JP2003234254A - Electric double-layer capacitor using carbon nanotubes - Google Patents
Electric double-layer capacitor using carbon nanotubesInfo
- Publication number
- JP2003234254A JP2003234254A JP2002031148A JP2002031148A JP2003234254A JP 2003234254 A JP2003234254 A JP 2003234254A JP 2002031148 A JP2002031148 A JP 2002031148A JP 2002031148 A JP2002031148 A JP 2002031148A JP 2003234254 A JP2003234254 A JP 2003234254A
- Authority
- JP
- Japan
- Prior art keywords
- brush
- carbon nanotube
- electric double
- electrode
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
(57)【要約】
【課題】 小型で大容量を蓄電できる電気二重層キャパ
シタを提供する。
【解決手段】 電解液を含浸させた一対の分極性電極1,
2 を容器内に対向状に配置した。各分極性電極を、集
電体となる基板3, 4 とその片面に成長させたブラシ状
カーボンナノチューブ5, 6 とから構成した。一方の電
極のブラシ状カーボンナノチューブと他方の電極のブラ
シ状カーボンナノチューブとを非接触状に互いに向き合
わせた。
(57) [Problem] To provide a small electric double layer capacitor capable of storing a large capacity. SOLUTION: A pair of polarizable electrodes 1 impregnated with an electrolytic solution.
2 were placed facing each other in the container. Each polarizable electrode was composed of substrates 3, 4 serving as current collectors and brush-like carbon nanotubes 5, 6 grown on one surface thereof. The brush-like carbon nanotube of one electrode and the brush-like carbon nanotube of the other electrode faced each other in a non-contact state.
Description
【0001】[0001]
【発明の属する技術分野】大容量の電気を蓄えることが
可能な、カーボンナノチューブを用いた電気二重層キャ
パシタに関する。TECHNICAL FIELD The present invention relates to an electric double layer capacitor using carbon nanotubes capable of storing a large amount of electricity.
【0002】[0002]
【従来の技術】従来、電気二重層キャパシタでは、集電
体上に活性炭を主とする分極性電極層を形成した一対の
分極性電極の間にポリプロピレン不織布などのセパレー
タを挟んで素子とし、電極層に電解液を含浸させ、素子
を金属容器に収容し、封口板とガスケットにより金属容
器に密封した構造がとられていた。これら小型の電気二
重層キャパシタは、おもにICメモリのバックアップに
使用されていた。2. Description of the Related Art Conventionally, in an electric double layer capacitor, a separator such as polypropylene nonwoven fabric is sandwiched between a pair of polarizable electrodes having a polarizable electrode layer composed mainly of activated carbon on a current collector to form an element. The layer is impregnated with an electrolytic solution, the element is housed in a metal container, and the structure is sealed in a metal container with a sealing plate and a gasket. These small electric double layer capacitors were mainly used for backup of IC memories.
【0003】また、集電体上に活性炭ベースの電極層を
形成した平板状の正極と負極をセパレータを介して交互
に積層し、この積層体をケースに収め、ケース内に電解
液を注入して電極層中に浸透させてなる積層型の電気二
重層キャパシタも提案されていた(特開平4−1541
06号公報など)。これは、主に大電流・大容量向けに
用いられていた。Further, flat plate-like positive electrodes and negative electrodes each having an activated carbon-based electrode layer formed on a current collector are alternately laminated with a separator interposed therebetween, the laminated bodies are housed in a case, and an electrolytic solution is injected into the case. There has also been proposed a laminated electric double layer capacitor formed by infiltrating into the electrode layer (Japanese Patent Laid-Open No. 4-1541).
No. 06 publication). This was mainly used for large current and large capacity.
【0004】これらの電気二重層キャパシタを構成する
分極性電極は、従来、大比表面積を有する活性炭を主と
するものであった。また、電解液としては、電解質を高
濃度で溶解できるように、水や炭酸エステルなどの高誘
電率の極性溶媒が用いられていた。Conventionally, the polarizable electrodes constituting these electric double layer capacitors have mainly been activated carbon having a large specific surface area. Further, as the electrolytic solution, a polar solvent having a high dielectric constant such as water or carbonic acid ester has been used so that the electrolyte can be dissolved at a high concentration.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、大比表
面積を有する活性炭は、一般に電気伝導度が小さく、活
性炭のみでは分極性電極の内部抵抗が大きくなって、大
電流を取り出せない。このため、内部抵抗を下げる目的
で、分極性電極中にカーボンナノチューブを含有させて
電気伝導度を上げることにより大容量化を図る試みも行
われた(特開2000−124079号公報)。しか
し、この方法では、従来の容量を約1.7倍に上げるに
留まった。However, activated carbon having a large specific surface area generally has a low electric conductivity, and the activated carbon alone cannot increase a large current because the internal resistance of the polarizable electrode becomes large. Therefore, in order to reduce the internal resistance, attempts have been made to increase the capacity by incorporating carbon nanotubes in the polarizable electrode to increase the electric conductivity (Japanese Patent Laid-Open No. 2000-124079). However, with this method, the conventional capacity was increased only about 1.7 times.
【0006】また、従来の電気二重層キャパシタは、正
負両極のオーミックな接触を完全に防ぎ、かつイオンの
流通を妨げないために、PTFEなどのセパレータを必
要とするが、セパレータの材料、形状が電気二重層の自
己放電特性、内部抵抗に大きな影響を与えるという問題
があった。Further, the conventional electric double layer capacitor requires a separator such as PTFE in order to completely prevent ohmic contact between the positive and negative electrodes and to prevent the flow of ions, but the material and shape of the separator are There is a problem that the self-discharge characteristics of the electric double layer and internal resistance are greatly affected.
【0007】他方において、ICメモリをバックアップ
することができる時間を、さらに長くできるように、よ
り大容量の電気二重層キャパシタの実現が望まれてい
る。On the other hand, it is desired to realize an electric double layer capacitor having a larger capacity so that the time when the IC memory can be backed up can be further lengthened.
【0008】本発明の目的は、上記従来技術の問題点を
解決し、小型で大容量を蓄電できる電気二重層キャパシ
タを提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an electric double layer capacitor which is compact and can store a large capacity.
【0009】[0009]
【課題を解決するための手段】本発明者は、より大容量
の蓄電を実現できる電気二重層キャパシタの開発を目的
として鋭意努力した。その結果、基板上に成長させた一
対のブラシ状カーボンナノチューブをセパレータ無しで
所要間隔で接触しないように互いに対向させるか、ある
いは、上記一対のブラシ状カーボンナノチューブを電気
的に接触しないように強誘電率の材料で被覆し、互いに
食い込ませた構造とすることにより、従来の大容量電気
二重層キャパシタの十倍以上の蓄電が可能であり、かつ
内部抵抗を半分以下に抑えることができることを見出し
た。The present inventor has made earnest efforts for the purpose of developing an electric double layer capacitor capable of realizing storage of a larger capacity. As a result, a pair of brush-like carbon nanotubes grown on the substrate are made to face each other without a separator at a required interval so as not to come into contact with each other, or the pair of brush-like carbon nanotubes are made to come into contact with each other without electrical contact so as to have a ferroelectric property. It has been found that by covering with a material of a high ratio and by making them bite into each other, it is possible to store electricity more than ten times that of conventional large-capacity electric double layer capacitors and to reduce the internal resistance to less than half. .
【0010】すなわち、第一の発明は、電解液を含浸さ
せた一対の分極性電極を容器内に対向状に配置し、各分
極性電極を、集電体となる基板とその片面に成長させた
ブラシ状カーボンナノチューブとから構成し、一方の電
極のブラシ状カーボンナノチューブと他方の電極のブラ
シ状カーボンナノチューブとを非接触状に互いに向き合
わせてなる、カーボンナノチューブを用いた電気二重層
キャパシタに関する。That is, in the first aspect of the invention, a pair of polarizable electrodes impregnated with an electrolytic solution are arranged in opposition to each other in a container, and each polarizable electrode is grown on a substrate serving as a current collector and one surface thereof. And a brush-like carbon nanotube, wherein the brush-like carbon nanotube of one electrode and the brush-like carbon nanotube of the other electrode face each other in a non-contact manner.
【0011】第二の発明は、電解液を含浸させた一対の
分極性電極を容器内に対向状に配置し、各分極性電極
を、集電体となる基板とその片面に成長させたブラシ状
カーボンナノチューブとブラシ状カーボンナノチューブ
の表面を覆う強誘電率の被覆層とから構成し、一方の電
極のブラシ状カーボンナノチューブと他方の電極のブラ
シ状カーボンナノチューブとを電気的に非接触状に互い
に食い込ませてなる、カーボンナノチューブを用いた電
気二重層キャパシタに関する。A second aspect of the invention is a brush in which a pair of polarizable electrodes impregnated with an electrolytic solution are arranged in a container so as to face each other, and each polarizable electrode is grown on a substrate serving as a current collector and one surface thereof. -Like carbon nanotubes and a coating layer having a ferroelectric constant that covers the surface of the brush-like carbon nanotubes, and the brush-like carbon nanotubes of one electrode and the brush-like carbon nanotubes of the other electrode are electrically non-contacting with each other. The present invention relates to an electric double layer capacitor using carbon nanotubes that is made to bite.
【0012】前記カーボンナノチューブの構造は単層す
なわち単一のチューブであってもよいし、多層すなわち
同心状の複数の異径チューブであってもよい。カーボン
ナノチューブの直径は好ましくは1〜100nmであ
る。The structure of the carbon nanotube may be a single layer, that is, a single tube, or may be a multilayer, that is, a plurality of concentric tubes having different diameters. The diameter of the carbon nanotube is preferably 1 to 100 nm.
【0013】[0013]
【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
【0014】カーボンナノチューブは、カーボン原子が
網目状に結合してできた穴径ナノ(1ナノは10億分の
1)メートルサイズの極微細な筒(チューブ)状の物質
である。通常の電解液の電解質イオン直径は約0.4〜
0.6nmであるので、穴径1〜2nmのカーボンナノ
チューブがイオンの吸脱着に好ましい。The carbon nanotube is a substance in the form of an extremely fine tube (tube) having a hole diameter nanometer (one nanometer is one billionth) made by connecting carbon atoms in a mesh shape. The electrolyte ion diameter of a normal electrolyte is about 0.4-
Since it is 0.6 nm, carbon nanotubes having a hole diameter of 1 to 2 nm are preferable for adsorption and desorption of ions.
【0015】分極性電極を構成するブラシ状カーボンナ
ノチューブは、公知の方法で作製できる。例えば、シリ
コン基板の少なくとも片面上にFe膜をフォトリソグラ
フィーでパターン化し、この面にアセチレン(C
2H2)ガスを用いて一般的な化学蒸着法(CVD法)
を施すことにより作製できる。この方法では、直径12
〜38nmのカーボンナノチューブが多層構造で基板上
に垂直に起毛される。また、対向する一対のブラシ状カ
ーボンナノチューブを電気的に接触させないようにする
には、基板の周縁にテフロン(登録商標)など非導電性
のスペーサーを設ける方法が好ましい。一対のブラシ状
カーボンナノチューブのブラシ先端間の間隙は、好まし
くは5〜30μmである。The brush-like carbon nanotubes constituting the polarizable electrode can be produced by a known method. For example, a Fe film is patterned on at least one surface of a silicon substrate by photolithography, and acetylene (C
General chemical vapor deposition (CVD method) using 2 H 2 ) gas
It can be produced by applying. This method gives a diameter of 12
Carbon nanotubes of ˜38 nm are vertically raised on the substrate in a multi-layer structure. In order to prevent the pair of opposed brush-like carbon nanotubes from electrically contacting each other, it is preferable to provide a non-conductive spacer such as Teflon (registered trademark) on the peripheral edge of the substrate. The gap between the brush tips of the pair of brush-like carbon nanotubes is preferably 5 to 30 μm.
【0016】第2発明において、ブラシ状カーボンナノ
チューブの表面を覆う強誘電率の被覆層を形成するに
は、例えば、基板に成長したブラシ状カーボンナノチュ
ーブをPd(Zr0.5Ti0.5)O3の溶液(高純
度化学研究所「SYMETRIX」)に含浸した後、取
り出し、窒素中で熱処理する方法が好ましい。In the second invention, in order to form a coating layer having a ferroelectric constant for covering the surface of the brush-like carbon nanotube, for example, the brush-like carbon nanotube grown on the substrate is made of Pd (Zr 0.5 Ti 0.5 ). A method of impregnating with a solution of O 3 (High-Purity Chemical Laboratory “SYMETRIX”), taking out, and heat-treating in nitrogen is preferable.
【0017】集電体となる基板としては、シリコン平板
が好ましいが、そのほかチタン、ステンレス鋼、タンタ
ル、グラファイトなどからなる平板も使用できる。集電
効率を上げるために、パンチングメタル、エキスパンド
メタル、金属網、アルミニウムのエッチング箔なども好
ましい。A silicon flat plate is preferable as the substrate serving as a current collector, but a flat plate made of titanium, stainless steel, tantalum, graphite or the like can be used. Punching metal, expanded metal, metal net, etching foil of aluminum, etc. are also preferable in order to improve current collection efficiency.
【0018】電気二重層キャパシタの電解液は、プロピ
レンカーボネート、1−ブチレンカーボネート、スルホ
ラン、アセトニトリル、γ−ブチルラクトン、ジメチル
ホルムアミドなどの非プロトン性溶媒に、テトラエチル
アンモニウムテトラフルオロボレートやテトラエチルア
ンモニウムヘキサフルオロホスファート、テトラブチル
アンモニウム過塩素酸塩などの有機溶質、または、リチ
ウム、第4級ホスホニウム等のカチオンとBF4 −、P
F6 −、ClO4 −、CF2SO2 −などのアニオンか
らなる無機溶質を溶解したものや、ランタノイド元素の
塩等を含む希硫酸などの水溶液系電解液、またはこれら
に高分子物質を加えたポリマー型電解液などを使用する
ことができる。The electrolytic solution of the electric double layer capacitor is prepared by using an aprotic solvent such as propylene carbonate, 1-butylene carbonate, sulfolane, acetonitrile, γ-butyl lactone or dimethylformamide in tetraethylammonium tetrafluoroborate or tetraethylammonium hexafluorophosphate. Organic solutes such as fert and tetrabutylammonium perchlorate, or cations such as lithium and quaternary phosphonium and BF 4 − , P
F 6 − , ClO 4 − , CF 2 SO 2 − or the like in which an inorganic solute is dissolved, an aqueous electrolyte such as dilute sulfuric acid containing a salt of a lanthanoid element, or a polymer substance is added to these. Polymer type electrolytic solution or the like can be used.
【0019】つぎに、本発明を実施例に基づいて具体的
に説明する。Next, the present invention will be specifically described based on Examples.
【0020】実施例1
第一工程
10mm×10mm×0.5mm厚みの低抵抗N型半導
体シリコン基板に、その片面の全周縁に、厚み60μm
で幅1mmのテフロンテープを貼り付け被覆した。この
テフロンテープが図1および図2中のスペーサ(8) とな
る。図面はいずれもコイン型電気二重層キャパシタを模
式的に描いたものであり、各部材の寸法は現実のものと
一致していない。次いで、上記片面にフォトリソグラフ
ィーでFe膜をパターン化した後、アセチレンを流量3
0ml/min、温度700℃で15分流して化学蒸着
法により基板上にブラシ状カーボンナノチューブを成長
させた。こうして作製されたカーボンナノチューブは多
層構造であり、直径は12nmで、長さは50μmであ
った。こうして基板と、その片面に成長させたブラシ状
カーボンナノチューブとからなる分極性電極を得た。Example 1 First Step A low-resistance N-type semiconductor silicon substrate having a thickness of 10 mm × 10 mm × 0.5 mm and a thickness of 60 μm on the entire periphery of one side thereof.
Then, a Teflon tape having a width of 1 mm was attached and covered. This Teflon tape serves as the spacer (8) in FIGS. 1 and 2. All of the drawings are schematic representations of coin-type electric double layer capacitors, and the dimensions of each member do not match the actual dimensions. Then, after patterning the Fe film on the one surface by photolithography, acetylene was added at a flow rate of 3
Brush-like carbon nanotubes were grown on the substrate by chemical vapor deposition at a flow rate of 0 ml / min at a temperature of 700 ° C. for 15 minutes. The carbon nanotubes thus produced had a multi-layered structure, a diameter of 12 nm and a length of 50 μm. Thus, a polarizable electrode composed of the substrate and the brush-like carbon nanotubes grown on one surface thereof was obtained.
【0021】第二工程
図1はコイン型電気二重層キャパシタを示す垂直断面図
である。図1において、集電体となる基板(3)(4)とブラ
シ状カーボンナノチューブ(5)(6)からそれぞれ構成され
た上下一対の分極性電極(1)(2)を、下側の電極(1) のブ
ラシ状カーボンナノチューブ(5) と、上方の電極(2) の
ブラシ状カーボンナノチューブ(6) とが非接触状に互い
に向き合うように、ステンレス鋼製の容器(7) 内に配置
した。一対のブラシ状カーボンナノチューブ(5)(6)のブ
ラシ先端間の間隙(9) を20μmとした。ついで、乾燥
窒素雰囲気下にグローブボックス内で電解液(テトラエ
チルアンモニウムテトラフルオロボレートのプロピレン
カーボネート溶液(濃度=1mol/l))を容器(7)
内に注入し、ブラシ状カーボンナノチューブ(5)(6)に含
浸させた。その後、ポリプロピレン製ガスケット(10)を
用いて容器(7) をステンレス鋼製の蓋材(11)でかしめ封
口した。こうして、コイン型電気二重層キャパシタを作
製した。Second Step FIG. 1 is a vertical sectional view showing a coin type electric double layer capacitor. In FIG. 1, a pair of upper and lower polarizable electrodes (1) and (2) each composed of a substrate (3) (4) serving as a current collector and brush-like carbon nanotubes (5) (6) The brush-like carbon nanotubes (5) of (1) and the brush-like carbon nanotubes (6) of the upper electrode (2) were placed in a stainless steel container (7) so as to face each other in a non-contact manner. . The gap (9) between the brush tips of the pair of brush-like carbon nanotubes (5) and (6) was set to 20 μm. Then, in a glove box under a dry nitrogen atmosphere, the electrolytic solution (a propylene carbonate solution of tetraethylammonium tetrafluoroborate (concentration = 1 mol / l)) was placed in a container (7).
It was injected into the inside and impregnated into the brush-like carbon nanotubes (5) and (6). Then, the polypropylene gasket (10) was used to caulk and seal the container (7) with a stainless steel lid (11). Thus, a coin type electric double layer capacitor was produced.
【0022】このキャパシタの特性を測定したところ、
分極性電極重量当たりの電気容量は15F/g、分極性
電極重量当たりの内部抵抗は11Ωであった。When the characteristics of this capacitor were measured,
The electric capacity per polarizable electrode weight was 15 F / g, and the internal resistance per polarizable electrode weight was 11Ω.
【0023】実施例2
第一工程
実施例1において、低抵抗N型半導体シリコン基板を、
厚み30μmで幅1mmのテフロンテープで被覆した点
を除いて、実施例1の第一工程と同様の操作を行い、基
板上にブラシ状カーボンナノチューブを成長させた。Example 2 First Process In Example 1, a low resistance N-type semiconductor silicon substrate was prepared.
A brush-like carbon nanotube was grown on the substrate by performing the same operation as in the first step of Example 1 except that it was coated with a Teflon tape having a thickness of 30 μm and a width of 1 mm.
【0024】第二工程
このブラシ状カーボンナノチューブをPb(Zr0.5
Ti0.5)O3の0.5mol/l水溶液(高純度化
学研究所製「SYMETRIX」)100mlを入れた
ガラスビーカーに入れた。そのビーカーを真空用の容器
内に置き、容器内雰囲気を真空にすることにより、Pb
(Zr0.5Ti0.5)O3水溶液をカーボンナノチ
ューブの隙間に含浸させた。ついで、ブラシ状カーボン
ナノチューブ付き基板を液から取り出し、電気炉で窒素
雰囲気下に温度約400℃で熱処理した。この熱処理に
より、図3に示すように、ブラシ状カーボンナノチュー
ブの表面を強誘電率の材料からなる被覆層(12)で覆っ
た。こうして基板と、その片面に成長させたブラシ状カ
ーボンナノチューブとからなる分極性電極を得た。Second Step This brush-like carbon nanotube is treated with Pb (Zr 0.5
It was placed in a glass beaker containing 100 ml of a 0.5 mol / l aqueous solution of Ti 0.5 ) O 3 (“SYMETRIX” manufactured by Kojundo Chemical Laboratory Co., Ltd.). The beaker is placed in a vacuum container, and the atmosphere in the container is evacuated to obtain Pb.
The (Zr 0.5 Ti 0.5 ) O 3 aqueous solution was impregnated into the gaps between the carbon nanotubes. Next, the substrate with brush-like carbon nanotubes was taken out of the solution and heat-treated at a temperature of about 400 ° C. in a nitrogen atmosphere in an electric furnace. By this heat treatment, as shown in FIG. 3, the surface of the brush-like carbon nanotube was covered with a coating layer (12) made of a ferroelectric material. Thus, a polarizable electrode composed of the substrate and the brush-like carbon nanotubes grown on one surface thereof was obtained.
【0025】第三工程
図2はコイン型電気二重層キャパシタを示す垂直断面図
である。図2において、集電体となる基板(3)(4)とブラ
シ状カーボンナノチューブ(5)(6)からそれぞれ構成され
た上下一対の分極性電極(1)(2)を、下側の電極(1) のブ
ラシ状カーボンナノチューブ(5) と、上方の電極(2) の
ブラシ状カーボンナノチューブ(6) とが電気的に非接触
状に互いに食い込むように、ステンレス鋼製の容器(7)
内に配置した。その後、実施例1の第二工程と同様の操
作により電解液の含浸を行い、コイン型電気二重層キャ
パシタを作製した。Third Process FIG. 2 is a vertical sectional view showing a coin type electric double layer capacitor. In FIG. 2, a pair of upper and lower polarizable electrodes (1) and (2) each composed of a substrate (3) (4) serving as a current collector and brush-like carbon nanotubes (5) (6) are attached to the lower electrode. The stainless steel container (7) so that the brush-like carbon nanotubes (5) of (1) and the brush-like carbon nanotubes (6) of the upper electrode (2) bite into each other in an electrically non-contact manner.
Placed inside. Then, the electrolytic solution was impregnated by the same operation as in the second step of Example 1 to produce a coin-type electric double layer capacitor.
【0026】このキャパシタの特性を測定したところ、
分極性電極重量当たりの電気容量は53F/g、分極性
電極重量当たりの内部抵抗は8Ω/gを示した。When the characteristics of this capacitor were measured,
The electric capacity per polarizable electrode weight was 53 F / g, and the internal resistance per polarizable electrode weight was 8 Ω / g.
【0027】比較例1
フェノール樹脂系の溶融KOH賦括処理活性炭粉末(比
表面積2500m2/g、平均粒径5μm)60wt
%、カーボンブラック(日本黒鉛製)30wt%、およ
びテトラフルオロエチレン系バインダー10wt%から
なる混合物を調製した。この混合物にエタノールを加え
て混練し、得られた混練物をロール圧延することによ
り、10mm×10mm×6mmのシートとし、このシ
ートを250℃で2時間乾燥した。こうして得られた上
下一対の電極(21)(22)を、これらの間にスペーサー(23)
を介在させて、図4に示すように、ステンレス鋼製の容
器(7) に設置した後、実施例1と同様にしてコイン型の
電気二重層キャパシタを作製した。図中、(24)はグラフ
ァイト系導電性接着剤層である。Comparative Example 1 Phenol resin-based activated KOH-enhancing treated activated carbon powder (specific surface area 2500 m 2 / g, average particle size 5 μm) 60 wt
%, Carbon black (manufactured by Nippon Graphite Co., Ltd.) 30 wt%, and a tetrafluoroethylene-based binder 10 wt%. Ethanol was added to this mixture and kneaded, and the obtained kneaded product was rolled to obtain a sheet of 10 mm × 10 mm × 6 mm, which was dried at 250 ° C. for 2 hours. A pair of upper and lower electrodes (21) (22) thus obtained are provided with a spacer (23) between them.
As shown in FIG. 4, after being placed in a stainless steel container (7), a coin type electric double layer capacitor was manufactured in the same manner as in Example 1. In the figure, (24) is a graphite-based conductive adhesive layer.
【0028】このキャパシタの特性を測定したところ、
分極性電極重量当たりの電気容量は4.6F/g、分極
性電極重量当たりの内部抵抗は16Ω/gを示した。When the characteristics of this capacitor were measured,
The electric capacity per polarizable electrode weight was 4.6 F / g, and the internal resistance per polarizable electrode weight was 16 Ω / g.
【0029】[0029]
【発明の効果】本発明による電気二重層キャパシタは、
以上の通り構成されているので、小型で大容量を蓄電す
ることができる。The electric double layer capacitor according to the present invention is
Since it is configured as described above, a small size and a large capacity can be stored.
【図1】図1は実施例1によるコイン型電気二重層キャ
パシタを示す垂直断面図である。FIG. 1 is a vertical cross-sectional view showing a coin type electric double layer capacitor according to a first embodiment.
【図2】図2は実施例2によるコイン型電気二重層キャ
パシタを示す垂直断面図である。FIG. 2 is a vertical sectional view showing a coin type electric double layer capacitor according to a second embodiment.
【図3】図3は実施例2によるコイン型電気二重層キャ
パシタにおける、ブラシ状カーボンナノチューブの食い
込み状態を示す垂直断面図である。FIG. 3 is a vertical cross-sectional view showing a state where a brush-like carbon nanotube bites in a coin-type electric double-layer capacitor according to Example 2.
【図4】図4は従来のコイン型電気二重層キャパシタを
示す垂直断面図である。FIG. 4 is a vertical sectional view showing a conventional coin type electric double layer capacitor.
(1)(2)分極性電極 (3)(4)基板 (5)(6)ブラシ状カーボンナノチューブ (7) 容器 (8) スペーサ (9) 間隙 (10)ガスケット (11)蓋材 (1) (2) Polarizable electrode (3) (4) PCB (5) (6) Brush-like carbon nanotubes (7) Container (8) Spacer (9) Gap (10) Gasket (11) Lid material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲住 近 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 (72)発明者 藤田 大祐 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 (72)発明者 塩崎 秀喜 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 (72)発明者 中山 喜萬 大阪府枚方市香里ヶ丘1−14−2 9号棟 404 (72)発明者 齋藤 理一郎 東京都狛江市岩戸北3−15−19 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor K. Inazumi 1-89 Minami Kohoku 1-89, Suminoe-ku, Osaka Standing Shipbuilding Co., Ltd. (72) Inventor Daisuke Fujita 1-89 Minami Kohoku 1-89, Suminoe-ku, Osaka Standing Shipbuilding Co., Ltd. (72) Inventor Hideki Shiozaki 1-89 Minami Kohoku 1-89, Suminoe-ku, Osaka Standing Shipbuilding Co., Ltd. (72) Inventor Kiman Nakayama 1-1-14 Karigaoka, Hirakata City, Osaka Prefecture Building 9 404 (72) Inventor Riichiro Saito 3-15-19 Iwatokita, Komae-shi, Tokyo
Claims (3)
容器内に対向状に配置し、各分極性電極を、集電体とな
る基板とその片面に成長させたブラシ状カーボンナノチ
ューブとから構成し、一方の電極のブラシ状カーボンナ
ノチューブと他方の電極のブラシ状カーボンナノチュー
ブとを非接触状に互いに向き合わせてなる、カーボンナ
ノチューブを用いた電気二重層キャパシタ。1. A pair of polarizable electrodes impregnated with an electrolytic solution are arranged to face each other in a container, and each polarizable electrode is a substrate serving as a current collector and a brush-like carbon nanotube grown on one surface thereof. An electric double-layer capacitor using carbon nanotubes, which comprises a brush-like carbon nanotube of one electrode and a brush-like carbon nanotube of the other electrode facing each other in a non-contact manner.
容器内に対向状に配置し、各分極性電極を、集電体とな
る基板とその片面に成長させたブラシ状カーボンナノチ
ューブとブラシ状カーボンナノチューブの表面を覆う強
誘電率の被覆層とから構成し、一方の電極のブラシ状カ
ーボンナノチューブと他方の電極のブラシ状カーボンナ
ノチューブとを電気的に非接触状に互いに食い込ませて
なる、カーボンナノチューブを用いた電気二重層キャパ
シタ。2. A pair of polarizable electrodes impregnated with an electrolytic solution are arranged to face each other in a container, and each polarizable electrode is a substrate serving as a current collector and a brush-like carbon nanotube grown on one surface thereof. It is composed of a ferroelectric coating layer covering the surface of the brush-like carbon nanotube, and the brush-like carbon nanotube of one electrode and the brush-like carbon nanotube of the other electrode bite into each other in an electrically non-contact manner. , Electric double layer capacitor using carbon nanotube.
または多層であり、直径が1〜100nmであることを
特徴とする請求項1または2記載の電気二重層キャパシ
タ。3. The electric double layer capacitor according to claim 1, wherein the carbon nanotube has a single-layer or multi-layer structure and a diameter of 1 to 100 nm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002031148A JP2003234254A (en) | 2002-02-07 | 2002-02-07 | Electric double-layer capacitor using carbon nanotubes |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002031148A JP2003234254A (en) | 2002-02-07 | 2002-02-07 | Electric double-layer capacitor using carbon nanotubes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003234254A true JP2003234254A (en) | 2003-08-22 |
Family
ID=27774637
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002031148A Pending JP2003234254A (en) | 2002-02-07 | 2002-02-07 | Electric double-layer capacitor using carbon nanotubes |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003234254A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005059934A1 (en) * | 2003-12-16 | 2005-06-30 | Hitachi Zosen Corporation | Printed board with built-in capacitor |
| WO2007032064A1 (en) * | 2005-09-14 | 2007-03-22 | Kitagawa Seiki Kabushiki Kaisha | Electrode for electric double layer capacitor and process for producing the same |
| JP2007520072A (en) * | 2004-01-29 | 2007-07-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Vertical nanotube semiconductor device structure and method for forming the same |
| JP2007266548A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Electric double layer capacitor using carbon nanotubes |
| JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
| CN100547707C (en) * | 2004-10-25 | 2009-10-07 | 中国科学院电工研究所 | A kind of supercapacitor and its manufacturing method |
| JP2010521819A (en) * | 2007-03-15 | 2010-06-24 | 矢崎総業株式会社 | Capacitor comprising an organized assembly of carbon and non-carbon compounds |
| US8072733B2 (en) | 2005-08-19 | 2011-12-06 | National Institute Of Advanced Industrial Science And Technology | Electrochemical capacitor and electrode material for use therein |
| US8236446B2 (en) | 2008-03-26 | 2012-08-07 | Ada Technologies, Inc. | High performance batteries with carbon nanomaterials and ionic liquids |
| US8277691B2 (en) | 2008-05-05 | 2012-10-02 | Ada Technologies, Inc. | High performance carbon nanocomposites for ultracapacitors |
| US8284539B2 (en) * | 2006-08-02 | 2012-10-09 | Ada Technologies, Inc. | High performance ultracapacitors with carbon nanomaterials and ionic liquids |
| JP2015519742A (en) * | 2012-05-03 | 2015-07-09 | ダイソン テクノロジー リミテッド | Hybrid capacitor |
| US9627691B2 (en) | 2013-02-07 | 2017-04-18 | Ada Technologies, Inc. | Metalized, three-dimensional structured oxygen cathode materials for lithium/air batteries and method for making and using the same |
| JP2020501367A (en) * | 2016-12-02 | 2020-01-16 | ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation | Composite electrode |
| JPWO2021059569A1 (en) * | 2019-09-25 | 2021-04-01 | ||
| EP4042459A4 (en) * | 2019-10-11 | 2023-11-22 | 10644137 Canada Inc. | Metacapacitors and power-electronic converters for power-electronic systems |
| US11848449B2 (en) | 2019-07-05 | 2023-12-19 | Fastcap Systems Corporation | Electrodes for energy storage devices |
| US20240079187A1 (en) * | 2022-05-25 | 2024-03-07 | Georgia Tech Research Corporation | Silicon-Based Supercapacitor with Additive-Manufactured Design and Electrodes for Same |
-
2002
- 2002-02-07 JP JP2002031148A patent/JP2003234254A/en active Pending
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005183443A (en) * | 2003-12-16 | 2005-07-07 | Hitachi Zosen Corp | PCB with built-in capacitor |
| WO2005059934A1 (en) * | 2003-12-16 | 2005-06-30 | Hitachi Zosen Corporation | Printed board with built-in capacitor |
| JP2007520072A (en) * | 2004-01-29 | 2007-07-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Vertical nanotube semiconductor device structure and method for forming the same |
| CN100547707C (en) * | 2004-10-25 | 2009-10-07 | 中国科学院电工研究所 | A kind of supercapacitor and its manufacturing method |
| US8072733B2 (en) | 2005-08-19 | 2011-12-06 | National Institute Of Advanced Industrial Science And Technology | Electrochemical capacitor and electrode material for use therein |
| WO2007032064A1 (en) * | 2005-09-14 | 2007-03-22 | Kitagawa Seiki Kabushiki Kaisha | Electrode for electric double layer capacitor and process for producing the same |
| JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
| JP2007266548A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Electric double layer capacitor using carbon nanotubes |
| US8284539B2 (en) * | 2006-08-02 | 2012-10-09 | Ada Technologies, Inc. | High performance ultracapacitors with carbon nanomaterials and ionic liquids |
| JP2010521819A (en) * | 2007-03-15 | 2010-06-24 | 矢崎総業株式会社 | Capacitor comprising an organized assembly of carbon and non-carbon compounds |
| US7794840B2 (en) | 2007-03-15 | 2010-09-14 | Yazaki Corporation | Capacitors comprising organized assemblies of carbon and non-carbon compounds |
| US7943238B2 (en) | 2007-03-15 | 2011-05-17 | Yazaki Corporation | Capacitors comprising organized assemblies of carbon and non-carbon compounds |
| US8236446B2 (en) | 2008-03-26 | 2012-08-07 | Ada Technologies, Inc. | High performance batteries with carbon nanomaterials and ionic liquids |
| US8277691B2 (en) | 2008-05-05 | 2012-10-02 | Ada Technologies, Inc. | High performance carbon nanocomposites for ultracapacitors |
| JP2015519742A (en) * | 2012-05-03 | 2015-07-09 | ダイソン テクノロジー リミテッド | Hybrid capacitor |
| US9627691B2 (en) | 2013-02-07 | 2017-04-18 | Ada Technologies, Inc. | Metalized, three-dimensional structured oxygen cathode materials for lithium/air batteries and method for making and using the same |
| JP2020501367A (en) * | 2016-12-02 | 2020-01-16 | ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation | Composite electrode |
| JP7554556B2 (en) | 2016-12-02 | 2024-09-20 | ファーストキャップ・システムズ・コーポレイション | Composite Electrode |
| US12406815B2 (en) | 2016-12-02 | 2025-09-02 | Nanoramic, Inc. | Composite electrode |
| US11848449B2 (en) | 2019-07-05 | 2023-12-19 | Fastcap Systems Corporation | Electrodes for energy storage devices |
| JPWO2021059569A1 (en) * | 2019-09-25 | 2021-04-01 | ||
| WO2021059569A1 (en) * | 2019-09-25 | 2021-04-01 | 株式会社村田製作所 | Capacitor and method for manufacturing same |
| JP7151907B2 (en) | 2019-09-25 | 2022-10-12 | 株式会社村田製作所 | Capacitor and manufacturing method thereof |
| US11749463B2 (en) | 2019-09-25 | 2023-09-05 | Murata Manufacturing Co., Ltd. | Capacitor and method for manufacturing the same |
| EP4042459A4 (en) * | 2019-10-11 | 2023-11-22 | 10644137 Canada Inc. | Metacapacitors and power-electronic converters for power-electronic systems |
| US20240079187A1 (en) * | 2022-05-25 | 2024-03-07 | Georgia Tech Research Corporation | Silicon-Based Supercapacitor with Additive-Manufactured Design and Electrodes for Same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2003234254A (en) | Electric double-layer capacitor using carbon nanotubes | |
| US9312078B2 (en) | Patterned graphite oxide films and methods to make and use same | |
| US8072733B2 (en) | Electrochemical capacitor and electrode material for use therein | |
| KR101995465B1 (en) | Electrode structure having roll shape, electrode and electric device including the electrode structure, and method of manufacturing the electrode structure | |
| CN1934665B (en) | Electrode manufacturing method, resulting electrode, and supercapacitor comprising the same | |
| JP3800799B2 (en) | Electric double layer capacitor | |
| TWI601330B (en) | Electrode material and energy storage apparatus | |
| US9496090B2 (en) | Method of making graphene electrolytic capacitors | |
| JPH0963905A (en) | Electric double layer capacitor and method of manufacturing the same | |
| JPH08107048A (en) | Electric double layer capacitor | |
| JP2000124079A (en) | Electric double-layer capacitor | |
| WO2008001488A1 (en) | Dye-sensitized solar cell and process for manufacturing the same | |
| Guo et al. | Thickness‐Independent Capacitive Performance of Holey Ti3C2Tx Film Prepared through a Mild Oxidation Strategy | |
| Ryu et al. | Hierarchically nanostructured MnO 2 electrodes for pseudocapacitor application | |
| JP2008192695A (en) | ELECTRODE BODY, ITS MANUFACTURING METHOD, AND ELECTRIC DOUBLE LAYER CAPACITOR | |
| Lopa et al. | ALD-fabricated two-dimensional SnO2-In2O3 nn nanohybrid electrode for electrochemical supercapacitors | |
| Le et al. | Simultaneous enhancement of specific capacitance and potential window of graphene-based electric double-layer capacitors using ferroelectric polymers | |
| JPH1097956A (en) | Electric double layer capacitor | |
| Khairul et al. | Graphene nanoparticle-embedded PANI-PPy hybrid nanocomposite for high-performance symmetric supercapacitor application | |
| JP4487540B2 (en) | Electrochemical capacitor | |
| KR20170016908A (en) | Electrode structure having roll shape, electrode and electric device including the electrode structure, and method of manufacturing the electrode structure | |
| US12308166B2 (en) | High specific capacitance solid state supercapacitor and method of manufacture | |
| US20150364267A1 (en) | Passivated porous silicon nanowires | |
| US20180218848A1 (en) | Supercapacitors containing carbon black particles | |
| JP4808444B2 (en) | Electric double layer capacitor and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041125 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070510 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
| A521 | Written amendment |
Effective date: 20070801 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
| A131 | Notification of reasons for refusal |
Effective date: 20071127 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
| A521 | Written amendment |
Effective date: 20080128 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080507 |