (en) | Flow rate control device and air conditioning device | |
| AU2004202567B2 (en) | Refrigerating cycle apparatus | |
| HK1099659B (en) | A flow controller and an air conditioning apparatus | |
| HK1099659A1 (en) | A flow controller and an air conditioning apparatus | |
| HK1099658B (en) | A refrigerating cycle apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040629 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060403 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061108 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061225 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 3901103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |